

25/11/2021

Introduction To Adversarial Examples

Niv Haim

Weizmann Institute DL4CV Course Winter 2022 (20224182)

98.6% pig

99.0% airliner

Biggio et al. 2013, "Evasion attacks against machine learning at test time" Szegedy et al. 2014, "Intriguing properties of neural networks" Goodfellow et al. 2015, "Explaining and Harnessing Adversarial Examples"

What is an Adversarial Example?

Perturbation Attack

• Originally coined by Szegedy et al., 2013:

"we find that applying an *imperceptible non-random* perturbation to a test image, it is possible to arbitrarily change the network's prediction.

... we term the so perturbed examples 'adversarial examples'"

Outline

Today we will:

- See Adversarial Example
- Discuss what they are
- Learn how to generate them
- Learn how to (maybe) defend against them
- Learn about properties and advantages

Brief recap on training neural networks

Image by Simon from Pixabay

$L(f_{\theta}(x),y)$

purpose of loss: How "well" we classify

Brief recap on training neural networks

Image by Simon from Pixabay

most common loss – CrossEntropy:

$$L(f_{\theta}(x), y) = -\log\left(\frac{e^{f_{\theta}(x)y}}{\sum_{j} e^{f_{\theta}(x)j}}\right)$$

 $L(f_{\theta}(x),y)$

Brief recap on training neural networks

Image by Simon from Pixabay

minimize loss:

 $L(f_{\theta}(x),y) \longrightarrow - \nabla_{\theta}L$

89.7% pig

want to fool classifier by changing δ

89.7% pig

want to fool classifier \rightarrow d measures "badness" by changing δ

$$d(f(x+\delta),y)$$

89.7% pig

want to fool classifier → used L to maximize "wellness" maximize "badness"?

$L(f(x+\delta),y)$

89.7% pig

want to fool classifier \rightarrow maximize L w.r.t δ

$$L(f(x+\delta),y) \rightarrow \nabla_{\delta}L$$

-0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0

1.0

0.5

-0.5

-1.0

15

1.0

0.5

-0.5

-1.5 -1.5

89.7% pig

want to fool classifier \rightarrow maximize L w.r.t δ

$$L(f(x+\delta),y) \rightarrow +\nabla_{\delta}L$$

89.7% pig

want to fool classifier \rightarrow maximize L w.r.t x

 $L(f(x+\delta),y) \rightarrow + \nabla_x L$ input
Niv Haim, DL4CV @ Weizmann

(just a technicality..)

89.7% pig

want to fool classifier \rightarrow maximize L w.r.t x

$L(f(x+\delta),y) \longrightarrow \delta = +\nabla_x L$

Follow the gradient w.r.t x (the input image)

X (original): 89.7% pig

X + ∇xL: 68.6% hay

X + 100×∇xL: 44.8% fireguard

Did we generate an adversarial example? Need small $\delta...$

X + 10×∇xL: 44.7% pig X + 100×∇xL: 44.8% fireguard

We want small noise

"Enforcing $\|\nabla_{\mathbf{x}} L\|_{\infty} < \varepsilon$ ":

 $\frac{\varepsilon}{\delta} = \varepsilon \cdot \operatorname{sgn}(\nabla_{x}L)$

Fast Gradient Sign Method a.k.a FGSM (Goodfellow et al. 2015)

 $\star \delta = \max_{\|\delta\|_{\infty} \le \epsilon} L\left(f(x+\delta), y\right) \approx \max_{\|\delta\|_{\infty} \le \epsilon} L\left(f(x), y\right) + \nabla_{x} L \delta$

FGSM – example on MNIST

88691 92831 29230 47793 8191

Classifier

model = nn.Sequential(
 nn.Conv2d(1, 16, 4, stride=2, padding=1),
 nn.ReLU(),
 nn.Conv2d(16, 32, 4, stride=2, padding=1),
 nn.ReLU(),
 Flatten(),
 nn.Linear(32 * 7 * 7, 100),
 nn.ReLU(),
 nn.Linear(100, 10)

