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Videos

Videos are all around us
Span an enormous space of spatial and temporal signals

2 YouTube

-
DL4CV Weizmann
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Challenges in Videos: size of video

Image video

Size of video >> size of image

Computational constrains = short, low-res clips

4D tensor:
Tx3xHxW

time
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Z ~ 2 i I
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| Uncompressed size (3 bytes per pixel):
SD (640 x 480): ~1.5 GB per minute
HD (1920 x 1080): ~10 GB per minute

4 Reduce spatial and temporal resolution

5fps, half the spatial
resolution

~30 frames per second (fps)

T ovscvwe
DLACV Weizmann Slide inspiration: Justin Johnson, EECS 498-007
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https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/

Challenges in Videos: size of video

Computational constrains = short, low-res clips

Walking
Running
Cycling
Jumping

T puscv v
DLACV Weizmann Slide inspiration: Justin Johnson, EECS 498-007
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https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/

Challenges in Videos: Videos Datasets

space of video >> space of image - lots of training data

“ImageNet”-equivalent dataset for videos?
Massive human labelling efforts

Kinetics

Kinetics
YouTube videos
650,000 video clips, 600 human

UCFIO action classes

YouTube videos
13320 videos, 101 action categories

You [T | 8M

YouTube-8M

8M video clips, Machine-generated
DL4CV Weizmann annotations from 3,862 classes

I
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Sports-1M

YouTube videos
1,133,157 videos, 487 sports labels



Today

Deep Learning-based Models for Videos
* How to reduce computation cost without sacrificing accuracy?

 What architecture to best capture temporal patterns?
\Karpathy et. al., Large-scale Video Classification with Convolutional Neural Networks, CVPR, 2014 Y,

~

Self-Supervision in Videos
* Which types of pretext tasks can we define to capture temporal information?
* Learning from a single video and neural video represenation

N J

DL4CV Weizmann



Models for Videos: Single-Frame Baseline

* Train 2D CNN to classify video frames independently

“Biking”

@ i
Input video frame

3 DLACY Weizmann Karpathy et. al., Large-scale Video Classification with Convolutional Neural Networks, CVPR, 2014



Models for Videos: Single-Frame Baseline

ften 3
* Train 2D CNN to classify video frames independently Strop, l'p,-,-sin
* Average predicted probs at test-time & base/,-ne Igly
“Biking” “Biking” “Biking” “Biking” “Biking”

B il ;
Input video frames

% DL4CV Weizmann Karpathy et. al., Large-scale Video Classification with Convolutional Neural Networks, CVPR, 2014
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Models for Videos: Late Fusion

* Learn features for each frame using a 2D CNN, concatenate feature, and fuse

“Biking”

MLP (FC)
MLP (FC)

+ 1

Frame features: Flatten + concatenate and feed to FC layers
DxH xW 2DH'W’

Frame features:
DxH xW’

B
Input video frames
% DL4CV Weizmann Karpathy et. al., Large-scale Video Classification with Convolutional Neural Networks, CVPR, 2014
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Models for Videos: Late Fusion w/ pooling

Learn features for each frame, apply spatial-temporal average pool, and then fuse
“Biking”

MLP (FC)
MLP (FC)

Pooled feature: D

Average Pool over space and time Concatenated

features:
TxDxH xW

S O |

Input video frames
% DL4CV Weizmann Karpathy et. al., Large-scale Video Classification with Convolutional Neural Networks, CVPR, 2014

WAIC




Models for Videos: Late Fusion w/ pooling

Learn features for each frame, apply spatial-temporal average pool, and then fuse

“Biking”

[ MLP (FC) |
[ MLP (FC) |

Pooled feature: D

Pros: allow the network to learn global motion

. . . I Average Pool over space and time I Concatenated
characteristics by comparing outputs of both towers | , it ‘ | features,
XDXH X

Cons: late fusion is late...
hard to represent low level motion between frames

%ﬁ%% DL4CV Weizmann Karpathy et. al., Large-scale Video Classification with Convolutional Neural Networks, CVPR, 2014
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Models for Videos: Early Fusion

