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Abstract—Even though test automation has an increased pres-
ence in industry nowadays, there is still room for improvement,
especially in the area of end-to-end testing. Most testing methods
in the literature focus on techniques that do not test these
applications as a typical end user would, i.e., starting from
the user interface (UI) level. Our work, done in collaboration
with UiPath company, a leader in Robotic Process Automation
(RPA), proposes deep reinforcement learning methods that can
test applications from end to end at the UI level. In the current
implementation of our prototype, abstractions and separation of
concerns are considered so that methods can be reused between
applications and algorithms can be used with minimal user effort.
The testing process that results after training the agents is similar
to that of a human tester going through the functions of the
application. Empirical evaluation of these agents shows that, on
the one hand, they can almost perfectly mimic the behavior of
human testers and, on the other hand, they can exceed the human
performance level.

Index Terms—reinforcement learning, autonomous, testing,
RPA

I. INTRODUCTION

While using an application, end users interact with the
user interface (UI) via a sequence of actions. Most of the
testing methods at the level of UI in the literature are based
on unit testing, functional testing, end-to-end testing, or a
combination of these methods. There are also variations where
a test solution interacts with the application, either using
model-based testing [1], guided fuzzing techniques [2] etc.,
but usually this is not done at the UI level.

Our current work performs testing of applications where
the test process is independent of the application type and
starts from the UI level. This type of testing is challenging,
however, as some interface errors may only occur under
unusual conditions. [3]. Testing a wide range of scenarios is
necessary to ensure the quality of the software. However, this
approach could lead to a combinatorial explosion of tests (e.g.,
triggering modal windows, populating input fields with various
values, or even altering the front-end code of the web page).

Reinforcement Learning (RL) [4] has proven to be a suc-
cessful tool for improving testing procedures. On the one hand,
it is a useful tool to prioritize test cases to promote tests that
are expected to identify vulnerabilities [5]. On the other hand,
RL has proven to be a capable tool to create new test cases
by learning from tests created either manually or with other

automated tools [6]. A reinforcement learning-guided test
system has proven useful in identifying new vulnerabilities,
especially in areas for which the developer would not think of
creating a test scenario. The next step in RL-based testing at
the level of UI is to improve over the widely used Q-learning
paradigm through a Deep Q-learning paradigm that bypasses
the need for a traditional state-action table.

The main contributions of our paper are as follows:

• We propose three Deep Reinforcement Learning (DRL)
based methods for end-to-end testing applications that
start at the UI level and simulate the entire testing process
of a human user. The first is based on Behavior Cloning
(BC) methods [7], which trains the RL agent to mimic
the demonstrations of human testers. The second method
is based on Deep-Q-Network (DQN) [8] to train test
agents without supervised data. Finally, the third method
performs transfer learning from BC to DQL to start with a
network trained on human behavior to incorporate the real
behavior of testers and then enrich it. The dependencies
between the software under test (SUT), its UI, and the RL
environment are abstracted using interfaces and inversion
of control [9].

• Our abstraction method for separating the UI and the
application’s internal functionalities is based on a generic
crawling method that builds a graph (model) of the
connections between the application’s states. Each node
in the graph represents a high-level state, while edges
represent the triggers that change a state to another. We
also provide an API that allows you to fine-tune the model
(or write it from scratch) and add annotations (hints) to
improve the testing process.

• In the RL domain, we first model the problem as a
Partially-Observed-Markov Decision Process (POMDP)
[4]. Our customized environment is derived from the
OpenAI Gym interface [10], which provides separation
between the test environment and the numerous open-
source reinforcement learning algorithms and libraries
such as [11]. The environment created also allows devel-
opers to customize reward functions, agent observations,
and selected actions. These are sometimes needed to align
test objectives with specific goals or use cases.



As a result, the developer of a SUT is able to try different
techniques with minimal knowledge of the underlying RL
domain. To wrap-up, the novelty of our paper is that the prob-
lem is modeled as a POMDP and then DRL and behavioral
clone agents are trained to perform end-to-end testing of the
applications.

The work presented in the paper has a direct connection
to industry, since the requirements came from our industry
partner UiPath1. UiPath [12] offers enterprise solutions to
automate repetitive tasks at the level of UI, aka Robotic
Process Automation (RPA) [13]. UiPath is market leader
in RPA, according to independent analysts2 and they offers
also solutions for testing3. The source code of our prototype
implementation will be made available at the publication time.

II. RELATED WORK

According to the literature, testing at UI level is a chal-
lenging problem. One of the major problems is to connect to
the UI of the applications, understand and abstract the model
independently from the application’s architecture, and then
finally generate functional test cases. Efficient methods for
correlating the application model with an instrumentation tool
that can cover a large set of UI states is another challenge.

The highest order taxonomy for test solutions is the division
into verification and validation. While the former ensures that
the software works well, the latter validates software require-
ments. Regression testing is a useful test method for validation.
For example, the authors in [14] define a useful classification
for GUI regression testing solutions. The similarity between
their work and ours is that they perform model extraction at
the UI level. However, their testing methods focus on testing
only specific components, while our work aims at testing end-
to-end applications, without any human supervision.