FGSM - simple but vicious

Simple, Fast and Vicious Test Error: 98.7%

FGSM (ε=0.1) Error: 40.0%

Pred: 4 Pred: 9 Pred: 9 Pred: 6 Pred: 4 Pred: 6 9 Pred: 2 Pred: 7 Pred: 7 Pred: 7 Pred: 2 Pred: 0 \bigcirc Pred: 6 Pred: 3 Pred: 1 Pred: 3 Pred: 3 Pred: 9 7

source: https://adversarial-ml-tutorial.org/

Pred: 6

Pred: 9

Pred: 8

Pred: 4

Pred: 7

Pred: 2

Pred: 0

Pred: 3

Pred: 4

I want you to be 4!

INIV MAINI, DL40V @ VVEIZINANI

Train on adversarial examples (kind of augmentation)

Adversarial Training - MNIST

	Test Accuracy	FGSM Accuracy
Standard Training	98.7%	40.7%
Adv. Training (FGSM)	97.2%	94.0%

Did we solve the problem?

Outline

- See Adversarial Example
- Discuss what they are
- How to attack: FGSM
- How to defend: Adversarial training (AT)
 - Next: a better picture of AT (pictorially/optimization)
- Learn about properties and advantages

 $\mathbf{X}^{\mathrm{adv}} = \mathbf{X} + \epsilon \operatorname{sgn}(\nabla_X L(\mathbf{X}, y_{\mathrm{true}}))$

PAD
Perturbation Attack (optimization)

Towards Deep Learning Models Resistant to Adversarial Attacks, Madry et al. 2018

Perturbation Attack (optimization)

Towards Deep Learning Models Resistant to Adversarial Attacks, Madry et al. 2018

Perturbation Attack (optimization)

Towards Deep Learning Models Resistant to Adversarial Attacks, Madry et al. 2018

Perturbation Attack (illustrations)

Perturbation Attack (illustrations)

Mental image alert! ("experimental" mental images could be horribly misleading)

Perturbation Attack (better illustrations)

source: Atzmon et al. 2019, "Controlling Neural Level Sets"

Perturbation Attack (better illustrations)

source: Atzmon et al. 2019, "Controlling Neural Level Sets"

PGD (a.k.a Iterated-GSM)

PGD (a.k.a Iterated-GSM)

Attack Model:

$$S = \{\delta \mid \|\delta\|_{\infty} < \epsilon\}$$

FGSM:

PGD (a.k.a Iterated-GSM)

Attack Model:

$$S = \left\{ \delta \mid \|\delta\|_{\infty} < \epsilon \right\}$$

PGD:

$$X_0^{adv} = X$$

 $X_{N+1}^{adv} = X_N^{adv} + \alpha \operatorname{sign}(\nabla_X L(X_N^{adv}, y_{true}))$ = +

PGD (a.k.a Iterated-GSM)

Attack Model:
$$X_n^{adv}$$
 δ_n $S = \{\delta \mid \|\delta\|_{\infty} < \epsilon\}$ $n = 1$ $\mathbf{4}$ **PGD:** $n = 2$ $\mathbf{4}$ $\mathbf{X}_0^{adv} = \mathbf{X},$ $n = 2$ $\mathbf{4}$ $\mathbf{X}_{N+1}^{adv} = Clip_{X,\epsilon}\{\mathbf{X}_N^{adv} + \alpha \operatorname{sign}(\nabla_X L(\mathbf{X}_N^{adv}, y_{true}))\}$ $n = 3$ $\mathbf{4}$ $n = 4$ $\mathbf{4}$

Adversarial Training

	Test Accuracy	FGSM Accuracy	PGD Accuracy
Standard Training	98.7%	40.7%	7.3%
Adv. Training (FGSM)	97.2%	94.0%	90.0%

What can we do to defend?

