
Accelerating AI with

solutions

Asher Fredman, Solution Architect

2

❖ What and Why NVIDIA

❖ GPUs Vs. CPUs – the power parallel computing

❖ Introduce the CUDA programming model

❖ GPU architecture and how to utilize GPU capabilities

❖ GPU acceleration in DL

➢ Matrix Multiplications

➢ Tensor Cores and AMP

➢ Inference Optimizations and Sparsity

TALK AGENDA

3

4

NVIDIA
From Computer Graphics to GPU Computing

TRANSPORTATION

HEALTHCARE

MACHINE LEARNINGHPC DEEP LEARNING

GAMING

DESIGN

5

THE BIG BANG IN AI

DNN GPUBIG DATA

6

DEEP LEARNING REVOLUTIONIZING COMPUTING

Image Classification, Object Detection,
Localization, Action Recognition

Speech Recognition, Speech Translation,
Natural Language Processing

Pedestrian Detection, Lane Detection,
Traffic Sign Recognition

Breast Cancer Cell Mitosis Detection,
Volumetric Brain Image Segmentation

7GPU and CPU

8

POWERING ALL INDUSTRIES

CPU
Optimized for
Serial Tasks

GPU Accelerator
Optimized for
Parallel Tasks

With a single innovation…

9

SMALL CHANGES, BIG SPEED-UP
Application Code

+

GPU CPU
25% of Code

Compute-Intensive Functions

Rest of Sequential
CPU Code

10

A SUPERCHARGED COMPUTING MODEL

To power the next advances in technology…

1980 1990 2000 2010 2020

103

105

107

1.5X per year

GPU-Accelerated

Computing

CPU-Accelerated

Computing

APPLICATIONS

SYSTEMS

ALGORITHMS

CUDA

ARCHITECTURE

11

NVIDIA END TO END AI PLATFORM

CUDA

Deep Learning SDK

Recommendation

Data Science SDK Data Center Tools

Data Science CommunityDeep Learning Frameworks

Image & Video Speech, NLP, Conversation Search User Analytics

Validated

Systems

Software

Hub

Pre-trained

Models

SDKs

GPU HGX DGX EGXCONNECT-X6 EVERY MAJOR CLOUD

NGC

MERLIN TLT/DS RIVA AI RAPIDS/SPARK

12

BUILD AI FASTER. DEPLOY ANYWHERE WITH NGC
ngc.nvidia.com

13

CONTINUOUS PERFORMANCE IMPROVEMENT

Developers’ Software Optimizations Deliver Better Performance on the Same Hardware

Monthly DL Framework Updates & Stack Optimizations Drive
Performance

cuDNN - Highly tuned standard training routines

cuBLAS - Highly tuned matrix multiplication

DALI – Moves compute intensive pre-processing to GPUs

NCCL – Faster training across multi-GPU architecture

Framework – Latest versions w/ newest features and superior perf

0.95x

1.00x

1.05x

1.10x

1.15x

1.20x

1.25x

TensorFlow PyTorch MxNet

PERFORMANCE GAINS ACROSS FRAMEWORKS

v19.03 v20.03

512 Batch Size for TF & PyT, 256 Batch size for MxNet | ResNet-50 Training v1.5| 16x V100 | DGX-2

14

CUDA C/C++ BASICS

What is CUDA?

A general-purpose parallel computing platform and

programming model.

General purpose – one ring to rule them all

Parallel computing via minimal extensions to familiar environments

GPU abstractions to optimize code using HW capabilities

17

3 WAYS TO ACCELERATE APPLICATIONS

Applications

Libraries

“Drop-in”

Acceleration

Programming

Languages
OpenACC

Directives

Maximum

Flexibility

Easily Accelerate

Applications

Introduction to CUDA C/C++

What will you learn in this section?