End-to-end test methods have the advantage of validating
multiple components of systems that are connected by real
use cases. They also prove more relevant in crash detection for
web [15]. However, their main drawback is that when such a
test fails, it relies on either a good unit test definition or solid
debugging strategies to quickly identify the system component
that triggered the failure [16]. In addition, end-to-end tests
suffer from both a combinatorial explosion of cases and a
long execution time, making it difficult to run them in a daily
development cycle or during regression testing and to maintain
them in a scalar context [17].

Current testing methods in the literature in this area require
either the description of an application model to provide the
underlying business model [18] or the source code structure
for the tested UI components, especially for web applications
[19] [20] and Windows API-enabled applications [21].

Reinforcement learning is proving effective in testing appli-
cations in a variety of domains, such as fuzz testing [22].

1https://uipath.com
2https://www.uipath.com/resources/automation-analyst-reports/

gartner-magic-quadrant-robotic-process-automation and https://www.
uipath.com/resources/automation-analyst-reports/forrester-wave-rpa

3https://www.uipath.com/platform/operate/continuous-testing

Regarding testing at the level of UI, progress has been
made in using image recognition as a method for a machine
to understand a user interface [23]. Recent studies have also
focused on improving locators, the elements that allow testing
algorithms to understand where to look for the UI widget
they need to interact with during testing [20], [24]. Other
studies in the same field criticized the ability of automated test
generation through empirical comparisons with manual testers
[25]. However, the applications used are not representative of
an industrial environment and the work does not discuss their
efficiency in an agile developed app.

Research into the applications of RL in the context of UI
testing has also focused on two complementary categories that
are also of interest to our future work. First, it is used to
prioritize UI tests. The work in [5] proposes several RL-based
methods for figuring out which tests should be run first because
they are likely to yield identifiable bugs. Second, RL can be
used to generate new test cases by learning from previous
manually designed test cases. Research on test generation
methods has focused on platform-specific solutions, such as
Android [6], [26], and web applications [19].

A work comparable in purpose to ours is TESTAR [27],
which uses reinforcement learning on dynamically generated
GUI models. In comparison, our work proposes improvements
in the methods used, especially in the RL part, bypassing the
need to build a special state-action table and replacing Q-
learning with Deep Q-learning. The advantage of our method
in this case is the possibility to encode larger state spaces and
to include the historical context of the successive steps. In our
view, this is a necessity nowadays, considering the complexity
of applications.

III. THE TESTING RL ENVIRONMENT

All the components defined in this section, and later in
Section IV, are encapsulated in a framework using as many as
possible interfaces that allow customization and inversion of
control [9]. We define two categories of users: Developers - the
stakeholders that define the functionalities of the application
and testing objectives, and End Users - the stakeholders that
use the application.

This section describes the architecture of an environment
capable of testing end-to-end applications independent of
platform or Application-Under-Test’s (AUT) architecture. The
environment defined is also compatible with OpenAI Gym
[10] in order to assure maximum compatibility with existing
libraries and tools. The setup definition process is depicted
in Fig. 1 and addressed in detail in the rest of this section.
Formally, the framework maps the testing problem as a
Markov Decision Process (MDP), more precisely, a Partially
Observable Markov Decision Process (POMDP) given that the
agent sees only a substate of the application state (at least by
default) at any timestep [4].

A. Internal application specification

To solve the challenge of having an environment definition
that is platform and application independent, at the architec-

https://uipath.com
https://www.uipath.com/resources/automation-analyst-reports/gartner-magic-quadrant-robotic-process-automation
https://www.uipath.com/resources/automation-analyst-reports/gartner-magic-quadrant-robotic-process-automation
https://www.uipath.com/resources/automation-analyst-reports/forrester-wave-rpa
https://www.uipath.com/resources/automation-analyst-reports/forrester-wave-rpa
https://www.uipath.com/platform/operate/continuous-testing


Fig. 1. The process of having the developer inject its knowledge and insights for the application under test. The red arrows (above) represent mandatory
parameters, while the green arrow is optional. The AppController component is responsible for providing interfaces needed by the environment and agents
to navigate through the application autonomously. The graph and data structure that provide the application’s insights can be created automatically by a crawler
process provided and customized using our defined API. The environment customization component gives access to the developer to a set of fine details to
augment the environment for testing efficiency. These specifications are aggregated inside the testing framework’s RPATestRLEnv component, representing
the environment used by the agents to test the application. Note that this is derived and complies with the OpenAI Gym interface.

tural level we adopted a few strategies. Mainly, two mandatory
components, and one optional, provided by the developer side
need to be injected as parameters to the environment - Fig. 1.

