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• Constructing an implicit prior by neural network 

min
𝑥𝑥

𝑑𝑑 𝑥𝑥 − �𝑥𝑥
s.t. 𝑥𝑥 is an output of CNN

Ulyanov, D., Vedaldi, A., & Lempitsky, V., Deep image prior,  CVPR, 2018

𝑑𝑑 𝑥𝑥 − �𝑥𝑥

�𝑥𝑥𝑥𝑥

𝑧𝑧

The network weights parametrize the 
restored image

Noise CNN

Last time 
Deep image (implicit) prior for inverse problems
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Renderer

Last time computer graphics and rendering
The process of generating a photorealistic image from a 3D model

Very challenging to solve 
the rendering equation
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Last time Rendering equation (global illumination)
James Kajiya,  1986

• Computing reflection equation 
requires knowing the incoming 
radiance from surfaces

• But determining incoming 
radiance requires knowing 
reflected radiance from surfaces  

• So we have to compute another 
integral, we have exactly the 
same equation 

• Rendering equation is recursive 

Rendering equation (indirect light)

Reflection equation (direct light)

Slide by Lior Yariv
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Material covered today

• Neural rendering 
(Deep-based computer graphics)

Deep image or video generation approaches that enable explicit or implicit control of scene properties 
such as illumination, camera parameters, pose, geometry, appearance and semantic structure

State of the Art on Neural Rendering, A. Tewari et al., 2020
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Material covered today

• Implicit neural scene representations
A network can parametrize

• Geometry 
• 3D volumes  
• Continuous functions

Why not utilizing geometry of a scene by an explicit representation?
Why is it less beneficial to employ explicit representation in neural nets?



Based on 
1. The ECCV 2022 Tutorial Neural Volumetric Rendering for Computer Vision
2. In particular, slides by Matt Tancik and Ben Mildenhall 
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Geometry 
Scene representation
Explicit (discretization of the object geometry)
• triangle (polygon) mesh
• voxels
• point cloud
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Geometry 
Mesh representation

Slides on explicit geometry 
by Matt Tancik



Task: represent target geometry by a triangular mesh
Gradient Based Optimization

Initial Geometry Target Geometry



Initial Geometry Target Geometry

Task: represent target geometry by a triangular mesh
Gradient Based Optimization



Compute Gradients Target Geometry

Task: represent target geometry by a triangular mesh
Gradient Based Optimization



Compute Gradients Target Geometry

Task: represent target geometry by a triangular mesh
Gradient Based Optimization



Update positions Target Geometry

Task: represent target geometry by a triangular mesh
Gradient Based Optimization



Compute New Error Target Geometry

Task: represent target geometry by a triangular mesh
Gradient Based Optimization



Repeat Target Geometry

Task: represent target geometry by a triangular mesh
Gradient Based Optimization



Repeat Target Geometry

Task: represent target geometry by a triangular mesh
Gradient Based Optimization



Initial Geometry Target Geometry

?

Task: represent target geometry by a triangular mesh
Gradient Based Optimization



Gradient Based Optimization

Initial Geometry Target Geometry

?



Initial Geometry Target Geometry

?

Task: represent target geometry by a triangular mesh
Gradient Based Optimization



Geometry 
Voxel representation



Task: represent target geometry by voxels
Gradient Based Optimization

Initialized Grid Target Geometry



Target GeometryInitialized Grid

Task: represent target geometry by voxels
Gradient Based Optimization



Loss Target Geometry

Task: represent target geometry by voxels
Gradient Based Optimization



Repeat Target Geometry

Task: represent target geometry by voxels
Gradient Based Optimization



Reconstruction Target Geometry

Task: represent target geometry by voxels
Gradient Based Optimization



Target GeometryReconstruction

Task: represent target geometry by voxels
Gradient Based Optimization



Geometry Representations

Mesh Representation Voxel Representation

Small memory footprint
Hard to optimize

Easy to optimize
Large memory footprint

 Implicit (continuous) representations
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Geometry 
Implicit Scene representation

Implicit representations
• algebraic surfaces
• complicated to tailor algebraic expressions, that will fit general shapes
More expressive implicit representations 
• level set 𝑓𝑓:𝑅𝑅3 → 𝑅𝑅, 𝑓𝑓 𝑥𝑥,𝑦𝑦, 𝑧𝑧 = 0
• signed distance function

