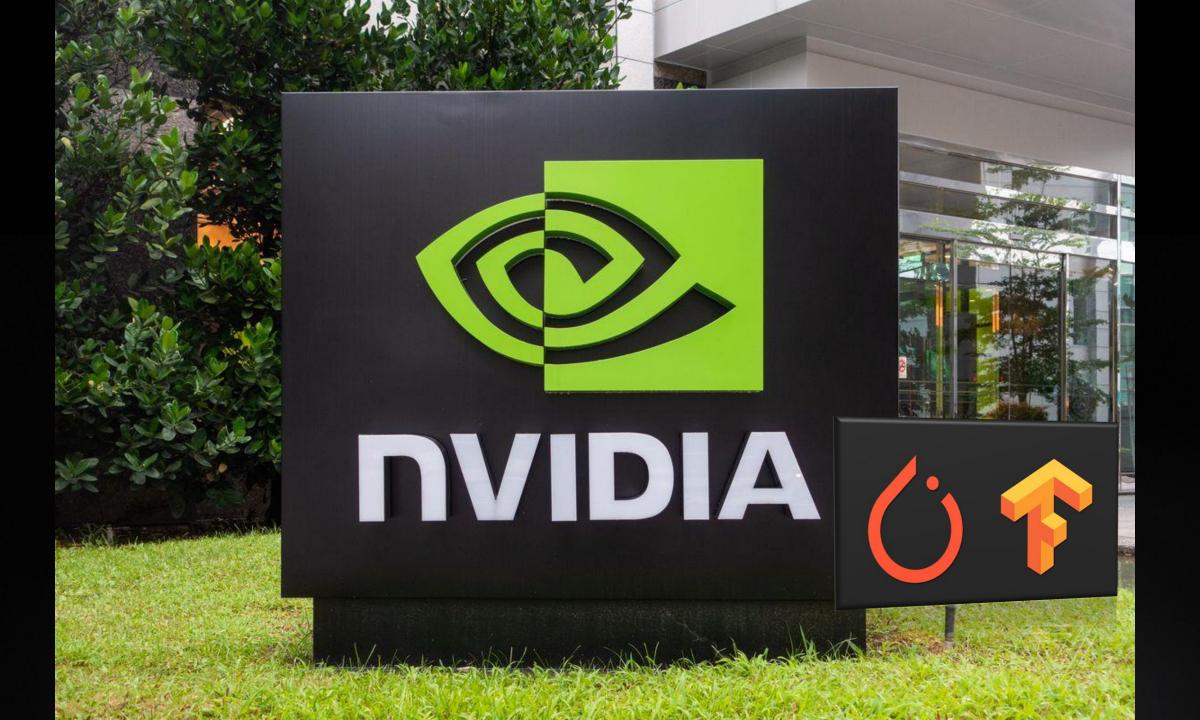
Accelerating Al with

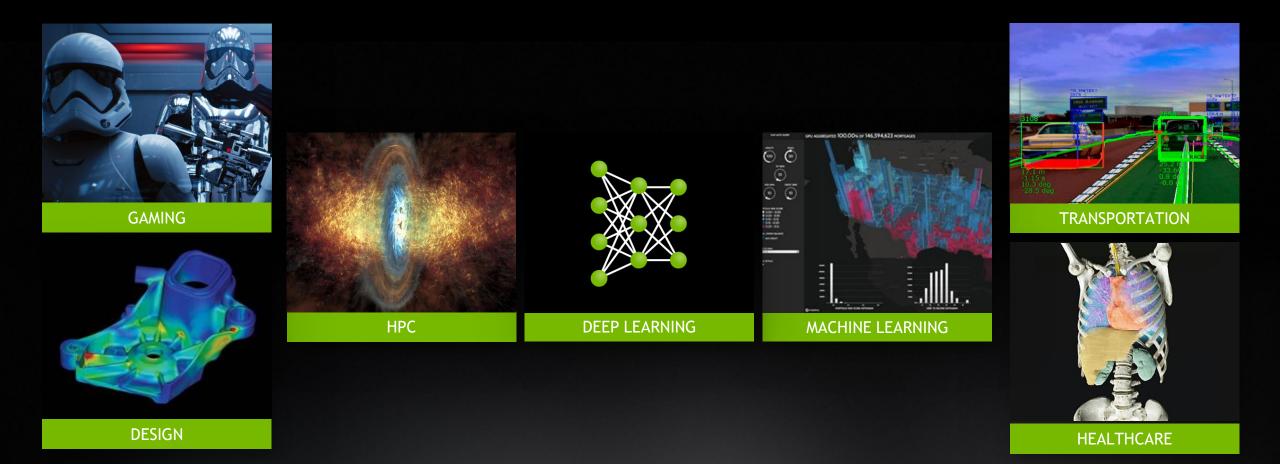
Asher Fredman, Solution Architect

TALK AGENDA

- What and Why NVIDIA
- GPUs Vs. CPUs the power parallel computing
- Introduce the CUDA programming model
- GPU architecture and how to utilize GPU capabilities
- GPU acceleration in DL
 - Matrix Multiplications
 - Tensor Cores and AMP
 - Inference Optimizations and Sparsity



NVIDIA From Computer Graphics to GPU Computing



THE BIG BANG IN AI

DEEP LEARNING REVOLUTIONIZING COMPUTING

Image Classification, Object Detection, Localization, Action Recognition

Pedestrian Detection, Lane Detection, Traffic Sign Recognition

Speech Recognition, Speech Translation, Natural Language Processing

Breast Cancer Cell Mitosis Detection, Volumetric Brain Image Segmentation



GPU and CPU

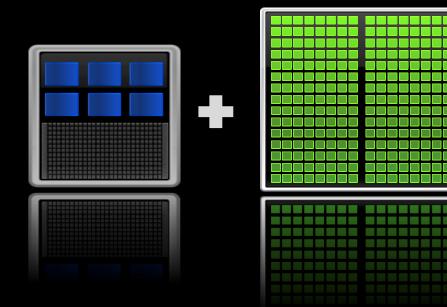
POWERING ALL INDUSTRIES

With a single innovation...

CPU Optimized for Serial Tasks

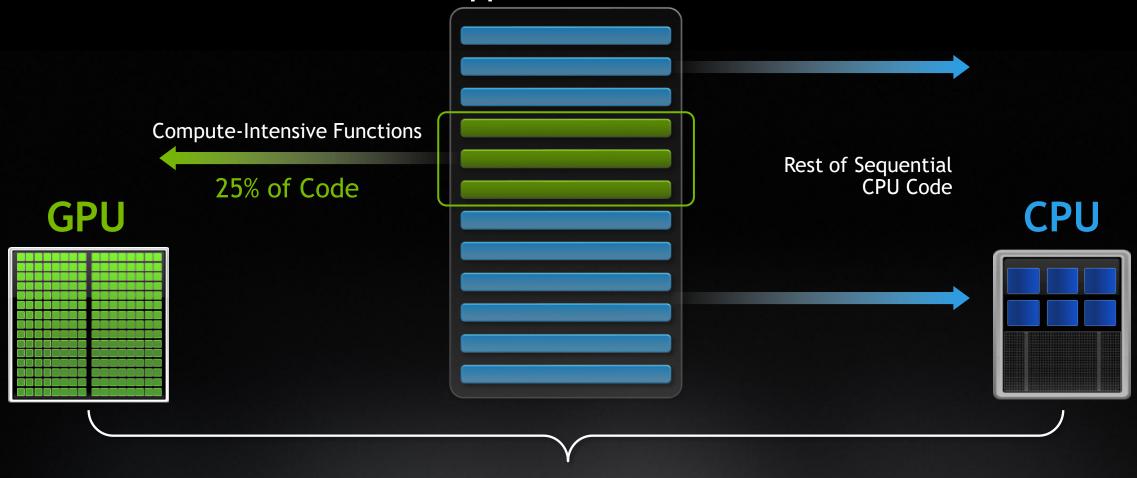
GPU Accelerator Optimized for

Optimized for Parallel Tasks

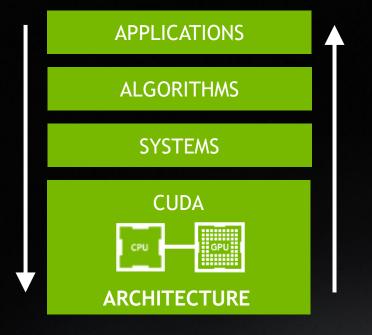


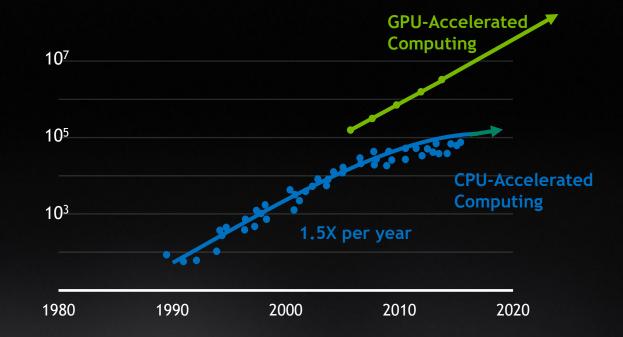
SMALL CHANGES, BIG SPEED-UP

Application Code

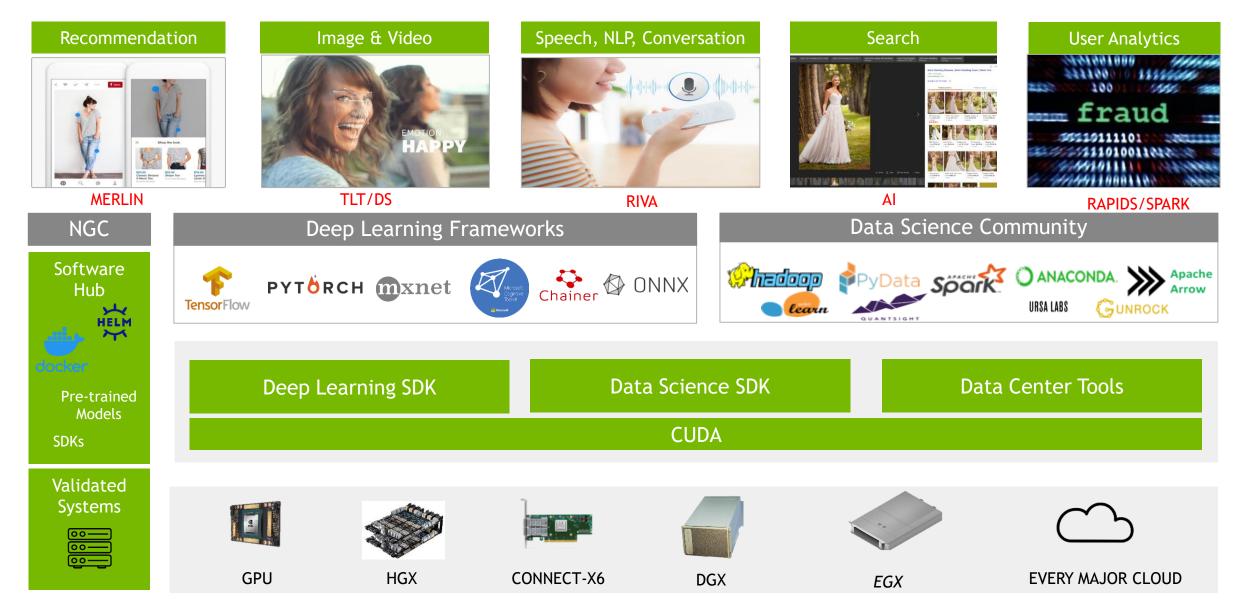


A SUPERCHARGED COMPUTING MODEL To power the next advances in technology...