ApplicationOrchestrator object (mandatory). It defines the
interaction with the developer’s application. Our framework
provides an interface that the developer needs to inherit and
implement its own implementation for two functionalities:

• setInputInController(ctrlId, value): sets the input given
value at a given ctrlId, e.g., setting a text to an editable
box, selecting an option from a list or dropdown, etc.

• clickOnController(ctrlId): activates the control flow en-
abled by the given ctrlId, e.g., a click on it, keyboard
input, etc.

This component abstracts different types of applications, for
example, a video game or a web application. The former can
have different kinds of input and processing methods (e.g.,
virtual reality kits, gestures, etc.), while for the latter the
input and processing may involve more common controlling
methods such as mice, keyboards, and touchscreens. This
object interfaces the input method used by the application and
the algorithm’s perception of the input.

Application definition (mandatory). It defines a graph and
additional data structures that abstract the states and flows of
the application.

Each application developer will provide first a graph of
its application using a custom-defined API. This is needed
to make the relationship between an application and the
abstraction a decoupled environment that the reinforcement
agents need to operate on.

This graph can be defined in two ways:
1) Manually designed using an API from our repository.
2) Automatically generated using a crawler component that

we provide as an example which explores exhaustively
the application creating possible states, actions, and links
between them. The output of the crawler populates the
graph.

There is also the possibility to mix the two approaches,
either by manually directing the crawling process or by

allowing the crawler to write the draft graph and then enhance
the result manually.

Furthermore, the framework offers the possibility of man-
aging different contexts and states of the applications using
two grouping concepts:

• Pages. In a web-based application, this could represent
exactly a web page, while in a video game or simulation
application, it could be the HUD (Heads-Up-Display) or
a typical menu for choosing settings. Each page has a
unique id, i.e., Pid. The set of all pages of the application,
AllPages = {P0, P1, P2, ..., Pn} are abstracted as nodes
of the graph mentioned above.

• Meta-states. These represent a logical group of Pages
from the applications. Formally, considering each meta-
state as having a unique id, we denote the set of pages
inside a meta state as Mid = {Pid0

, ....Pidnid
}. Note that

the same page can appear in different meta-states. At the
graph level definition, a meta-state can be seen as a super
node that aggregates a certain set of pages.
Concrete examples for a web-based application are the
group of pages that are handling the authentication pro-
cess, or one that describes the loan process in a bank
application. Note that these are needed further to adopt
the strategies used by Hierarchical and Feudal Reinforce-
ment learning methods [28].

Each page Pid, contains a set of controllers
Controllersid = {Cid0 , ..., Cidnid

} which are the set
of objects supporting the interaction with the user. The
framework divides these controllers further into two subsets:

• Editable controllers, representing which of the controllers
on the page are user-editable, e.g., in a web-based ap-
plication: checkboxes, text filling boxes, dropdowns, list
selections, etc. In this case, the user can provide hints for
the algorithm on how to fill these fields: Hints(Cid).
Currently, the framework supports the following speci-
fications as hints (extensible on the developer’s side):
a range of possible values, a set of ranges, a set of
concrete discrete values, and string patterns. There is



also the option to hint a controller as being mandatory
for completion, or even more, completion with a certain
pattern (e.g., mail addresses). While optional, if provided,
these could boost the testing processes’ performance. One
obvious example is providing hints for login controllers,
e.g., credentials for a set of users that exists in the appli-
cation’s database. Then, the agents running automatically
will not need to guess combinations of correct usernames
and passwords.
Note that all the editable content states, i.e., current
values, are stored in a persistent state dictionary (Persis-
tentState), such that agents can quickly access the current
fillings when making a decision.

• Flow controllers, representing controllers that could
change the flow and move from the current state (page,
node) to a different one. In a web-based application,
examples can be buttons or links. Thus, for each active
controller at any time, the framework knows the parent
page (starting node in the graph) and the link (edge and
ending node). These objects help in organizing internal
data structures such as the set of all controllers that can
move from one page to another, Links(Pidi

, Pidj
) =

{Cij0 , ...}, or ones to know from where and how a
certain page can be opened, InLinks(Pid). These are
used to inject internal knowledge of the application to the
reinforcement learning agents acting on the environment
can make the connection between its targets and actions
more efficiently.

Environment augmentation
The typical operations and data structures used by re-

inforcement learning-based environments, i.e., observation,
reward systems, and truncation detection mechanisms can
be augmented outside our default implementation (Section
III-B) using developers’ and application-specific needs. The
augmentations are injected using inversion of control, giving
developers a full range of customization capabilities of the
operations.

For example, a developer can augment the observation space
to add its own specific application such as server states,
images, and persistent states that the application may use.

A customized reward system may be valuable for training
agents who test certain aspects of an application. Concrete
scenarios target testing a group of web pages and items,
modules in video games (e.g., physics or gameplay systems),
and certain APIs (e.g., databases or network management
source code). Truncation and termination augmentation are
highly used in training the reinforcement learning agents today
for speeding up purposes. It helps by cutting the episodes
earlier to prevent learning from non-sense trajectories or to
restart the episodes sooner rather than later with different
conditions. [29].