How to represent a general shape with 
implicit functions?
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Geometry 
Implicit shape representation

Surface represented implicitly 
𝑠𝑠 = {𝑥𝑥 ∈ ℝ3|𝑓𝑓 𝑥𝑥 = 0}

𝑓𝑓 𝑥𝑥 = 0
𝑓𝑓 𝑥𝑥 < 0

𝑓𝑓 𝑥𝑥 > 0
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Indicator / occupancy Signed Distance Function
(SDF)

Geometry 
Implicit shape representation
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𝜕𝜕Ω
Ω

Eikonal equation 
𝛻𝛻𝑓𝑓(𝒙𝒙) = 1,𝒙𝒙 ∈ Ω
𝑓𝑓 𝒙𝒙 = 0,𝒙𝒙 ∈ 𝜕𝜕Ω

Signed distance function 
(SDF) 

Geometry 
Implicit shape representation
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Implicit representation
Properties 
• continuous representation 

• can represent arbitrary topology at arbitrary resolution

• not limited by excessive memory requirements

• geometric quantities, e.g., normals

• blend well with deep learning techniques
How?
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Implicit neural representations
[Park et al. 2019, Chen & Zhang 2019, Mescheder et al. 2019, Atzmon et al. 2019]

Theorem (Universality). 

Any watertight piecewise linear 
surface can be exactly represented 
as the  neural level set 𝑆𝑆 of MLP 
with ReLU activations. 

𝑓𝑓 𝒙𝒙 ∈ ℝ

𝒙𝒙 ∈ ℝ3 𝑤𝑤𝑖𝑖

𝑓𝑓(𝒙𝒙;𝜽𝜽)

Controlling neural level sets, Atzmon et al., 2019

𝑆𝑆 = {𝑥𝑥|𝑓𝑓 𝑥𝑥; 𝜃𝜃 = 0}

After training, the obtained weights in the neural 
net actually represent the shape, in an implicit way.

Indicator 
function

Signed 
distance 
function

𝑥𝑥

𝑦𝑦

𝑧𝑧



How to learn implicit neural representations?

Surface represented implicitly 

𝑆𝑆𝜃𝜃 = {𝒙𝒙|𝑓𝑓 𝒙𝒙;𝜃𝜃 = 0}

How to learn implicit neural representations?
• Full 3D supervision
• Raw data (weak supervision)
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Occupancy Networks: Learning 3D Reconstruction in Function Space, Mescheder et al, 2019 

• Representing the 3D geometry as the decision boundary of a 
classifier that learns to separate the object’s inside from its outside

• After training the weights of the neural net represent the surface

• This yields a continuous implicit surface representation 

• At inference, queries of 3D points, allows to construct watertight 
meshes, by using marching cubes algorithm 

Learning implicit representation 
Full 3D supervision 
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Learning implicit representation 
Full 3D supervision 

Occupancy Networks, Mescheder et al, 2019 



Learning implicit representation 
Full 3D supervision 

Occupancy Networks, Mescheder et al, 2019 
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Occupancy network.

Learning non-linear function 

𝑓𝑓𝜃𝜃:ℝ3 → [0,1]

Input: 𝒑𝒑 ∈ ℝ3

Output: probability of occupancy

The decision boundary, 𝑓𝑓𝜃𝜃 𝒑𝒑 = 𝜏𝜏, 𝜏𝜏 = 0.5 , represents the surface of the 
reconstructed shape

Learning implicit representation 
Full 3D supervision 

Occupancy Networks, Mescheder et al, 2019 



Learning implicit representation 
Full 3D supervision 
(Recap)
Occupancy networks, Mescheder et al., 2019 

• Full 3D supervision of the occupancy function is needed

• After training the weights of the neural net represent the surface

• At inference, queries of 3D points, allows to construct watertight meshes, by using 
marching cubes algorithm

• Caveat. Full 3D supervision is complicated and expensive
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Learning implicit representation 
By weak supervision, from the raw data

• given an input point cloud 𝜒𝜒 = 𝑥𝑥𝑖𝑖 𝑖𝑖∈𝐼𝐼 ⊂ ℝ3

• our goal is to compute 𝜃𝜃

• 𝑓𝑓(𝑥𝑥;𝜃𝜃) is approximately the signed distance 
function to a plausible surface ℳ defined by 𝜒𝜒

• without any additional supervised data 
preparation

How?