Adversarial Training

	Test Accuracy	FGSM Accuracy	PGD Accuracy
Standard Training	98.7%	40.7%	7.3%
Adv. Training (FGSM)	97.2%	94.0%	90.0%
Adv. Training (PGD)	98.0%	96.1%	95.9%

Adversarial Training – Other Datasets

CIFAR10 (ResNet50)	Test	PGD ($\epsilon = \frac{8}{255}$)
Standard Training	95.25%	0.00%
Adv. Training (PGD 8/255)	87.03%	53.29%

ImageNet (ResNet50)	Test	PGD ($\epsilon = \frac{8}{255}$)
Standard Training	76.13%	0.01%
Adv. Training (PGD 8/255)	47.91%	19.52%

Outline

- See Adversarial Example
- Discuss what they are
- How to attack: FGSM, PGD
- How to defend: Adversarial training (AT)
- Optimization view of AT
- Next: Black-Box attacks
- Learn about properties and advantages

Black-Box Attacks

Black-Box Attacks

Black-Box Attacks

Black-Box Attacks

source: https://twitter.com/will_it_breakyt

• Test set Accuracy

	ResNet-50	ResNet-101	ResNet-152	GoogLeNet	VGG-16
Top-5 accuracy	91.0%	91.7%	92.1%	89.0%	88.3%

• Accuracy under FGSM attack

	ResNet-152	ResNet-101	ResNet-50	VGG-16	GoogLeNet
ResNet-152	32%	55%	53%	47%	36%

Liu et al. 2016, "Delving into Transferable Adversarial Examples and Black-box Attacks" Niv Haim, DL4CV @ Weizmann

• Test set Accuracy

	ResNet-50	ResNet-101	ResNet-152	GoogLeNet	VGG-16
Top-5 accuracy	91.0%	91.7%	92.1%	89.0%	88.3%

• Accuracy under FGSM attack

	ResNet-152	ResNet-101	ResNet-50	VGG-16	GoogLeNet	
ResNet-152	32%					
ResNet-101		33%				White-Box
ResNet-50			29%			FGSM
VGG-16				5%		
GoogLeNet					11%	

Liu et al. 2016, "Delving into Transferable Adversarial Examples and Black-box Attacks" (Tab.20) Niv Haim, DL4CV @ Weizmann

• Test set Accuracy

	ResNet-50	ResNet-101	ResNet-152	GoogLeNet	VGG-16
Top-5 accuracy	91.0%	91.7%	92.1%	89.0%	88.3%

• Accuracy under FGSM attack

	ResNet-152	ResNet-101	ResNet-50	VGG-16	GoogLeNet
ResNet-152		55%	53%	47%	36%
ResNet-101	56%		50%	46%	40%
ResNet-50	59%	53%		47%	38%
VGG-16	42%	39%	41%		21%
GoogLeNet	71%	74%	62%	53%	

Black-Box

Liu et al. 2016, "Delving into Transferable Adversarial Examples and Black-box Attacks" (Tab.20) Niv Haim, DL4CV @ Weizmann

• Possible reason:

source: Ian Goodfellow on "Adversarial Examples and Adversarial Training," 2017-05-30, CS231n, Stanford University

• Possible reason:

fellow 201

Adversarial Examples comes from the data:

Ilyas et al. 2019, "Adversarial Examples Are Not Bugs, They Are Features"

source: Ian Goodfellow on "Adversarial Examples and Adversarial Training," 2017-05-30, CS231n, Stanford University

Outline

- See Adversarial Example
- Discuss what they are
- How to attack: FGSM, PGD
- How to defend: Adversarial training (AT)
- Optimization view of AT
- Black-Box attacks (transferability)
- Next: Summary
- Surprising "advantages" of AE

Adversarial Examples – The Bigger Picture Is this surprising?