Start with vector addition

Write and launch CUDA C/C++ kernels

Manage GPU memory

Heterogeneous Computing

▪ Terminology:

▪ Host The CPU and its memory (host memory)

▪ Device The GPU and its memory (device memory)

Host Device

Simple Processing Flow

1. Copy input data from CPU memory to GPU

memory

PCI Bus

Simple Processing Flow

1. Copy input data from CPU memory to GPU

memory

2. Load GPU program and execute,

caching data on chip for performance

PCI Bus

Simple Processing Flow

1. Copy input data from CPU memory to GPU

memory

2. Load GPU program and execute,

caching data on chip for performance

3. Copy results from GPU memory to CPU

memory

PCI Bus

Parallel SAXPY

▪ GPU computing is about massive parallelism!

▪ We need an interesting example…

▪ SAXPY stands for “Single-Precision A·X Plus Y”.

X Y Za

Grid Block Thread

CUDA KERNEL EXECUTION

CUDA code

saxyp_serial(N, 2.0, d_x, d_y);

saxyp_parallel<<<n_blocks,n_threads>>>(N, 2.0, d_x, d_y);
N = n_blocks x n_threads

0 71 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

Indexing Arrays with Blocks and Threads

No longer as simple as using blockIdx.x and threadIdx.x

Consider indexing an array with one element per thread (8 threads/block)

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

Why Bother with Blocks of Threads?

Blocks seem unnecessary

They add a level of complexity

What do we gain?

Unlike parallel blocks, threads have mechanisms to:
Communicate

Synchronize

See stencil computations for an example

in

out

1D Stencil

▪ Consider applying a 1D stencil to a 1D array of elements

▪ Each output element is the sum of input elements within a radius

▪ If radius is 3, then each output element is the sum of 7 input elements:

in

out

1D Stencil

▪ Consider applying a 1D stencil to a 1D array of elements

▪ Each output element is the sum of input elements within a radius

▪ If radius is 3, then each output element is the sum of 7 input elements:

Recap

Launching parallel kernels on device __global__

Launch N copies of add() with add<<<N/M,M>>>(…);

Use blockIdx.x to access block index

Use threadIdx.x to access thread index within block

Host Device

Handling Arbitrary Vector Sizes

Typical problems are not friendly multiples of blockDim.x

Avoid accessing beyond the end of the arrays:

global void add(int *a, int *b, int *c, int n) {

int index = threadIdx.x + blockIdx.x * blockDim.x;

if (index < n)

c[index] = a[index] + b[index];

}

Update the kernel launch:
add<<<(N + M-1) / M,M>>>(d_a, d_b, d_c, N);

GPU Architectures

and

CUDA Optimization

512 Scalar Processor (SP) cores execute parallel

thread instructions

16 Streaming Multiprocessors (SMs)

each contains

32 scalar processors

32 fp32 / int32 ops / clock,

16 fp64 ops / clock

4 Special Function Units (SFUs)

Shared register file (128KB)

48 KB / 16 KB Shared memory

16KB / 48 KB L1 data cache

6 GB of DRAM

20-Series Architecture (Fermi)

Pascal/Volta cc6.0/7.0

64 SP units (“cores”)

32 DP units

LD/ST units

FP16 @ 2x SP rate

cc7.0: TensorCore

4 warp schedulers

Each warp scheduler is dual-

issue capable

P100: 50 SM’s, 16GB

V100: 80 SM’s, 16/32GB

GA100 GPU

Software Hardware

Threads are executed by scalar processors

Thread

Scalar

Processor

Thread

Block Multiprocessor

Thread blocks are executed on multiprocessors

Thread blocks do not migrate

Several concurrent thread blocks can reside on one

multiprocessor - limited by multiprocessor

resources (shared memory and register file)

...

Grid Device

A kernel is launched as a grid of thread blocks

Thread Hierarchy and Execution Model

Thread

Block Multiprocessor

32 Threads

32 Threads

32 Threads

...

Warps

A thread block consists of

32-thread warps

A warp is executed

physically in parallel

(SIMD) on a multiprocessor

=

Warps

Execution Model Ampere

Memory Hierarchy

Memory model

Memory hierarchy in GPUs

Launch Configuration

Hiding Latency - Launch Configuration

Key to understanding:

Instructions are issued in order

A thread stalls when one of the operands isn’t ready:

Memory read by itself doesn’t stall execution

Latency is hidden by switching threads

GMEM latency: ~400 cycles

How many threads/threadblocks to launch?

Conclusion:

Need enough threads to hide latency

GPU Latency Hiding

In CUDA C source code:

int idx = threadIdx.x+blockDim.x*blockIdx.x;

c[idx] = a[idx] * b[idx];

In machine code:

I0: LD R0, a[idx];

I1: LD R1, b[idx];

I2: MPY R2,R0,R1

GPU Latency Hiding – inside the SM

warps

W0:

W1:

W2:

W3:

W4:

W5:

W6:

W7:

W8:

W9:

…

I0: LD R0, a[idx];

I1: LD R1, b[idx];

I2: MPY R2,R0,R1

clock cycles:

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 …

I0

GPU Latency Hiding – inside the SM

warps

W0:

W1:

W2:

W3:

W4:

W5:

W6:

W7:

W8:

W9:

…

I0: LD R0, a[idx];

I1: LD R1, b[idx];

I2: MPY R2,R0,R1

clock cycles:

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 …

I0 I1

GPU Latency Hiding – inside the SM

warps

W0:

W1:

W2:

W3:

W4:

W5:

W6:

W7:

W8:

W9:

…

I0: LD R0, a[idx];

I1: LD R1, b[idx];

I2: MPY R2,R0,R1

clock cycles:

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 …

I0 I1

GPU Latency Hiding – inside the SM

warps

W0:

W1:

W2:

W3:

W4:

W5:

W6:

W7:

W8:

W9:

…

I0: LD R0, a[idx];

I1: LD R1, b[idx];

I2: MPY R2,R0,R1

clock cycles:

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 …

I0 I1
I0

GPU Latency Hiding – inside the SM

warps

W0:

W1:

W2:

W3:

W4:

W5:

W6:

W7:

W8:

W9:

…

I0: LD R0, a[idx];

I1: LD R1, b[idx];

I2: MPY R2,R0,R1

clock cycles:

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 …

I0 I1
I0 I1

I0 I1

I1I0

I0 I1
I0 I1

I0 I1
I1I0

GPU Latency Hiding – inside the SM

warps

W0:

W1:

W2:

W3:

W4:

W5:

W6:

W7:

W8:

W9:

…

I0: LD R0, a[idx];

I1: LD R1, b[idx];

I2: MPY R2,R0,R1

clock cycles:

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 …

I1I0

I0 I1
I0 I1

I0 I1
I1I0

I0 I1

I0 I1 I2
I2I0 I1

I0 I1

Launch Configuration: Summary

Need enough total threads to keep GPU busy

Typically, you’d like 512+ threads per SM (aim for 2048 - maximum “occupancy”)

More if processing one fp32 element per thread

Of course, exceptions exist

Threadblock configuration

Threads per block should be a multiple of warp size (32)

SM can concurrently execute up to 16 thread blocks

Really small thread blocks prevent achieving good occupancy

Really large thread blocks are less flexible

Generally, use 128-256 threads/block, but use whatever is best for the application

For more details:

Vasily Volkov’s GTC2010 talk “Better Performance at Lower Occupancy”

(http://www.nvidia.com/content/gtc-2010/pdfs/2238_gtc2010.pdf)

http://www.nvidia.com/content/gtc-2010/pdfs/2238_gtc2010.pdf)
http://www.nvidia.com/content/gtc-2010/pdfs/2238_gtc2010.pdf)

