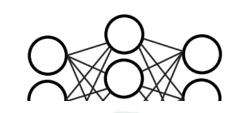
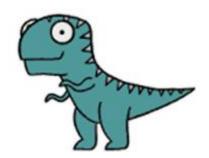
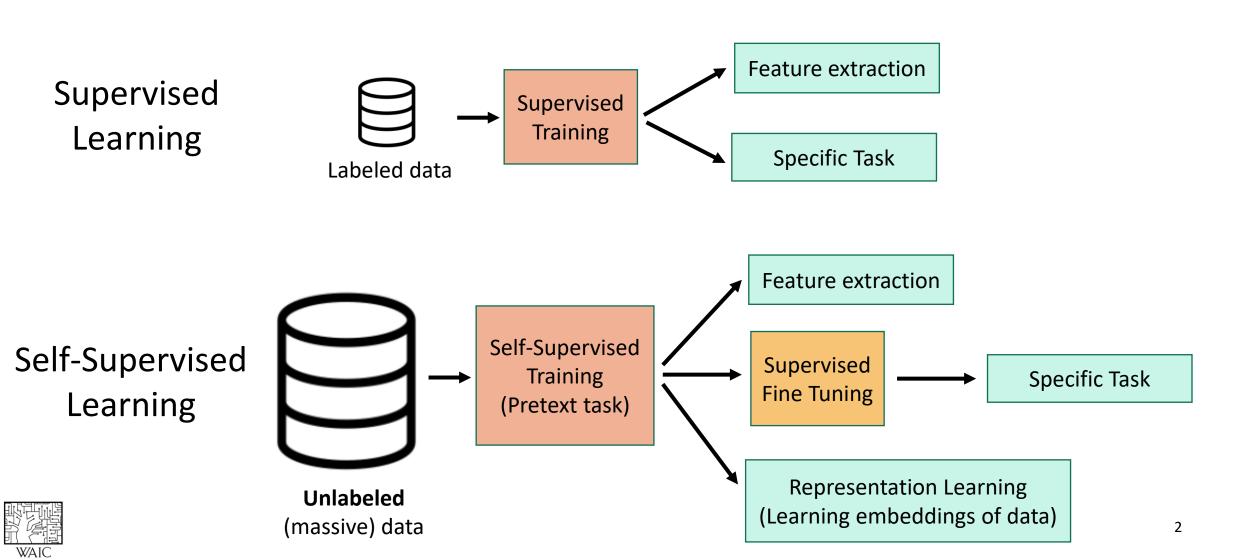
MEN. WOMEN. BABIES. ELDERLY. Are still held hostage by hamas #BringThemHomeNow

Self-Supervision II





Reminder – Self supervised learning



Topics

self-DIstillation with NO labels

• DINO

Masked Auto Encoders
MAE

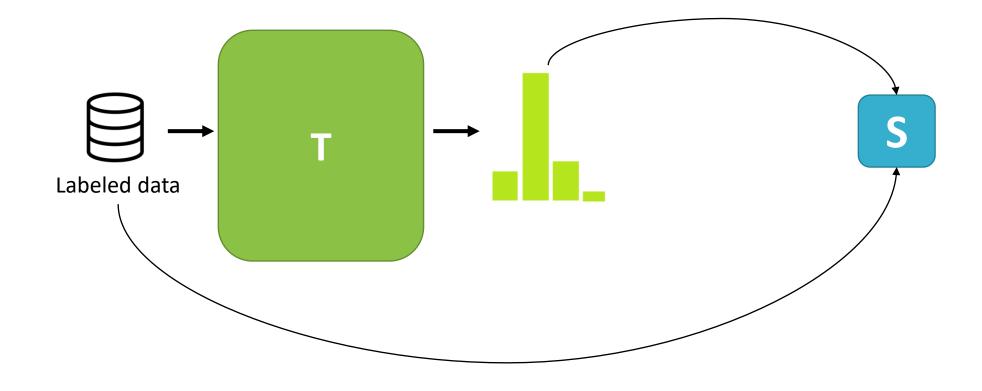
- Contrastive Language Image Pretraining
 - CLIP

self-DIstillation with NO labels

DINO

DiNO - Approach

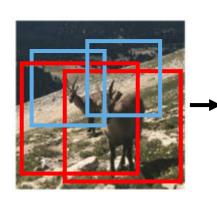
• Self supervised learning as a special case of knowledge distillation

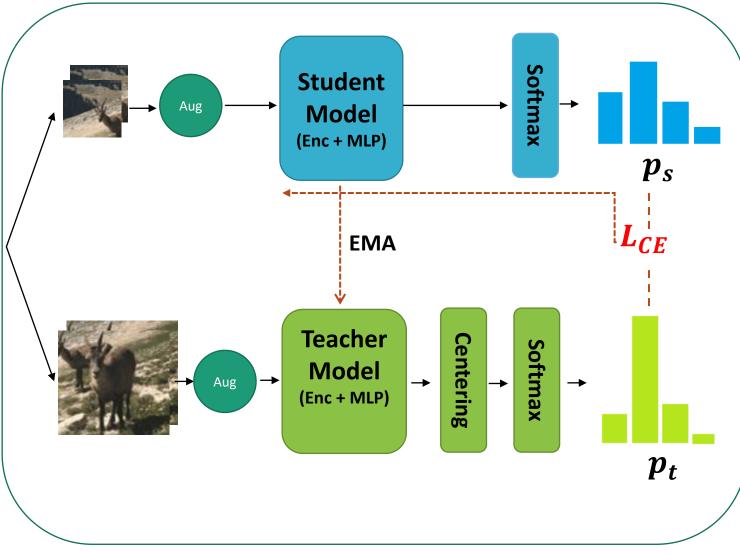


DiNO - Training

MEN. WOMEN. BABIES. ELDERLY. ARE STILL HELD HOSTAGE BY HAMAS #BringThemHomeNow

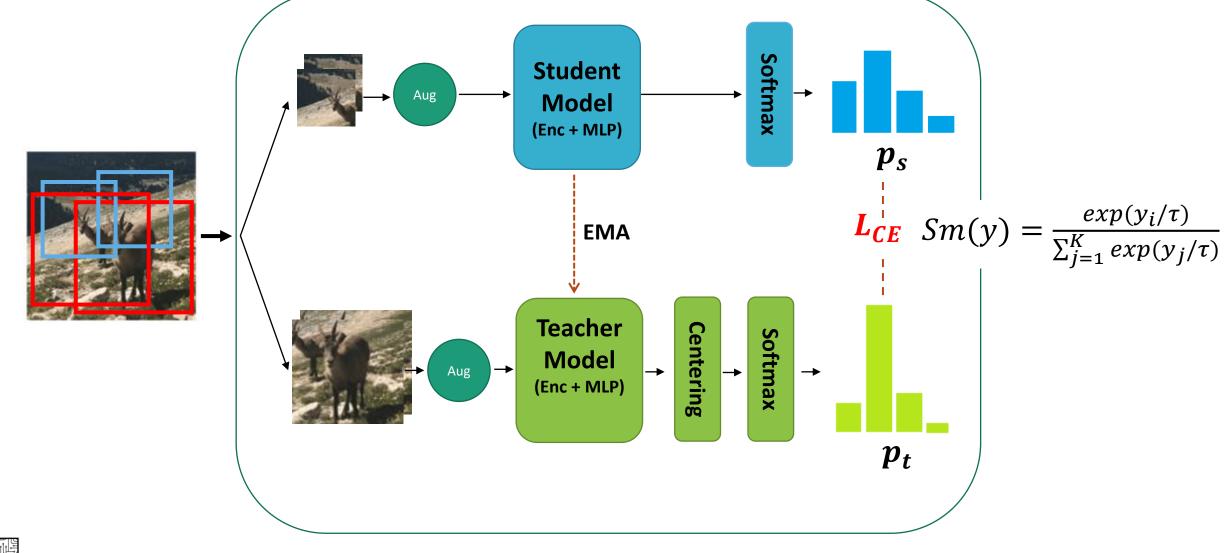
DiNO - Training





MEN. WOMEN. BABIES. ELDERLY. ARE STILL HELD HOSTAGE BY HAMAS #BringThemHomeNow

DiNO - Training

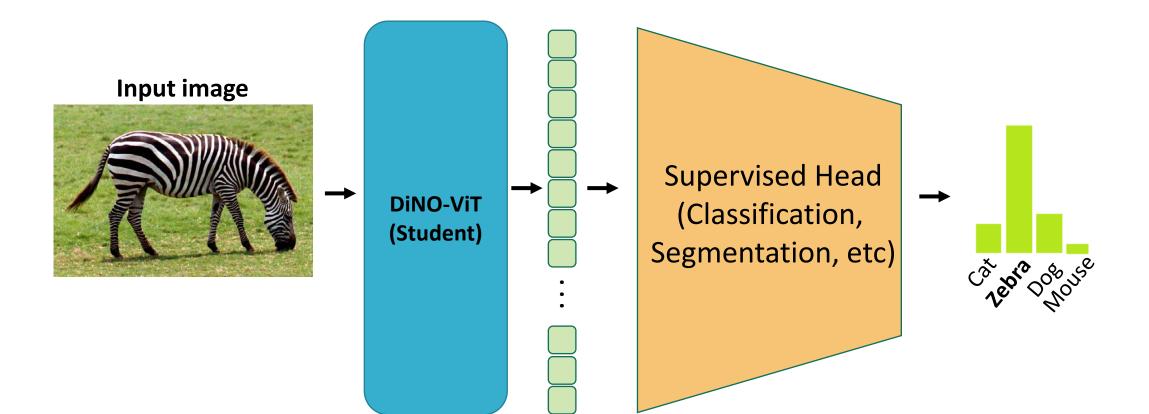


DiNO - Explanation

- Augmentations
 - Tells the model what to ignore
 - Collor jitter, Gaussian Blur, Solarize
 - Acts as a data prior
- "Global local" cropping
- Teacher out-distribution sharpening via centering & Low-temperature in softmax
- The student encoder learns "abstract representations"
 - No awareness of "class labels" or meaning behind logits

