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98.6% pig

=
99.0% airliner

+
x 0.02

(0.000000000000000       

00000000000005% pig...)
Biggio et al. 2013, “Evasion attacks against machine learning at test time”

Szegedy et al. 2014, “Intriguing properties of neural networks”

Goodfellow et al. 2015, “Explaining and Harnessing Adversarial Examples”
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What is an Adversarial Example?

● Originally coined by Szegedy et al., 2013:

“we find that applying an imperceptible non-random perturbation to a test image, 

it is possible to arbitrarily change the network’s prediction.

… we term the so perturbed examples ‘adversarial examples’”

98.6% pig

=

99.0% airliner

+ x 0.02

Perturbation Attack
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Outline

Today we will:

● See Adversarial Example

● Discuss what they are

● Learn how to generate them

● Learn how to (maybe) defend against them

● Learn about properties and advantages

airliner
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Brief recap on training neural networks

fθ

L(fθ(x),y)

Image by Simon from Pixabay

purpose of loss:

How “well” we classify

https://pixabay.com/users/simon-3/?utm_source=link-attribution&amp;utm_medium=referral&amp;utm_campaign=image&amp;utm_content=382008
https://pixabay.com/?utm_source=link-attribution&amp;utm_medium=referral&amp;utm_campaign=image&amp;utm_content=382008
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Brief recap on training neural networks

fθ

L(fθ(x),y)

Image by Simon from Pixabay

most common loss – CrossEntropy:

https://pixabay.com/users/simon-3/?utm_source=link-attribution&amp;utm_medium=referral&amp;utm_campaign=image&amp;utm_content=382008
https://pixabay.com/?utm_source=link-attribution&amp;utm_medium=referral&amp;utm_campaign=image&amp;utm_content=382008
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Brief recap on training neural networks

fθ

L(fθ(x),y) - ∇θL

Image by Simon from Pixabay

minimize loss:

https://pixabay.com/users/simon-3/?utm_source=link-attribution&amp;utm_medium=referral&amp;utm_campaign=image&amp;utm_content=382008
https://pixabay.com/?utm_source=link-attribution&amp;utm_medium=referral&amp;utm_campaign=image&amp;utm_content=382008
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Generating an Adversarial Example

fθ
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Generating an Adversarial Example

f
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Generating an Adversarial Example

f(x+δ)≠y

f
89.7% pig

want to fool classifier
by changing δ
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Generating an Adversarial Example

d(f(x+δ),y)

f
89.7% pig

want to fool classifier → d measures “badness”
by changing δ
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Generating an Adversarial Example

L(f(x+δ),y)

f
89.7% pig

want to fool classifier → used L to maximize “wellness”

maximize “badness”?
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Generating an Adversarial Example

∇δL

f
89.7% pig

L(f(x+δ),y)

want to fool classifier → maximize L w.r.t δ
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Generating an Adversarial Example

+∇δL

f
89.7% pig

L(f(x+δ),y)

want to fool classifier → maximize L w.r.t δ
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Generating an Adversarial Example

+∇xL

f
89.7% pig

L(f(x+δ),y)
(just a technicality..)

δ

x

inputinput

want to fool classifier → maximize L w.r.t x
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Generating an Adversarial Example

f
89.7% pig

L(f(x+δ),y) δ = +∇xL

want to fool classifier → maximize L w.r.t x
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Follow the gradient w.r.t x (the input image)

X (original):       89.7% pig X + ∇xL:         68.6% hay

X + 100×∇xL: 44.8% fireguardX + 10×∇xL:  44.7% pig
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Follow the gradient w.r.t x (the input image)Did we generate an adversarial example?

Need small δ…

X (original):       89.7% pig X + ∇xL:         68.6% hay

X + 100×∇xL: 44.8% fireguard

99.0% airliner

X + 10×∇xL:  44.7% pig
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We want small noise

What is small δ?

small δ &  δ = f(∇xL)  ?

+ =

X δ

‖δ‖∞ < ε

0.1 -0.1

0.1 0.05 -0.02

-0.09

10−5

‖δ‖∞ ≤ 0.1
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“Enforcing  ‖∇xL‖∞ < ε” :

δ = ε • sgn(∇xL)

Fast Gradient Sign Method
a.k.a FGSM   (Goodfellow et al. 2015)

ε -ε ε …

… ε … …

… … -ε …

… … 0 …

*

*
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FGSM – example on MNIST

Classifier
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FGSM - simple but vicious

Simple, Fast and Vicious

Test Error:     98.7%

FGSM (ε=0.1) Error: 40.0% 

source: https://adversarial-ml-tutorial.org/
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Adversarial Training

I want you to be 4!
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Adversarial Training

Train on adversarial examples (kind of augmentation)

fθ1
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Adversarial Training

Train on adversarial examples (kind of augmentation)

fθ2
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Adversarial Training

Train on adversarial examples (kind of augmentation)

fθ2
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Adversarial Training

Train on adversarial examples (kind of augmentation)

fθn
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Adversarial Training - MNIST

Did we solve the problem?

Test Accuracy FGSM Accuracy

Standard Training 98.7% 40.7%

Adv. Training (FGSM) 97.2% 94.0%
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Outline

● See Adversarial Example

● Discuss what they are

● How to attack: FGSM

● How to defend: Adversarial training (AT)

● Next: a better picture of AT (pictorially/optimization)

● Learn about properties and advantages
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Perturbation Attack (pictorially)
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Perturbation Attack (pictorially)

2

8

1

3

4 δ2

‖δ‖∞ < ε
ε-ε

ε

-ε

δ1
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Perturbation Attack (pictorially)

ε-ε

ε

-ε

FGSM
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FGSM

Perturbation Attack (pictorially)

ε-ε

ε

-ε
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FGSM

Perturbation Attack (pictorially)

ε-ε

ε

-ε

Possible AE (found by FGSM)
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FGSM

Perturbation Attack (pictorially)

ε-ε

ε

-ε

Possible AE (found by FGSM)

*

*
dot should have been lying on one of the corners.. 
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Perturbation Attack (pictorially)

ε-ε

ε

-ε

Possible AEs

(need to be found)

“The Game” of AT:

Defender: defend in box

Attacker: find AE in box

Coming

Up next:
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Perturbation Attack (optimization)

ε-ε

ε

-ε

Possible AEs

(need to be found)

“The Game” of AT:

Defender: defend in box

Attacker: find AE in box

Adversarial Training as a min-max optimization problem:

Towards Deep Learning Models Resistant to Adversarial Attacks, Madry et al. 2018
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Perturbation Attack (optimization)

ε-ε

ε

-ε

Possible AEs

(need to be found)

“The Game” of AT:

Defender: defend in box

Attacker: find AE in box

Adversarial Training as a min-max optimization problem:

Standard Loss

Towards Deep Learning Models Resistant to Adversarial Attacks, Madry et al. 2018
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Perturbation Attack (optimization)

ε-ε

ε

-ε

Possible AEs

(need to be found)

“The Game” of AT:

Defender: defend in box

Attacker: find AE in box

Adversarial Training as a min-max optimization problem:

Adversarial Loss

Towards Deep Learning Models Resistant to Adversarial Attacks, Madry et al. 2018
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Perturbation Attack (illustrations)

ε-ε

ε

-ε

Possible AEs

(need to be found)
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Perturbation Attack (illustrations)

Possible AEs

(need to be found)

*
Mental Image*

Mental image alert! (“experimental” mental images could be horribly misleading)*
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Perturbation Attack (better illustrations)

AEs lurking (waiting to be found)

source: Atzmon et al. 2019, “Controlling Neural Level Sets”
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Perturbation Attack (better illustrations)