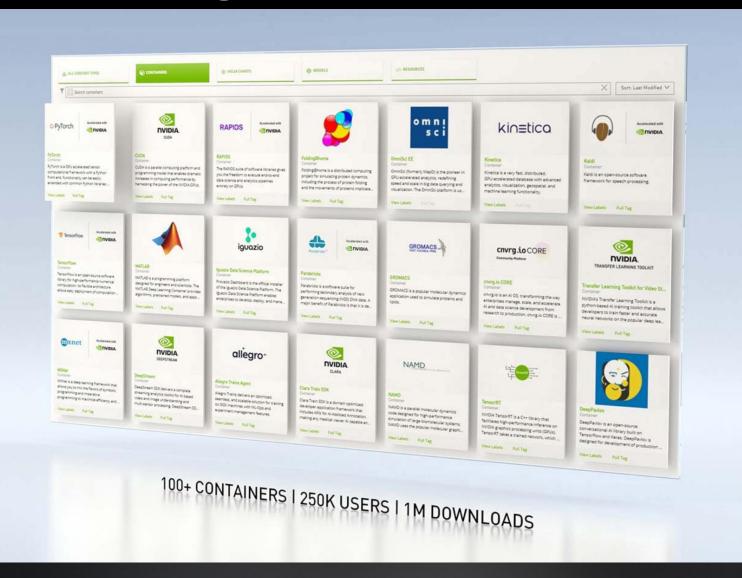




NVIDIA END TO END AI PLATFORM

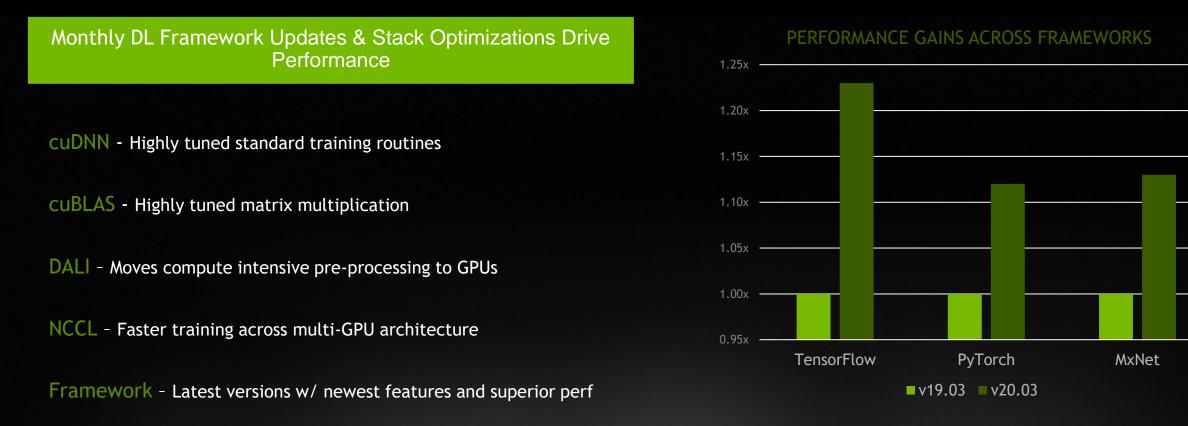


BUILD AI FASTER. DEPLOY ANYWHERE WITH NGC ngc.nvidia.com



CONTINUOUS PERFORMANCE IMPROVEMENT

Developers' Software Optimizations Deliver Better Performance on the Same Hardware



512 Batch Size for TF & PyT, 256 Batch size for MxNet | ResNet-50 Training v1.5| 16x V100 | DGX-2

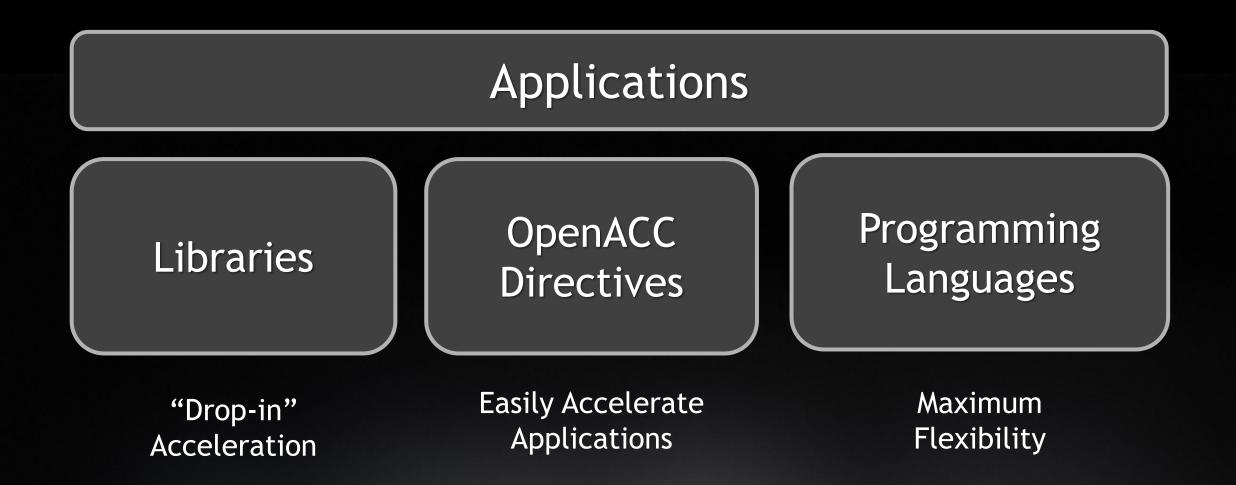
CUDA C/C++ BASICS

What is CUDA?

A general-purpose parallel computing platform and programming model.

- General purpose one ring to rule them all
- Parallel computing via minimal extensions to familiar environments
- GPU abstractions to optimize code using HW capabilities

3 WAYS TO ACCELERATE APPLICATIONS



Introduction to CUDA C/C++

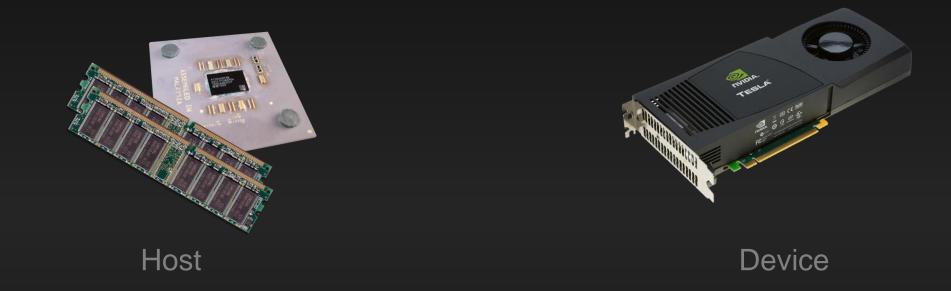
What will you learn in this section?

- Start with vector addition
- Write and launch CUDA C/C++ kernels
- Manage GPU memory

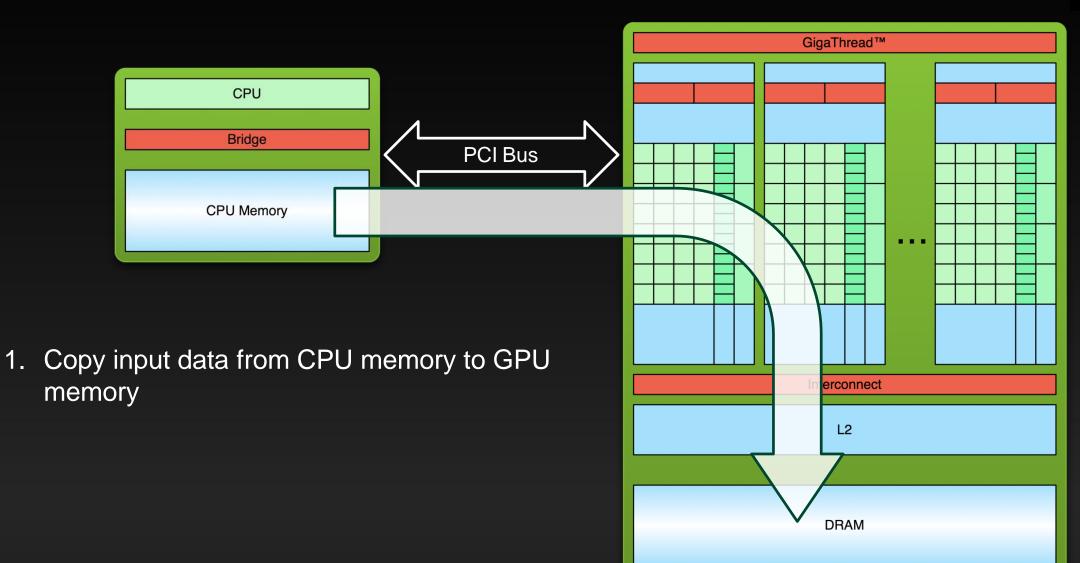
Heterogeneous Computing

Terminology:

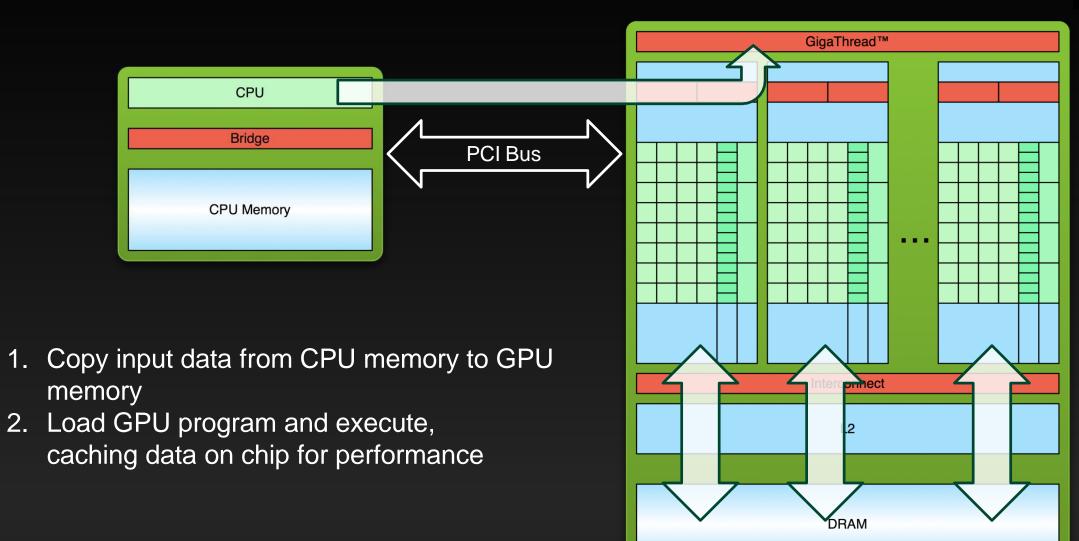
- Host The CPU and its memory (host memory)
- Device The GPU and its memory (device memory)



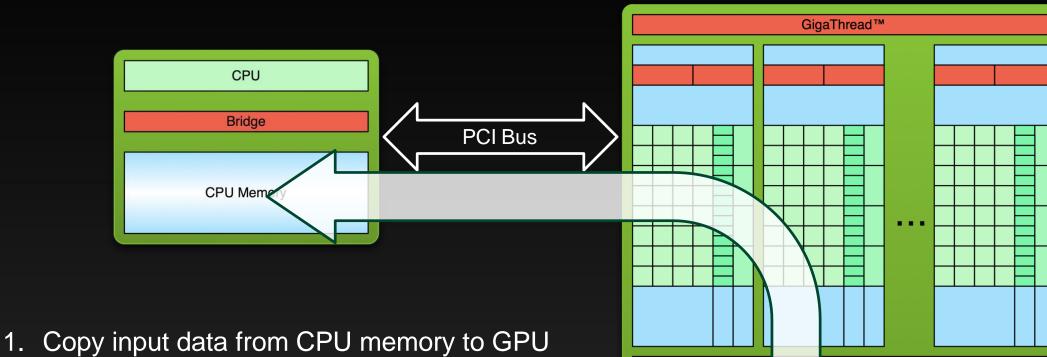
Simple Processing Flow



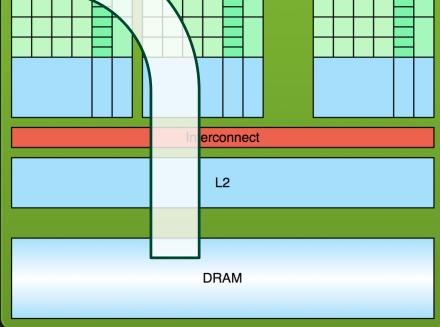
Simple Processing Flow



Simple Processing Flow

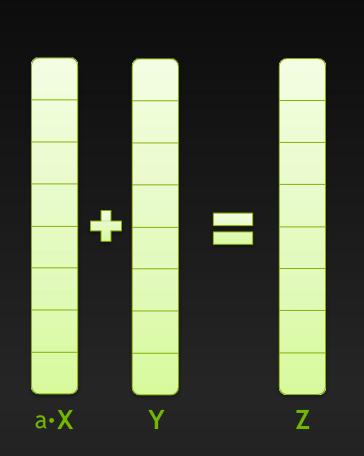


- Copy input data from CPU memory to GP memory
- 2. Load GPU program and execute, caching data on chip for performance
- 3. Copy results from GPU memory to CPU memory



Parallel SAXPY

- GPU computing is about massive parallelism!
- We need an interesting example...
- SAXPY stands for "Single-Precision A·X Plus Y".