* Combines temporal information immediately on the pixel level

 Treat time as another “channel” dimension
“Biking”

MLP (FC
Implemented by extending the MLP EFC;

filters in the first Conv Layer to:

Tx3xHxW kernels
Rest of the network is 2D CNN

Reshaped input:
3STxHXxW

RNIS |

Input video frames
i DL4CV Weizmann Karpathy et. al., Large-scale Video Classification with Convolutional Neural Networks, CVPR, 2014
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Models for Videos: Early Fusion
Extending the filters in the first Conv Layer to: T x 3 x H x W kernel
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Input: TXx 3XxHxXW Weights: Cx Tx 3 xhxw Output: Cx H x W’
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= DL4CV Weizmann




Models for Videos: Early Fusion

Extending the filters in the first Conv Layer to: T x 3 x H x W kernel
 Not temporal shift invariance; specific filter is learned to each time step

Large motion
occured

Hl

e

Input: Tx 3 x H x Weights: CxTx3xhxw Output: Cx H x W’

% DL4CV Weizmann Karpathy et. al., Large-scale Video Classification with Convolutional Neural Networks, CVPR, 2014

WAIC



Models for Videos: Early Fusion

Extending the filters in the first Conv Layer to: T x 3 x H x W kernel
 Not temporal shift invariance; specific filter is learned to each time step

Large motion
occured

Hl

e

Input: TXx 3XxHxXW Weights: CxTx3xhxw Output: Cx H x W’

% DL4CV Weizmann Karpathy et. al., Large-scale Video Classification with Convolutional Neural Networks, CVPR, 2014
WAIC



Models for Videos: Early Fusion

Pros: Allow the network to learn local motion characteristics

Cons:

« Not temporal shift-invariant Biking

* Only have one layer of | MLP (FC)
MLP (FC)

temporal processing

Reshaped input:
| | | 3STxHXxW

Input video frames
% DL4CV Weizmann Karpathy et. al., Large-scale Video Classification with Convolutional Neural Networks, CVPR, 2014
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Models for Videos: Slow Fusion a.k.a 3D Convs

 Extend 2D Convs and pooling to 3D to slowly fuse temporal information

throughout the model
“Biking”

MLP (FC
Filters are sliding in both space | NVLP EFC;

and time

Reshaped input:
3STxHXxW

P Rl |

Input video frames

%ﬁ%% DL4CV Weizmann Karpathy et. al., Large-scale Video Classification with Convolutional Neural Networks, CVPR, 2014
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Models for Videos: Slow Fusion a.k.a 3D Convs

 Extend 2D Convs and pooling to 3D to slowly fuse temporal information
throughout the model
e Slide the kernels in both space and time

\ * Temporal shift-invariant!
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Input: TXx3xHxXW Weights: Cxtx3xhxw Output: Cx T’ x H' x W’

51 DL4CV Weizmann
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Models for Videos: Slow Fusion a.k.a 3D Convs

 Extend 2D Convs and pooling to 3D to slowly fuse temporal information
throughout the model

e Slide the kernels in both space and time
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Input: Tx3xHXW Weights: Cxtx3xhxw First layer filters

% DLACV Weizmann
WAIC

3(rgb) x4 (t) x5 (h) x 5 (w)

Karpathy et. al., Large-scale Video Classification with Convolutional Neural Networks, CVPR, 2014



Models for Videos: Multi-scale

How can we reduce computational cost while maintaining accuracy?
Reduce video resolution = lower performance

Reduce network’s capacity = lower performance

e Context stream (low res).
process low res video frames (H/2,
W/2)

* Fovea sterm (high res):
process a (H/2, W/2) crop from the

N — original resolution

4

: 384

384 256

m
context swred

Reduce the input dimentionalty by half

SR
ﬁf@% DL4CV Weizmann Karpathy et. al., Large-scale Video Classification with Convolutional Neural Networks, CVPR, 2014
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Action classification -- Sports-1M