AEs lurking (waiting to be found)

source: Atzmon et al. 2019, “Controlling Neural Level Sets”

2D alert!
(Things get complicated in high dimension, e.g. images…)
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FGSM PGD

PGD (a.k.a Iterated-GSM)

ε

ε
ε-ε

ε

-ε
ε-ε

ε

-ε
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Attack Model:

S = {δ | ‖δ‖∞ < ε}

FGSM:

PGD (a.k.a Iterated-GSM)

+=
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Attack Model:

S = {δ | ‖δ‖∞ < ε}

PGD:

PGD (a.k.a Iterated-GSM)

+=
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Attack Model:

S = {δ | ‖δ‖∞ < ε}

PGD:

PGD (a.k.a Iterated-GSM)

𝑋𝑛
𝑎𝑑𝑣 𝛿𝑛

n = 1

n = 2

n = 4

n = 3
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Adversarial Training

Test Accuracy FGSM Accuracy PGD Accuracy

Standard Training 98.7% 40.7% 7.3%

Adv. Training (FGSM) 97.2% 94.0% 90.0%

What can we do to defend?
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Adversarial Training

Test Accuracy FGSM Accuracy PGD Accuracy

Standard Training 98.7% 40.7% 7.3%

Adv. Training (FGSM) 97.2% 94.0% 90.0%

Adv. Training (PGD) 98.0% 96.1% 95.9%
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Adversarial Training – Other Datasets

CIFAR10 (ResNet50) Test PGD (𝜖 =
8

255
)

Standard Training 95.25% 0.00%

Adv. Training (PGD 8/255) 87.03% 53.29%

ImageNet (ResNet50) Test PGD (𝜖 =
8

255
)

Standard Training 76.13% 0.01%

Adv. Training (PGD 8/255) 47.91% 19.52%

source: https://github.com/MadryLab/robustness
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Outline

● See Adversarial Example

● Discuss what they are

● How to attack: FGSM, PGD

● How to defend: Adversarial training (AT)

● Optimization view of AT

● Next: Black-Box attacks

● Learn about properties and advantages
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Black-Box Attacks

fθ L
∇xL

“White-Box”
(FGSM, 
PGD, etc.)
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Black-Box Attacks

fθ L
∇xL

fθ2
L

∇xL

“White-Box”

“Black-Box”
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fθ2
L“Black-Box”

Black-Box Attacks
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fθ2
L“Black-Box”

Black-Box Attacks

gθ L
∇xL
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fθ2
L“Black-Box”

Black-Box Attacks

gθ L
∇xL

source: https://twitter.com/will_it_breakyt
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Black-Box Attacks - Transferability

● Test set Accuracy

● Accuracy under FGSM attack

Liu et al. 2016, “Delving into Transferable Adversarial Examples and Black-box Attacks”
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Black-Box Attacks - Transferability

● Test set Accuracy

● Accuracy under FGSM attack

Liu et al. 2016, “Delving into Transferable Adversarial Examples and Black-box Attacks” (Tab.20)

White-Box

FGSM
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Black-Box Attacks - Transferability

● Test set Accuracy

● Accuracy under FGSM attack

Liu et al. 2016, “Delving into Transferable Adversarial Examples and Black-box Attacks” (Tab.20)

Black-Box
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Black-Box Attacks - Transferability

● Possible reason:

source: Ian Goodfellow on "Adversarial Examples and Adversarial Training," 2017-05-30, CS231n, Stanford University



Niv Haim, DL4CV @ Weizmann

Black-Box Attacks - Transferability

● Possible reason:

source: Ian Goodfellow on "Adversarial Examples and Adversarial Training," 2017-05-30, CS231n, Stanford University

Adversarial Examples comes from the data:

Ilyas et al. 2019, “Adversarial Examples Are Not Bugs, They Are Features”
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Outline

● See Adversarial Example

● Discuss what they are

● How to attack: FGSM, PGD

● How to defend: Adversarial training (AT)