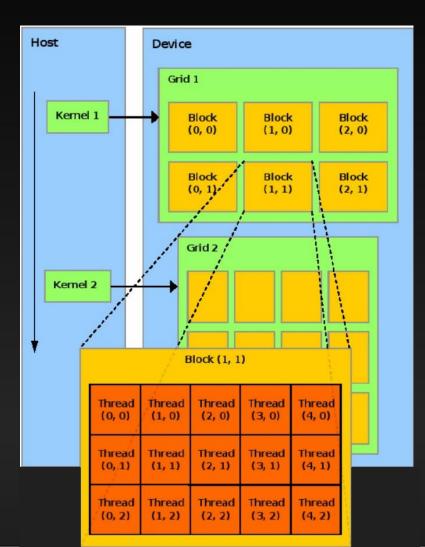


 $z = \alpha x + y$

x, y, z: vector α : scalar

CUDA KERNEL EXECUTION

Grid Block Thread



CUDA code

saxyp_serial(N, 2.0, d_x, d_y);

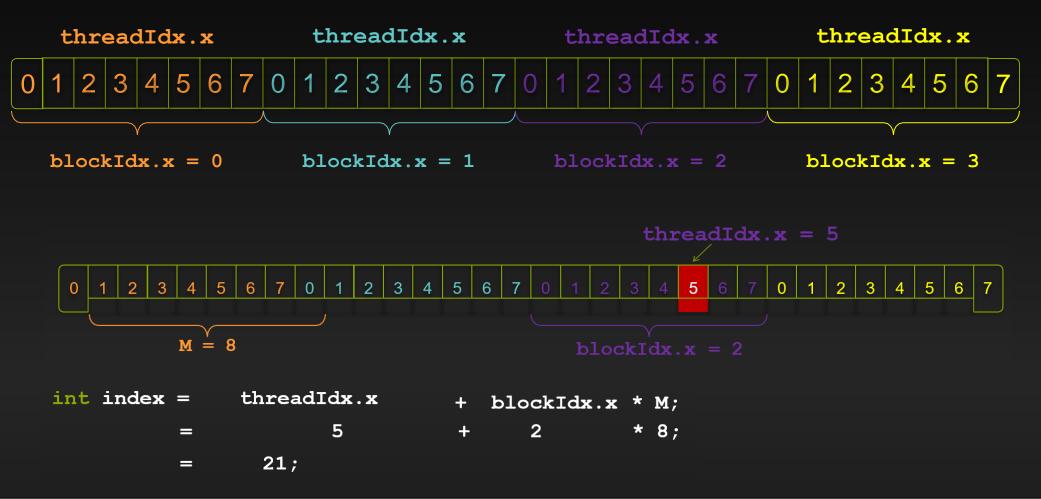
```
void saxpy_serial(int n, float a, float *x, float *y)
{
   for (int i = 0; i < n; ++i)
     y[i] = a*x[i] + y[i];
}</pre>
```

```
_global__ void saxpy_parallel(int n, float a, float *x, float *y)
{
    int i = blockIdx.x*blockDim.x + threadIdx.x;
    if (i < n) y[i] = a*x[i] + y[i];
}
Parallel C Code</pre>
```

saxyp_parallel<<<n_blocks,n_threads>>>(N, 2.0, d_x, d_y);
N = n_blocks x n_threads

Indexing Arrays with Blocks and Threads

- No longer as simple as using blockIdx.x and threadIdx.x
 - Consider indexing an array with one element per thread (8 threads/block)



Why Bother with Blocks of Threads?

Blocks seem unnecessary

- They add a level of complexity
- What do we gain?

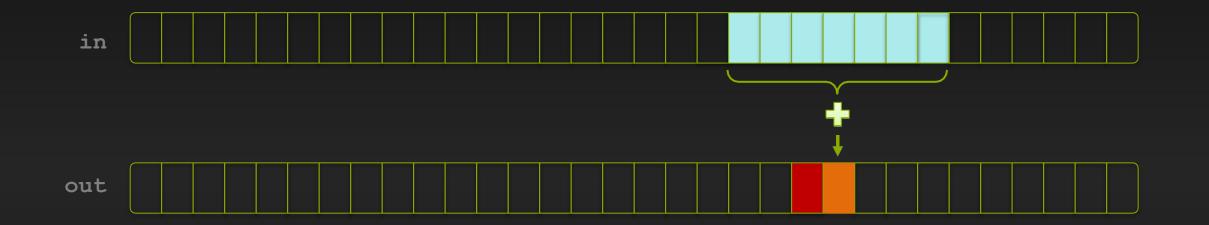
• Unlike parallel blocks, threads have mechanisms to:

- Communicate
- Synchronize

See stencil computations for an example

- Consider applying a 1D stencil to a 1D array of elements
 - Each output element is the sum of input elements within a radius
- If radius is 3, then each output element is the sum of 7 input elements:

- Consider applying a 1D stencil to a 1D array of elements
 - Each output element is the sum of input elements within a radius
- If radius is 3, then each output element is the sum of 7 input elements:



- Launching parallel kernels on device __global__
 - Launch N copies of add() with add<<<N/M,M>>>>(...);
 - Use blockIdx.x to access block index
 - Use threadIdx.x to access thread index within block

Handling Arbitrary Vector Sizes

- Typical problems are not friendly multiples of blockDim.x
- Avoid accessing beyond the end of the arrays:

```
global___void add(int *a, int *b, int *c, int n) {
    int index = threadIdx.x + blockIdx.x * blockDim.x;
    if (index < n)
        c[index] = a[index] + b[index];</pre>
```

Update the kernel launch: add<<< (N + M-1) / M,M>>> (d_a, d_b, d_c, N);

}

GPU Architectures

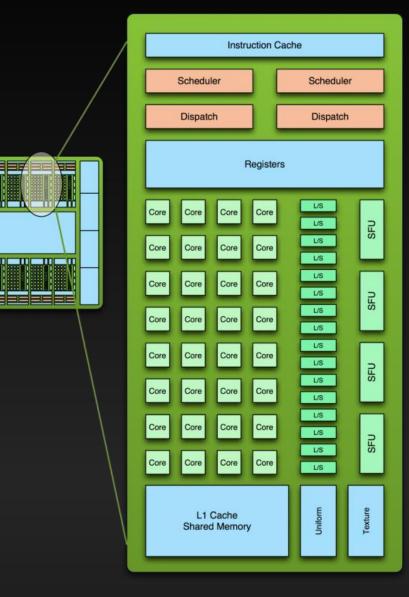
and CUDA Optimization

20-Series Architecture (Fermi)

512 Scalar Processor (SP) cores execute parallel thread instructions

16 Streaming Multiprocessors (SMs) each contains **32 scalar processors** 32 fp32 / int32 ops / clock, 16 fp64 ops / clock 4 Special Function Units (SFUs) Shared register file (128KB) 48 KB / 16 KB Shared memory 16KB / 48 KB L1 data cache

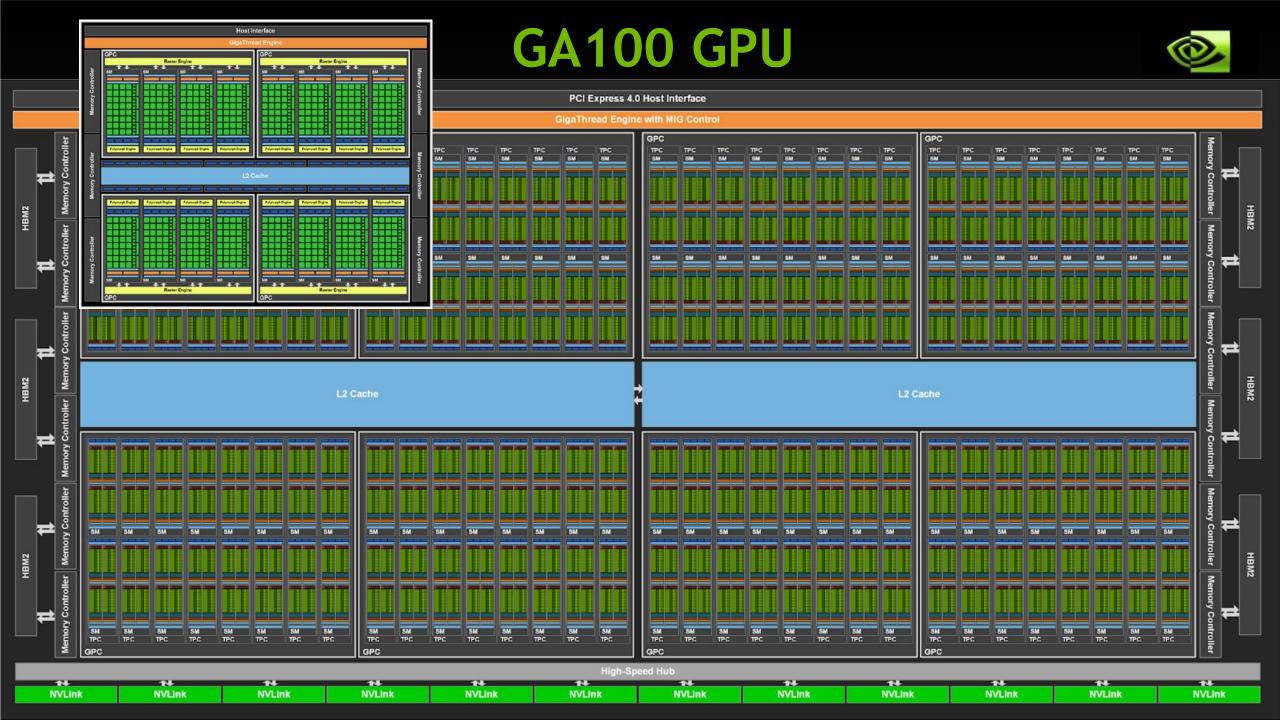
6 GB of DRAM



Pascal/Volta cc6.0/7.0

- 64 SP units ("cores")
- 32 DP units
- LD/ST units
- FP16 @ 2x SP rate
- cc7.0: TensorCore
- 4 warp schedulers
- Each warp scheduler is dualissue capable
- P100: 50 SM's, 16GB
- V100: 80 SM's, 16/32GB

