Math 105: Music \& Mathematics
 Test \#2 Solutions \& Comments

1. For each part of this problem, consider the melody consisting of the notes: C E G F D. For each of the following, find the result of applying the given variation to the above melody.
a) T_{7}

Answer: G B E D C A
b) $I T_{5}$

Answer: F C\# G\# A\# C D\#

Comment: A quick way to solve this would b to first rewrite $I T_{5}$ as $T_{7} I$, and then just find the inversion of your answer to part (a). (Finding first I, then T_{5}, also works.)
c) T_{40}

Answer: E G\# C\# B A F\#

Comment: Since $40=3 \times 12+4, T_{40}$ is equivalent to T_{4}.
d) I_{D} (an inversion centered at D rather than C)

Answer: E C G A B D

Comment: Recall that a way to find inversions about notes other than C is to draw a different "mirror" line through the middle of the musical clock; in this case, we'd draw it so that it passes through D instead of C.

2. Simplify each of the following combinations of variations. Write each answer in one of the following forms: $T_{n}, T_{n} R, T_{n} I$, or $T_{n} I R$, with n between 0 and 11 . Show your work.
a) $T_{8} R T_{1} R T_{5} R$

Answer: $T_{2} R$
b) $T_{8} I T_{1} I T_{5}$

Answer: T_{0}
Note: Don't forget the $I T_{n}=T_{-n} I$ rule \ldots

$$
T_{8} I T_{1} I T_{5}=T_{8} T_{-1} I I T_{5}=T_{7} T_{0} T_{5}=T_{12}=T_{0}
$$

c) $I R T_{2} R I T_{4}$

Answer: T_{2}
3. Determine whether each of the following sets, with the given operation, is a group. Justify your answers.
a) $\{0,10,5\}$ under mod 15 addition

Answer: This is a group. A table demonstrates closure. The numbers 10 and 5 are opposites, while 0 is its own opposite.

Table:

+	0	5	10
0	0	5	10
5	5	10	0
10	10	0	5

b) $\left\{T_{0}, T_{4} R, T_{8}\right\}$ using the usual rules for combining variations

Answer: This is not a group. Here are a couple of examples illustrating why:

- The opposite of T_{8} is T_{4}, which is not in this set.
- When we comine T_{8} with $T_{4} R$, we get $T_{12} R=R$, which is not in this set.

Either of these examples would be sufficient to show that the set is not a group.
4. Consider the group $\{1,2,3,4,5,6,7,8,9,10\}$ under $\bmod 11$ multiplication (Note: this does turn out to be a group. You are not being asked to verify this!)
a) Find the cyclic subgroup $\langle 3\rangle$.

Answer: Repeatedly multiplying by 3 (under mod 11 rules) gives us $\{3,9,5,4,1\}$.
b) Find the cyclic subgroup $\langle 5\rangle$.

Answer: Repeatedly multiplying by 5 gives us $\{5,3,4,9,1\}$.
5. Consider the group of all transpositions: $\left\{T_{0}, T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}, T_{7}, T_{8}, T_{9}, T_{10}, T_{11}\right\}$
a. Show that $\left\{T_{0}, T_{3}, T_{6}\right\}$ is not a subgroup of this group.

Answer: This set is a not a subgroup because it is not closed: $T_{3} T_{6}=T_{9}$, which is not in the set.
Alternative answer: The opposite of T_{3} is T_{9}, but T_{9} is not in the set.
(Note: If T_{9} were added to the set, it would become a subgroup.)
b. Show that $\left\{T_{0}, T_{8}, T_{4}\right\}$ is a subgroup of this group.

Answer: This set is a group since it contains the identity (T_{0}), it is closed (since $T_{4} T_{8}=T_{0}$, etc.), and every element has an opposite in the set (T_{0} is its own opposite, and T_{4}, T_{8} are opposites of each other. Since it's a group, it forms a subgroup of the larger group that contains it.

Table:

	T_{0}	T_{8}	T_{4}
T_{0}	T_{0}	T_{8}	T_{4}
T_{8}	T_{8}	T_{4}	T_{4}
T_{4}	T_{4}	T_{0}	T_{8}

c. Find all of the coset(s) of $\left\{T_{0}, T_{8}, T_{4}\right\}$ in this group.

Answer: Since the original group has 12 elements, and the subgroup has 3 elements, there must be $12 \div 3=4$ cosets. They are:

- $\left\{T_{0}, T_{8}, T_{4}\right\}$, the original subgroup
- $\left\{T_{1}, T_{9}, T_{5}\right\}$, the subgroup generated by T_{1}
- $\left\{T_{2}, T_{10}, T_{6}\right\}$, the subgroup generated by T_{2}
- $\left\{T_{3}, T_{11}, T_{7}\right\}$, the subgroup generated by T_{3}

6. How many elements are there in each of the following groups? Briefly explain each of your answers. (Note: to receive full credit, your explanation must consist of more than "I remember this from class"...)
a. The cyclic subgroup $\left\langle T_{3} I\right\rangle$

Answer: Since $T_{3} I T_{3} I$ simplifies to T_{0}, the cyclic subgroup $\left\langle T_{3} I\right\rangle$ consists of only two elements: $T_{3} I$ and T_{0}
b. The group of all possible variations involving transpositions, inversions, and/or retrogrades

Answer: There are 48 such variations in all. After simplifying any combination of variations, the result is always of one of the four forms: $T_{n}, T_{n} I, T_{n} R$, or $T_{n} I R$. Since n can take on any value from 0 to 11 (12 possibilities), there is a total of $4 \times 12=48$ distinct variations.
c. The group of all actions on a square (that is, the number of different ways a square can be moved) generated by 90-degree right-rotations and/or horizontal flips

There are 8 such actions. (Recall that this is the "dihedral group of order 8" discussed in class.) This is because there are four distinct rotations; also, if we flip the square first, we get four more distinct rotations. As was demonstrated in class, every possible combination of rightrotations and horizontal flips is equivalent to one of these 8 actions.

