
Math	105	–	Music	&	Mathematics		
Tuning	Systems	–	Practice	Exercises	
Solutions	(please	try	each	exercise	yourself	before	reading	its	solution)	
	
1.		

	
	
Make	sure	you’re	familiar	with	the	layout	of	the	standard	piano	keyboard!	
	
2.	Suppose	we	set	out	to	devise	a	just	intonation	system	based	on	“A”	rather	than	“C”.	That	is,	the	base	
frequency	will	be	identified	with	one	of	the	“A”	tones	on	a	keyboard,	and	other	tones’	frequencies	will	be	
found	accordingly.	Under	this	system,	what	should	be	the	frequency,	in	Hz,	of	each	of	the	following	tones?	
(Where	necessary,	round	answers	to	the	nearest	hundredth.)		
	
Answers:	

a) E	above	A:220.	
Since	the	E	is	seven	semitones	above	A:220,	the	A-E	interval	should	be	a	perfect	fifth	under	just	intonation,	

with	a	frequency	ratio	of	3/2.	Therefore,	the	frequency	of	the	E	above	A:220	should	be	220× !
!
= 330 𝐻𝑧.	

	
b) D	above	A:220.		
The	A-D	interval	consists	of	5	semitones,	so	it	would	be	tuned	as	a	perfect	fourth,	with	frequency	ratio	4/3.	

So,	the	frequency	of	the	D	above	A:220	under	this	system	would	be	220× !
!
= !!"

!
≈ 𝟐𝟗𝟑.𝟑𝟑 𝑯𝒛.	

	
c) 	F	above	A:220	
The	A-F	interval	consists	of	8	semitones,	so	it	would	be	tuned	as	a	minor	sixth,	with	frequency	ratio	8/5.		
So,	the	frequency	of	the	F	above	A:220	under	this	system	would	be	220× !

!
= 𝟑𝟓𝟐 𝑯𝒛. 

	
d) 	F	below	A:220.		
Note	that	there	are	two	ways	to	find	the	frequency	for	this	note…	

	
Solution:	Since	the	F	above	A:220	is	tuned	to	352	Hz,	the	frequency	of	the	F	an	octave	lower	would	be	one	

half	of	352	Hz:			352× !
!
= 𝟏𝟕𝟔 𝑯𝒛.	

	
Alternate	solution:	the	F-A	interval	consists	of	4	semitones,	so	it	would	be	tuned	as	a	major	third,	with	
frequency	ratio	5/4.	Since	we’d	have	to	lower	A:220	by	a	major	third	in	this	case,	we	must	divide	by	the	

corresponding	frequency	ratio:	220÷ !
!
= 220× !

!
= !!"

!
= 𝟏𝟕𝟔 𝑯𝒛.	

	
e) G	above	A:220	
The	A-G	interval	consists	of	10	semitones,	so	it	would	be	tuned	as	a	minor	seventh,	with	frequency	ratio	
9/5.	So,	the	frequency	of	the	F	above	A:220	under	this	system	would	be	220× !

!
= 𝟑𝟗𝟔 𝑯𝒛.	

	
f) 	A	three	octaves	below	A:220.	



To	lower	a	pitch	by	an	octave,	we	multiply	its	frequency	by	1/2.	So,	we’ll	have	to	multiply	220	by	1/2	three	

times,	once	for	each	time	we	lower	by	an		octave.	This	gives	us	220× !
!
= 110,	then	110× !

!
= 55,	then	

55× !
!
= 𝟓𝟓

𝟐
	or	𝟐𝟕.𝟓 𝑯𝒛.		

	
Note:	An	easier	way	to	find	this	answer	would	be	to	multiply	by	1/2	three	times	all	at	once,	rather	than	

through	three	separate	steps:	220× !
!
× !
!
× !
!

!"#$%&#' 
!!!"! !"#$%!

= 220× !
!
= !!"

!
,	which	reduces	to	55/2,	or	27.5	Hz.		

	
3.	Find	the	frequency	of	each	of	the	tones	from	#2	if	we	use	Pythagorean	tuning,	rather	than	just	intonation,	
to	devise	a	tuning	system	based	on	A:220.	(This	means	the	frequency	of	each	tone	is	found	by	raising	or	
lowering	by	perfect	fifths	starting	from	A:220.)	Hint:	you	may	wish	to	use	the	“Circle	of	Fifths”	diagram	
attached	at	the	end	of	this	document	to	help	you	figure	out	how	many	times	to	raise/lower	by	fifths.	
	
Answers:	

a) E	above	A:220.	
Since	the	E	is	seven	semitones	above	A:220,	the	A-E	interval	should	be	a	perfect	fifth,	with	a	frequency	

ratio	of	3/2.	Therefore,	the	frequency	of	the	E	above	A:220	should	be	220× !
!
= 330 𝐻𝑧.	

	
b) D	above	A:220.		
Starting	from	A,	we	must	lower	by	a	perfect	fifth	once	(then	raise	by	an	octave)	to	tune	the	next	higher	D.	
(You	can	find	this	by	counting	seven	semitones	to	the	left	starting	from	A	on	a	keyboard;	or,	on	the	“circle	
of	fifths,”	count	counterclockwise	one	place	from	A	to	find	D.)	So,	we’ll	need	to	divide	by	3/2	(to	lower	by	a	
fifth),	then	multiply	by	2	(to	raise	by	an	octave)…	
220÷ !