B. Customized environment implementation

As shown in Fig. 1, the application’s specifics are aggre-
gated by the developer inside a customized OpenAI Gym

compatible environment, named RPATestRLEnv. This envi-
ronment’s default subcomponents are further described. The
developer is also able to augment these subcomponents. The
interaction in the case of a full-step process taken by the agent
in the environment is shown in Fig. 2.

Observations
The observation space contains what an agent would ”see”.

This is made up in the default implementation by the objects
in equation 1, and detailed further in the text.

Obs = {Pid,Mid, CtrlsObs, CtrlsE , CtrlsF , CtrlsH} (1)

• Pid: the index of the page; represented as one-hot encod-
ing.

• Mid: the index of the meta-state in the current state of the
application, one-hot encoding. Note that this is needed for
the agent in order to understand the global state or user
intention since the same page id can be part of multiple
meta-states.

• CtrlsObs: List of observable controllers that are
available, i.e., not blocked or disabled by the ap-
plication in the current state. Each entry is rep-
resented as a multi-hot encoding in the range
(0, num max controllers per page).

• CtrlsE : the list of editable items, CtrlsE ⊂ CtrlsObs.
Each controller also contains the list of hints provided, if
any.

• CtrlsF : the list of flow items. Each entry contains an id
of the next page’s id represented as one-hot encoding in
the range (0, num max controllers per page).

• CtrlsH : the list of previously interacted controller ids,
actions, and content stored in a deque of fixed size, 8. If
there are less than 8, the invalid filling value is −1.
This proved to be important in letting know the agent that
different filling orders of the controllers result in bad or
worse decisions. E.g., consider a web-based application
with specific needs of selecting an item in a checkbox
control before filling a particular editable control.

In the case that developer provided augmentation with
its own set of customized observations, Obsdev, a different
set of values can be added to the default values: Obs =
Obs

⋃
Obsdev .

Step process
The step function, as described in Fig. 2, takes the agent’s
action and executes it in the environment, performing the
actions on the AUT through the registered AppController
component. The result of the step process is the new
observation, info object, and termination/truncation feedback.

Actions
The flow of executing an action in the environment is depicted
in Fig. 2 with a sequence of 6 steps:

• Step 1.
When selecting an action, the agent first choses a con-
troller to interact with ctrlId, then one of the defined
actions, in our case:



Fig. 2. The full activity flow for taking action in the customized environment and the interaction with components registered by the developer for augmentation
and application control. The text in Section III-A (Actions) describes the steps in detail.

– ACT FILL: the agent attempts to fill a value in an
editable controller selected. In this case, the agent
also selects the concrete value to fill in CctrlId,
where it takes into account the hints given by the
developer, if any.

– ACT CLICK: if the item is valid, the agent will
follow the transition to the next page represented by
a state in the graph.

The action type, value to fill, and controller id are sent
further in the form of a dictionary of values.

• Step 2 and 3.
This step takes the request described in the previous step
and performs internal postprocessing depending on action
types and concrete values selected.

• Step 4.
It performs the actions requested in the application un-
der test using the object registered by the developer
as the controller, i.e., AppController. As explained in
III-A, depending on the selected action type, one of the
two functions from the interface (setInputInController or
clickOnController) is called and the control is inverted to
the developer’s implementation.

• Step 5.
After the actions are executed, the application provides
feedback with details such as errors, logs, messages
from the applications, the new pageId (node in the
graph) if the transition was successful, and any violated
constraints.

• Step 6.
Using the output from step 5, we build the final object
used in the continuation of the RL feedback loop.
To explain this further, please note that it is also possible

to select an invalid controller for the interaction or an
action type, e.g., if you try to enter a value into a
controller of type button, fill in or use a disabled (not
active in this state) controller, select an ACT CLICK
if the controller has selected an editable type instead of
a flow item. In this case, the application feedback is
returned (step 5 in Fig. 2), and the detailed information
about invalid selections is described in an internal object
RestrictionsViolation. This data structure is sent back to
the reward system, where the developer can make further
decisions, such as imposing a penalty on the agent. By
default, our implementation of the reward system issues
penalties to the agent with a constant factor.

Info object
In the OpenAI Gym interfaces, the reset and step functions
also return an info object containing all other hidden (or not)
feedback. In our case, this was adapted to send some other
interesting values for the testing process that can either help
with performance evaluation or debugging:

• Error messages, logs, and captured images.
• A RestrictionsViolation object: The violated restrictions

after the last action taken (see the text above that de-
scribes the Actions).

Reset function
The reset function of RPATestRLEnv sets the environment
to a default state, i.e., the initial page or a random sample
from the initial pages/groups assigned by the developer in the
application specification graph.