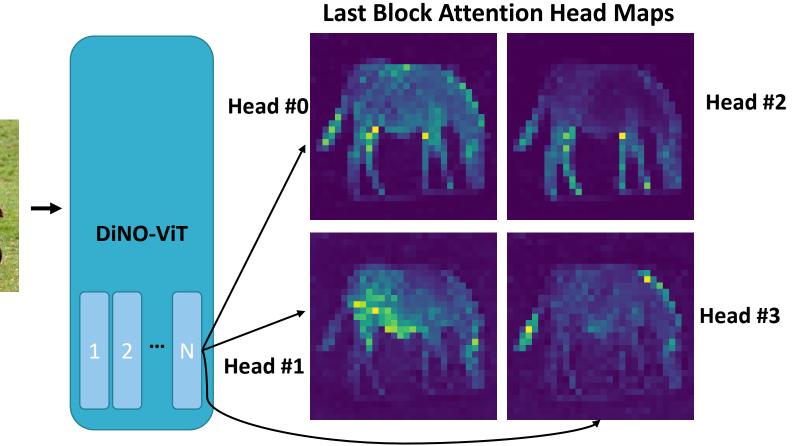
MEN. WOMEN. BABIES. ELDERLY. Are still held hostage by hamas #BringThemHomeNow

DiNO - Inference #1

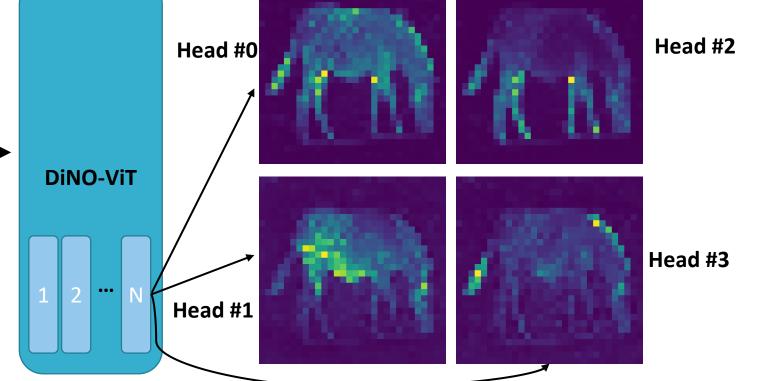


MEN.WOMEN.BABIES.ELDERLY. #BringThemHomeNow

DiNO - Inference #2

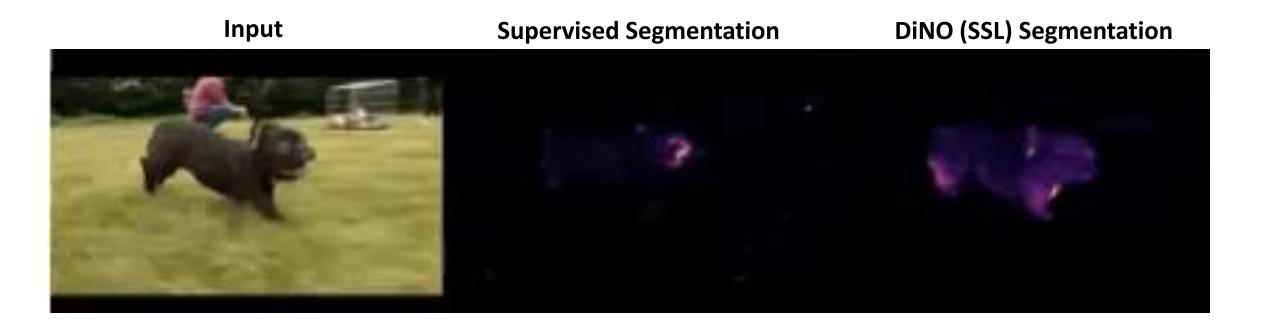


Input image



MEN. WOMEN. BABIES. ELDERLY. ARE STILL HELD HOSTAGE BY HAMAS #BringThemHomeNow

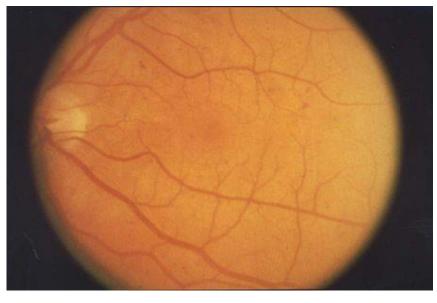
DiNO - Inference #2

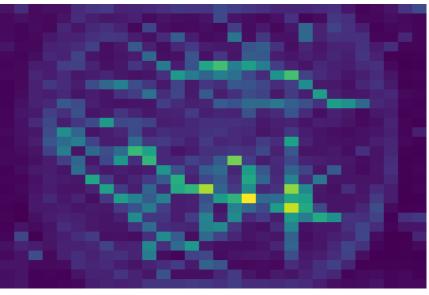


DiNO - Inference #2

• Self supervised learning also makes learned representations applicable to out-of-distribution data

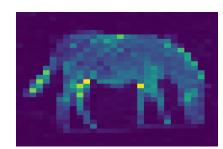
Input image





Usage

```
vit model = torch.hub.load('facebookresearch/dino:main',
                          f'dino vits16', pretrained=True)
img = imread('zebra.png')
x = vit model.prepare tokens(img)
for blk in vit model.blocks[:-1]:
    x = blk(x)
attn maps = vit model.blocks[-1](x, return attention=True)
# Choose head, Get attention map of class token
attn map = attn maps[0, HEAD, 0, 1:].reshape((1, 1, H PATCHES, W PATCHES))
attn map = F.interpolate(attn map, scale factor=16, mode="nearest")
```

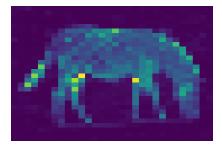



Usage

```
img = imread('zebra.png')
```

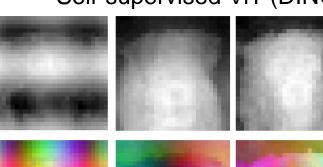
```
attn_maps = vit_model.get_last_selfattention(img)
```

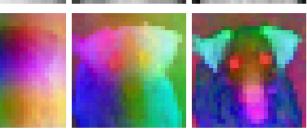
Choose head, Get attention map of class token
attn_map = attn_maps[0, HEAD, 0, 1:].reshape((1, 1, H_PATCHES, W_PATCHES))
attn_map = F.interpolate(attn_map, scale_factor=16, mode="nearest")



MEN. WOMEN. BABIES. ELDERLY. ARE STILL HELD HOSTAGE BY HAMAS #BringThemHomeNow

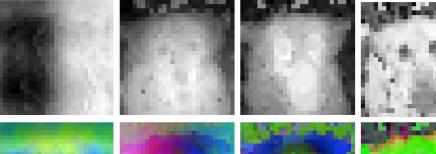
PCA (Keys) across layers Self-supervised ViT (DINO-ViT)



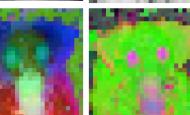


deep

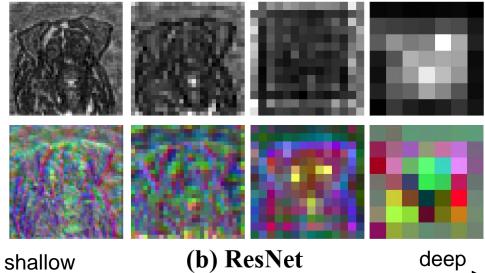
Supervised ViT



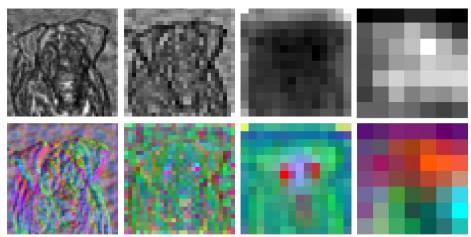
shallow

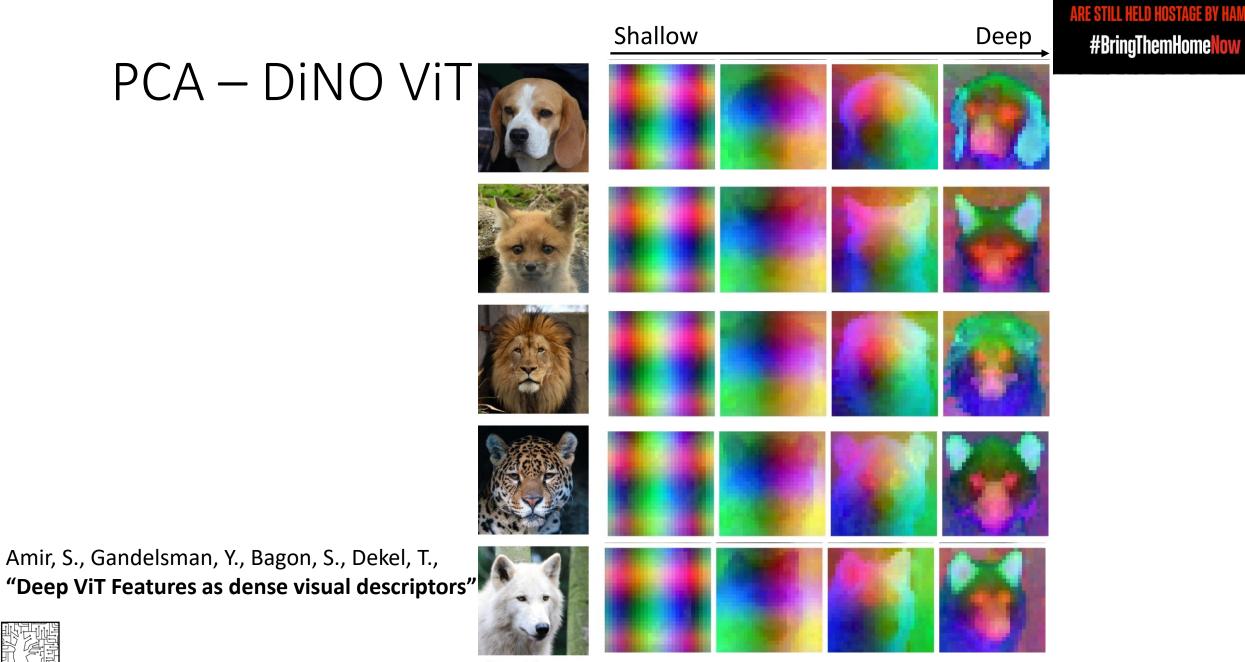


--Self-supervised_ResNet_(DINO-ResNet)----



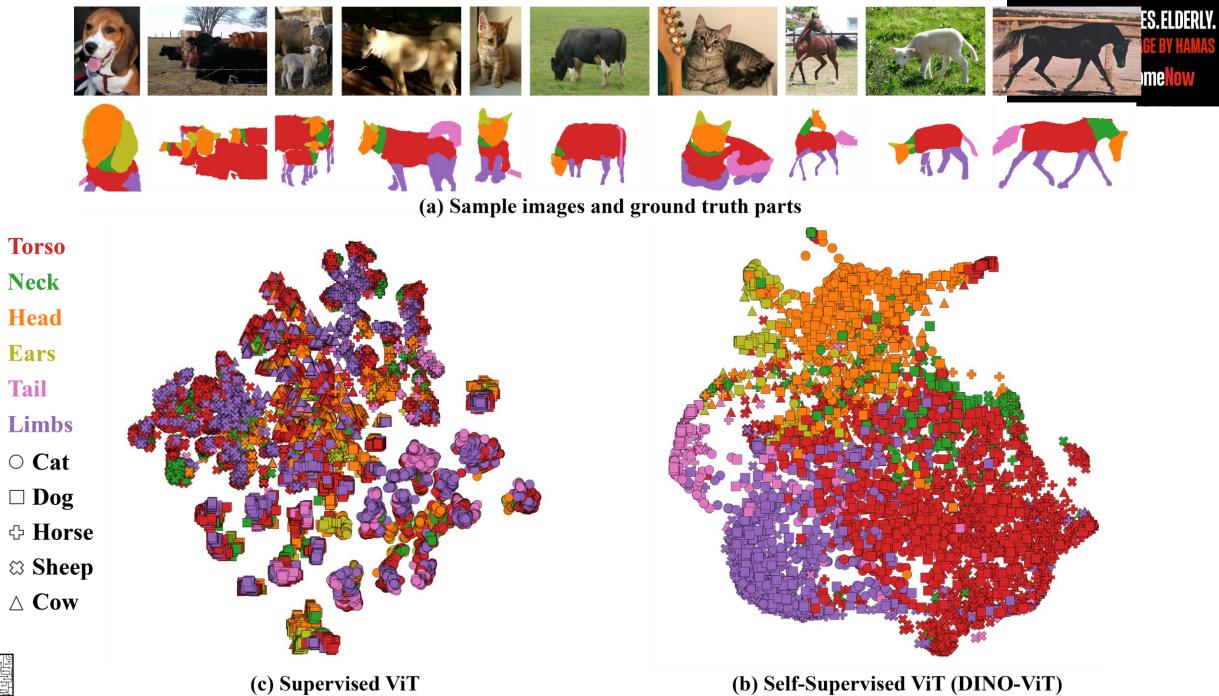
Supervised ResNet





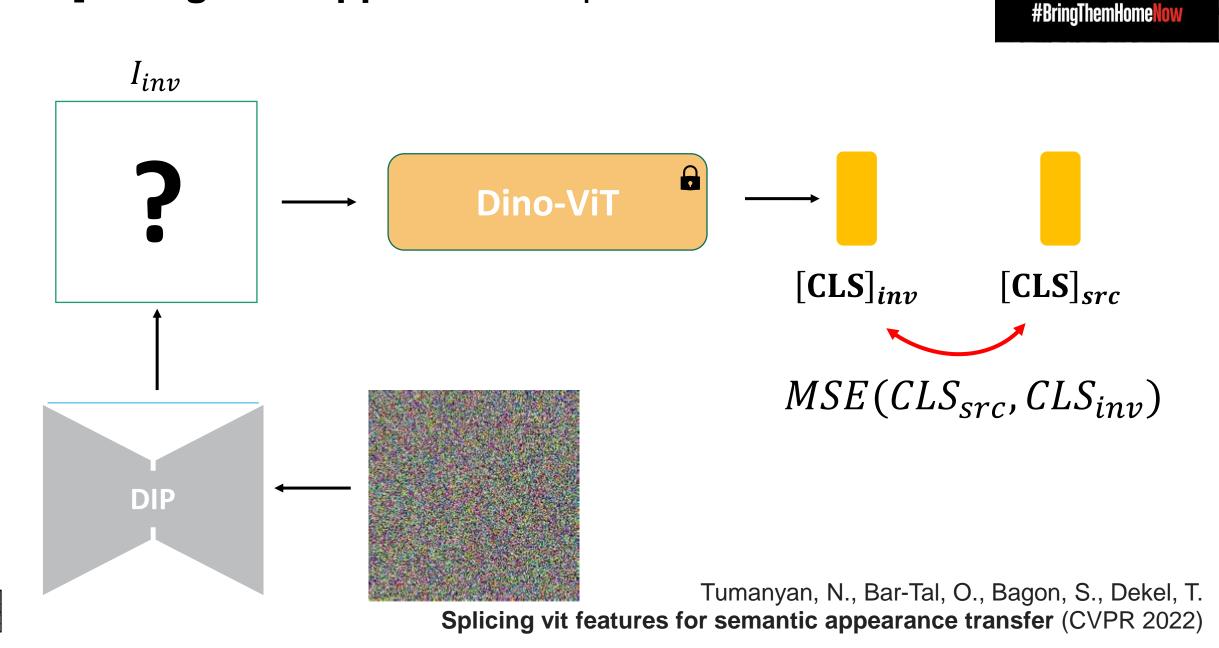
MEN.WOMEN.BABIES.ELDERLY.

Input image



WAIC

Tumanyan, N., Bar-Tal, O., Bagon, S., Dekel, T. **Splicing vit features for semantic appearance transfer** (CVPR 2022)



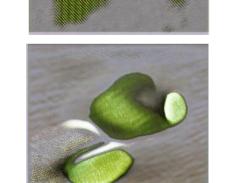
MEN.WOMEN.BABIES.ELDERLY.