!
= 220× !

!
= !!"

!
!"#$% !" ! !"#$"%& !"!#!

; !!"
!
× !
!
= !!"

!
!"#$% !" !" !"#$%&

	,	or	approximately	293.33	Hz.		

	
c) F	above	A:220	
Starting	from	A,	we	must	lower	by	fifths	four	times	to	tune	an	F.	(Again,	this	can	be	found	by	counting	
semitones	on	a	keyboard,	or	by	reading	the	“circle	of	fifths”	diagram.)	So,	we’ll	have	to	divide	by	3/2	four	
times	–	in	other	words,	multiply	by	2/3	four	times	–	to	tune	an	F;	after	this,	we’ll	raise	by	octaves	to	get	a	
result	in	the	220-440	Hz	range.	(Note:	the	exercise	asks	for	“F	above	A:220,”	meaning	the		next	higher	F	–	
this	must	have	a	frequency	somewhere	between	220	Hz	and	the	next	higher	A,	whose	frequency	is	440	
Hz.)	
	
First,	we’ll	lower	by	fifths	four	times:	

220×
2
3×

2
3×

2
3×

2
3

!!!! !"#$ !" !"#$
!"#! !!!"! !"#$%…

= 220×
2!

3! = 220×
16
81 =

3520
81   , or about 43.46𝐻𝑧	

	
Now,	we’ll	need	to	raise	this	by		octaves	a	few	times	to	get	a	result	in	the	220-440	Hz	range.	Note	that	I’m	
sticking	with	fractions,	because	they	are	more	precise	than	(rounded	off)	decimals…	
	

Raise	by	octaves:	first,	we	get	
!"#$
!"

× !
!
= !"#"

!"
≈ 86.91	(still	too	low…)	

Another	octave:	
!"#"
!"

× !
!
= !"#$#

!"
≈ 173.83	(still	under	220,	but	one	more	octave	should	do	it…)	

One	more	octave:	
!"#$#
!"

× !
!
= !"#$%

!"
≈ 𝟑𝟒𝟕.𝟔𝟓 𝑯𝒛	,	which	is	our	final	answer!	



	
Comment:	This	is	one	instance	where	just	intonation	and	Pythagorean	tuning	diverge.	Under	just	
intonation,	this	F	had	a	frequency	of	352	Hz;	under	Pythagorean	tuning,	its	frequency	is	about	347.65	Hz.	
This	is	due	to	the	different	frequency	ratios	–	under	just	intonation,	the	A-F	interval	has	frequency	ratio	
8/5;	under	Pythagorean	tuning,	its	effective	frequency	ratio	(combining	all	of	the	above	multiplications	

into	one	step)	is	
!
!

!

!"#$%&'(
!" !"!#!!

× !
!

!

!"#$#%&
!" !"#$%&'

= !"
!"
× !
!
= !"#

!"
	!			

	
	

d) 	F	below	A:220.		
We	actually	answered	this	in	the	work	for	the	preceding	example	(F	above	A:220).	Just	before	tuning	the	
final	F,	we	found	that	the	frequency	of	the	next	lower	F	was	approximately	173.83	Hz.		
	
	
e) 	G	above	A:220	
Starting	from	A,	we	must	lower	by	fifths	twice	to	tune	a	G.	(Again,	this	can	be	found	by	counting	semitones	
on	a	keyboard,	or	by	reading	the	“circle	of	fifths”	diagram.)	So,	we’ll	have	to	divide	by	3/2	twice–	in	other	
words,	multiply	by	2/3	twice	–	to	tune	a	G;	after	this,	we’ll	raise	by	octaves	to	get	a	result	in	the	220-440	
Hz	range.		(This	is	very	similar	to	the	“F	above	A:220”	example	above)	
	
First,	we’ll	lower	by	a	fifth	twice:	

220×
2
3×

2
3 = 220×

4
9 =

880
9   , or about 97.78𝐻𝑧	

	
Now,	we’ll	need	to	raise	this	by		octaves	a	couple	of	times	to	get	a	result	in	the	220-440	Hz	range….	

Raise	by	octaves:	first,	we	get	
!!"
!
× !
!
= !"#$

!
≈ 194.44 𝐻𝑧	

One	more	octave:	
!"#$
!
× !
!
= !"#$

!
≈ 𝟑𝟖𝟖.𝟖𝟗 𝑯𝒛.	Since	this	is	in	the	220-440	Hz	range,	as	requested,	this	is	

our	answer.		
	
Comment:	Again,	notice	the	difference	between	this	result	and	the	result	under	just	intonation	(396	Hz).	

	
f) A	three	octaves	below	A:220.	
Solution:	27.5	Hz.	This	is	found	in	exactly	the	same	way	under	Pythagorean	tuning	as	it	is	found	under	just	
intonation,	since	octaves	have	a	2/1	frequency	ratio	under	both	tuning	systems.	