IV. AGENTS

In reinforcement learning methods, an agent’s main task is
to explore the environment and train the underlying decision



processes to obtain higher rewards over time. During the ex-
ploration period, the agent starts in an initial state defined with
the function reset as mentioned in section III-B and creates
trajectories, τ (2) represented as tuples of states, actions and
rewards obtained after each decision. The states are the current
observations, while the actions taken are from the decision
process. This process is generally encapsulated in terms of
a policy, where the actions are taken from a probability
distribution conditioned on the current state: at ∼ π(a|st).

τ = (s0, a0, r1, s1, a1, r2, s2, · · · , sT ) (2)

The testing agents in the framework all have the same
interface and share the technical debt for logging, and met-
rics/evaluation functionalities. The different methods used
behind by each agent are customized using different policies.
There are 4 main policies implemented now, briefly mentioned
below:

• RandomPolicy: makes a random decision at each time
step.

• HumanAgent: used to record demonstrations of human
experts testing the application.

• BCPolicy: the Behavioral Cloning Policy [7], which
mimics the behavior of human testers recorded with the
HumanAgent Policy.

• DQNPolicy: implements the Deep Q-Network [8], with
capabilities to reuse BCPolicy knowledge.

Note that in our framework, the notions of trajectory and
episode are interchangeable. This is common in practice,
although in literature formally a trajectory could be only parts
of an episode.

A. RandomPolicy

The decision-making process of this policy is just a uniform
random selection from the set of possible actions in each state.
It first chooses a random controller id to interact with and a
random action, a value, to fill in. This is used to collect a
small set of data that is used to debug the methods and verify
that they are valid. In practice, however, it might be useful
to switch between one of the other agents and this one to
simulate abnormal user behavior as well.

B. HumanAgent

This agent type takes real expert demonstrations that come
from human testers. It has no internal decision process. The
human tester specifies the actions at each time step, and the
sequence of states and actions is recorded for later reuse.
However, rewards are given by the internal components, so
demonstrations can be given a final score indicating how useful
they are for a particular test objective. It is also possible
to replace the human in this scenario with other automation
software that provides user scenarios. For example, if the
application testing team already has scenarios that they can
run with RPA or other testing tools, they can automatically be
used as test oracles as long as the actions can be recorded.

The output of each agent is a recoded dataset of demonstra-
tions: Di = {τ0, τ1, ..., τN}, where each entry is a recorded
trajectory from the user, Eq. (2). The complete dataset consists
of the union of all such demonstrations D = {Di}M .

C. BCPolicy

The goal of Behavioral Cloning Policies is to mimic the
experts’ demonstrations as closely as possible [7]. In our case,
the data used to train the policy decision process comes from
the dataset D captured by HumanAgent. The current model
architecture is shown in Fig. 3. The input to the network
contains the observations that the agents see in the current
time step. These are composed of the default observations and
the additional observations registered by the developer, if any.
This data is smoothed, converted to floating point numbers,
and sent to a sequence of multi-perceptron layers (MLP) [30].
The size of the MLP in-depth and the number of neurons on
each layer can also be adjusted by the developer, depending
on the expected results (section V describes the default values
used by the framework and the challenges associated with this
aspect).

The output of the network has a fixed size of
(NumActions×NumCtrls) neurons, where NumActions rep-
resents the number of possible actions to choose from (fixed
to two in the current framework, i.e., fill or click), while
NumCtrls represents the maximum number of controllers in
the current state Page of the application. This array of raw
floating point numbers is further divided into two components:

• Action type selection distribution parameters (the first
two floats): The mean and log standard deviation for
a bivariate Gaussian distribution. Thus, at the time of
inference, an action type is drawn from this distribution,
i.e., Acttype ∼ N (µact, logσact).

• Controller index to interact with and apply the action
selected above (the remaining NumCtrls float values).
This time they represent the mean and log standard de-
viation for a multivariate Gaussian, as they represent the
probability of selecting each of the possible controllers in
the current state. Thus, at the time of inference, an action
type is drawn from this distribution, i.e.,
Cid ∼ N (µctrl, logσctrl).

If the action type selected is of type ACT FILL, the agent
will try first to select a value sampled from the hints specified
by the developer, i.e., value ∼ Hints(Cid).

There are three main use cases for the proposed network,
as shown in Fig. 3. The first is the inference process, which
at each time step provides the observations returned by the
environment and determines the actions and values to be
executed (see the Actions and Step mechanisms described in
Section III). This is reused by the other two use cases:

• The sampling processes to obtain new test data and create
a corpus in the form of the dataset D, similar to the one
created by HumanAgent. In this case, the actions are
performed according to the given trained policy.

• Training process to improve the parameters of the net-
work (MLP and connection layers), performing back-



Fig. 3. The architecture of the DQN agent, use cases for sampling, adding test new test to the corpus, and training through backpropagation. More details
in Section IV-C.

propagation and using the negative log-likelihood loss
(NLL) for the probabilities of the actions performed by
the human experts in the same states. This is used for
both output heads, i.e., for selecting the action type and
the controller to interact within a state. Intuitively, the
loss is high if the current policy does not perform actions
similar to those in the demonstrations D, and approaches
0 if it matches almost perfectly in the same states.

