Neural Surface Reconstruction

February 14th, 2024

Previous lectures ...

Deep Image Prior [Ulyanov et al. 2018]

• Structure from motion (2D to 3D)

Photo Tourism: [Snavely et al. 2006]

Previous lectures ...

Deep Image Prior [Ulyanov et al. 2018]

 Structure from motion (2D to 3D)

Photo Tourism: [Snavely et al. 2006]

• Rendering (3D to 2D)

The Rendering Equation [Kajiya 1986]

Previous lectures ...

Deep Image Prior [Ulyanov et al. 2018]

 Structure from motion (2D to 3D)

Photo Tourism: [Snavely et al. 2006]

 Rendering (3D to 2D)

The Rendering Equation [Kajiya 1986]

Previous lectures ...

Implicit Neual Representations

DeepSDF [Park et al. 2019]

Occupancy Networks Mescheder et al. 2019]

Deep Image Prior [Ulyanov et al. 2018]

 Structure from motion (2D to 3D)

Photo Tourism: [Snavely et al. 2006]

 Rendering (3D to 2D)

The Rendering Equation [Kajiya 1986]

Previous lectures ...

Implicit Neual Representations

Light Source

/ Shadow Ray

Scene Object

Neural Radiance Fields [Mildenhall et al. '20]

Neural Radiance Fields (NeRF)

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, Mildenhall, Srinivasan, Tancik, et al., 2020

Neural Radiance Fields (NeRF)

Input images + cameras

Novel views synthesis

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, Mildenhall, Srinivasan, Tancik, et al., 2020

Today's lecture

Multiview images

Camera poses

NeRF - Differential Volume Rendering

Volume density thresholds of NeRF

UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction, Oechsle et al., 2022

Differential Surface Rendering

 $\hat{\mathbf{X}}$

Appearance (Light and material)

Implicit Differentiable Renderer (IDR)

Neural Geometry

Neural Appearance

Camera parameters

Multiview neural surface reconstruction by disentangling geometry and appearance (IDR), Yariv et. al., NeurIPS 2020

Neural Geometry

Camera parameters

$\mathcal{S}_{\theta} = \{ \boldsymbol{x} \in \mathbb{R}^3 \mid f(\boldsymbol{x}; \theta) = 0 \}$

Sphere Tracing

Finding intersection point

View dependent color

View dependent color

Camera parameters

Camera parameters $\boldsymbol{\mathcal{U}}$

- Can we render a different geometry with the same renderer?
- What kind of input can "encourage" the renderer to generalize?

"Geometry" dependent color

- Can we render a different geometry with the same renderer?
- What kind of input can "encourage" the renderer to generalize?

 Adding a global feature to allow secondary lighting effects and self shadows

Training

• Loss: $|\hat{I} - I|$

Positional encoding

No PE, 5000 epochs

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, Mildenhall, Srinivasan, Tancik, et al., 2020

 $\operatorname{PE}(\boldsymbol{y}) = \left(\sin(2^{0}\pi\boldsymbol{y}), \cos(2^{0}\pi\boldsymbol{y}), \cdots, \sin(2^{L-1}\pi\boldsymbol{y}), \cos(2^{L-1}\pi\boldsymbol{y})\right)$

2000 epochs

Results: comparisons

Colmap + sPSR

IDR - rendering

Results: ablation study

Input images

 $M(\hat{oldsymbol{x}}, \hat{oldsymbol{x}}, oldsymbol{v}, oldsymbol{z})$

 $M(\hat{oldsymbol{x}},\hat{oldsymbol{n}},oldsymbol{x},oldsymbol{z})$

 $M(\hat{oldsymbol{x}},\hat{oldsymbol{n}},oldsymbol{v},oldsymbol{z})$

Surface Rendering:

DVR [Niemeyer et al. '20]

IDR [Yariv et al. '20]

Volume Rendering:

. . .