The Bigger Picture: Failure modes in machine learning

Intentionally-motivated failures

Unintended failures

Attack	Overview	Failure	Overview
Perturbation attack	Attacker modifies the query to get appropriate response	Reward Hacking	Reinforcement Learning (RL) systems act in unintended ways because of mismatch between state reward and true reward
Poisoning attack	Attacker contaminates the training phase of ML systems to get intended result	Side Effects	RL system disrupts the environment as it tries to attain its goal
Model Inversion	Attacker recovers the secret features used in the model by through careful queries	Distributional shifts	The system is tested in one kind of environment, but is unable to adapt to changes in other kinds environment
Membership Inference	Attacker can infer if a given data record was part of the model's training dataset or not	Natural Adversarial Examples	Without attacker perturbations, the ML system fails owing to hard negative mining
Model Stealing	Attacker is able to recover the model through carefully-crafted queries	Common Corruption	The system is not able to handle common corruptions and perturbations such as tilting, zooming noisy images.
Reprogramming ML system	Repurpose the ML system to perform an activity it was not programmed for	Incomplete Testing	The ML system is not tested in the realistic conditions that it is meant to operate in.
Adversarial Example	Attacker brings adversarial examples into physical domain to		

in Physical Domain subvertML system e.g: 3d printing special eyewear to fool facial

Source: https://docs.microsoft.com/en-us/security/engineering/failure-modes-in-machine-learning

Adversarial Examples - Summary

- Remember the bigger picture (many failures)
- Hard to attack (need to find AE in box)

Harder to defend (need to prove: no AEs in <u>all</u> box)

Adversarial Examples - Summary

- Remember the bigger picture (many failures)
- Hard to attack (need to find AE in box)

• Harder to defend (need to **Prove**: no AEs in <u>all</u> box)

Adversarial Examples - Summary

- Remember the bigger picture (many failures)
- Hard to attack (need to find AE in box)

• Harder to defend (need to **Prove**: very hard to find AE in box)
Adversarial Examples - Summary

- Remember the bigger picture (many failures)
- Hard to attack (need to find AE in box)

• Harder to defend (need to Evaluate: very hard to find AE in box)

• Coming next: Robustness beyond security

Niv Haim, DL4CV @ Weizmann

Outline

- See Adversarial Example
- Discuss what they are
- How to attack: FGSM, PGD
- How to defend: Adversarial training (AT)
- Optimization view of AT
- Black-Box attacks (transferability)
- Summary ("security")
- Surprising "advantages" of AE (beyond security)

Follow the gradient w.r.t x (the input image)

X (original): 89.7% pig

X + ∇xL: 68.6% hay

X + 10×∇xL: 44.7% pig

X + 100×∇xL: 44.8% fireguard

Follow $\nabla_{x}L(f(x),y)$ of Robust Model

bird

Standard

 ℓ_{∞} -trained

dog

dog

 l_2 -trained

dog

cat

"Robustness May Be at Odds with Accuracy" (Tsipris et al. 2018)

Image synthesis with Robust Classifer

Santurkar et al. 2019, "Image Synthesis with a Single (Robust) Classifier" Niv Haim, DL4CV @ Weizmann

Image synthesis with Robust Classifer

Santurkar et al. 2019, "Image Synthesis with a Single (Robust) Classifier" Niv Haim, DL4CV @ Weizmann

Image synthesis with Robust Classifer

Santurkar et al. 2019, "Image Synthesis with a Single (Robust) Classifier" Niv Haim, DL4CV @ Weizmann

Style Transfer with Robust Model

Nakano, "A Discussion of 'Adversarial Examples Are Not Bugs, They Are Features': Adversarially Robust Neural Style Transfer", Distill, 2019.

What have we learnt today?

- Saw a few Adversarial Examples
- Discussed what they are
- How to attack: FGSM, PGD
- How to "defend": Adversarial training (AT)
- Optimization view of AT
- Black-Box attacks (transferability)
- Security-wise summary
- Surprising Visual properties of robust models (beyond security)

Sequences (RNN, Attention, ViT)

Monday:

