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❖ What and Why NVIDIA

❖ GPUs Vs. CPUs – the power parallel computing

❖ Introduce the CUDA programming model

❖ GPU architecture and how to utilize GPU capabilities

❖ GPU acceleration in DL

➢ Matrix Multiplications

➢ Tensor Cores and AMP

➢ Inference Optimizations and Sparsity

TALK AGENDA
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NVIDIA
From Computer Graphics to GPU Computing

TRANSPORTATION

HEALTHCARE

MACHINE LEARNINGHPC DEEP LEARNING

GAMING

DESIGN
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THE BIG BANG IN AI

DNN GPUBIG DATA
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DEEP LEARNING REVOLUTIONIZING COMPUTING

Image Classification, Object Detection, 
Localization, Action Recognition

Speech Recognition, Speech Translation, 
Natural Language Processing

Pedestrian Detection, Lane Detection, 
Traffic Sign Recognition

Breast Cancer Cell Mitosis Detection, 
Volumetric Brain Image Segmentation



7GPU and CPU
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POWERING ALL INDUSTRIES

CPU
Optimized for 
Serial Tasks

GPU Accelerator
Optimized for 
Parallel Tasks

With a single innovation…
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SMALL CHANGES, BIG SPEED-UP
Application Code

+

GPU CPU
25% of Code

Compute-Intensive Functions

Rest of Sequential
CPU Code
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A SUPERCHARGED COMPUTING MODEL

To power the next advances in technology…

1980 1990 2000 2010 2020

103

105

107

1.5X per year

GPU-Accelerated 

Computing

CPU-Accelerated 

Computing

APPLICATIONS

SYSTEMS

ALGORITHMS

CUDA

ARCHITECTURE
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NVIDIA END TO END AI PLATFORM

CUDA 

Deep Learning SDK

Recommendation

Data Science SDK Data Center Tools

Data Science CommunityDeep Learning Frameworks

Image & Video Speech, NLP, Conversation Search User Analytics

Validated 

Systems

Software 

Hub

Pre-trained 

Models

SDKs

GPU HGX DGX EGXCONNECT-X6 EVERY MAJOR CLOUD

NGC

MERLIN TLT/DS RIVA AI RAPIDS/SPARK
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BUILD AI FASTER. DEPLOY ANYWHERE WITH NGC
ngc.nvidia.com
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CONTINUOUS PERFORMANCE IMPROVEMENT

Developers’ Software Optimizations Deliver Better Performance on the Same Hardware

Monthly DL Framework Updates & Stack Optimizations Drive 
Performance

cuDNN - Highly tuned standard training routines

cuBLAS - Highly tuned matrix multiplication

DALI – Moves compute intensive pre-processing to GPUs

NCCL – Faster training across multi-GPU architecture

Framework – Latest versions w/ newest features and superior perf

0.95x

1.00x

1.05x

1.10x

1.15x

1.20x

1.25x

TensorFlow PyTorch MxNet

PERFORMANCE GAINS ACROSS FRAMEWORKS

v19.03 v20.03

512 Batch Size for TF & PyT, 256 Batch size for MxNet | ResNet-50 Training  v1.5| 16x V100 | DGX-2
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CUDA C/C++ BASICS



What is CUDA?

A general-purpose parallel computing platform and 

programming model.

General purpose – one ring to rule them all

Parallel computing via minimal extensions to familiar environments

GPU abstractions to optimize code using HW capabilities
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3 WAYS TO ACCELERATE APPLICATIONS

Applications

Libraries

“Drop-in” 

Acceleration

Programming 

Languages
OpenACC

Directives

Maximum

Flexibility

Easily Accelerate

Applications



Introduction to CUDA C/C++

What will you learn in this section?

Start with vector addition

Write and launch CUDA C/C++ kernels 

Manage GPU memory



Heterogeneous Computing

▪ Terminology:

▪ Host The CPU and its memory (host memory)

▪ Device The GPU and its memory (device memory)

Host Device



Simple Processing Flow

1. Copy input data from CPU memory to GPU 

memory

PCI Bus



Simple Processing Flow

1. Copy input data from CPU memory to GPU 

memory

2. Load GPU program and execute, 

caching data on chip for performance

PCI Bus



Simple Processing Flow

1. Copy input data from CPU memory to GPU 

memory

2. Load GPU program and execute, 

caching data on chip for performance

3. Copy results from GPU memory to CPU

memory

PCI Bus



Parallel SAXPY

▪ GPU computing is about massive parallelism!

▪ We need an interesting example…

▪ SAXPY stands for “Single-Precision A·X Plus Y”.