Humans can also be part of the annotation and improve the
model using the dagger method [31] by human-in-the-loop. In
short, this method works by having the agent ask the human
expert in certain steps what action should be taken in that
state. Then, the policy is enforced to choose the same action.
According to the literature, this can help significantly in cases
where there are states that have not yet been visited in the D
dataset provided.

D. DQNPolicy

A DQN algorithm class attempts to train a predictor of
how good a state and action are, Q̂(state, action), using a
deep neural network architecture. Our proposed architecture is
shown in Fig. 4. In the first part of the network, the input and
the MLPs used are similar to the previous ones in BCPolicy
and explained above. However, the raw output is different
this time. It represents a Cartesian product between the action
type and the controller index to interact with. The size of
the output layer is (NumActions×NumCtrls) neurons. Thus,
the output corresponding to a pair (Acttype, Cid) indicates the
value that occurs when, in a current state, this particular action
and this particular controller are chosen for interaction, i.e.,
Q(state, (Acttype, Cid)).

During training, tuples of states, actions, next states, and
rewards are collected: D{(si, ai, si1, ri)}. This is used as the
ground truth for outcome estimation Q(state, action). The
goal is then to explore the environment, collect as many tuples

as possible and train the neural network-based predictor by
backpropagation to minimize the difference between (̂Q) and
Q. We chose the Huber loss [30] as the loss function for this
difference, which provided better stability against outliers in
our evaluation.

As suggested in the literature, the exploration vs exploitation
plays an important role in training this type of strategy.
Briefly, the exploration means making a random decision (like
the RandomAgent), while the exploitation uses the current
network to make the decision. Intuitively, this is mainly used
to discover new possible states, rather than just going through
common paths from the start. As suggested in section V,
we have found that it is important for the testing process to
maintain a high exploration rate even in the final epochs of
training.

Since the DQNPolicy and the BCPolicy share an important
part of the architecture of a deep network, we evaluated and
proved that transfer learning can help in this situation. This is
also proposed in the literature [32]. The idea is that instead
of starting cold, with an estimator network initialized with
random values, we perform a hot start where the parameters
are imported from the already trained BCPolicy. Intuitively,
this transfer of parameters should also integrate human knowl-
edge into the network, and the continuation of the training
process should attempt to go beyond human understanding.
The implementation of the framework combines the improve-
ments of several methods from the existing DQN literature as
summarized in this paper [8].

V. EVALUATION

The aim of our evaluation is to respond to the following
three research questions:

• RQ1: Can the proposed agents be trained and evaluated to
generate reasonable corpora of test cases considering the
short time constraints of the agile development method-
ologies?



Fig. 4. The architecture of the DQN agent, use cases for sampling, adding test new test to the corpus, and training through backpropagation. More details
in Section IV-D.

• RQ2: How efficient are human testers versus agents
in generating test samples, in both numbers and their
effectiveness?

• RQ3: What is the performance of individual agents
ignoring the short time constraints?

Together with our partners at UiPath4, we applied the pro-
posed methods and our prototype to the UiBank application5

(open to the public for testing) that emulates a banking ap-
plication. The main application functionalities were credential
management, loans, and other bank account operations. At the
moment of writing, this is the only evaluated application that
we can disclose, but we think that its complexity allows a good
evaluation process that can be applied to many other applica-
tions. The scenarios that make up the expert demo datasets
were recorded by various human testers using Human Agent
in the background (cf. Section IV) and collected about 120
records for the initial training of the BC method. To identify
all pages and interactive widgets in the web application, no
manual tuning was required via the provided API.

Real and injected bugs. First, we note that RL agents were
able to find two concrete problems that human testers had
difficulty finding (or could not find without help): (a) the user
can transfer money to and from the same account, inflating
the total value of the account and (b) the user can view the
details of a loan without being authenticated as the owner of
the loan.

Aside from these problems, we manually inserted into the
mock application built on top of UiBank other 8 demonstrative
hard-to-find problems that could only occur due to abnormal
(but possible) user behavior (e.g., filling in controllers on a
particular order and then pressing Next or Back). Human

4https://uipath.com
5https://uibank.uipath.com

testers would be hard-pressed to find these situations in a short
time, given the agile development environment.

A. Parameters and evaluation setup

Models architecture and hyperparameters The standard ar-
chitecture of the MLP (Fig. 3 and 4) has three layers: 64, 128,
and 64 neurons, respectively. For training, the Adam optimizer
[33] was preferred due to its known effectiveness on RL
problems, with stacks of 128 examples each. The prioritized
version [34] with a maximum size of 10000 examples was
used to implement the experience replay buffer. The preferred
method for exploration during training is the temporally-
extended ϵ-greedy exploration [35], starting with a value of
ϵstart = 0.9, ending with ϵend = 0.05 with a linear decay rate
during these 20 steps. The discount factor used for the online
policy network during training is Γ = 0.99. To update the
target network weight from the online network, use the t-Soft
update [36] with a τ = 0.005. When building test corpora
based on pre-trained agents, the default exploration rate is
set to 0.9 (can be overridden by developers) to encourage
small path deviations along the test plan. This prevents test
duplication and better models a human model that could
execute steps in a different order at some time steps, even
in the same application.