Point clouds
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Learning implicit representation 
By weak supervision

ΩEikonal PDE
∇𝑓𝑓(𝒙𝒙) = 1

𝑓𝑓 𝒙𝒙 = 0,𝒙𝒙 ∈ Ω

Implicit geometric regularization (IGR) by Gropp, Yariv, Haim, Atzmon and Lipman 2020
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ΩEikonal PDE
∇𝑓𝑓(𝒙𝒙) = 1

𝑓𝑓 𝒙𝒙 = 0,𝒙𝒙 ∈ Ω

Signed distance function 
(SDF) 

Learning implicit representation 
By weak supervision
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Ω
Eikonal PDE
∇𝑓𝑓(𝒙𝒙) = 1

𝑓𝑓 𝒙𝒙 = 0,𝒙𝒙 ∈ Ω

Learning implicit representation 
By weak supervision

Implicit geometric regularization (IGR) by Gropp, Yariv, Haim, Atzmon and Lipman 2020
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Ω
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Ω

loss 𝜃𝜃 = �
𝑖𝑖∈𝐼𝐼

𝑓𝑓 𝑥𝑥𝑖𝑖;𝜃𝜃 2 + 𝜆𝜆𝔼𝔼𝑥𝑥 ∇𝑥𝑥𝑓𝑓 𝑥𝑥;𝜃𝜃 − 1 2

vanish               Eikonal
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loss 𝜃𝜃 = �
𝑖𝑖∈𝐼𝐼

𝑓𝑓 𝑥𝑥𝑖𝑖;𝜃𝜃 2 + 𝜆𝜆𝔼𝔼𝑥𝑥 ∇𝑥𝑥𝑓𝑓 𝑥𝑥;𝜃𝜃 − 1 2

vanish               Eikonal
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Weak supervision 
Implicit geometric regularization (IGR), Gropp et al., 2020
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Theorem (Convergence and linear reproduction)
Gradient descent of the linear model with random initialization converges with 
probability 1 to the reproducing plane 

loss 𝜃𝜃 = �
𝑖𝑖∈𝐼𝐼

𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖
2 + 𝜆𝜆 𝑤𝑤 2 − 1 2

Weak supervision 
Implicit geometric regularization (IGR), Gropp et al., 2020
Inductive bias
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Learning implicit neural representation 
By weak supervision, from the raw data 

Images Point clouds



Geometry reconstruction Render new views Cameras

Neural rendering

Slide by Lior Yariv
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Neural rendering
• Learning from raw data (weak supervision) 

• Building (implicit) neural representation of the scene 

𝒙𝒙
𝒚𝒚
𝒛𝒛

𝒇𝒇(𝒙𝒙,𝒚𝒚, 𝒛𝒛)



Neural Volumetric Rendering

Slides on volume rendering  formulation 
by Ben Mildenhall



Neural Volumetric Rendering
computing color along

rays through 3D space

What color is this pixel?



Neural Volumetric Rendering

6
2

Scene properties(𝑥𝑥,𝑦𝑦, 𝑧𝑧)

using a neural network as a 
scene representation, rather than 
a voxel grid of data



Neural Volumetric Rendering
continuous, differentiable 
rendering model without 

concrete ray/surface intersections

6
3



Ray

Camera Scene 
representation

Want to know how ray interacts with scene

Neural rendering



Ray

Camera Scene
representation

Surface rendering — loop over geometry, check for ray hits

?

?
? ?

?
?

?
???

?
?
?

?
?

Neural rendering - surface vs. volume rendering 



Ray

Camera Scene 
representation

Volume rendering — loop over ray points, query geometry

? ?
? ? ?

Neural rendering - surface vs. volume rendering 



Neural Volumetric Rendering

NeRF
Representing Scenes as Neural Radiance Fields for View Synthesis
By Mildenhall, Srinivasan, Tancik, Barron, Ramamoorth and Ng, 2020
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NeRF
Representing Scenes as Neural Radiance Fields for View Synthesis
By Mildenhall, Srinivasan, Tancik, Barron, Ramamoorth and Ng, 2020

A NeRf stores a volumetric scene representation as the weights of an MLP, trained on 
many images with known pose 

Slides on NeRF are based on slides of Yoni Kasten and Dolev Ofri
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NeRF
Inference