-

~—

4 £ » R ,

cycling ultramarathon heptathlon longboarding

track cycling half marathon decathlon bikejoring aggressive inline skating
road bicycle racing running hurdles harness racing freestyle scootering
marathon marathon pentathlon skijoring freeboard (skateboard)
ultramarathon inline speed skating sprint (running) carting sandboarding

1 million YouTube videos : g(g«;f@g Zggﬁ@ﬁm
* Fine grained labels for 487 different i | :

Incorrect prediction
types of sports

b
@
%

DL4CV Weizmann Karpathy et. al., Large-scale Video Classification with Convolutional Neural Networks, CVPR, 2014
WAIC




Action classification -- Sports-1M

Sports-1M Top-5 Accuracy

86

84 —

:(2) @ Single frame: a
shockly powerful

78 - . baseline

76 : 76.8

74 This is from 2014...

72

Single Early Late 3D CNN
Frame Fusion Fusion

i DL4CV Weizmann  Karpathy et. al., Large-scale Video Classification with Convolutional Neural Networks, CVPR, 2014 Slide credit: Justin Johnson, EECS 498-007
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https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/

Models for Videos: C3D (Convolutional 3D)

3D CNN that uses all 3x3x3 Convs and 2x2x2 poolings
e The “VGG” of 3D CNNs

* Transfer learning: extract learned video features, train a simple linear classifier

for various tasks
Sports-1M Top-5 Accuracy

C3D 86

_ 84
s . What Objects? 82

LA™
2" 80
78
O |~ »Tuts
- . ‘?— What Scene? 76
. . 74
< - 72

£ What Actions?
7 Actions Single Early Late 3D CNN
Frame Fusion Fusion

Convia
[Pool]
Conv2a

pre-trained 3D ConvNet

 Problem: 3D convs are VERY expensive!
C3D on small inputs takes 3x VGG and 56x AlexNet FLOPs

I
=

5t 243 DLACV Weizmann Tran et al, “Learning Spatiotemporal Features with 3D Convolutional Networks”, ICCV 2015
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Non-deep learning video classification

Motion is the most informative cue for action recognition = design hand crafted
motion features:

Track/match points Compute local motion features

.-—.-_.-‘
-

' ¥
R ol Mgt SES ,Mzr

Aggregate local motion features to compute a global representation of the video =2
linear SVM for action recognition

MODEL MOTION EXPLICITLY

T Wang et. al., Dense trajectories and motion boundary descriptors for action recognition, 2013

Ry}

fL 21 DLACV Weizmann Peng et. al., Bag of Visual Words and Fusion Methods for Action Recognition: Comprehensive Study and Good Practice, 2014

TWAIC




FEE

The

£

Non-deep learning video classification

Motion is the most informative cue for action recognition = hand crafted motion
features:

90 Mean accuracy on UCF-101

80 -
&
4/
70
50

Slow fusion Hand-crafted
(3D CNN) motion

DL4CV Weizmann



Explicitly modeling motion in deep-based models

Optical flow: For each pixel in frame t, determines its corresponding pixel in frame t+1

Optical flow provides local motion cues

«

' -‘ Color wheel

Optical flow between two frames Saturation = mag.
Color = angle

t
t
t
'

% DLACV Weizmann
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Two Stream Networks: modeling motion explicitly
|Idea: separate motion (multi-frame) from static appearance (single frame)

“Biking” Accuracy on UCF-101

A 90

83 86.9 88
80 83.7
75
70 73
A 65
S 65.4
55
50

3D CNN Spatial only Temporal only Two-stream Two-stream

Tem Oral (fuse by average) (fuse by SVM)
g using “Early Fusion”
stream

baseline

Spatial
stream
ConvNet

”Single Frame”
baseline

ConvNet

Precomputed flow
fields between

i o ] _ " concuective frames
Frame t Multi-frame optical flow

Tl .
5&% DLACV Weizmann Simonyan and Zisserman, Two-Stream Convolutional Networks for Action Recognition in Videos, NIPS 2014