Episodes configuration. Agents had 20 allowed steps per
episode (customizable by developers) in both testing and
training. A step means you see the observation and make a
decision (fill in an editable checkbox or click a link/button).
For example, on the login page, three steps are required: filling
in the username and password, then clicking the login button.

The default termination system is configured to end the
episode when a fatal assertion/error occurs or after 20 incre-
ments. However, with the ability to include developers’ own
systems, smarter systems can be introduced. For example, our

https://uipath.com
https://uibank.uipath.com


code repository has another implementation of a customized
system that checks if the agent is just cycling between the same
pair of pages (e.g., login and logout) and terminates/cancels
the episode after a few cycles.

Rewards. By default, the reward system (the mechanism
that gives scoring to agents per timestep; customizable by
developers) has the following rules:

• +1 for each new page visited in the current episode.
• +2 for each of the 10 hard-to-find issues discovered.
• −0.5 for an actionable item violation (e.g., clicking on a

disabled button).
• −0.2 for an editable control violation (same as above,

but this time for an edit-like control).

B. Models under evaluation.

In our evaluations, we consider automatic methods for
testing the application under agile development conditions.
As for time constraints: testing must be performed in short
iterations, usually during the day after each source code
commit, at frequent fixed dates during a development day,
and at night. It is also important to know that changes occur
frequently during each iteration and even during a single day.

Four agent models are evaluated, as follows:
• The Behavioral Cloning (BC) model as described in

Section IV-C.
• The Deep-Q-Network agent (DQN), Section IV-D.
• The DQN as above but this time reusing the pre-trained

BC model using transfer learning (DQNtf ), using those
120 provided expert demonstrations, Section IV-D.

• Same model as above, but this time the BC model was
trained on a model of the application, while the DQNtf
above was trained on an application with 25% modified
content. We obtain this percentage by modifying the
model graph by adding/subtracting nodes and or-edges.
We refer to this model as DQNtfMod. The motivation be-
hind this evaluation is that in most cases it is very difficult
to collect behaviour data from human testers in a short
time. Therefore, in agile development methodologies, it
is useful to evaluate how efficient it would be to transfer
the learning from an older application implementation to
a newer one (the 25% number was determined empirically
because it is very difficult, in terms of computational
resources and time constraints, to evaluate a full graph
of efficiency versus percent change in practice).

C. Metrics evaluations.

According to our tested application and its model graph,
the maximum theoretical rewards an agent could receive are
as follows: MaxReward theor = (10 × 2 − the hard −
to−detect issues)+17 (number of pages in the app) = 37.
However, since agents are allowed 20 steps in each test
episode, the practical maximum reward MaxReward pract
is 27 per episode.

The first research question is whether agents can be
trained given the time constraints imposed by agile devel-

TABLE I
RQ1. WALL TIME IN SECONDS TO TRAIN AGENTS CAPABLE OF REACHING
THE SET THRESHOLD OF REWARD 16 (OUT OF 27, THE MAXIMUM VALUE

IN PRACTICE).

Agent Time (in sec and corresponding hours)
BC 738s ∼ 0.2h

DQN 19894s ∼ 5.5h
DQNtf 7188s ∼ 2h

DQNtfMod 12960s ∼ 3.6h

TABLE II
RQ2. COMPARISON BETWEEN A HUMAN AND AN RL AGENT. AVERAGE

STATISTICS TIME OF HOW MUCH A TEST (∼ 20 STEPS) TAKES FOR EACH,
AND HOW MANY TESTS CAN BE RUN IN A 1H WINDOW.

Agent Type Avg time per single test Avg no. of tests per hour
Human 50s 72/h

RL-based 8.37s 430/h

opment. Table I shows the training time to achieve an av-
erage training performance exceeding a fixed threshold of
MaxReward target = 16 for each of the last 50 evaluation
episodes. The thresholds were set empirically, based on what
should be the minimum expected performance of a real test
agent. In this context, the results were averaged over 20 simu-
lations. The conclusion from this experiment is that the DQNtf
is the fastest agent of all. Note, however, that in practice
it is not suitable to (a) acquire another dataset containing
expert demonstrations for the actual application created, train
a BC agent (at least a few iterations until convergence), then
(b) perform transfer learning and train a DQNtf agent again.
The takeaway of this experiment and its results is that the
DQNtfMod method, which performs transfer learning from the
older application state with 25% modifications compared to
the current state (as described above), is suitable in practice
and can efficiently provide an adequate test corpus within
temporal constraints. The worst result in the table, BC-agent,
can be explained by the fact that the hard-to-detect problems
were often not among the expert demonstrations. The agent
managed to train to a reward threshold of 10 in a few minutes
but reached the target score of 16 by switching and running
for a long time using the small exploration factor provided.
This is also an answer to the RQ2, which is that human testers
face the challenge of finding these hard-to-spot problems in
a short time given the BC result, but also the fact that a
computer running the BC agent can produce tests at a much
faster rate than a human user, as shown in Table II. For the
statistical tests in this table, we used the times extracted from
the dataset records. Note that at evaluation time, since the
architecture of BC and DQN classes are mostly the same in
the high-computational parts (MLP layers), the time needed
to get through the models of a particular input is similar.