NeRF [Mildenhall et al. '20]

Surface Rendering:

Representation: Implicit surface

DVR [Niemeyer et al. '20]

IDR [Yariv et al. '20]

Volume Rendering:

Representation: Volume density

Surface Rendering:

- Representation: Implicit surface
- Rendering: Find intersection

DVR [Niemeyer et al. '20]

IDR [Yariv et al. '20]

Volume Rendering:

- Representation: Volume density
- Rendering: Integral approximation

Surface Rendering:

- Representation: Implicit surface
- Rendering: Find intersection
- Back-propagate: 1 sample
 - DVR [Niemeyer et al. '20]
 - IDR [Yariv et al. '20]

Volume Rendering:

- Representation: Volume density
- Rendering: Integral approximation
- Back-propagate: multiple samples

NeRF [Mildenhall et al. '20]

Surface Rendering:

- Representation: Implicit surface
- Rendering: Find intersection
- Back-propagate: 1 sample

DVR [Niemeyer et al. '20]

IDR [Yariv et al. '20]

Limitation: Object masks

IDR

Mariv

No Masks

With Masks

Volume Rendering:

- Representation: Volume density
- Rendering: Integral approximation
- Back-propagate: multiple samples

NeRF [Mildenhall et al. '20]

Surface Rendering:

- Representation: Implicit surface
- Rendering: Find intersection
- Back-propagate: 1 sample

DVR [Niemeyer et al. '20]

IDR [Yariv et al. '20]

Limitation: Object masks

IDR

Mariv

No Masks

With Masks

Volume Rendering:

- Representation: Volume density
- Rendering: Integral approximation
- Back-propagate: multiple samples

NeRF [Mildenhall et al. '20]

Limitation: Noisy geometry

NeRF [Midenall et al. '20]

Rendering

Surface Rendering:

No Masks

IDR

With Masks

Volume Rendering:

Representation: Volume density

Can we get the best of both worlds?

NeRF [Midenall et al. '20]

Density = 50

Rendering

Surface reconstruction using volume rendering

How can we volume-render a surface?

Surface reconstruction using volume rendering

 \Rightarrow Represent the scene as a "soft" surface

Surface reconstruction using volume rendering

MLP-parameterized signed distance function $f(\mathbf{x})$

Volume rendering of neural implicit surfaces, Yariv et al., NeurIPS 2021

Surface reconstruction using volume rendering Modeling density as: $\sigma(\mathbf{x}) = \alpha \Psi_{\beta}(f(\mathbf{x}))$

Volume rendering of neural implicit surfaces, Yariv et al., NeurIPS 2021

Density

Laplace CDF

Signed Distance Function

*<u>Recall</u>: NeRF models Density $\sigma(x) : \mathbb{R}^3 \to \mathbb{R}^+$ is a general purpose MLP

Volume rendering of neural implicit surfaces, Yariv et al., NeurIPS 2021

Results: comparisons

DTU: Large Scale Multi-view Stereopsis Evaluation [Jensen et al. 2014]

Results: comparisons

BlendedMVS: A Large-scale Dataset for Generalized Multi-view Stereo Networks [Yao et al. 2020]

Take-away messages:

- Differentiable surface renderers produce highly accurate 3D reconstructions. However, they depend on object masks.
- Unifying surface and volume rendering is possible!

The underlying geometry, obtained by volume renderers is non-smooth and contains artifacts.

Take-away messages:

- Differentiable surface renderers produce highly accurate 3D reconstructions. However, they depend on object masks.
- Unifying surface and volume rendering is possible!

Limitation:

- Per-scene overfit (no generalization)
- Computational expensive
- Assuming fully opaque surface

The underlying geometry, obtained by volume renderers is non-smooth and contains artifacts.

Take-away messages:

- Differentiable surface renderers produce highly accurate 3D reconstructions. However, they depend on object masks.
- Unifying surface and volume rendering is possible!

Limitation:

- Per-scene overfit (no generalization)
- Computational expensive
- Assuming fully opaque surface

Other applications:

- 3D Generative models
- Dynamic scenes
- Camera optimization
- Material-Light decomposition
- So many more ...

The underlying geometry, obtained by volume renderers is non-smooth and contains artifacts.

Take-away messages:

- Differentiable surface renderers produce highly accurate 3D reconstructions. However, they depend on object masks.
- Unifying surface and volume rendering is possible!

Limitation:

- Per-scene overfit (no generalization)
- Computational expensive
- Assuming fully opaque surface

Other applications:

- 3D Generative models
- Dynamic scenes
- Camera optimization
- Material-Light decomposition
- So many more ...

The underlying geometry, obtained by volume renderers is non-smooth and contains artifacts.

Survey papers/blogs:

- NeRF Explosion [Frank Dellaert '20]
- State of the Art on Neural Rendering [Tewari et al. '20]
- Advances in Neural Rendering [Tewari et al. '21]
- Neural Fields in Visual Computing and Beyond [Xie at al. 21]

Questions?