Two Stream Networks: modeling motion explicitly
|Idea: separate motion (multi-frame) from static appearance (single frame)

“Biking” Accuracy on UCF-101

A 90

83 86.9 88
80 83.7
75
70 73
A 65
S 65.4
55
50

3D CNN Spatial only Temporal only Two-stream Two-stream

Tem Oral (fuse by average) (fuse by SVM)
g using “Early Fusion”
stream

baseline

Spatial
stream
ConvNet

”Single Frame”
baseline

ConvNet

Precomputed flow
fields between

T 22 ] - " concuective frames
Frame t Multi-frame optical flow

Tl .
5&% DLACV Weizmann Simonyan and Zisserman, Two-Stream Convolutional Networks for Action Recognition in Videos, NIPS 2014




Additional models

g
Inflating 2D networks to 3D (I3D)

Take an existing 2D CNN model = convert it to a 3D CNN model
Transfer the weights from 2D and 3D

\Carreira and Zisserman, “Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset”, CVPR 2017 )

4 )
Long range temporal processing
Use LSTMs and RNNs to model long range temporal information
Baccouche et al, "Sequential Deep Learning for Human Action Recognition”, 2011 Donahue et al,
\”Long-term recurrent convolutional networks for visual recognition and description”, CVPR 2015 )

Long range temporal processing
Self attention, non-local networks, Transformers

nnnnnnnnnn

0 e .i.u)

Embed to token

N‘JT
& 23 DLACV Weizmann

WAIL




Self-Supervision in Videos

B

—p 4 Tasks
B
YA

* Temporal order
* Cycle consistency
* Video Speedup
* Video colorization

b
@
%

DL4CV Weizmann Video: https://ajabri.github.io/timecycle/

WAIC



Self-Supervision in Videos: frame ordering

Training data: shuffled video frames, original video frames
Pretext task: predict if the frames are in the correct temporal order (binary classification
task)

Positive Tuples (b) Negative Tuples
Temporally Correct order - -

Original video

Temporally Incorrect order

I
Wi

DL4CV Weizmann Misra et. al., Shuffle and Learn: Unsupervised Learning using Temporal Order Verification, ECCV 2016

WAIC



Self-Supervision in Videos: frame ordering

Poitive uples | AlexNet architecture

384 384 256

ch7 ______ fc8
NEE
Pl . g
P4 I
' - EE
‘8 |8
=
[ S 7]
1 ! ! i g E —8
] i i ! Q E (5]
| e » Shared parameters
Generating positive and Triplet Siamese network for sequence verification

negative examples

?ﬁ%’% DL4ACV Weizmann Misra et. al., Shuffle and Learn: Unsupervised Learning using Temporal Order Verification, ECCV 2016




Self-Supervision in Videos: frame ordering

Transfer learning: fine-tune spatial stream for video classification

”Bik%ng" Dataset Initialization Mean Accuracy
| | UCF101 Random 38.6
(Ours) Tuple verification 50.2
o HMDB51 Random 13.3
e e UCF Supervised 15.2
COMVIEE Conviet (Ours) Tuple verification 18.1

A i 4
Frame t Multi-frame optical flow

ﬁgﬁ DLACV Weizmann Misra et. al., Shuffle and Learn: Unsupervised Learning using Temporal Order Verification, ECCV 2016
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Self-Supervision in Videos: Learning correspondence

Ultimate goal: Correspondence

% DLACV Weizmann Wang and Efros, Learning Correspondence from the Cycle-consistency of Time, CVPR 2019

WAIC



Self-Supervision in Videos: Learning correspondence

Ultimate goal: Correspondence, without using off-the-shelf tracking methods

How to obtain supervision?
Supervision: Cycle-Consistency in Time

- ’

M

time

Track backwards in time
Track forwards, back to the future

Wang and Efros, Learning Correspondence from the Cycle-consistency of Time, CVPR 2019




Self-Supervision in Videos: Learning correspondence

Supervision: Cycle-Consistency in Time
Challenge: Occlusions

Skip-cycles: skipping occlusions

% Wang and Efros, Learning Correspondence from the Cycle-consistency of Time, CVPR 2019



Self-Supervision in Videos: Learning correspondence

Differentiable tracker: densely match features in learned feature space

A(] ?,) . exXp (xI(J)Txp(?’)) A€ R900x100
9 - I/ .