X Y Za



Grid  Block Thread

CUDA KERNEL EXECUTION



CUDA code

saxyp_serial(N, 2.0, d_x, d_y);

saxyp_parallel<<<n_blocks,n_threads>>>(N, 2.0, d_x, d_y);
N = n_blocks x n_threads
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Indexing Arrays with Blocks and Threads

No longer as simple as using blockIdx.x and threadIdx.x

Consider indexing an array with one element per thread (8 threads/block)

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3



Why Bother with Blocks of Threads?

Blocks seem unnecessary 

They add a level of complexity 

What do we gain?

Unlike parallel blocks, threads have mechanisms to:
Communicate  

Synchronize

See stencil computations for an example



in

out

1D Stencil

▪ Consider applying a 1D stencil to a 1D array of elements

▪ Each output element is the sum of input elements within a radius

▪ If radius is 3, then each output element is the sum of 7 input elements:
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1D Stencil

▪ Consider applying a 1D stencil to a 1D array of elements

▪ Each output element is the sum of input elements within a radius

▪ If radius is 3, then each output element is the sum of 7 input elements:



Recap

Launching parallel kernels on device  __global__

Launch N copies of add() with add<<<N/M,M>>>(…);

Use blockIdx.x to access block index

Use threadIdx.x to access thread index within block

Host Device



Handling Arbitrary Vector Sizes

Typical problems are not friendly multiples of blockDim.x

Avoid accessing beyond the end of the arrays:

global void add(int *a, int *b, int *c, int n) { 

int index = threadIdx.x + blockIdx.x * blockDim.x; 

if (index < n)

c[index] = a[index] + b[index];

}

Update the kernel launch:
add<<<(N + M-1) / M,M>>>(d_a, d_b, d_c, N);



GPU Architectures 

and

CUDA Optimization



512 Scalar Processor (SP) cores execute parallel

thread instructions

16 Streaming Multiprocessors (SMs)

each contains

32 scalar processors

32 fp32 / int32 ops / clock,

16 fp64 ops / clock

4 Special Function Units (SFUs) 

Shared register file (128KB)

48 KB / 16 KB Shared memory

16KB / 48 KB L1 data cache

6 GB of DRAM

20-Series Architecture (Fermi)



Pascal/Volta cc6.0/7.0

64 SP units (“cores”)

32 DP units

LD/ST units

FP16 @ 2x SP rate

cc7.0: TensorCore

4 warp schedulers

Each warp scheduler is dual-

issue capable

P100: 50 SM’s, 16GB 

V100: 80 SM’s, 16/32GB



GA100 GPU



Software Hardware

Threads are executed by scalar processors

Thread

Scalar 

Processor

Thread  

Block Multiprocessor

Thread blocks are executed on multiprocessors

Thread blocks do not migrate

Several concurrent thread blocks can reside on one 

multiprocessor - limited by multiprocessor 

resources (shared memory and register file)

...

Grid Device

A kernel is launched as a grid of thread blocks

Thread Hierarchy and Execution Model



Thread  

Block Multiprocessor

32 Threads

32 Threads

32 Threads

...

Warps

A thread block consists of 

32-thread warps

A warp is executed 

physically in parallel 

(SIMD) on a multiprocessor

=

Warps



Execution Model Ampere



Memory Hierarchy



Memory model



Memory hierarchy in GPUs



Launch Configuration



Hiding Latency - Launch Configuration

Key to understanding:

Instructions are issued in order

A thread stalls when one of the operands isn’t ready:

Memory read by itself doesn’t stall execution

Latency is hidden by switching threads

GMEM latency: ~400 cycles

How many threads/threadblocks to launch? 

Conclusion:

Need enough threads to hide latency



GPU Latency Hiding

In CUDA C source code:

int idx = threadIdx.x+blockDim.x*blockIdx.x; 

c[idx] = a[idx] * b[idx];

In machine code: 

I0: LD R0, a[idx];

I1: LD R1, b[idx]; 

I2: MPY R2,R0,R1



GPU Latency Hiding – inside the SM

warps

W0:

W1:

W2:

W3:

W4:

W5:

W6:

W7:

W8:

W9:

…

I0: LD R0, a[idx];

I1: LD R1, b[idx];

I2: MPY R2,R0,R1

clock cycles:

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 …

I0
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GPU Latency Hiding – inside the SM
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GPU Latency Hiding – inside the SM
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GPU Latency Hiding – inside the SM
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Launch Configuration: Summary

Need enough total threads to keep GPU busy

Typically, you’d like 512+ threads per SM (aim for 2048 - maximum “occupancy”)