М		_											•
						L1 Instruc	tion Cache						
	-	LO Ir	tstruc	tion C	ache			-	LON	istruc	tion C	ache	
	-	hread/clk)		L0 Instruction Cache Warp Scheduler (32 thread/clk)									
	spatcl	h Unit	(32 th	read/clk)		Dispatch Unit (32 thread/clk)							
	Reg	ister	File (1	16,384	4 x 32-bit)			Reg	ister	File ('	16,384	4 x 32-bit)	
FP64	INT	INT	FP32	FP32			FP64	INT	INT	FP32	FP32		
FP64	INT	INT	FP32	FP32			FP64	INT	INT	FP32	FP32		
FP64	INT	INT	FP32	FP32	TENSOR CORE	TENSOR CORE	FP64	INT	INT	FP32	FP32	TENSOR CORE	TENSOR CORE
FP64	INT	INT	FP32	FP32			FP64	INT	INT	FP32	FP32		
FP64	INT	INT	FP32	FP32			FP64	INT	INT	FP32	FP32		
FP64	INT	INT	FP32	FP32			FP64	INT	INT	FP32	FP32		
FP64	INT	INT	FP32	FP32			FP64	INT	INT	FP32	FP32		
								1000					
FP64	INT	INT	FP32	FP32			FP64	INT	INT	FP32	FP32		
LD/ LD/ ST ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ LD/ ST ST	SFU	LD/ LD/ ST ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ LD/ ST ST	SFU
	_	L0 Ir	struc	tion C	ache				L0 lr	nstruc	tion C	ache	
			hread/clk)	_	Warp Scheduler (32 thread/clk)								
Dispatch Unit (32 thread/clk)							Dispatch Unit (32 thread/clk)						
	Reg	ister	File (1	16,384	4 x 32-bit)			Reg	jister	File ('	16,384	4 x 32-bit)	
FP64	INT	INT	FP32	FP32			FP64	INT	INT	FP32	FP32		
FP64	INT	INT	FP32	FP32		10 01 00 111 12 23 25 111	FP64	INT	INT	FP32	FP32		
FP64	INT	INT	FP32	FP32	TENSOR CORE	TENSOR CORE	FP64	INT	INT	FP32	FP32	TENSOR	TENSOR CORE
FP64	INT	INT	FP32	FP32			FP64	INT	INT	FP32	FP32		
FP64	INT	INT	FP32	FP32			FP64	INT	INT	FP32	FP32	CORE	
FP64	INT	INT	FP32	FP32			FP64	INT	INT	FP32	FP32		
FP64	INT	INT	FP32	FP32			FP64	INT	INT	FP32	FP32		
FP64	INT	INT	FP32	FP32			FP64	INT	INT	FP32	FP32		
LD/ LD/ ST ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ LD/ ST ST	SFU	LD/ LD/ ST ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ LD/ ST ST	SFU
Concernent In concernent					1286	3 L1 Data Car	he / Shared M	emory	1				



Thread Hierarchy and Execution Model

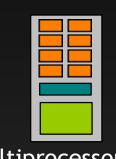
Software

Hardware

Threads are executed by scalar processors

Thread blocks are executed on multiprocessors

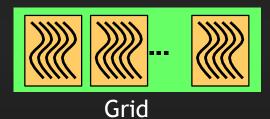
Thread Block

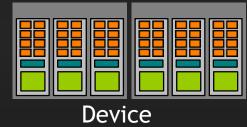


Multiprocessor

Thread blocks do not migrate

Several concurrent thread blocks can reside on one multiprocessor - limited by multiprocessor resources (shared memory and register file)





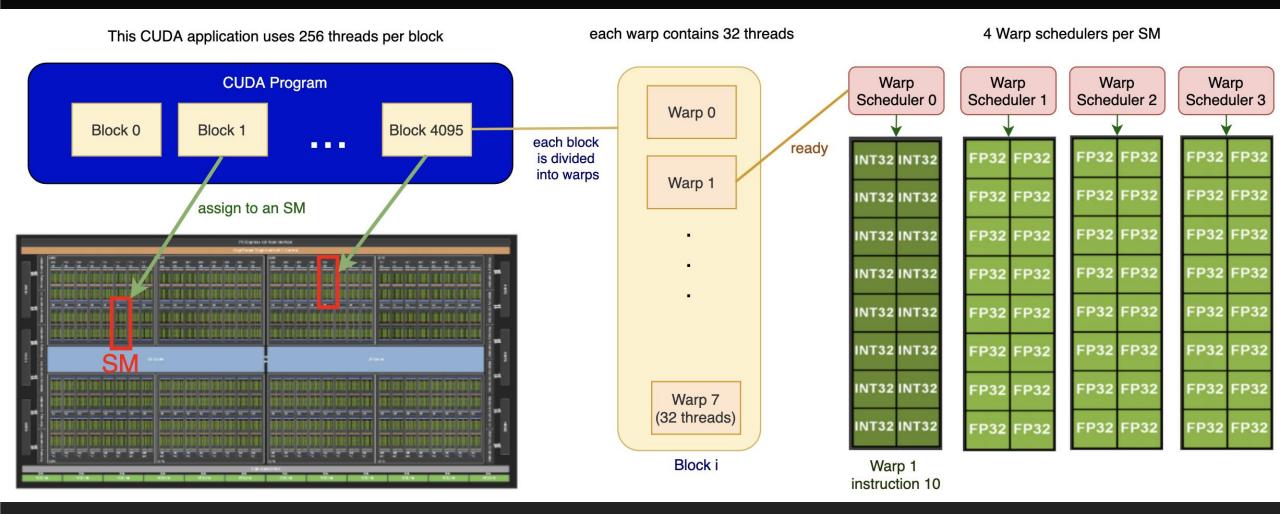
A kernel is launched as a grid of thread blocks

Warps

A thread block consists of 32-thread warps

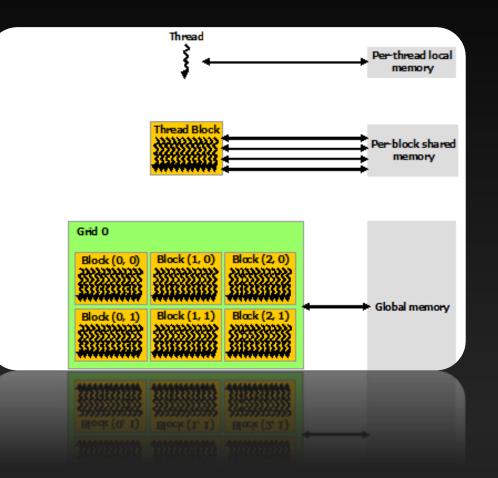
A warp is executed physically in parallel (SIMD) on a multiprocessor