> exp (z!(7)TzP (1))
10x10xC Computed

f Correlation

30x30xC

240 x 240

ERSSUTE
i “%Lf Wang and Efros, Learning Correspondence from the Cycle-consistency of Time, CVPR 2019




Self-Supervision in Videos: Learning correspondence

Test time: compute features to each frame, compute features afflnlty, propagate
information using the affinities ‘ '

YVt-1

S /LSS

:F‘c 593 Wang and Efros, Learning Correspondence from the Cycle-consistency of Time, CVPR 2019




Self-Supervision in Videos: Learning correspondence

?ﬁ%’% Wang and Efros, Learning Correspondence from the Cycle-consistency of Time, CVPR 2019

WAIC




Self-Supervision in Videos: Temporal cycle consistency

Embedding 4

o Videos
- | & |— -
Video1 = L,_. ~a

~

-

: time Y \ . . ‘ ;
Y _ > _ -
J - >
- embedding space

Temporal
Alignment

- - 4 d? - =" - = L = -
" ‘

© aquery @ target @ negatives

Jabri et. al, Space time correspondence as Contrastive Random Walk, NeurIPS
2020

HlLy -
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Self-Supervision in Videos: Learning the Speediness in Videos

Ultimate goal: Watch video content faster by adaptively speeding up the video

Uniform Speed Up (2x)

6X £
Speedup OX[
rate ax r [ Speed up 4X |
3X i ) rate 3X i
2X . . 2X .
1x | ; time 1x | time

»

Jittery, unnatural motions Same duration, more natural

b
@
fgtu

: Joint work with: Sagie Benaim, Ariel Ephrat, Oran Lang, Inbar Mosseri, Bill Freeman, Miki Rubinstein and Michal Irani, CVPR 2020

WAIC




“Speediness” in Videos

Slower Normal speed Faster

%ﬁ%’é’% Joint work with: Sagie Benaim, Ariel Ephrat, Oran Lang, Inbar Mosseri, Bill Freeman, Miki Rubinstein and Michal Irani, CVPR 2020

WAIC



Self-Supervision in Videos: Learning the Speediness in Videos

Pretext task: Predict if a given video segment is sped up or not
Training data: sped up video segments + original video segments

Normal speed
or
Sped Up

Self supervised
training on Kinetics

Input segment
(30 frames)

“Learning and Using the Arrow of Time”, Wei at.
al, CVPR 2018

Al 3
- ‘féf"iﬁ

WAIC




Self-Supervision in Videos: Learning the Speediness in Videos

Pretext task: Predict if a given video segment is sped up or not
Training data: sped up video segments + original video segments

Normal speed
or
Sped Up

Self supervised
training on Kinetics

Input segment
(30 frames)

Learning properties of natural motion, avoid “easy cheats” =
very challenging!

1 E
s

=]

WAIC



Self-Supervision in Videos: Learning the Speediness in Videos

Pretext task: Predict if a given video segment is sped up or not
Training data: sped up video segments + original video segments

Normal speed

Self supervised

training on Kinetics or
Sped Up
1x1 Conv
3D Conv Pooling Normal Speed
Network Space-time - P
Features (spatial max, or
temporal average)
* Based on S3D-G T Sped Up
(1024 Channels) 1x 1024

; * “Rethinking spatiotemporal feature learning: Speed-accuracy trade-offs in video classification”,
= Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and Kevin Murphy, ECCV’18.