The scene is represented by MLP 
Input: spatial location (𝑥𝑥,𝑦𝑦, 𝑧𝑧) and viewing direction (𝜃𝜃,𝜙𝜙)
Output: volume density (opacity), radiance emitted at direction (𝜃𝜃,𝜙𝜙) at point  (𝑥𝑥,𝑦𝑦, 𝑧𝑧)
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NeRF
Inference: render new photorealistic images from the learned scene  

New views are rendered by integrating the density and color at regular intervals along 
each viewing ray (volume rendering)
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NeRF
Training

Objective: reconstruct all training views by volume rendering

Camera posesMultiview Images of a single scene
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NeRF
Training

reconstruct all training views by differentiable volume rendering



Neural rendering Ground truth

NeRF
Training Loss Simulate the rendering of a learned neural scene 

representation in a differentiable way, and minimize:
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NeRF
Neural volume rendering

Neural volume rendering refers to methods that generate images by tracing a ray into 
the scene and taking an integral over the length of the ray

A neural network (MLP)  encodes a function from the 3D coordinates on the ray to 
quantities like density and color, which are integrated to yield an image

Two key properties:
• Integration over the ray
• Coordinate-based scene representation 
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NeRF
Scene representation

(𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝜃𝜃,𝜙𝜙) (𝑟𝑟,𝑔𝑔, 𝑏𝑏,𝜎𝜎)

𝐹𝐹Θ
Multi-Layered 

Perceptron
(MLP)

9 layers
256 channels

Spatial
location

Viewing
direction

Output 
color

Output 
density

Slide credit: Jon Barron’s talk
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NeRF
Scene representation

Output 
color 𝒄𝒄

Output 
density

(𝑟𝑟,𝑔𝑔, 𝑏𝑏)
(𝜃𝜃,𝜙𝜙)

𝜎𝜎

ℎ

Viewing Direction

𝜎𝜎 (spatial location)
𝒄𝒄 (spatial location, viewing direction)

(𝑥𝑥,𝑦𝑦, 𝑧𝑧)
Spatial location 

vector
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NeRF
Scene representation

Viewing Direction 

𝑤𝑤 Output 
color 𝒄𝒄

Output 
density

(𝑟𝑟,𝑔𝑔, 𝑏𝑏)

𝜎𝜎

ℎ
(𝑥𝑥,𝑦𝑦, 𝑧𝑧)
Spatial location 

vector

𝜙𝜙
𝜃𝜃



NeRF
Volume rendering

𝒄𝒄,𝜎𝜎

Ray 1

𝒓𝒓(𝑡𝑡)
𝜎𝜎

– camera ray 𝒓𝒓 𝑡𝑡 = 𝒐𝒐 + 𝑡𝑡𝒅𝒅
– volume density

First hit of the ray

𝑡𝑡
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NeRF
Volume rendering

𝑡𝑡
?

𝒄𝒄,𝜎𝜎

𝒓𝒓(𝑡𝑡)
𝜎𝜎

– camera ray 𝒓𝒓 𝑡𝑡 = 𝒐𝒐 + 𝑡𝑡𝒅𝒅
– volume density

Ray 2



NeRF
Volume rendering

Ray 2𝑡𝑡

𝒄𝒄,𝜎𝜎

𝒓𝒓(𝑡𝑡)
𝜎𝜎

– camera ray 𝒓𝒓 𝑡𝑡 = 𝒐𝒐 + 𝑡𝑡𝒅𝒅
– volume density

We need to combine the density and the 
visibility in order to get the required color



Scene is a cloud of tiny colored particles

NeRF
Volume rendering formulation



If a ray traveling through the scene hits 
a particle at distance 𝑡𝑡 along the ray, 
we return its color c(t)

Camera

Ray 𝒓𝒓 𝑡𝑡 = 𝒐𝒐 + 𝑡𝑡𝒅𝒅c(t)

𝒕𝒕

NeRF
Volume rendering formulation



What does it mean for a ray to “hit” the volume?

This notion is probabilistic: chance that ray hits
a particle in a small interval around 
𝜎𝜎 is called the “volume density”

𝑡𝑡 is σ(t) dt.