Execution Model Ampere

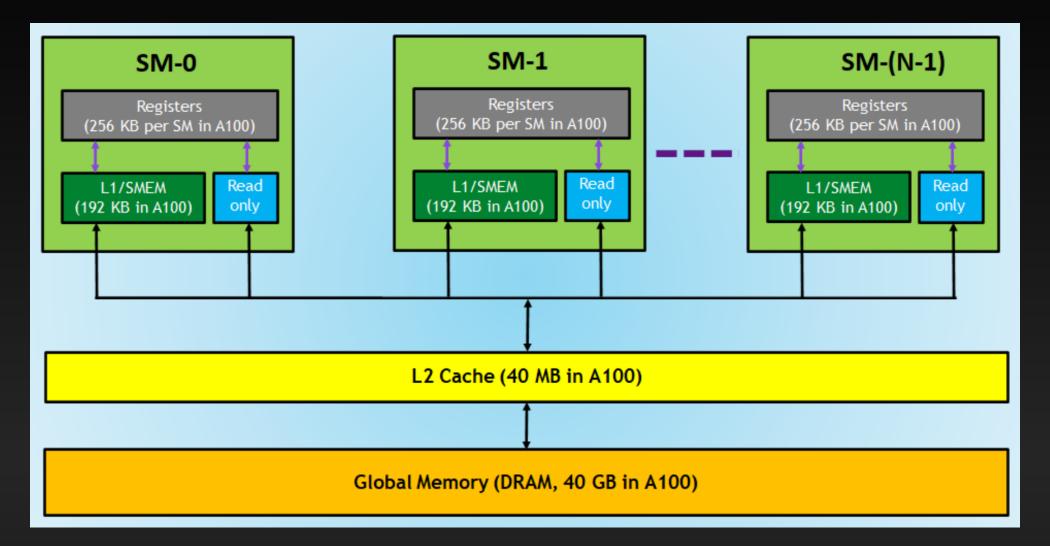


Memory Hierarchy

Memory model



Memory hierarchy in GPUs



Launch Configuration

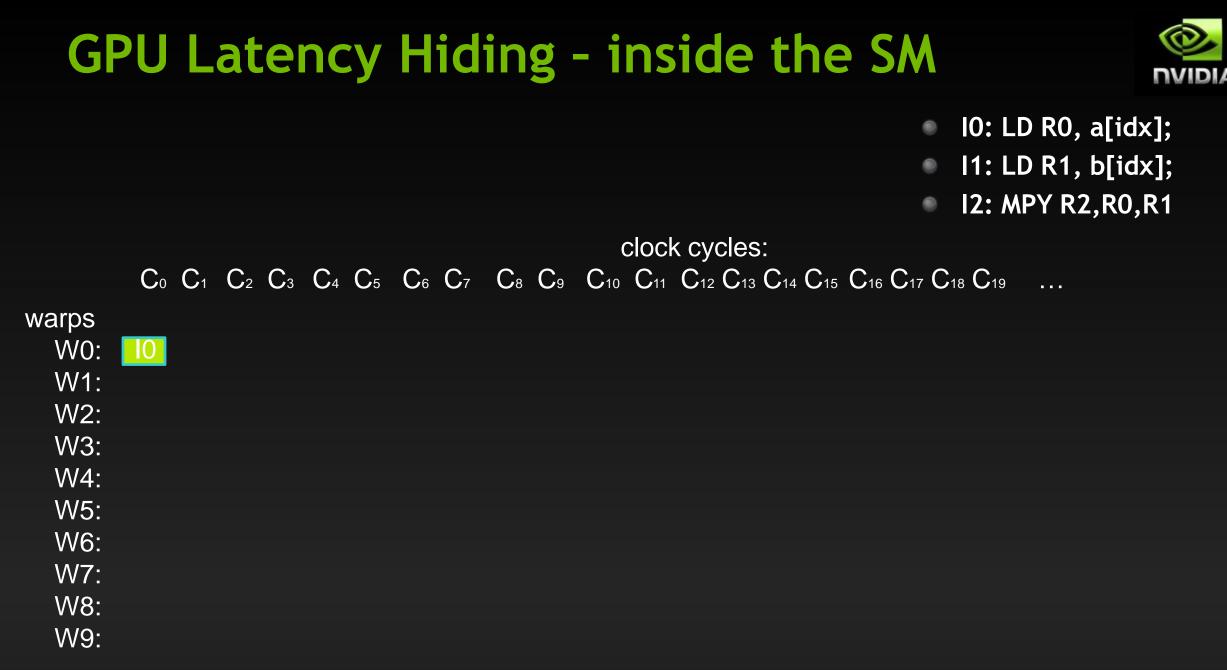
Hiding Latency - Launch Configuration

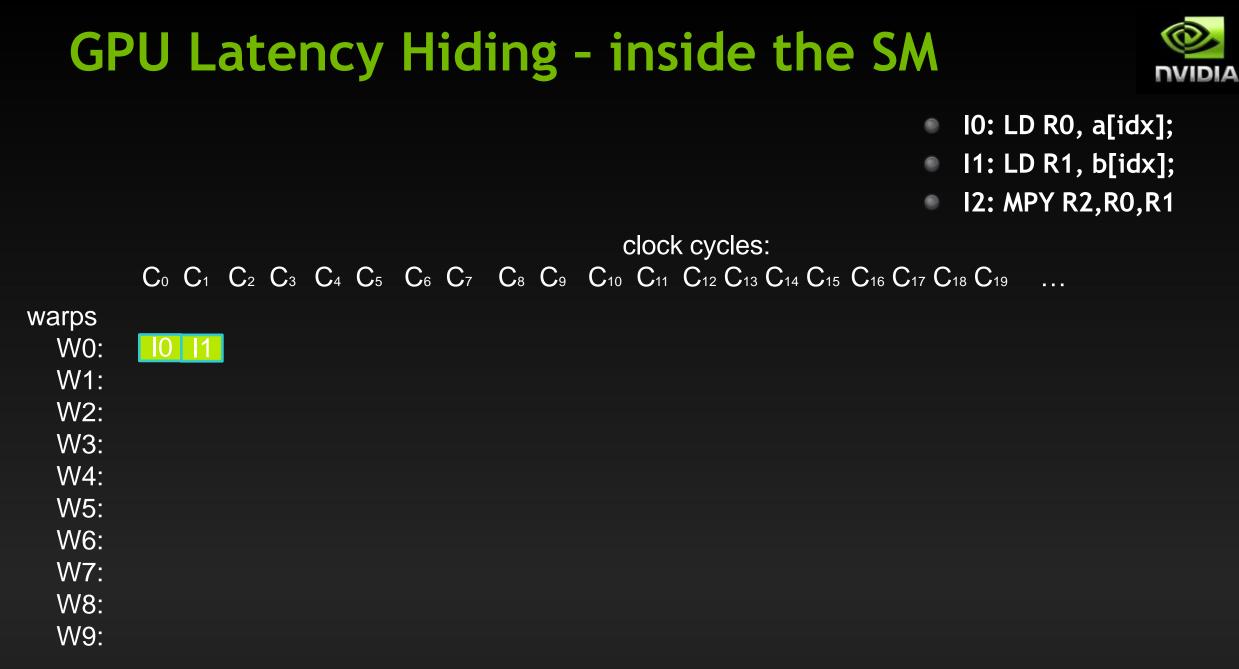
Key to understanding:

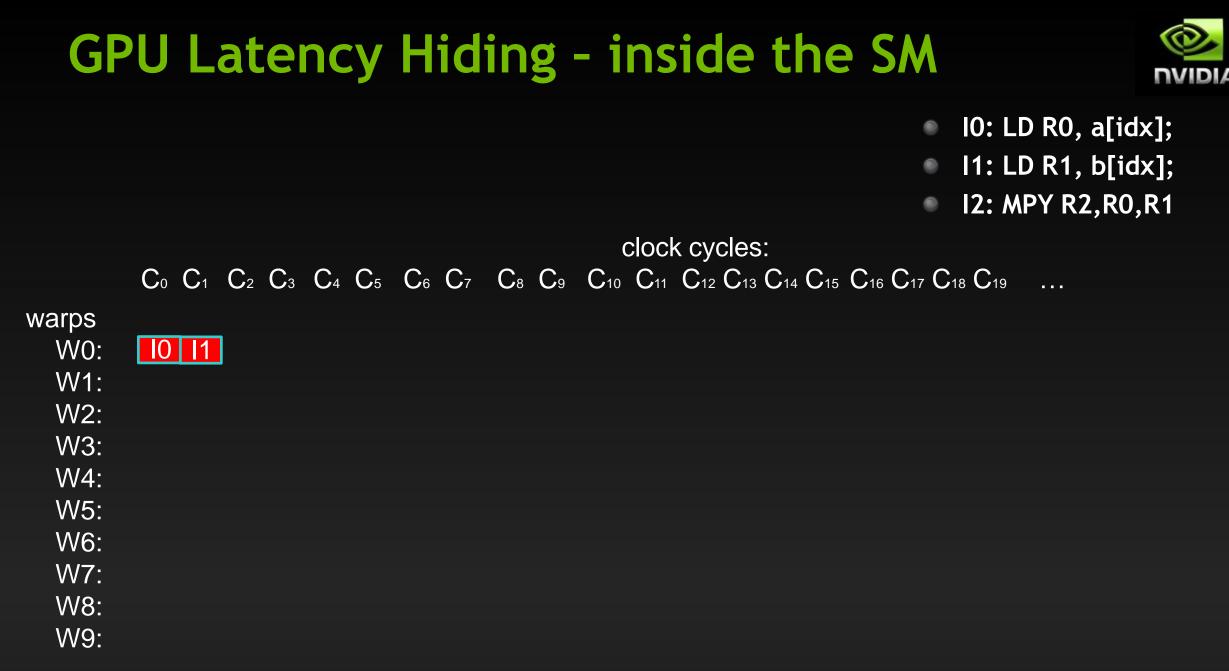
- Instructions are issued in order
- A thread stalls when one of the operands isn't ready:
 - Memory read by itself doesn't stall execution
- Latency is hidden by switching threads
 - GMEM latency: ~400 cycles
- How many threads/threadblocks to launch?
- Conclusion:
 - Need enough threads to hide latency

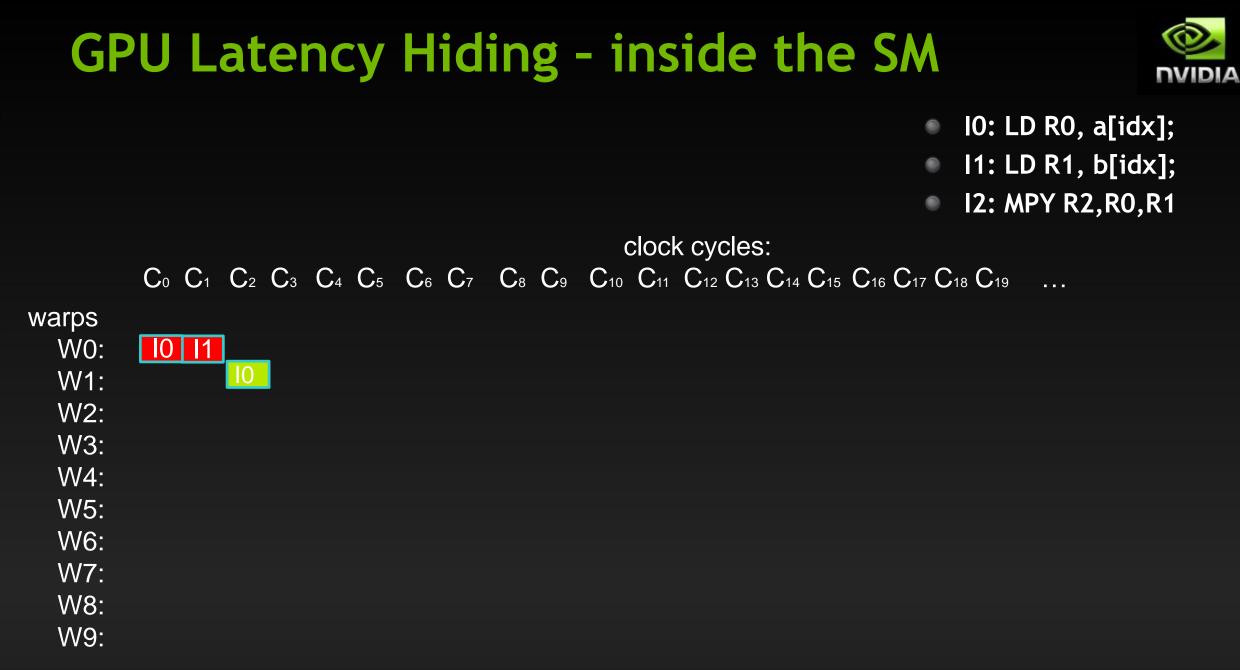
GPU Latency Hiding

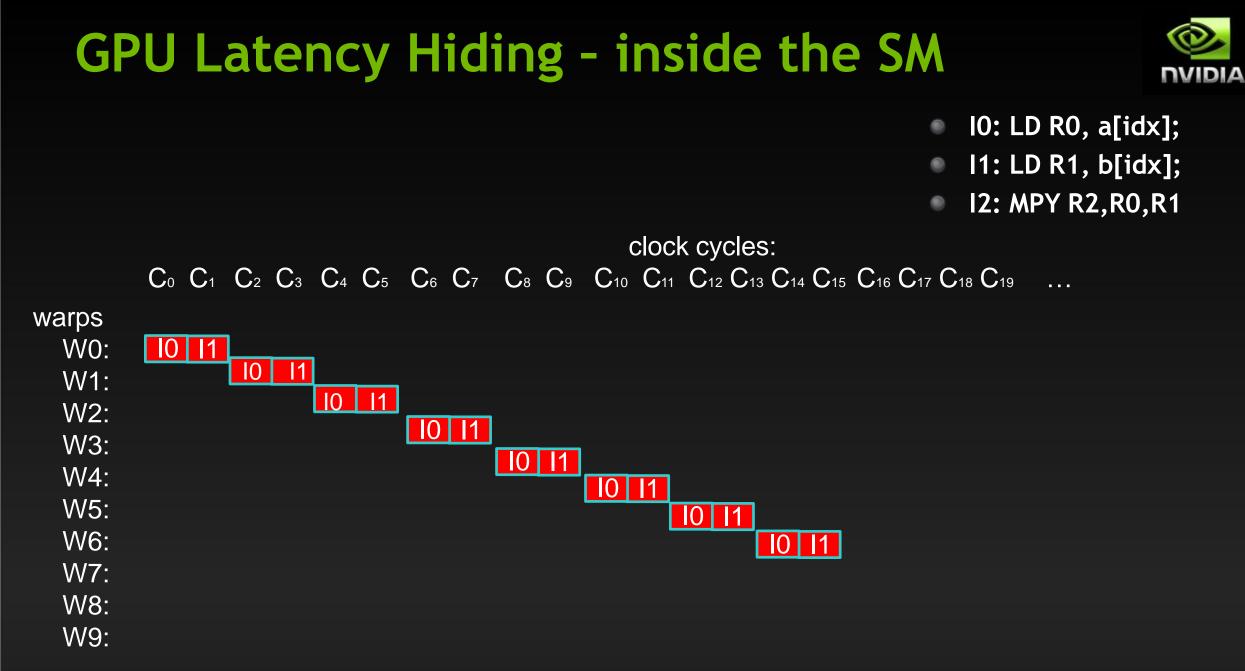
- In CUDA C source code:
- int idx = threadIdx.x+blockDim.x*blockIdx.x;
- o c[idx] = a[idx] * b[idx];
- In machine code:
- I0: LD R0, a[idx];
- I1: LD R1, b[idx];
- I2: MPY R2,R0,R1