● Optimization view of AT

● Black-Box attacks (transferability)

● Next: Summary

● Surprising “advantages” of AE
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Adversarial Examples – The Bigger Picture

airliner

test+noise True Classification

Human

Perception

Machine

“Perception”

Is this surprising?
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Adversarial Examples – The Bigger Picture

airliner

test+noise True Classification

Human

Perception

Machine

“Perception”

Inputs that fool a computer, but not a human
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Adversarial Examples – The Bigger Picture

airliner

fireguard

Inputs that fool a computer, but not a human

test+noise

“noisy” image

True Classification

Human

Perception

Machine

“Perception”
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Adversarial Examples – The Bigger Picture

airliner

spotlight (26.7%)fireguard

Inputs that fool a computer, but not a human

test+noise

“noisy” image noise

True Classification

Human

Perception

Machine

“Perception”
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Adversarial Examples – The Bigger Picture

cat ?

airliner

spotlight (26.7%)fireguard

Inputs that fool a computer, but not a human

test+noise

“noisy” image noise

model

failure

True Classification

Human

Perception

Machine

“Perception”
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Adversarial Examples – The Bigger Picture

cat ?

airliner

spotlight (26.7%)

???

fireguard

Inputs that fool a computer, but not a human

test+noise

“noisy” image noise

model

failure

out-of-distribution

True Classification

Human

Perception

Machine

“Perception”
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The Bigger Picture: Failure modes in machine learning

Intentionally-motivated failures Unintended failures

source: https://docs.microsoft.com/en-us/security/engineering/failure-modes-in-machine-learning
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Adversarial Examples - Summary

● Remember the bigger picture (many failures)

● Hard to attack (need to find AE in box)

● Harder to defend (need to prove: no AEs in all box)
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Adversarial Examples - Summary

● Remember the bigger picture (many failures)

● Hard to attack (need to find AE in box)

● Harder to defend (need to prove: no AEs in all box)
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Adversarial Examples - Summary

● Remember the bigger picture (many failures)

● Hard to attack (need to find AE in box)

● Harder to defend (need to prove: very hard to find AE in box)
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Adversarial Examples - Summary

● Remember the bigger picture (many failures)

● Hard to attack (need to find AE in box)

● Harder to defend (need to Evaluate: very hard to find AE in box)

● Coming next: Robustness beyond security
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Outline

● See Adversarial Example

● Discuss what they are

● How to attack: FGSM, PGD

● How to defend: Adversarial training (AT)

● Optimization view of AT

● Black-Box attacks (transferability)

● Summary (“security”)

● Surprising “advantages” of AE (beyond security)
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Follow the gradient w.r.t x (the input image)

X (original):       89.7% pig X + ∇xL:         68.6% hay

X + 100×∇xL: 44.8% fireguardX + 10×∇xL:  44.7% pig
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Follow ∇xL(f(x),y) of Robust Model
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Image synthesis with Robust Classifer

Santurkar et al. 2019, “Image Synthesis with a Single (Robust) Classifier”
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Image synthesis with Robust Classifer

Santurkar et al. 2019, “Image Synthesis with a Single (Robust) Classifier”
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Image synthesis with Robust Classifer

Santurkar et al. 2019, “Image Synthesis with a Single (Robust) Classifier”
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Style Transfer with Robust Model

Content

Style

Nakano, "A Discussion of 'Adversarial Examples Are Not Bugs, They Are Features': Adversarially Robust 

Neural Style Transfer", Distill, 2019.
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What have we learnt today?

● Saw a few Adversarial Examples

● Discussed what they are

● How to attack: FGSM, PGD

● How to “defend”: Adversarial training (AT)

● Optimization view of AT

● Black-Box attacks (transferability)

● Security-wise summary

● Surprising Visual properties of robust models (beyond security)

Monday:

Sequences 

(RNN, Attention, ViT)