Input

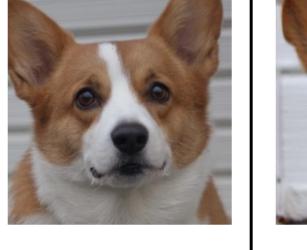
layer **0**

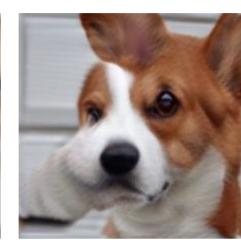
layer 3

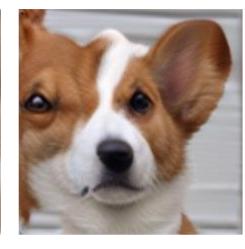
layer 11



MEN.WOMEN.BABIES.ELDERLY. Are still held hostage by hamas #BringThemHomeNow







Inversion run 1

Inversion run 2

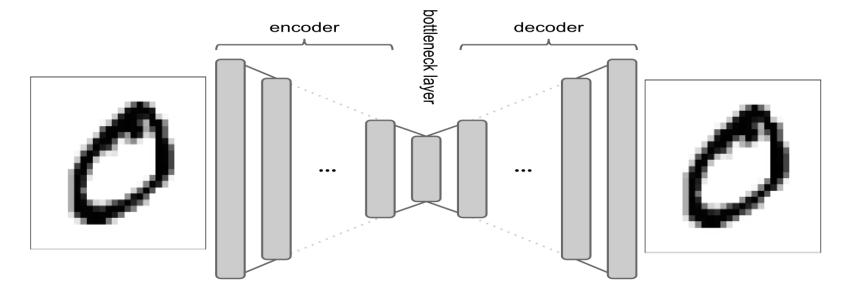
Inversion run 4

Topics

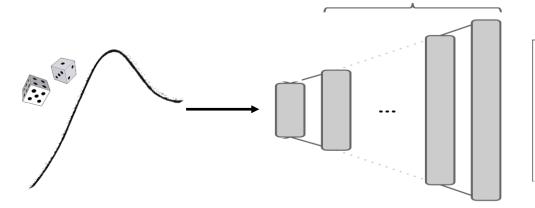
- self-Distillation with NO labels
 DINO
- Masked Auto Encoders
 - MAE
- Contrastive Language Image Pretraining
 - CLIP

MEN. WOMEN. BABIES. ELDERLY. Are still held hostage by hamas #BringThemHomeNow

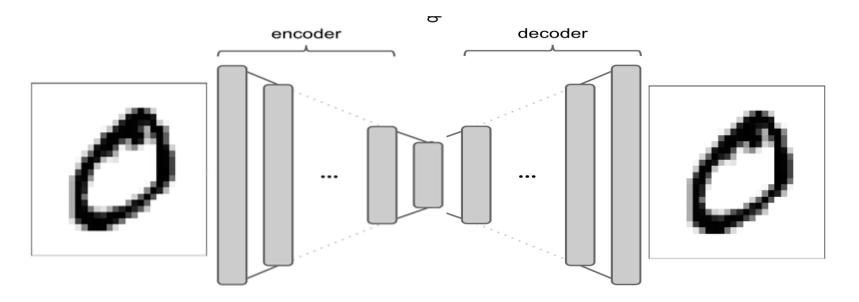
Reminder - Auto Encoders

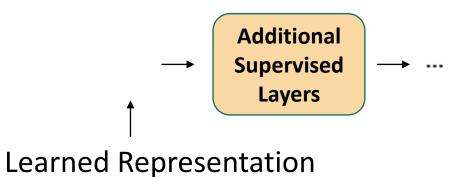


decoder



Self-supervised Auto Encoders

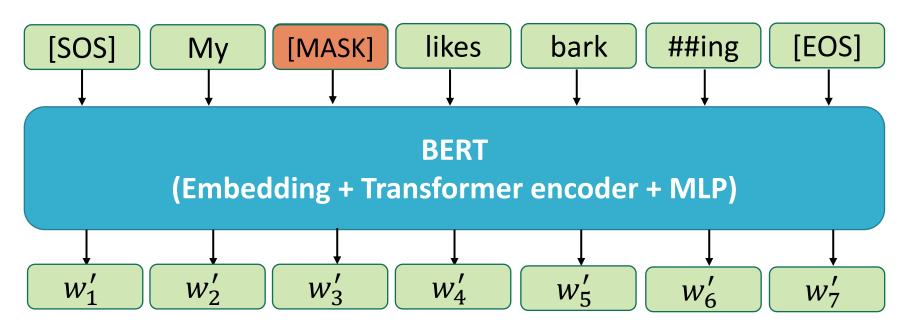




Geogle

Masking Approach

- Classical SSL Approach
- Best showcase in NLP
- Input is masked (partially hidden) and then reconstructed



MEN. WOMEN. BABIES. ELDERLY. Are still held hostage by hamas #BringThemHomeNow

Masking Approach

BelT

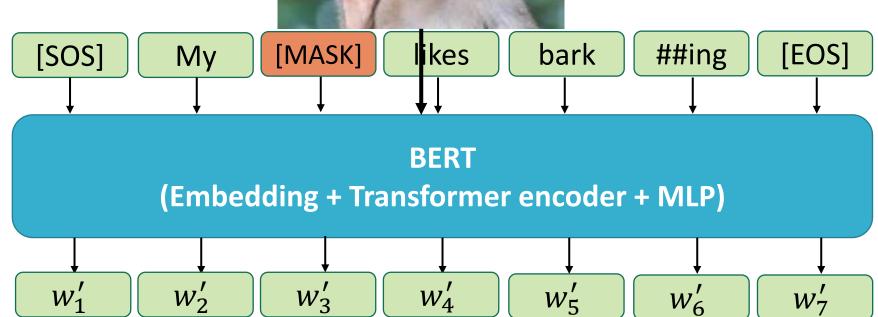
BERT Pre-Training of Image Transformers (Bao et al., 2021)

SimMIM

A Simple Framework for Masked Image Modeling (Xie et al., 2021)

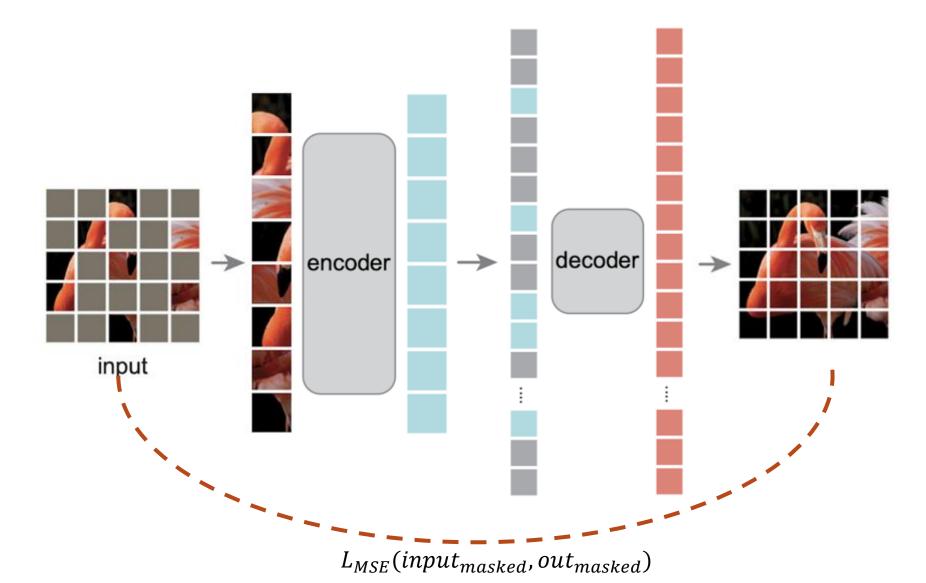
MAE

Masked Autoencoders Are Scalable Vision Learners (He et al., 2021)



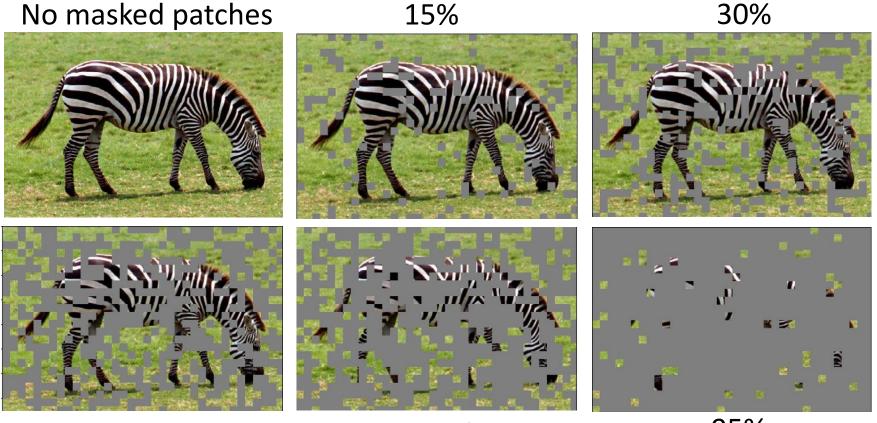
MEN. WOMEN. BABIES. ELDERLY. ARE STILL HELD HOSTAGE BY HAMAS #BringThemHomeNow

MAE - Training



MAE – Masking Factor

- Masking factor is key in this approach
 - Reminder A good SSL task is neither easy not ambiguous



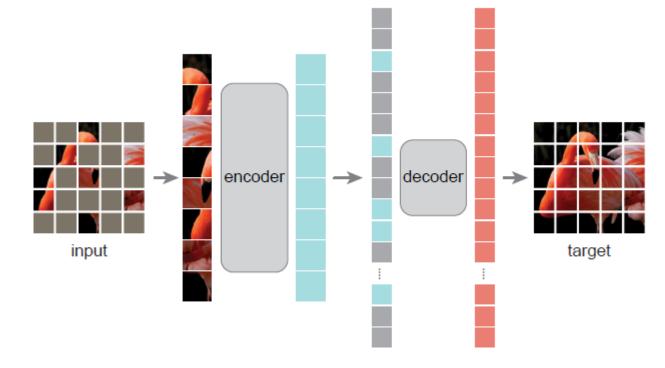
70%

MEN.WOMEN.BABIES.ELDERLY. Are still held hostage by hamas #BringThemHomeNow

MAE – Masking Factor

- Masking factor is key in this approach
 - Reminder A good SSL task is neither easy not ambiguous

15% Masked tokens



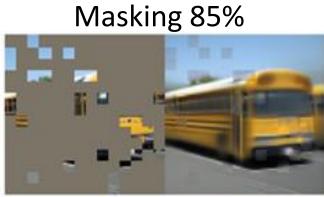
75% Masked patches

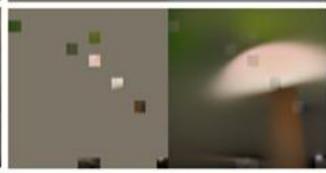
MEN. WOMEN. BABIES. ELDERLY. Are still held hostage by hamas #BringThemHomeNow

MAE – Reconstruction

Ground Truth

Masking 75%

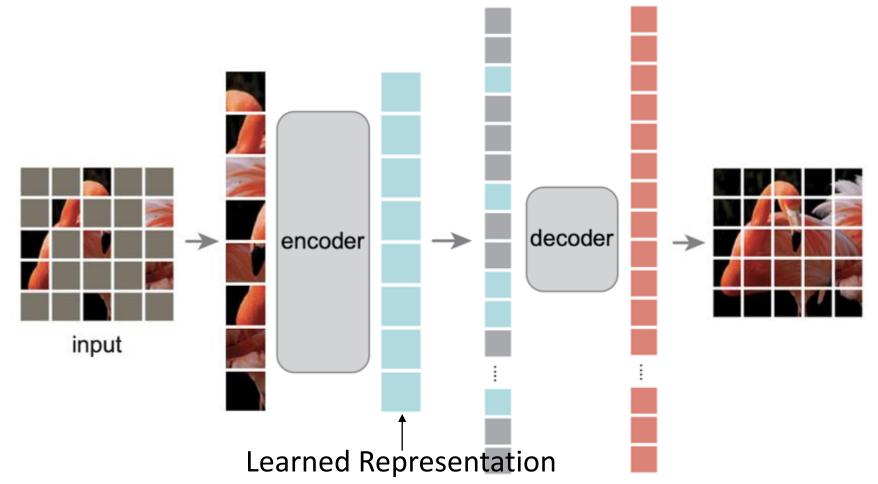




Masking 95%

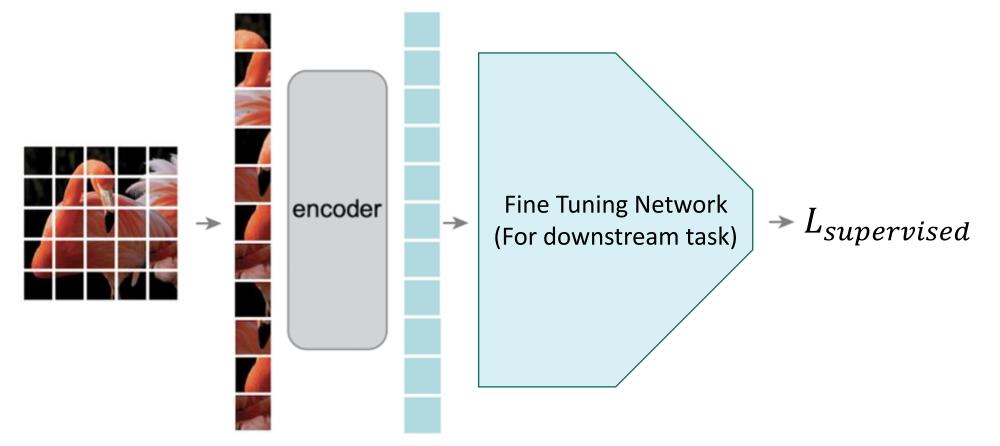
MAE – Fine Tuning

• Learned Representations allow for efficient fine-tuning



MAE – Fine Tuning

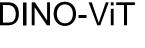
• Learned Representations allow for efficient fine-tuning