RQ3 is about how powerful the agents are overall, ignoring
the short time constraints. In this case, a time window of 24
hours is set for the evaluation. We observed: (a) what is the
maximum output reward per agent and (b) when this value is
reached for the first time since the start. The results of the



TABLE III
RQ3. MAXIMUM REWARD AND THE TRAINING TIME NEEDED TO REACH

THE VALUE PER AGENT (CLAMPED TO A 24H WINDOW)

Agent Max Reward T imeinhours
BC 17 13.2h

DQN 24 5.5h
DQNtf 25 16.1h

DQNtfMod 25 22.5h

evaluation are shown in Table III. We see in previous Table II
that BC method obtains quicker the target reward of 16, but
to reach its maximum reward of 17 it takes another 13 hours
(13.2-0.2h) as seen in Table III.

The summarisation of the entire evaluation is given below:
• BC learns very quickly and proves to be the fastest way

to perform quick tests between iterations, even if the
application changes when a new dataset is provided for
expert demonstration. It is the fastest way to train to
achieve a moderate reward result but its performance is
limited.

• DQN class can outperform BC in maximum reward terms,
but it takes more time to train to achieve a reasonable
reward. This could be suitable for overnight testing or
regression testing. The method is important for detecting
deep-seated bugs and achieving broader code coverage.

• DQNtf is the intermediate solution, able to reuse the
results of BC, start with a hot pre-trained different base,
and outperform the results of a DQN starting from
scratch. This means that it may make sense to train a
BC first, then DQNtf, and then use the results produced
during day builds.

• DQNtfMod turns out to be an optimal way to reuse the
efficiency of DQNtf without having to acquire a new
dataset of expert demonstrations.

D. Challenges regarding models and technical aspects.

As in Fig. 3 and 4, agent classes BC and DQN share an
important part of the architecture of the network. This is an
important factor in our experiments on reusing a previously
learned model (even for an older version of the application)
and performing efficient transfer learning to another test model
or one representing a new state of an application. The number
of shared layers has a direct impact on the efficient transfer
method. Since MLP layers are fully configurable, it is impor-
tant to keep these factors in mind and perform an evaluation
on the tested application.

Second, we mentioned that the architecture of BC originally
had another output header that also predicted the meta-state.
The agent was issued a penalty if the meta-state, i.e., the
agent’s overall intention, did not match that of the human
tester (the information is contained in the recorded dataset,
where the meta-state in this context represents the user story
under test in the episode). At least in the tested applications,
we found that since the intention is already used as input
in the observation, the neural networks should automatically
infer the meta-state and use it in decision making on the

local page/state. However, further experimentation with the
developer’s application is needed to be sure which version
performs better.

Third, intuitively, this serves primarily to discover new
possible states, rather than just following the usual paths from
the beginning. We have found that it is important for the testing
process to maintain a high rate of exploration even in the final
epochs of training.

Another observation we made during the development of
the framework regarding the efficiency of training the RL
algorithms is that the real-world application must first be
replicated in a simulator, rather than developing, tuning, and
evaluating the models using the real-world application. The
reason for this is that the real application always has significant
delays after decisions are made, e.g., the button to submit
the login page would normally be checked on the server side
and then come back with a delayed response. If these delays
are not simulated at least in the development and debugging
phases, they are likely to cause too much overhead in most
applications for the agents to be trained properly. Of course,
there is a trade-off between mocking/simulating some of the
functionalities that have a long response time and building a
full new environment by hand.

The last observation we make concerns the debugging and
tuning processes. Our tests have shown that it is important
to have the appropriate debugging tools and to be able
to understand the relationship between agent performance,
current parameters and setup. In our case, the framework
uses Tensorboard6 graphs and custom graphs to enable quick
debugging. For example, we output the min/max/avg gradients
and check the average number of dead neurons per MLP
layer, statistics on loss functions, rewards, etc. Hyperparameter
configuration and efficient model management methods have
also been adopted [37] to understand how different parameters
can affect performance (e.g., learning rates, depth/width of
layers, exploration schedules/rules, etc.)

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a prototype for testing end-user ap-
plications that mimics human tester behavior, generally at
the UI level (i.e., RPA-like). The methods used are based
on Deep Reinforcement Learning and are efficient in not
only mimicking human tester behavior but also outperforming
human testers. After technical discussions with our UiPath
partners, we concluded that in the future we should focus on
improving the abstraction levels between the understanding
of the model of an application and the RL model of the
environment used.
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