
Congruence Properties of Partitions: Part 1

Introduction

We know that any positive integer greater than  can be expressed as a product of prime

numbers in a unique fashion ignoring the order of factors. This is one of the most basic results

in number theory and is aptly called the fundamental theorem of arithmetic. This result also

shows that prime numbers are the building blocks for all integers and this justifies the

importance given to prime numbers in number theory.

Let's now ponder what happens when we think from an additive point of view. Suppose we

wish to express a positive integer as a sum of other positive integers. For example we can

write:

therefore  can be expressed as sum of other positive integers in  different ways,  can be

expressed so in  different ways and  can be expressed so in  different ways. Here the order

of summands is not taken into consideration. We say that each of the unordered tuples

 and  is a partition of the number . Each individual element of the tuple is

called a part of the partition. In general a tuple  of positive integers  is called

a partition of a positive integer  if

and

In this case we say that the partition has  parts . From the definition and

examples above we can see that the parts of a partition can be repeated. Given a positive

integer , the number of all possible partitions of  is denoted by . This function  is

one of most important arithmetical functions in advanced number theory. It is easy to calculate

the values of  for small  by direct enumeration of all partitions of . From the examples

given above it follows that .

As the value of  increases it is difficult to enumerate all the partitions of a given number

(there is always a chance of missing out some partition, as the reader may figure out by trying

to enumerate partitions of ) and hence there is some difficulty in finding the value of 

as  increases. To tackle this problem we will find out the generating function of .

The Generating Function for 

Suppose first that the problem is simplified. We will limit the partitions by limiting the highest

part. So let's denote by  the number of partitions of  with highest part equal to . First
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we start with partitions with parts not greater than  and then it is easy to see that each

number will have only one partition consisting of all 's i.e. we can write . Now we

note that we have

It therefore follows that

If we now allow partitions with parts upto  then we need to express  in the form

. Since

it follows that

Proceeding in the same fashion we can see that

and therefore if we let  so that  becomes  it follows that

Setting  (as a convenient convention) we have

Following the standard practice we switch to the variable  and then we can write the

generating function of  as:

Recursion for  via Euler's Pentagonal Theorem

Using Euler's Pentagonal Theorem (established in a previous post) we have
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and from equation  above we deduce

Equating coefficients of  for  we see that

Hence we arrive at

where the sum on right is actually a finite sum with the convention that  and

 if  is negative.

Thus we have

British mathematician P. A. MacMahon calculated the values of  for  to 

using the above method. We reproduce a part of the table below:
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qn n ≥ 1

p(n) − p(n − 1) − p(n − 2) + p(n − 5) + p(n − 7) − p(n − 12) − p(n − 15) + ⋯ = 0
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)n+1 3 − kk2

2

3 + kk2

2
(2)

p(0) = 1

p(n) = 0 n

p(6)

p(7)

p(8)

p(9)

p(10)

p(11)

p(12)

= p(5) + p(4) − p(1) = 7 + 5 − 1 = 11

= p(6) + p(5) − p(2) − p(0) = 11 + 7 − 2 − 1 = 15

= p(7) + p(6) − p(3) − p(1) = 15 + 11 − 3 − 1 = 22

= p(8) + p(7) − p(4) − p(2) = 22 + 15 − 5 − 2 = 30

= p(9) + p(8) − p(5) − p(3) = 30 + 22 − 7 − 3 = 42

= p(10) + p(9) − p(6) − p(4) = 42 + 30 − 11 − 5 = 56

= p(11) + p(10) − p(7) − p(5) + p(0) = 56 + 42 − 15 − 7 + 1 = 77
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Ramanujan studied the table prepared by MacMahon and found various congruence properties

of the partitions and then proved them using a variety of techniques. This we study next.

Congruence Properties of 

Just by looking at the table of partitions above Ramanujan was able to spot patterns which

revealed certain congruences. Simplest and notable among these are the following three:

Ramanujan provided three proofs for  and one proof for . We will provide two

proofs each of  and one proof of . All of these proofs provided by Ramanujan are

highly economical involving simplest machinery and manipulation. None of the other proofs

which I have found in literature are simpler than that provided by Ramanujan and besides the

modern proofs are full of unnecessary symbolism.

Proof of 

Before presenting the proof of this congruence we need a q-series identity which can be

established using Jacobi's theta functions. Using series expansion of  from this post and

its product expansion from this post we have

Dividing the above equation by  and then taking limits as  we get

Replacing  by  we get

First Proof: Ramanujan starts with the expression  and

simplifies it using Euler's Pentagonal theorem and equation  above

In this expansion Ramanujan analyzes the powers of  which are multiples of . Clearly we

have
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Clearly  can take the values  modulo  and  can take values 

modulo  and therefore the only way the above condition can be satisfied is when both

 and  take value  modulo . This means that we must have

.

Thus it is established that the coefficient of  in the expansion of

is a multiple of . Now Ramanujan uses a formal technique which is very helpful here.

Following Ramanujan we write

if

for all values of .

It is easy to see that under the above conditions we can multiply both sides of congruence by

any power series and the congruence would remain valid. Also if the first coefficient (i.e.

constant term) of each series is  then we can take reciprocals and new series will also have

integer coefficients and the congruence would remain valid after taking reciprocals.

Now it is quite obvious that

Using the above identity repeatedly replacing  by  and multiplying these together we

get

We can now easily see that the coefficient of  in the expression
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is a multiple of . Since the expression  consists of terms of the

form  with coefficients , it follows that the coefficient of  in the expression

is divisible by . We therefore have  for all .

Second Proof: Ramanujan uses his functions  to provide another proof of the

congruence identity modulo . Again he introduces a new formal technique by using symbol 

to represent any power series with integral coefficients. Thus sums and products of  can also

be written as  and that helps a lot in simplifications needed in the proof.

We begin by definitions of :

Various properties of  are proved in these posts and the reader should visit them if

needed.

We have from the definitions:

and since  it follows that

and therefore

Now let  so that

and we can now rewrite  as
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Again it is easy to observe that

Now replacing  by  and then on multiplying the resulting equations we get

and from equation  we now obtain

Since  has integer coefficients it follows that the coefficient of  in  is divisible by 

and therefore the coefficient of  in the RHS of the last equation is divisible by . It follows

that  or equivalently .

If we compare the two proofs above we find that the first proof is really elementary and does

not require anything beyond the Euler's Pentagonal theorem whereas the second proof depends

upon the theory of  which lies somewhat deeper in the theory of elliptic functions. At

the same time one can not help wondering at Ramanujan's use of the highly economical tool of

congruence of power series based on the congruence of their coefficients (the  technique

expresses this same congruence of power series in even simpler notation). In the next post we

will deal with the partition congruences related to modulo  and .
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