P[hit at t] = σ(t) dt
𝒕𝒕

NeRF
Volume rendering formulation



Probabilistic interpretation

To determine if 𝑡𝑡 is the first hit along the ray, 
need to know T(t): the probability that the 
ray makes it through the volume up to 𝑡𝑡.
T(t) is called “transmittance”

P[no hits before t] = T(t)

𝒕𝒕

NeRF
Volume rendering formulation



The product of these probabilities tells us
P[first hit at t] = P[no hit before t] × P[hit at t] = T(t)σ(t)dt

P[no hits before t] = T(t)
P[hit at t] = σ(t) dt

𝒕𝒕

Probabilistic interpretation

NeRF
Volume rendering formulation



𝒕𝒕

NeRF
Volume rendering formulation

Calculating 𝑇𝑇 given 𝜎𝜎

𝑇𝑇 𝑡𝑡 = exp −�
𝑡𝑡0

𝑡𝑡
𝜎𝜎 𝑠𝑠 𝑑𝑑𝑠𝑠

P[no hits before t] = T(t)
P[hit at t] = σ(t) dt



P[no hits before t] = T(t)
P[hit at t] = σ(t) dt

Finally, we can write the probability that a ray terminates at 𝒕𝒕 as a function of only the 
density 𝜎𝜎

P[first hit at t] = P[no hit before t] × P[hit at t]

= T(t)σ(t)dt 

𝒕𝒕

NeRF
Volume rendering formulation

Probabilistic interpretation

= exp −∫𝑡𝑡0
𝑡𝑡 𝜎𝜎 𝑠𝑠 𝑑𝑑𝑠𝑠 𝜎𝜎 𝑡𝑡 𝑑𝑑𝑡𝑡



Expected value of color along ray

This means the expected color returned by the ray will be

�
𝑡𝑡𝑠𝑠

𝑡𝑡𝑒𝑒
𝑇𝑇 𝑡𝑡 𝜎𝜎 𝑡𝑡 𝑐𝑐 𝑡𝑡 𝑑𝑑𝑡𝑡

Note the nested integral!

NeRF
Volume rendering formulation



Approximate the nested integral,
splitting the ray up into 𝑛𝑛
with lengths δi = ti+1 −ti

segments with endpoints {t1, t2, … , tn+1}

tn+1

δi

ti

t1

NeRF
Volume rendering formulation

Approximating the integral



We assume volume density and 
color are roughly constant within 
each interval

ti
ci, σi

NeRF
Volume rendering formulation

Approximating the integral

�
𝑡𝑡𝑠𝑠

𝑡𝑡𝑒𝑒
𝑇𝑇 𝑡𝑡 𝜎𝜎 𝑡𝑡 𝑐𝑐 𝑡𝑡 𝑑𝑑𝑡𝑡 ≈ �

𝑖𝑖=1

𝑛𝑛

�
𝑡𝑡𝑖𝑖

𝑡𝑡𝑖𝑖+1
𝑇𝑇 𝑡𝑡 𝜎𝜎𝑖𝑖𝑐𝑐𝑖𝑖𝑑𝑑𝑡𝑡



We assume volume density and 
color are roughly constant within 
each interval

ti
ci, σi

NeRF
Volume rendering formulation

Approximating the integral

�
𝑡𝑡𝑠𝑠

𝑡𝑡𝑒𝑒
𝑇𝑇 𝑡𝑡 𝜎𝜎 𝑡𝑡 𝑐𝑐 𝑡𝑡 𝑑𝑑𝑡𝑡 ≈ �

𝑖𝑖=1

𝑛𝑛

�
𝑡𝑡𝑖𝑖

𝑡𝑡𝑖𝑖+1
𝑇𝑇 𝑡𝑡 𝜎𝜎𝑖𝑖𝑐𝑐𝑖𝑖𝑑𝑑𝑡𝑡

Caveat: piecewise constant density and color
do not imply constant transmittance 𝑇𝑇(𝑡𝑡)!

Important to account for how early part of a 
segment blocks later part when 𝜎𝜎𝑖𝑖 is high



For t ∈[ti, ti+1], T(t) = e x p − ∫𝑡𝑡1
𝑡𝑡𝑖𝑖 𝜎𝜎𝑖𝑖 𝑑𝑑𝑠𝑠 e x p − ∫𝑡𝑡𝑖𝑖

𝑡𝑡 𝜎𝜎𝑖𝑖 𝑑𝑑𝑠𝑠

t

NeRF
Volume rendering formulation

Evaluating 𝑇𝑇 for piecewise constant density 𝜎𝜎

We need to evaluate at continuous 𝑡𝑡 values 
that can lie partway through an interval



