## Permutations \& Change Ringing

1. For 5 "bells" - numbered $1,2,3,4,5$ - alternate the permutations (ab)(cd) and (bc)(de) repeatedly.

How many different rearrangements (including 1,2,3,4,5 itself) can you get using these two sequences of swaps? (Note: make sure not to count 1,2,3,4,5 twice!) List them.

To get you started, here are the first few rearrangements you from this process:

...continue the list until you return to 1234 5, at which point the list will begin to repeat. You can stop at this point!
2. For each rearrangement you ended up with in your list, find the permutation (written using cycle notation) which would have given you that rearrangement, starting from the first line, all in one step.

For example: The third rearrangement in the list above is 24153.
To get from 12345 to 24153 all in one step, you would use the permutation (acedb):


One more example: The fourth rearrangement in the list above is 42513.
To get from 12345 to 42513 all in one step, you would use the permutation (ad)(ce):


For the next problem, we'll repeat \#1 and \#2 - but, before starting, first apply the swap (ab). So, you'd start with...

|  | 12345 |
| :---: | :---: |
| ( AB ) | X |
|  | 21345 |
| ( AB )(CD) | $\times \times$ |
| (BC)(DE) | $12435$ |
| (AB)(CD) | ${ }^{1} X^{2} X^{5}$ |
| (BC)(DE) | $4 X^{5} X^{3}$ |
| $\ldots$ |  |

3. a) List the different rearrangements you obtain in this way, starting with 21345 . How many are there? (Hint: your should get the same number of rearrangements here as you got in problem \#1.)
b) For each rearrangement you ended up with in your list for part (a), find the permutation (written using cycle notation) which would have given you that rearrangement, starting from 1234 5, all in one step. For example: One of the arrangements in the list above is 1425 . To get from $\mathbf{1 2 3 4 5}$ to $\mathbf{1 4 2 5 3}$ all in one step, you would use the permutation (BCED):

|  | ABCDE |
| :---: | :---: |
| (BCED) |  |

Comments: The set of permutations you found in \#1 is a subgroup of the full group of permutations on five bells. (As discussed in class - and at the beginning of Chapter 5 of the text - there are $5!=120$ such permutations in all.) In \#3(b), you found one coset of this subgroup.
4. Based on your answer to \#1, how many cosets should this subgroup have in all? (You don't have to find them all - just predict how many there should be.) Explain your answer.