More if processing one fp32 element per thread

Of course, exceptions exist

Threadblock configuration

Threads per block should be a multiple of warp size (32) 

SM can concurrently execute up to 16 thread blocks

Really small thread blocks prevent achieving good occupancy

Really large thread blocks are less flexible

Generally, use 128-256 threads/block, but use whatever is best for the application

For more details:

Vasily Volkov’s GTC2010 talk “Better Performance at Lower Occupancy”

(http://www.nvidia.com/content/gtc-2010/pdfs/2238_gtc2010.pdf)

http://www.nvidia.com/content/gtc-2010/pdfs/2238_gtc2010.pdf)
http://www.nvidia.com/content/gtc-2010/pdfs/2238_gtc2010.pdf)
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EFFICIENT GEMM
IMPLEMENTATIONS
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CUTLASS

CUDA TEMPLATE LIBRARY FOR DENSE LINEAR ALGEBRA AT ALL LEVELS AND SCALE
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ACCELERATING
TRAINING

AND

INFERENCING
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DEEP LEARNING APPLICATION DEVELOPMENT

Untrained
Neural Network 

Model

Deep Learning

Framework

TRAINING
Learning a new capability 

from existing data

Trained Model
New Capability

App or Service
Featuring Capability

INFERENCE
Applying this capability 

to new data

Trained Model
Optimized for 
Performance
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DEEP LEARNING 
TRAINING

WITH 
NVIDIA GPUS
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AMP
AUTOMATIC MIXED 

PRECISION



60

THE IMPORTANCE OF FP32
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NEW TF32 TENSOR CORES ON A100

20X Higher FLOPS for AI, Zero Code Change

8 BITS 10 BITS

2XTENSOR FLOAT 32 (TF32)

Works like FP32 for AI with Range of FP32 and Precision of FP16 DNN Sparsity Matrix
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AMP
Utilizing tensor cores with 3 lines of code
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AMP
Automatic Mixed Precision
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NVIDIA DLPROF
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MULTIPLY-ADD OPERATIONS PER CLOCK PER SM
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TF32 NUMERICAL REPRESENTATIONS
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DEEP LEARNING 
INFERENCE

WITH 
NVIDIA GPUS



69

HUANG’S LAW
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TENSOR-RT
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TENSORRT
Optimizations

developer.nvidia.com/tensorrt



72

KERNEL FUSION

• Improve GPU utilization – less kernel launch overhead, better memory usage and bandwidth

• Vertical fusion = Combine sequential kernel calls

• Horizontal fusion = Combine same kernels that have common input but different weights
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KERNEL AUTO-TUNING

• There are multiple low-level algorithms/implementations for common operations

• TensorRT selects the optimal kernels based on your parameters e.g. batch size, filter-size, input data size

• TensorRT selects the optimal kernel based on your target platform
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PRUNING
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SPARSE NEURAL NETWORKS
Synapse density over time
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PRUNING
The idea 

The opportunity:

• Reduced memory bandwidth

• Reduced memory footprint

• Acceleration (especially in presence of 
hardware acceleration)

Tambe, T., Yang, E. Y., Wan, Z., Deng, Y., Reddi, V. J., Rush, A., ... & Wei, G. Y. (2019). AdaptivFloat: A Floating-point based Data Type for Resilient Deep Learning Inference. arXiv preprint arXiv:1909.13271.
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CHERRY PICKING 
IN SPARSE MATRICES

Memory operations are issued per warp

(32 threads)

Just like all other instructions

If only a single byte is needed –
32 bytes will be issued, and 

only 1 will be used. 

addresses from a warp
...

32 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

0
0
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STRUCTURED SPARSITY
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SPARSITY IN AMPERE
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FINE-GRAINED STRUCTURED SPARSITY IN AMPERE
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SPARSITY IN AMPERE GPUS

Fine-grained structured sparsity for Tensor Cores

• 50% fine-grained sparsity

• 2:4 pattern: 2 values out of each contiguous block of 4 must be 0

Addresses the 3 challenges:

• Accuracy: maintains accuracy of the original, unpruned network

• Medium sparsity level (50%), fine-grained

• Training: a recipe shown to work across tasks and networks

• Speedup: 

• Specialized Tensor Core support for sparse math

• Structured: lends itself to efficient memory utilization

= zero value

2:4 structured-sparse matrix
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❖ NVIDIA is an accelerated computing platform

❖ Optimizing the entire stack from HW to applications

❖ “CUDA Everywhere” – One Ring to Rule Them All!

❖ Hardware <-> Software Interactions for Optimal Performance 

Summary
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THANK YOU!