For t ∈[ti, ti+1], T(t) = e x p − ∫𝑡𝑡1
𝑡𝑡𝑖𝑖 𝜎𝜎𝑖𝑖 𝑑𝑑𝑠𝑠 e x p − ∫𝑡𝑡𝑖𝑖

𝑡𝑡 𝜎𝜎𝑖𝑖 𝑑𝑑𝑠𝑠

“How much light is blocked by 
all previous segments?”

t

NeRF
Volume rendering formulation

Evaluating 𝑇𝑇 for piecewise constant density 𝜎𝜎

exp −�
𝑗𝑗=1

𝑖𝑖−1

𝜎𝜎𝑗𝑗𝛿𝛿𝑗𝑗 = 𝑇𝑇𝑖𝑖



“How much light is blocked partway 
through the current segment?”

t

NeRF
Volume rendering formulation

Evaluating 𝑇𝑇 for piecewise constant density 𝜎𝜎

For t ∈[ti, ti+1], T(t) = e x p − ∫𝑡𝑡1
𝑡𝑡𝑖𝑖 𝜎𝜎𝑖𝑖 𝑑𝑑𝑠𝑠 e x p − ∫𝑡𝑡𝑖𝑖

𝑡𝑡 𝜎𝜎𝑖𝑖 𝑑𝑑𝑠𝑠

exp −𝜎𝜎𝑖𝑖 𝑡𝑡 − 𝑡𝑡𝑖𝑖



NeRF
Volume rendering formulation

Approximating the integral

�𝑇𝑇 𝑡𝑡 𝜎𝜎 𝑡𝑡 𝑐𝑐 𝑡𝑡 𝑑𝑑𝑡𝑡 ≈�
𝑖𝑖=1

𝑛𝑛

�
𝑡𝑡𝑖𝑖

𝑡𝑡𝑖𝑖+1
𝑇𝑇 𝑡𝑡 𝜎𝜎𝑖𝑖𝑐𝑐𝑖𝑖𝑑𝑑𝑡𝑡 = �

𝑖𝑖=1

𝑛𝑛

𝑇𝑇𝑖𝑖𝜎𝜎𝑖𝑖𝑐𝑐𝑖𝑖 �
𝑡𝑡𝑖𝑖

𝑡𝑡𝑖𝑖+1
exp −𝜎𝜎𝑖𝑖 𝑡𝑡 − 𝑡𝑡𝑖𝑖 𝑑𝑑𝑡𝑡

= �
𝑖𝑖=1

𝑛𝑛

𝑇𝑇𝑖𝑖𝑐𝑐𝑖𝑖(1 − exp −𝜎𝜎𝑖𝑖𝛿𝛿𝑖𝑖 )



NeRF
Volume rendering formulation

Connection to material opacity

= �
𝑖𝑖=1

𝑛𝑛

𝑇𝑇𝑖𝑖𝑐𝑐𝑖𝑖(1 − exp −𝜎𝜎𝑖𝑖𝛿𝛿𝑖𝑖 )

𝑇𝑇𝑖𝑖 = exp −�
𝑗𝑗=1

𝑖𝑖−1

𝜎𝜎𝑖𝑖𝛿𝛿𝑖𝑖 = �
𝑗𝑗=1

𝑖𝑖−1
(1 − 𝛼𝛼𝑗𝑗)

Colorray = �
𝑖𝑖=1

𝑛𝑛

𝑇𝑇𝑖𝑖𝛼𝛼𝑖𝑖𝑐𝑐𝑖𝑖

segment 
opacity αi



Rendering formulation summary for ray r(t) = o + td

How much light is transmitted earlier along ray:

𝑻𝑻𝒊𝒊 = �
𝒋𝒋=𝟏𝟏

𝒊𝒊−𝟏𝟏

(𝟏𝟏 − 𝜶𝜶𝒋𝒋)

How much light is contributed by ray segment i:

𝛼𝛼𝑖𝑖 = 1 − exp(−𝜎𝜎𝑖𝑖𝛿𝛿𝑖𝑖)

3D volume

Camera

Ray

colors

Cray = �
𝑖𝑖=1

𝑛𝑛

𝑇𝑇𝑖𝑖𝛼𝛼𝑖𝑖𝑐𝑐𝑖𝑖
tn+1

t1 Ti

αi

ti
Rendering 
weights

NeRF
Volume rendering formulation
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Colorray = �
𝑖𝑖=1

𝑛𝑛

𝑇𝑇𝑖𝑖𝛼𝛼𝑖𝑖𝑐𝑐𝑖𝑖

How much light is transmitted earlier along ray:

𝑻𝑻𝒊𝒊 = �
𝒋𝒋=𝟏𝟏

𝒊𝒊−𝟏𝟏

(𝟏𝟏 − 𝜶𝜶𝒋𝒋)

How much light is contributed by ray segment i:

𝛼𝛼𝑖𝑖 = 1 − exp(−𝜎𝜎𝑖𝑖𝛿𝛿𝑖𝑖)

𝑡𝑡

𝑡𝑡

Rendering weights?