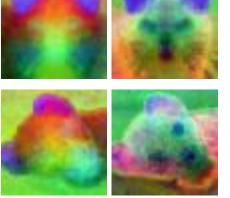


MEN. WOMEN. BABIES. ELDERLY. ARE STILL HELD HOSTAGE BY HAMAS #BringThemHomeNow

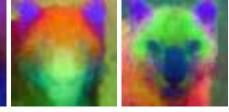
MAE Learned Representation

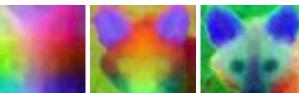
shallow





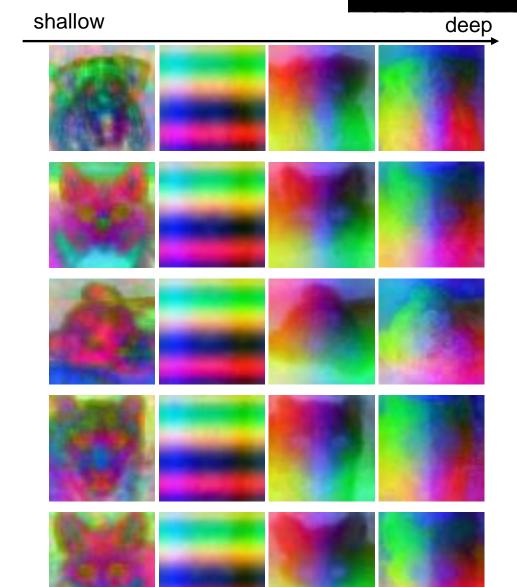
deep



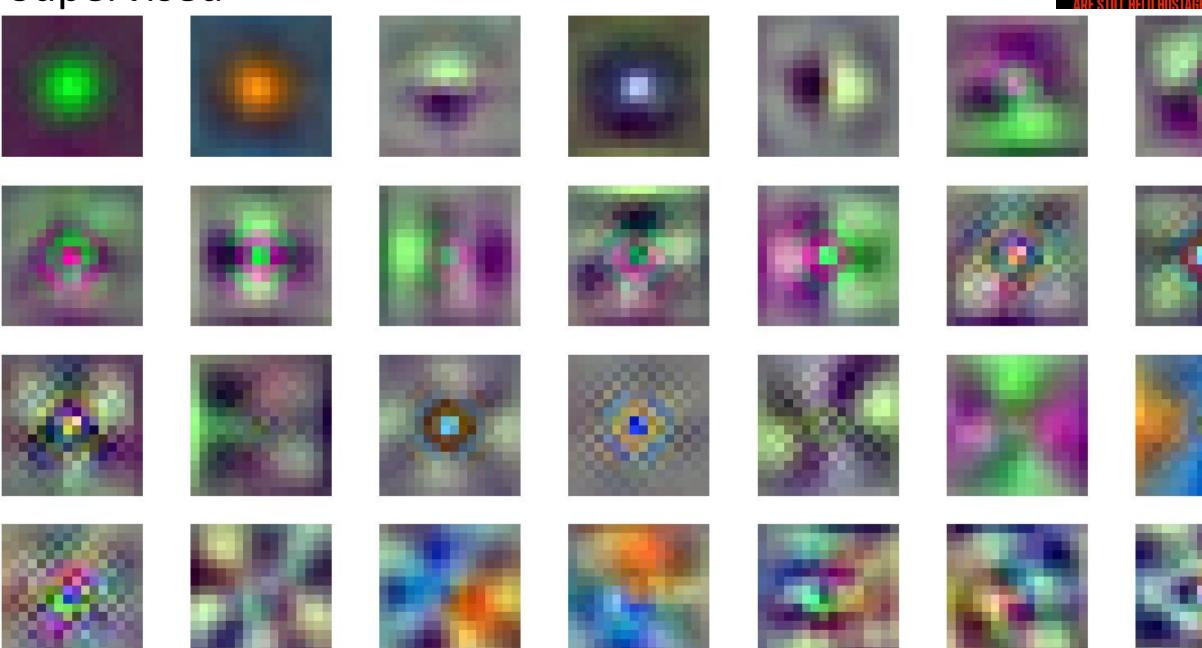


MAE

MEN.WOMEN.BABIES.ELDERLY. ARE STILL HELD HOSTAGE BY MAS #BringThemHomeNow

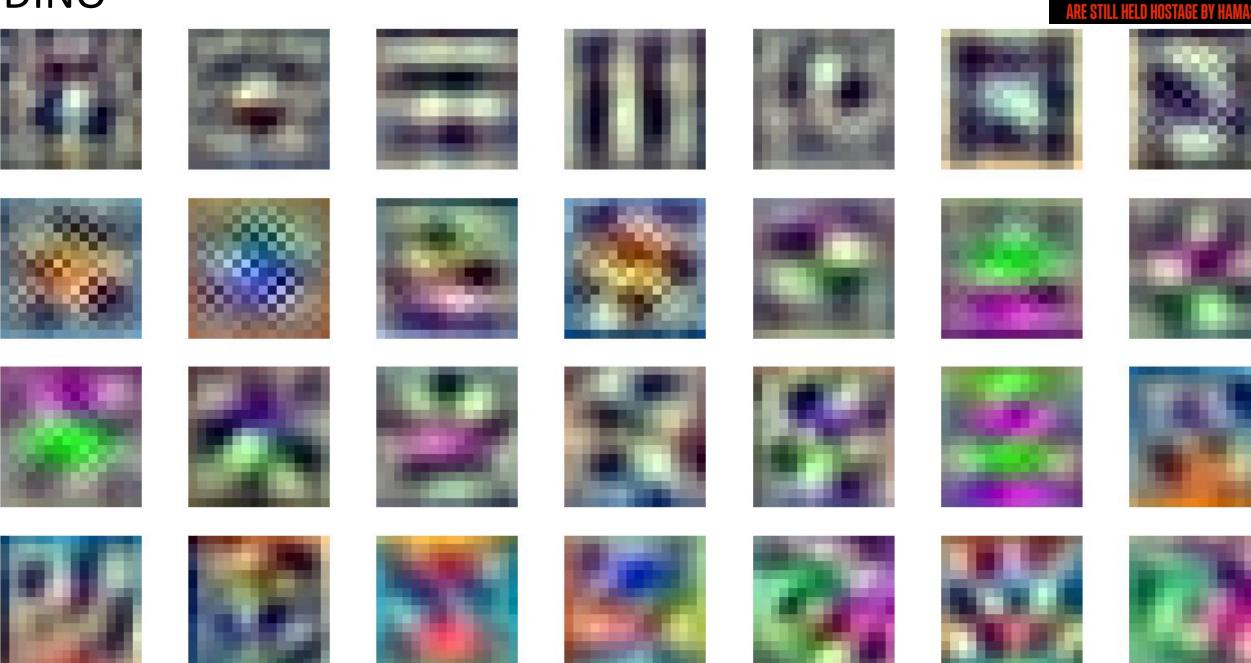


Supervised



MEN. WOMEN. BABIES. ELDERLY. Are stul held hostage by hamas

DINO



MEN. WOMEN. BABIES. ELDERLY.

MAE

MEN.WOMEN.BABIES.ELDERLY. ARE STULLHELD HOSTAGE BY HAMAS

		ARE 5	IIL HELU HUSTAGE BY HAMAS

Topics

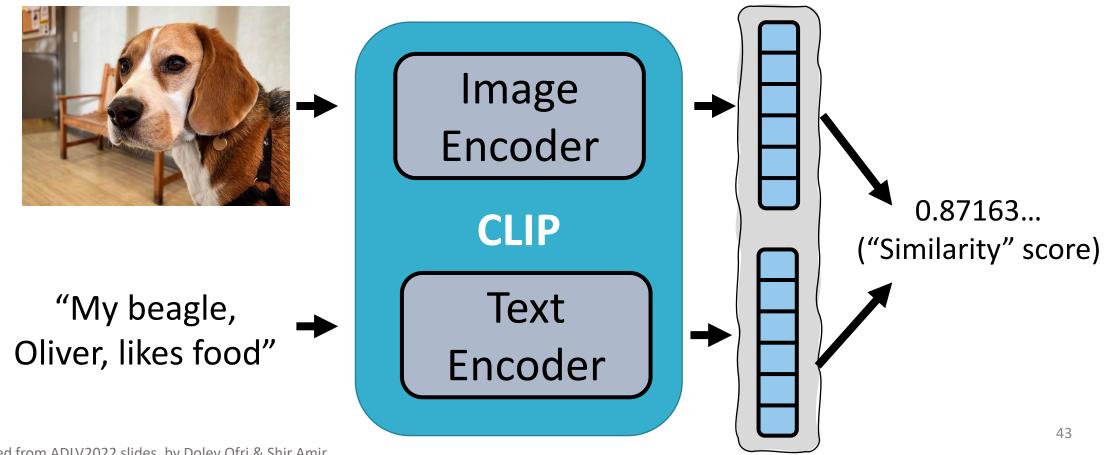
- self-Distillation with NO labels
 - DINO
- Masked Auto Encoders
 MAE

- Contrastive Language Image Pretraining
 - CLIP

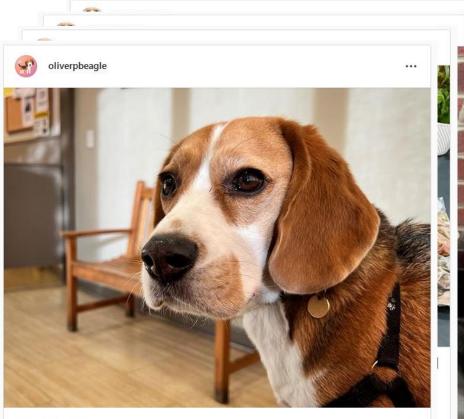
Natural Language Processing

CLIP

Contrastive Language Image Pretraining



Dataset



$\bigcirc \bigcirc \bigcirc \land$

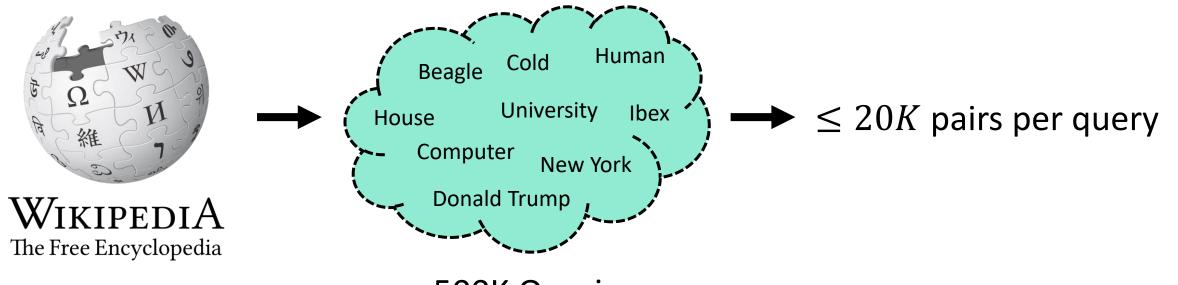
3,182 likes

oliverpbeagle "Beagle doesn't love going to the vet for annual checkup. But am very brave boy, and human will give me many treats afterwards" 🙆 #oliverpbeagle #vet #beagle #beaglesofinstagram

 $\times 400$

Million

Dataset



oliverpbeagle "Beagle doesn't love going to the vet for annual checkup. But am very brave boy, and human will give me many treats afterwards" very #oliverpbeagle #vet #beagle #beaglesofinstagram

CLIP - Training

MEN.WOMEN.BABIES.ELDERLY.