Self-Supervision in Videos: Learning the Speediness in Videos

Inference: sliding window = prediction for every frame

Sped-up

Normal
speed

il
WAIC
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Self-Supervision in Videos: Learning the Speediness in Videos

From “Speediness” to Speedup factor:
Low speediness = speedup more
High speediness—> speedup less

- ‘
g
*

Nl
0
N
P Y
>4
N

A
- 4 1
S
g 3 0
[k
2 0
=
2
o1 0
)
0 0.
0 50 100 150 200 250 300 350

i Time (frame)

WAIC
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Speediness
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Learning the Speediness in Videos: Adaptive Video Speedup

S Uniform Speedup 2x Adaptive Speedup 2x (ours)

=]




Learning the Speediness in Videos: Transfer Learning

N/32 ]

Normal Speed
3D Conv Pooling 1x1Conv or
Network Space-time (spatial max, Sped Up

Eaatures temporal average)

Pre-trained

SpeedNet .
/ (1024 Channels) 1x 1024
Self Supervised Action Recognition Video Retrieval
Initialization Supervised accuracy Query Retrieved top-3 results

Method Architecture UCF101 HMDBS51 = >
Random init S3D-G 73.8 46.4

ImageNet inflated S3D-G 86.6 57.7

Kinetics supervised  S3D-G 96.8 74.5

CubicPuzzle [19] 3D-ResNet18 65.8 33.7

Order [40] R(2+1)D 72.4 30.9

DPC [13] 3D-ResNet34 75.7 35.7

AOT [38] T-CAM 79.4 :

SpeedNet (Ours) S3D-G 81.1 48.8

SR

WAIC




WAIC

Learning the Speediness in Videos: CAM visualizations

blue/green =
normal speed

Jorange =
slowed down

“Memory Eleven” Our space-time
artistic video by Bill Newsinge speediness visualization

<)

%tps://www.voutube.com/watch?v=divISOWi lo



https://www.youtube.com/watch?v=djylS0Wi_Io
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Speediness # Magnitude of Optical Flosses

Far from camera Not in frame Close}g camera
A A
4 . N/~ 2\

!IIIIIII!IIIIIII.lllllllI‘l_llll'lll'l_lllil_lll
N Y. . Y - Y. e 4 v /S

S - i 8 D T, o=

Y = N by =
Bar—i= e e h R i

‘ —

1 e | = (1==Y )
‘_-‘ “‘ | T"” i ‘
| (LA

SN Y - = KN
— L B 3 Y A [

i Ve

] N A = l =N 1
- = - o i : :
3 ? -

WAIC




The Generative Al Revolution




The Generative Al Revolution




The Generative Al Revolution

Text-to-Image

Model




What about videos?

A cat next to a dog

v et al. Imagen Video. 2022
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Processing video Is expensive!

Common approach:

1) generate distant keyframes

2) fill-in missing content




1) Generate distant keyframes




2) Fill-in missing frames




2) Fill-in missing frames




2) Fill-in missing frames




Common approach: distant keyframes — frame interpolation




Common approach: distant keyframes — frame interpolation

Aliasing ambiguities cannot be consistently resolved!

o= LI T

Time




Common approach: distant keyframes — frame interpolation

Aliasing ambiguities cannot be consistently resolved!

<

Time




Common approach: distant keyframes — frame interpolation

e S S T




Our approach: generate all frames at once

Input text prompt

Text-to-Video

+
tq t10 t20 Lgo




Our approach: generate all frames at once

Allows learning globally coherent motion

Simple framework Input text prompt

Text-to-Video

+
tq t10 t20 Lgo




Common UNet

Spatial sub-sampling




Conv inflation block

-
Space-Time UNet (STUNet)

Spatial sub-sampling
Temporal sub-sampling

|

O -
Attention inflation block
Fretained 12 layer_§
!

“3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation”, Cicek et al. MICCAI 2016 9:




Space-Time UNet (STUNet)




Space-Time UNet (STUNet) Cascaded Approach

Time




Text-to-Video Image-to-Video Stylized Generation

N ‘231 =]
R A B

Cinemagraphs
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