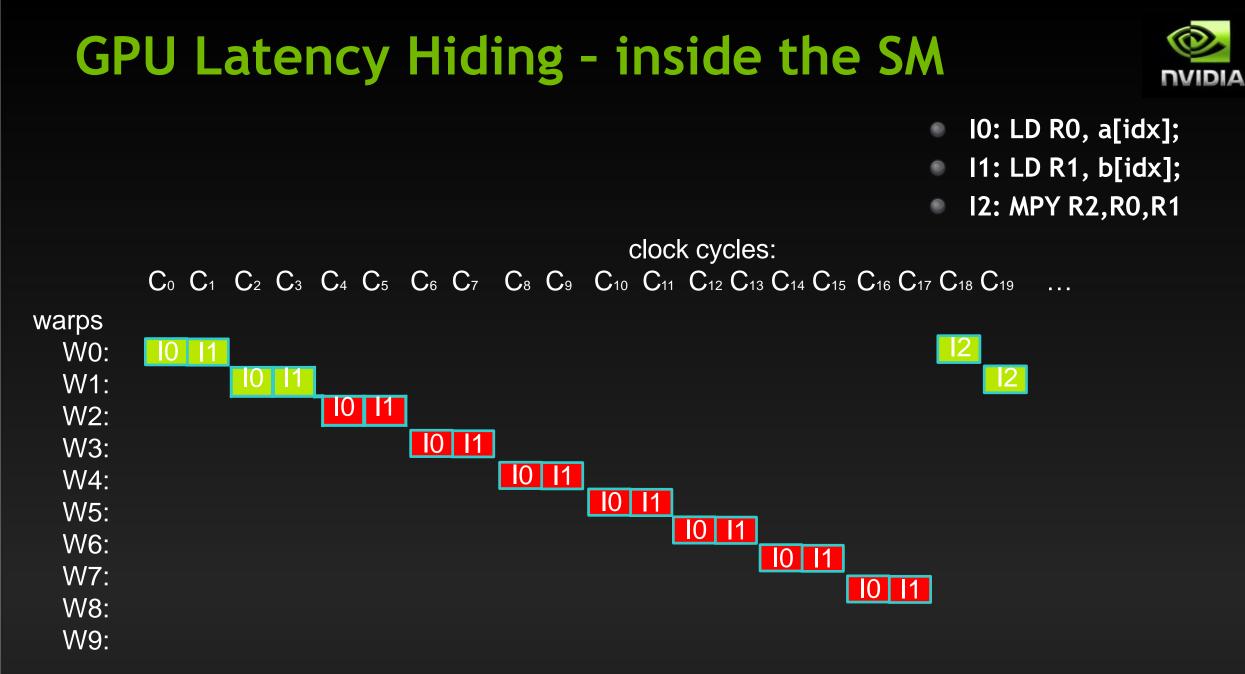












Launch Configuration: Summary

- Need enough total threads to keep GPU busy
 - Typically, you'd like 512+ threads per SM (aim for 2048 maximum "occupancy")
 - More if processing one fp32 element per thread
 - Of course, exceptions exist
- Threadblock configuration
 - Threads per block should be a multiple of warp size (32)
 - SM can concurrently execute up to 16 thread blocks
 - Really small thread blocks prevent achieving good occupancy
 - Really large thread blocks are less flexible
 - Generally, use 128-256 threads/block, but use whatever is best for the application
- For more details:
 - Vasily Volkov's GTC2010 talk "Better Performance at Lower Occupancy" (http://www.nvidia.com/content/gtc-2010/pdfs/2238_gtc2010.pdf)

EFFICIENT GEMM IMPLEMENTATIONS

GENERAL MATRIX PRODUCT

Basic definition

General matrix product

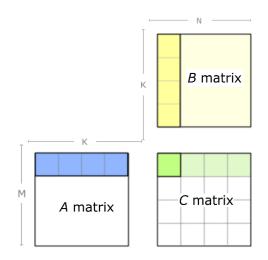
 $C = \alpha \operatorname{op}(A) * \operatorname{op}(B) + \beta C$

C is M-by-N, op(A) is M-by-K, op(B) is K-by-N

Compute independent dot products

```
// Independent dot products
for (int i = 0; i < M; ++i)
    for (int j = 0; j < N; ++j)
        for (int k = 0; k < K; ++k)
            C[i][j] += A[i][k] * B[k][j];</pre>
```

Inefficient due to large working sets to hold parts of A and B



GENERAL MATRIX PRODUCT

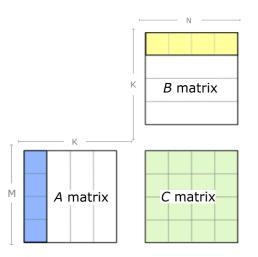
Accumulated outer products

General matrix product

 $C = \alpha \operatorname{op}(A) * \operatorname{op}(B) + \beta C$

C is M-by-N, op(A) is M-by-K, op(B) is K-by-N

Compute independent dot products



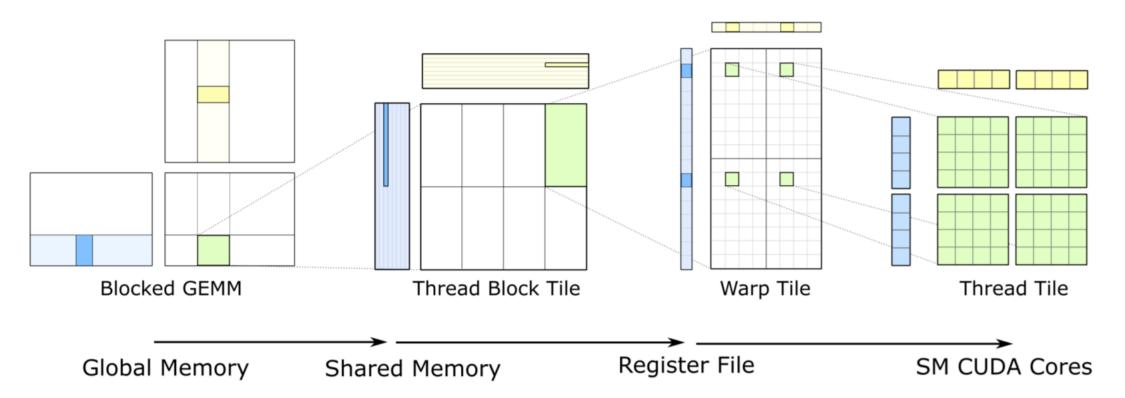
Load elements of **A** and **B** exactly once