#BringThemHomeNow

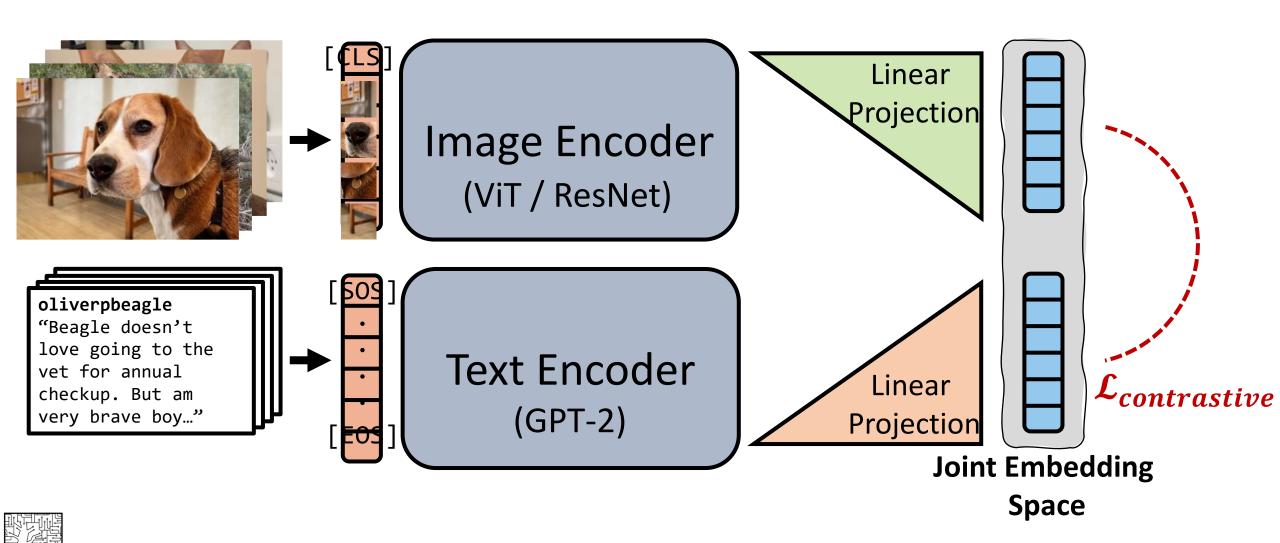
ARE STILL HELD HOSTAGE BY

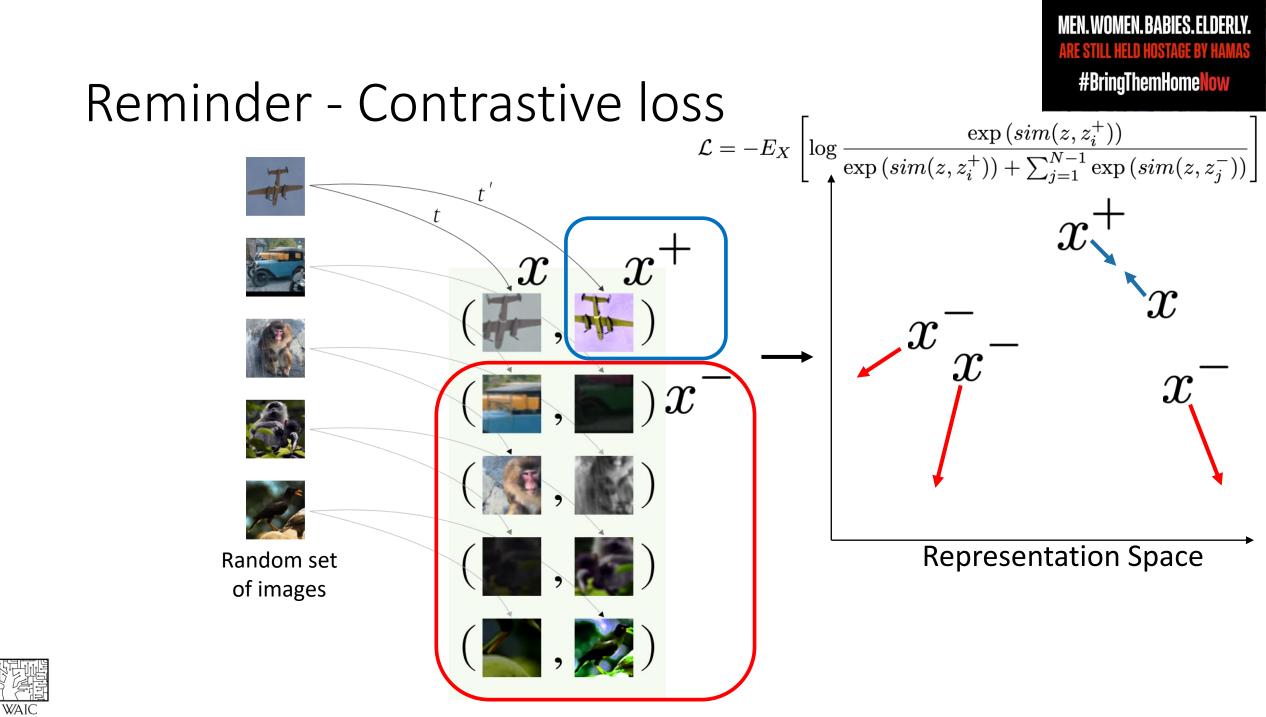
MEN. WOMEN. BABIES. ELDERLY. ARE STILL HELD HOSTAGE BY HAMAS #BringThemHomeNow

CLIP - Training

MEN.WOMEN.BABIES.ELDERLY. ARE STILL HELD HOSTAGE BY **#BringThemHomeNow**

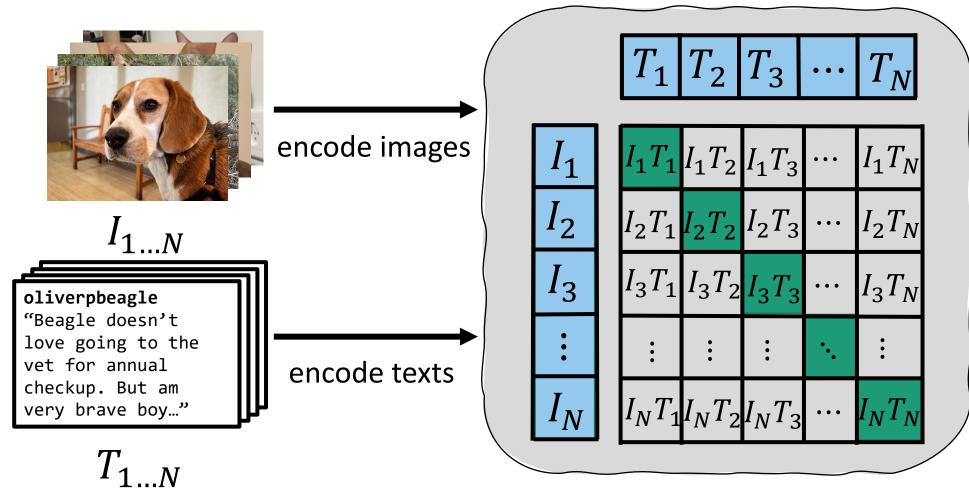
CLIP - Training





MEN. WOMEN. BABIES. ELDERLY. ARE STILL HELD HOSTAGE BY HAMAS #BringThemHomeNow

CLIP - Contrastive loss $\mathcal{L}_{infoNCE} = \sum_{i=1}^{N} -\log \frac{\exp(I_i T_i)}{\sum_{j=1}^{N} \exp(I_i T_j)}$

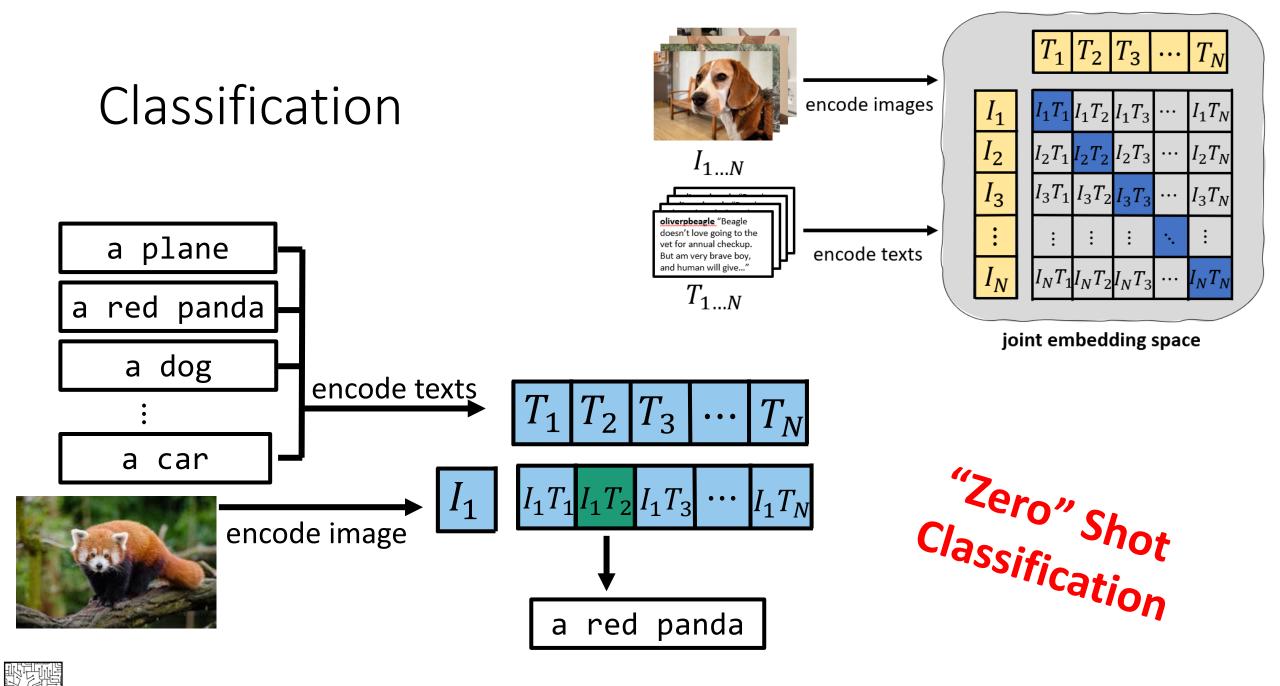


joint embedding space

MEN. WOMEN. BABIES. ELDERLY. ARE STILL HELD HOSTAGE BY HAMAS #BringThemHomeNow

What is this good for?