Rendering weights?
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NeRF
Sampling along the ray

Sparse uniform sampling
 Low accuracy

𝑡𝑡
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Dense uniform sampling
 Inefficient

𝑡𝑡

Uniform sampling:
free space and occluded

regions that do not 
contribute to the rendered 

image are still sampled 
equally

NeRF
Sampling along the ray
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NeRF
Fine and coarse sampling along the ray

𝐹𝐹Θ𝑐𝑐
Coarse NeRF Fine NeRF

Uniform samples Non-uniform samples

�𝑪𝑪𝑐𝑐 ,𝜎𝜎 �𝑪𝑪𝑓𝑓,𝜎𝜎
𝐹𝐹Θ𝑓𝑓
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Nerf 
Fine and coarse sampling along the ray

Train two networks

𝐹𝐹Θ𝑐𝑐
Coarse NeRF

𝐹𝐹Θ𝑓𝑓
Fine NeRF

�̂�𝐶𝑐𝑐 ,𝜎𝜎 �̂�𝐶𝑓𝑓,𝜎𝜎

𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠 = �
𝑟𝑟∈

�̂�𝐶𝑐𝑐 𝑟𝑟 − 𝐶𝐶 𝑟𝑟 2
2 + �̂�𝐶𝑓𝑓 𝑟𝑟 − 𝐶𝐶 𝑟𝑟

2
2
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NeRF
Ablation study 



Basri et al., NeurIPS 2019

Spectral Bias
FC network fits the lower frequency component of the 

target function faster than the higher frequencies 

NeRF
Positional encoding 

Challenge
How to get MLPs converged faster on high-frequency target functions?

Tancik et al., NeurIPS 2020



G

R

B

X

Y

Implicit image representation 
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(𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝒘𝒘) (𝒄𝒄,𝜎𝜎)

𝐹𝐹Θ
Spatial

location
Output 
color

Output 
density

Viewing
direction

NeRF
Positional encoding 
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* 

𝛾𝛾 𝑥𝑥 , 𝛾𝛾 𝑦𝑦 , 𝛾𝛾 𝑧𝑧 , 𝛾𝛾(𝒘𝒘) (𝒄𝒄,𝜎𝜎)

𝐹𝐹Θ
Output 
color

Output 
density

𝛾𝛾 𝑥𝑥 = sin 20𝜋𝜋𝑥𝑥 , cos 20𝜋𝜋𝑥𝑥 , … , sin 2𝐿𝐿−1𝜋𝜋𝑥𝑥 , cos 2𝐿𝐿−1𝜋𝜋𝑥𝑥

Introducing positional encoding  

NeRF
Positional encoding 



Target Image

Why does positional encoding help?
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Why does positional encoding help?
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Input Target
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Target Image
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x y

A
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Why does positional encoding help?
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NeRF
Synthetic scenes 
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NeRF
Real scenes 



DL4CV Weizmann
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Nerf 

NeRF
No positional encoding

NeRF
With positional encoding
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Nerf 
Importance of positional encoding

NeRF
No positional encoding

NeRF
With positional encoding
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NeRF
Summary • Novel view synthesis by volume rendering (ray integration)

• Coordinate-base scene representation 
• The viewing direction is taken into account
• Encoding the scene in the MLP weights



NeRF
Drawbacks / Future directions  

• Trained per scene, not generalizable 
• Limited by the dense cover of the scene 
• Glossy/transparent surfaces are not modelled well
• The surface geometry is not characterized well by the density 𝜎𝜎
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Neural rendering
• Representing the surface itself, why?
• Volume rendering or estimation of volume density does not admit accurate surface reconstruction  

Volume density thresholds of NeRF

UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for 
Multi-View Reconstruction, Oechsle et al., 2021



Neural Surface Rendering and Reconstruction 

Next time, by Lior Yariv
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