CUTLASS

CUDA TEMPLATE LIBRARY FOR DENSE LINEAR ALGEBRA AT ALL LEVELS AND SCALE

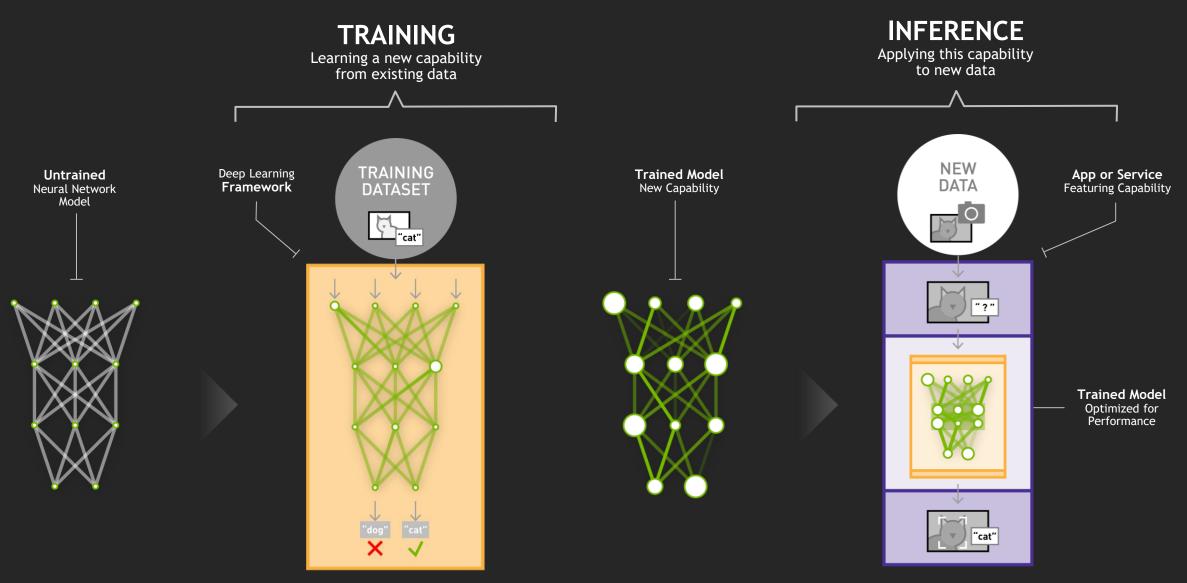
COMPLETE GEMM HIERARCHY

Data reuse at each level of the memory hierarchy



ACCELERATING TRAINING AND INFERENCING

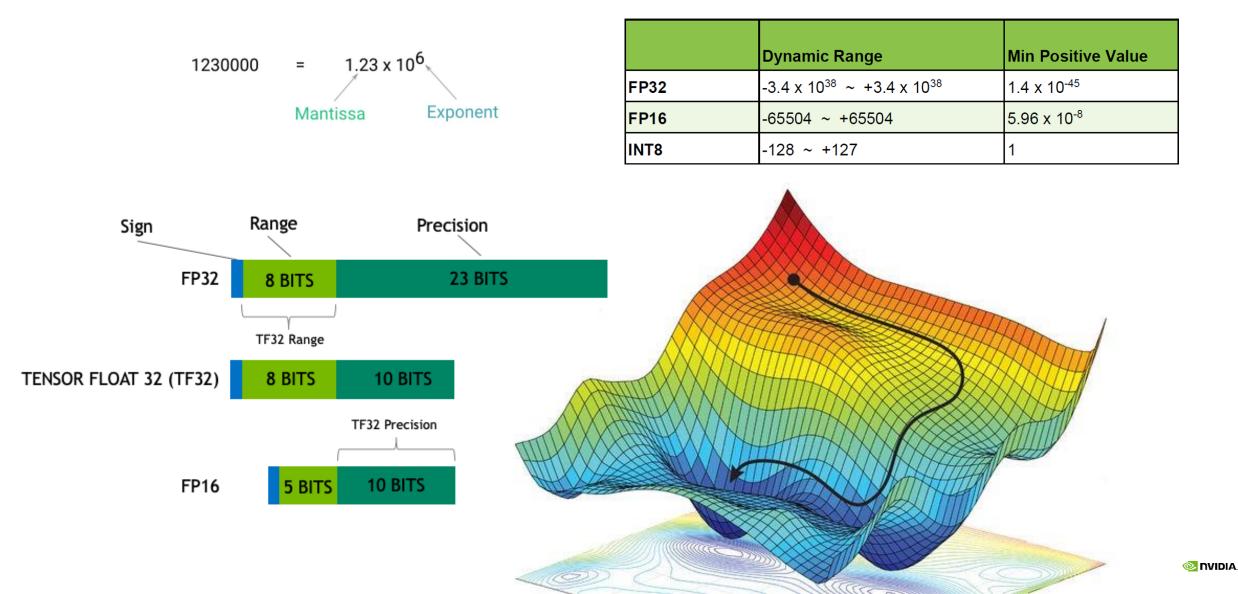
DEEP LEARNING APPLICATION DEVELOPMENT



DEEP LEARNING TRAINING WITH NVIDIA GPUS

AMP AUTOMATIC MIXED PRECISION

THE IMPORTANCE OF FP32

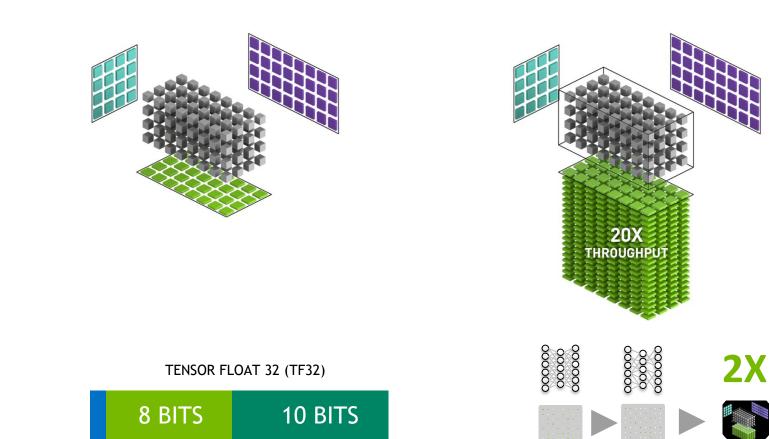


NEW TF32 TENSOR CORES ON A100

20X Higher FLOPS for AI, Zero Code Change

NVIDIA V100 FP32

NVIDIA A100 Tensor Core TF32 with Sparsity

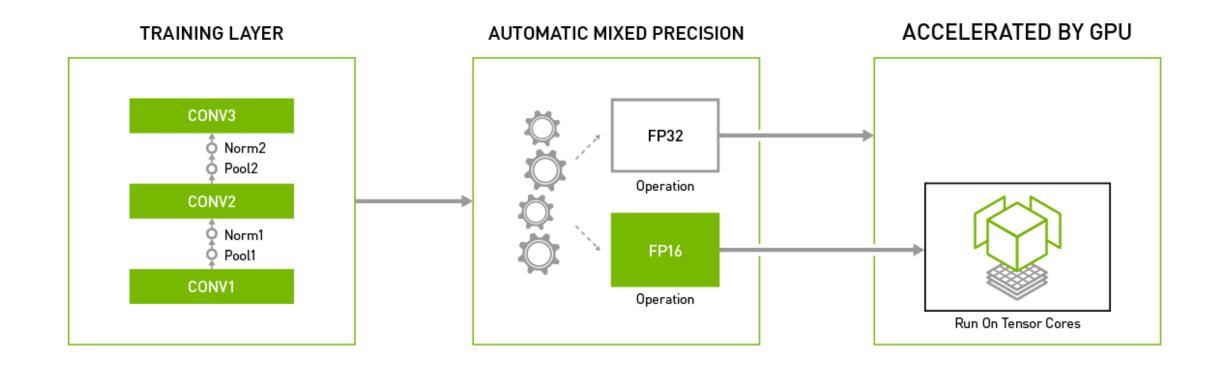


Works like FP32 for AI with Range of FP32 and Precision of FP16

DNN Sparsity Matrix

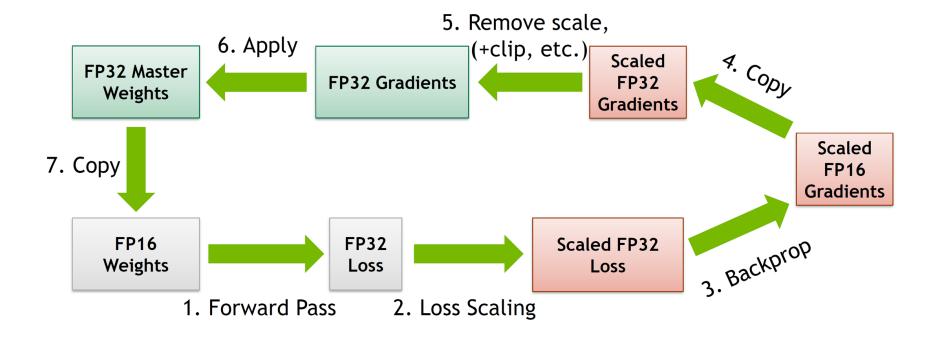
AMP

Utilizing tensor cores with 3 lines of code



AMP

Automatic Mixed Precision



ENABLING AUTOMATIC MIXED PRECISION

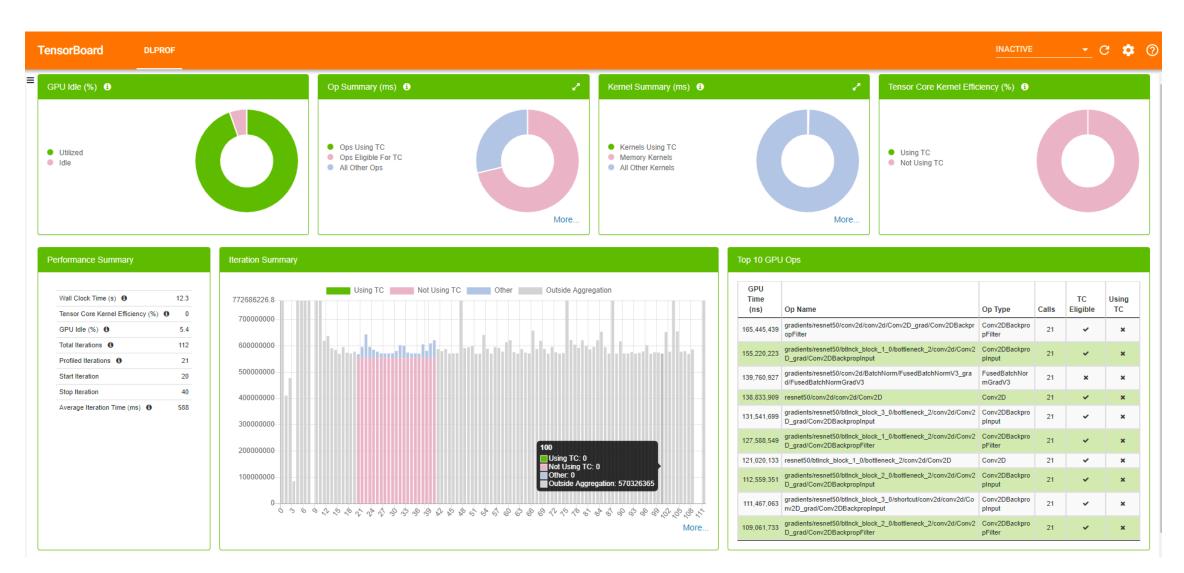
Add Just A Few Lines of Code

PyTorch

• Two steps: initialization and wrapping backpropagation

```
from apex import amp
model = ...
optimizer = SomeOptimizer(model.parameters(), ...)
# ...
model, optimizer = amp.initialize(model, optimizer, opt_level="01")
# ...
for train_loop():
   loss = loss_fn(model(x), y)
   with amp.scale_loss(loss, optimizer) as scaled_loss:
      scaled_loss.backward()
   # Can manipulate the .grads if you'd like
   optimizer.step()
```

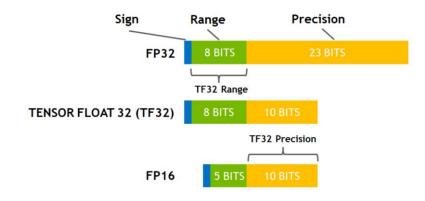
NVIDIA DLPROF

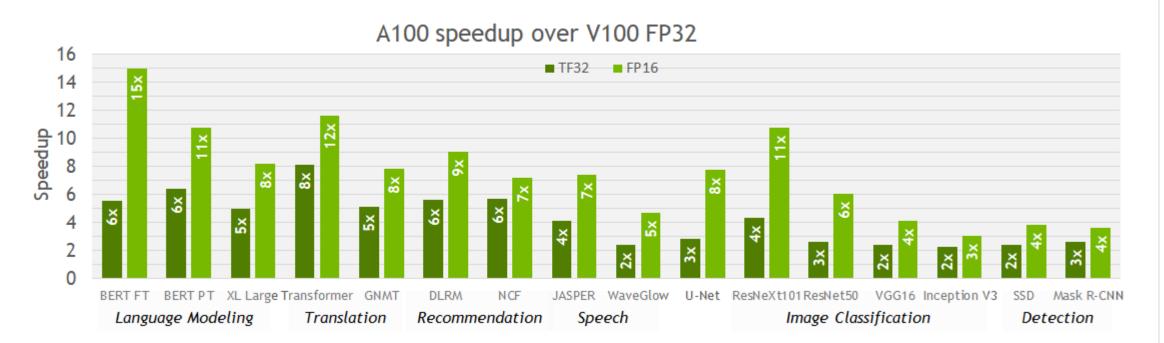


MULTIPLY-ADD OPERATIONS PER CLOCK PER SM

	CUDA Cores				Tensor Cores					
NVIDIA Architecture	FP64	FP32	FP16	INT8	FP64	TF32	FP16	INT8	INT4	INT1
Volta	32	64	128	256			512			
Turing	2	64	128	256			512	1024	2048	8192
Ampere (A100)	32	64	256	256	64	512	1024	2048	4096	16384
Ampere, sparse						1024	2048	4096	8192	

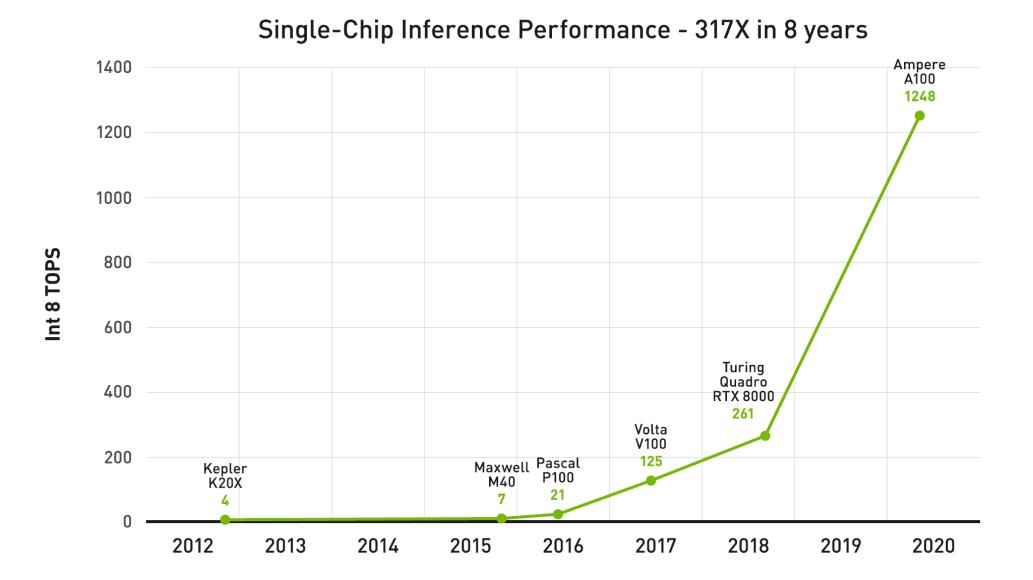
TF32 NUMERICAL REPRESENTATIONS





DEEP LEARNING INFERENCE WITH NVIDIA GPUS

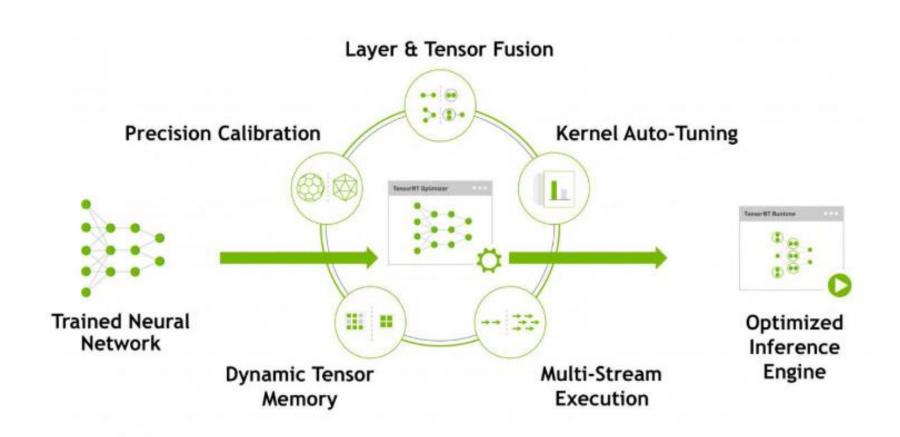
HUANG'S LAW



69 📀 NVIDIA.