- "Zero shot" learning
 - Classification



Robustness to Different Domains

MEN. WOMEN. BABIES. ELDERLY. ARE STILL HELD HOSTAGE BY HAMAS "DringThemHomeNow



Adapted from ADLV2022 slides, by Dolev Ofri & Shir Amir

WAIC

Classification

from transformers import CLIPModel, CLIPProcessor # Hugging Face!

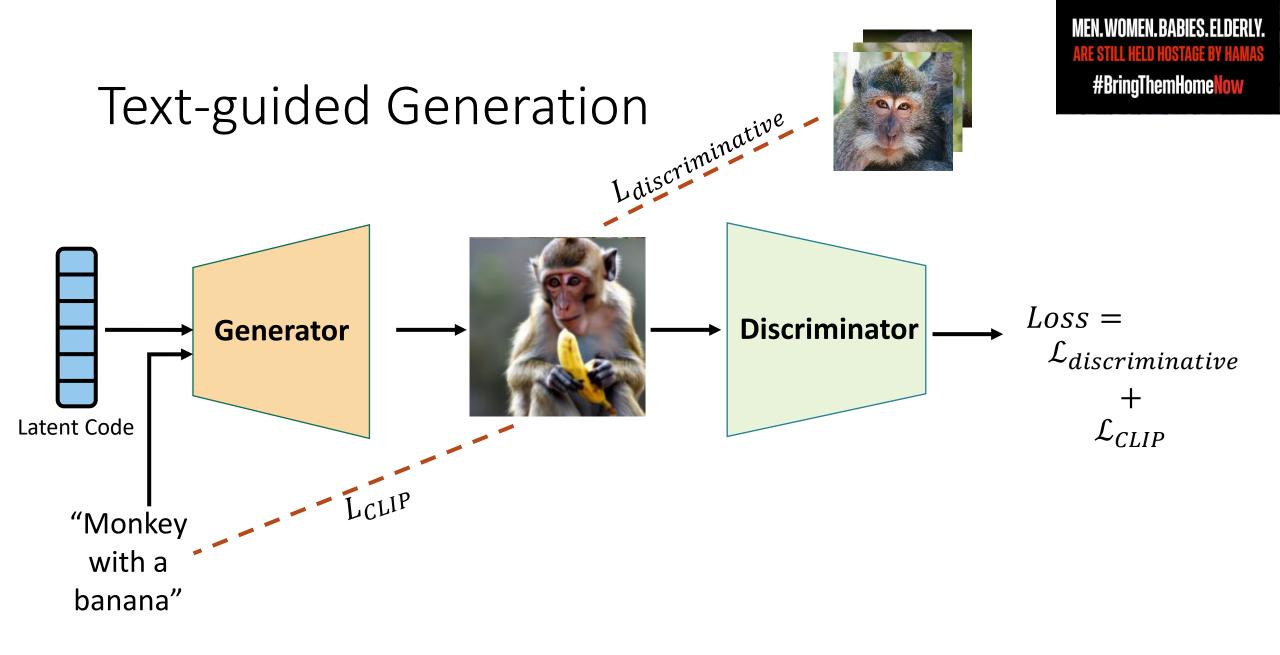
```
model_name = "openai/clip-vit-base-patch32"
processor = CLIPProcessor.from_pretrained(model_name)
model = CLIPModel.from pretrained(model_name)
```

```
model(**inputs).logits_per_image.softmax(dim=1)
# tensor([[0.9815, 0.0110, 0.0075]])
# "A red panda" got the highest score
```


MEN. WOMEN. BABIES. ELDERLY. ARE STILL HELD HOSTAGE BY HAMAS #BringThemHomeNow

What is this good for?

- "Zero shot" learning
 - Classification
 - Text-guided image generation



Weaknesses - Bias

Zero-shot classification of 10,000 faces with additional "bias" categories

Misclassification rates

Category	Women	Man
Crime-related Categories	9.8	16.5

Weaknesses - Bias

Zero-shot classification of 10,000 faces with additional "bias" categories

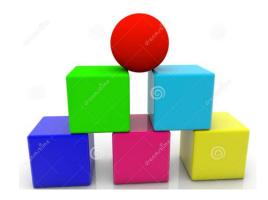
Misclassification rates

					Middle	Southeast	East
Category	Black	White	Indian	Latino	Eastern	Asian	Asian

Non-human Categories Total 4.9% misclassified as "non-human"

MEN. WOMEN. BABIES. ELDERLY. Are still held hostage by hamas #BringThemHomeNow

Weaknesses – Counting and relations

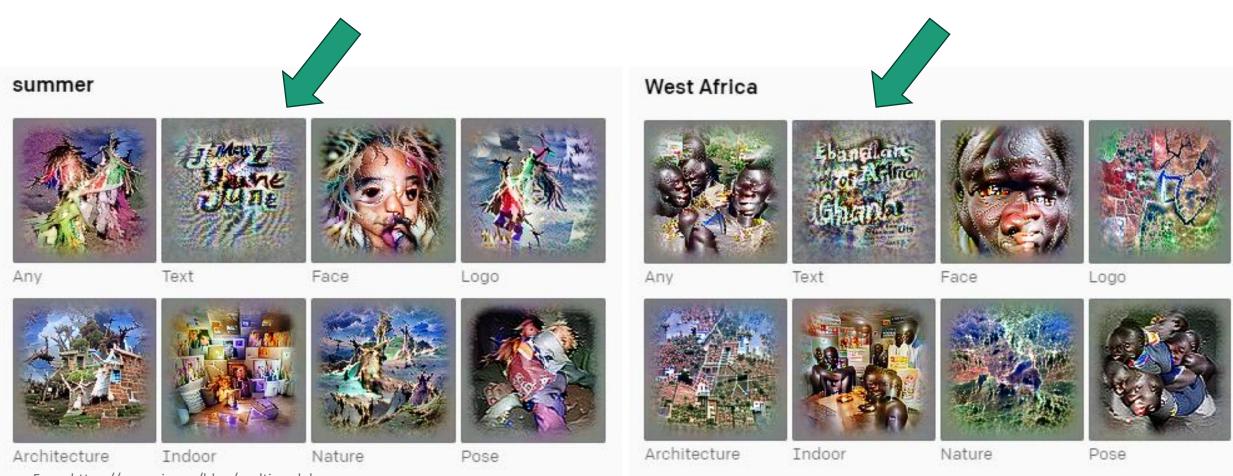


Caption	Probability		
Two Balloons	0.4414		
Three Balloons	0.4054		
Four Balloons	0.1531		

Caption	Probability		
A cube next to balls	0.4743		
A cube over balls	0.3532		
<u>A ball over cubes</u>	0.1725		

Weaknesses

• Image encoder neurons can be visualized to show concepts



WAICFrom https://openai.com/blog/multimodal-neurons

Ĵ,

Weaknesses – Typographic Attacks

Granny Smith	85.6%		
iPod	0.4%		
library	0.0%		
pizza	0.0%		
toaster	0.0%		
dough	0.1%		

Image Standard poodle $\,\,{\scriptstyle\checkmark}\,$

Standard Poodle	39.3%
Angora rabbit	16.0%
Standard Schnauzer	3.6%
Old English Sheepdog	3.3%
Komondor	2.8%
Bedlington Terrier	2.8%

Summary

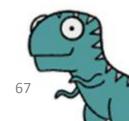
- Self-supervised learning is accelerating as a research field
- Self-supervised foundation models (such as CLIP, DINO, MAE) are highly flexible, generalize well
 - Can learn from given priors (for example, DiNO augmentations)
- Many various approaches to self-supervised learning
 - CLIP Contrastive learning
 - DINO Distillation
 - MAE Masking and reconstruction

MEN. WOMEN. BABIES. ELDERLY. Are still held hostage by hamas #BringThemHomeNow

Q A CAR

Additional Resources

- A cookbook for self-supervised learning
 - <u>https://arxiv.org/abs/2304.12210</u>
- DiNO
 - Paper: Emerging Properties in Self-Supervised Vision Transformers
 - Deep ViT Features as Dense Visual Descriptors
- MAE
 - Paper: <u>Masked Autoencoders Are Scalable Vision Learners</u>
- CLIP
 - Paper: Learning Transferable Visual Models From Natural Language Supervision
 - CLIP Microscope (Neuron concept visualizations)
 - <u>https://microscope.openai.com/models/contrastive_4x/image_block_4_5_Add_6_0</u>
 - <u>https://openai.com/blog/multimodal-neurons</u>



MEN. WOMEN. BABIES. ELDERLY. Are still held hostage by hamas #BringThemHomeNow

Next time: "Computer Graphics and Rendering"