52

EFFICIENT GEMM
IMPLEMENTATIONS

53

54

55

CUTLASS

CUDA TEMPLATE LIBRARY FOR DENSE LINEAR ALGEBRA AT ALL LEVELS AND SCALE

56

ACCELERATING
TRAINING

AND

INFERENCING

57

DEEP LEARNING APPLICATION DEVELOPMENT

Untrained
Neural Network

Model

Deep Learning

Framework

TRAINING
Learning a new capability

from existing data

Trained Model
New Capability

App or Service
Featuring Capability

INFERENCE
Applying this capability

to new data

Trained Model
Optimized for
Performance

58

DEEP LEARNING
TRAINING

WITH
NVIDIA GPUS

59

AMP
AUTOMATIC MIXED

PRECISION

60

THE IMPORTANCE OF FP32

61

NEW TF32 TENSOR CORES ON A100

20X Higher FLOPS for AI, Zero Code Change

8 BITS 10 BITS

2XTENSOR FLOAT 32 (TF32)

Works like FP32 for AI with Range of FP32 and Precision of FP16 DNN Sparsity Matrix

62

AMP
Utilizing tensor cores with 3 lines of code

63

AMP
Automatic Mixed Precision

64

65

NVIDIA DLPROF

66

MULTIPLY-ADD OPERATIONS PER CLOCK PER SM

67

TF32 NUMERICAL REPRESENTATIONS

68

DEEP LEARNING
INFERENCE

WITH
NVIDIA GPUS

69

HUANG’S LAW

70

TENSOR-RT

71

TENSORRT
Optimizations

developer.nvidia.com/tensorrt

72

KERNEL FUSION

• Improve GPU utilization – less kernel launch overhead, better memory usage and bandwidth

• Vertical fusion = Combine sequential kernel calls

• Horizontal fusion = Combine same kernels that have common input but different weights

73

KERNEL AUTO-TUNING

• There are multiple low-level algorithms/implementations for common operations

• TensorRT selects the optimal kernels based on your parameters e.g. batch size, filter-size, input data size

• TensorRT selects the optimal kernel based on your target platform

74

75

PRUNING

76

SPARSE NEURAL NETWORKS
Synapse density over time

77

PRUNING
The idea

The opportunity:

• Reduced memory bandwidth

• Reduced memory footprint

• Acceleration (especially in presence of
hardware acceleration)

Tambe, T., Yang, E. Y., Wan, Z., Deng, Y., Reddi, V. J., Rush, A., ... & Wei, G. Y. (2019). AdaptivFloat: A Floating-point based Data Type for Resilient Deep Learning Inference. arXiv preprint arXiv:1909.13271.

78

CHERRY PICKING
IN SPARSE MATRICES

Memory operations are issued per warp

(32 threads)

Just like all other instructions

If only a single byte is needed –
32 bytes will be issued, and

only 1 will be used.

addresses from a warp
...

32 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

0
0

79

80

STRUCTURED SPARSITY

81

SPARSITY IN AMPERE

82

83

FINE-GRAINED STRUCTURED SPARSITY IN AMPERE

84

SPARSITY IN AMPERE GPUS

Fine-grained structured sparsity for Tensor Cores

• 50% fine-grained sparsity

• 2:4 pattern: 2 values out of each contiguous block of 4 must be 0

Addresses the 3 challenges:

• Accuracy: maintains accuracy of the original, unpruned network

• Medium sparsity level (50%), fine-grained

• Training: a recipe shown to work across tasks and networks

• Speedup:

• Specialized Tensor Core support for sparse math

• Structured: lends itself to efficient memory utilization

= zero value

2:4 structured-sparse matrix

85

86

87

❖ NVIDIA is an accelerated computing platform

❖ Optimizing the entire stack from HW to applications

❖ “CUDA Everywhere” – One Ring to Rule Them All!

❖ Hardware <-> Software Interactions for Optimal Performance

Summary

88

THANK YOU!