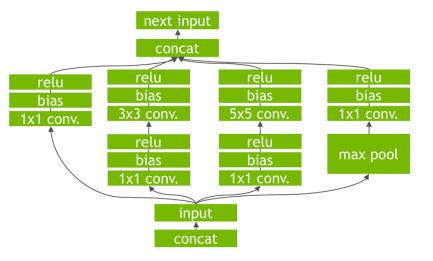
TENSORRT

Optimizations

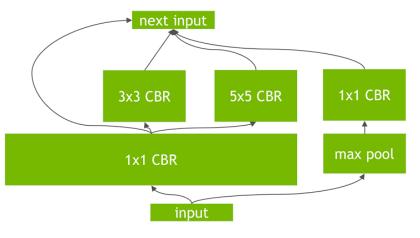


KERNEL FUSION

- Improve GPU utilization less kernel launch overhead, better memory usage and bandwidth
- Vertical fusion = Combine sequential kernel calls
- Horizontal fusion = Combine same kernels that have common input but different weights



Un-Optimized Network



KERNEL AUTO-TUNING

- There are multiple low-level algorithms/implementations for common operations
- TensorRT selects the optimal kernels based on your parameters e.g. batch size, filter-size, input data size
- TensorRT selects the optimal kernel based on your target platform

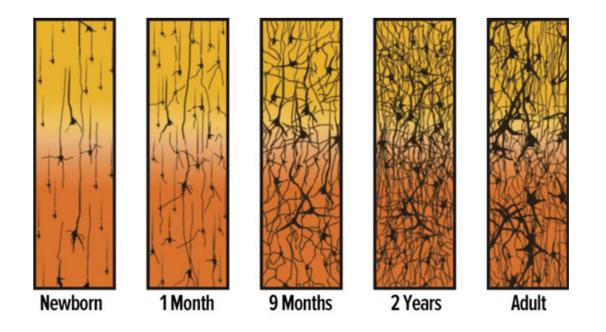
CONVOLUTION ALGORITHMS

128x128x128x128 convolution, FP32, NCHW, Quadro GV100

CUDNN_CONVOLUTION_FWD_ALGO	3 x 3		11 x 11	
CODAR_CONVOLUTION_FWD_ALGO	Performance	Workspace	Performance	Workspace
CUDNN_CONVOLUTION_FWD_ALGO_GEMM	0.76 ms	72 MB	8.47 ms	968 MB
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM	0.62 ms	None	6.82 ms	None
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM	0.47 ms	0.01 MB	6.58 ms	0.01 MB
CUDNN_CONVOLUTION_FWD_ALGO_FFT	45.3 ms	8322 MB	44.7 ms	8328 MB
CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING	3.69 ms	70 MB	5.13 ms	70 MB
CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD	0.26 ms	1.56 MB	Unsupported	
CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED	2.73 ms	578 MB	Unsupported	

SPARSE NEURAL NETWORKS

Synapse density over time



Synapse Density Over Time FIGURE 3

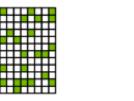
Source: Adapted from Corel, JL. The postnatal development of the human cerebral cortex. Cambridge, MA: Harvard University Press; 1975.

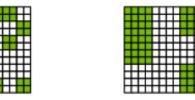
PRUNING

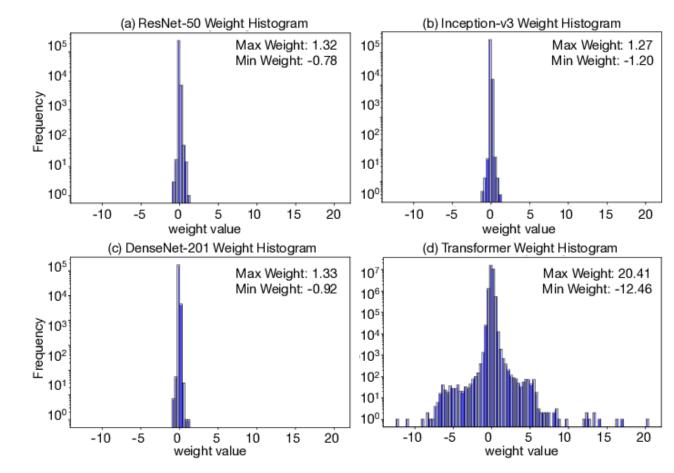
The idea

The opportunity:

- Reduced memory bandwidth
- Reduced memory footprint
- Acceleration (especially in presence of hardware acceleration)



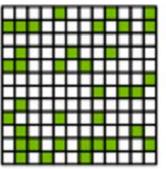


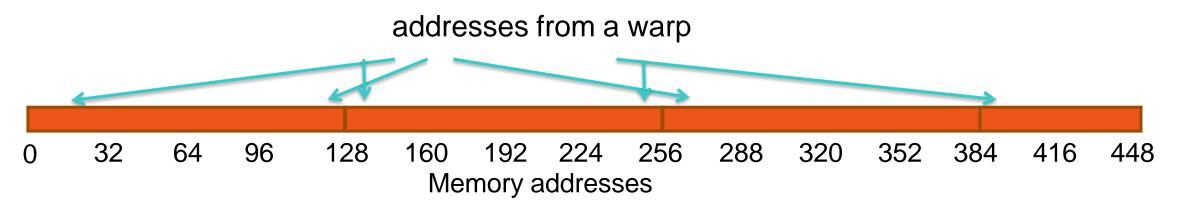


Tambe, T., Yang, E. Y., Wan, Z., Deng, Y., Reddi, V. J., Rush, A., ... & Wei, G. Y. (2019). AdaptivFloat: A Floating-point based Data Type for Resilient Deep Learning Inference. arXiv preprint arXiv:1909.13271.

CHERRY PICKING IN SPARSE MATRICES

- Memory operations are issued per warp (32 threads)
 - Just like all other instructions
- If only a single byte is needed -
 - 32 bytes will be issued, and only 1 will be used.





GOALS FOR A TRAINING RECIPE

Maintains accuracy

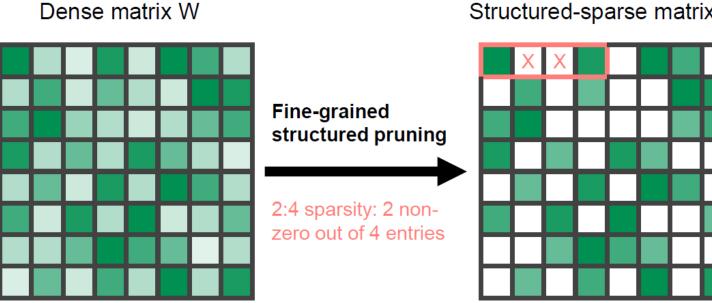
Is applicable across various tasks, network architectures, and optimizers

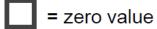
Does not require hyper-parameter searches

STRUCTURED SPARSITY

SPARSITY IN AMPERE

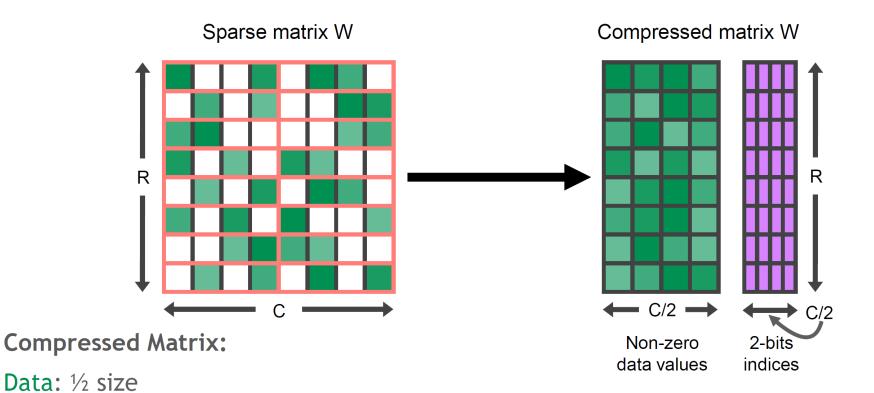
At Most 2 Non-zeros in Every Contiguous Group of 4 Values





2:4 COMPRESSED MATRIX FORMAT

At most 2 non-zeros in every contiguous group of 4 values

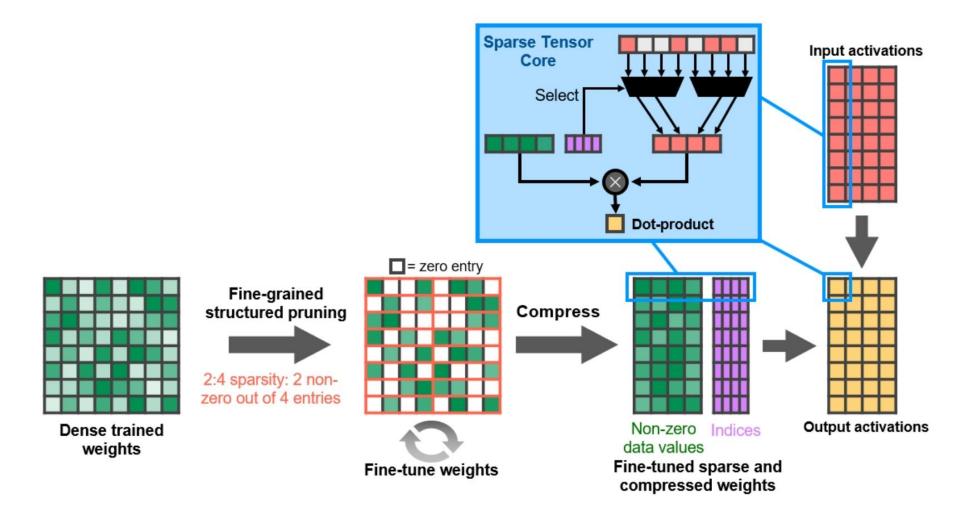


Metadata: 2b per non-zero element

16b data => 12.5% overhead

8b data => 25% overhead

FINE-GRAINED STRUCTURED SPARSITY IN AMPERE



SPARSITY IN AMPERE GPUS

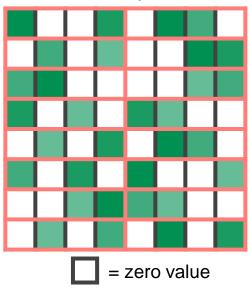
Fine-grained structured sparsity for Tensor Cores

- 50% fine-grained sparsity
- 2:4 pattern: 2 values out of each contiguous block of 4 must be 0

Addresses the 3 challenges:

- Accuracy: maintains accuracy of the original, unpruned network
 - Medium sparsity level (50%), fine-grained
- Training: a recipe shown to work across tasks and networks
- Speedup:
 - Specialized Tensor Core support for sparse math
 - Structured: lends itself to efficient memory utilization

2:4 structured-sparse matrix



NLP - LANGUAGE MODELING

Transformer-XL, BERT

				Accuracy				
Network	Task	Metric	Dense FP16	Sparse FP16	Sparse INT8			
Transformer-XL	enwik8	BPC	1.06	1.06 -	-			
BERT-Base	SQuAD v1.1	F1	87.6	88.1 0.5	88.1 0.5			
BERT-Large	SQuAD v1.1	F1	91.1	91.5 0.4	91.5 0.4			

GENERATE A STRUCTURED SPARSE NETWORK

APEX's Automatic SParsity: ASP

```
import torch
from apex.contrib.sparsity import ASP
device = torch.device('cuda')
```

Init mask buffers, tell optimizer to mask weights and gradients, compute sparse masks: Universal Fine Tuning

model = TheModelClass(*args, **kwargs) # Define model structure model.load_state_dict(torch.load(`dense_model.pth'))

optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9) # Define optimizer

```
ASP.prune_trained_model(model, optimizer)
```

```
x, y = DataLoader(...) #load data samples and labels to train the model
for t in range(500):
    y_pred = model(x)
    loss = loss_fn(y_pred, y)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
```

torch.save(model.state_dict(), 'pruned_model.pth') # checkpoint has weights and masks

Summary

- NVIDIA is an accelerated computing platform
- Optimizing the entire stack from HW to applications
- * "CUDA Everywhere" One Ring to Rule Them All!
- Hardware <-> Software Interactions for Optimal Performance

THANK YOU!