	
	 	



4.	Suppose	we	tune	C	to	a	base	frequency	of	648	Hz.	Consider	the	12-tone	scale	from	C:648	up	to	the	C	one	
octave	higher	(C:1296).	Tune	the	12-tone	scale	in	each	of	the	following	ways.	When	necessary,	round	answers	
to	the	nearest	hundredth	of	a	Hertz.	
	
(a)	Find	the	correct	frequency	for	each	tone	in	the	scale	using	Pythagorean	tuning.	
(b)	Find	the	correct	frequency	for	each	tone	in	the	scale	using	Just	Intonation.		
(c)	Find	the	correct	frequency	for	each	tone	in	the	scale	using	equal	temperament.		
		
Answers:		
Part	(a)	–	Pythagorean	Tuning.	(Similar	to	Collected	HW	#1)	
Recall	that	to	tune	a	scale	by	Pythagorean	tuning,	we	raise	or	lower	by	perfect	fifths,	adjusting	by	octaves	
when	necessary.	Specifically,	raise	by	fifths	six	times,	and	lower	by	fifths	five	times…	
Base:		C:648	Hz.		We’ll	start	by	finding	R1,	R2,	etc…	

R1.	Raising	by	a	fifth	from	C	gives	us	a	G.	Frequency:	648× !
!
= !"##

!
= 972 𝐻𝑧.	So,	we	have	𝑮:𝟗𝟕𝟐 𝑯𝒛.	

R2.	Raising	by	a	fifth	from	G	gives	us	D.	(Recall	–	you	can	find	these	by	counting	7	semitones	on	a	keyboard,	or	
by	following	the	attached	“circle	of	fifths”	diagram	in	the	clockwise	direction.)	So,	we’ll	multiply	our	previous	

result	of	972	Hz	by	3/2…	972× !
!
= !"#$

!
= 1458 𝐻𝑧.	But,	note	that	1458	Hz	falls	outside	of	the	range	of	our	

scale	(648-1296	Hz),	so	we’ll	need	to	lower	it	by	an	octave:	1458× !
!
= 729.	So,	we	have	𝑫:𝟕𝟐𝟗 𝑯𝒛.	

	
Proceeding	in	a	similar	way,	we	get	the	following	results	for	R3,	R4,	R5	and	R6.	(I’m	just	including	the	
answers	below;	make	sure	that	you	understand	where	they	come	from	and	can	work	them	out	for	
yourself!...)	For	each	I’m	giving	an	exact	answer	as	a	fraction,	as	well	as	a	decimal	(rounded	to	the	nearest	
hundredth	if	necessary).	

R3.	Tone:	A.	Frequency:		2187/2	Hz,	or	𝟏𝟎𝟗𝟑.𝟓 𝑯𝒛	
R4.	Tone:	E.	Frequency:		6561/8	Hz,	which	is	approximately	𝟖𝟐𝟎.𝟏𝟑 𝑯𝒛			
R5.	Tone:	B.	Frequency:		19683/32	Hz,	which	is	approximately	𝟏𝟐𝟑𝟎.𝟏𝟗 𝑯𝒛				
R6.	Tone:	F#.	Frequency:	59049/64	Hz,	which	is	approximately	𝟏𝟖𝟒𝟓.𝟐𝟖 𝑯𝒛					
	
Next,	we’ll	find	L1,	L2,	etc…	

L1.	Lowering	by	a	fifth	from	C	gives	us	an	F,	whose	frequency	will	be	648÷ !
!
= 648× !

!
= !"#$

!
= 432	Hz.	

However,	we’ll	need	to	raise	this	by	an	octave,	giving	us	432×2 = 864 𝐻𝑧.	So,	we	have	𝑭:𝟖𝟔𝟒 𝑯𝒛.	
	
L2.	Lowering	by	a	fifth	from	F	gives	us	A#	(or	Bb).	As	before,	we	multiply	by	2/3	to	lower	a	frequency	by	a	

perfect	fifth:	864× !
!
= !"#$

!
= 576	Hz.	Again,	we’ll	need	to	raise	by	an	octave,	giving	us	576×2 = 1152 𝐻𝑧.	

So,	we	have	𝑨#:𝟏𝟏𝟓𝟐 𝑯𝒛. 	
	
As	before,	I’ll	list	the	correct	answers	for	L3,	L4	and	L5	below;	verify	for	yourself	that	you	understand	and	are	
able	to	duplicate	these	answers…	
	
L3.	D#:	𝟕𝟔𝟖 𝑯𝒛		
L4.	G#:	𝟏𝟎𝟐𝟒 𝑯𝒛		
L5:	C#:	𝟐𝟎𝟒𝟖/𝟑 ≈ 𝟔𝟖𝟐.𝟔𝟕 𝑯𝒛. 	
	 	



#4,	cont.	
Part	(b)	–	Just	intonation	(similar	to	Collected	HW	#2)	
To	tune	each	tone	in	the	octave,	just	multiply	648	Hz	by	the	corresponding	frequency	ratio	of	each	interval	
based	at	C:648.	We’ll	find	the	answers	in	chromatic	order	(that	is,	keyboard	order)	from	C#	up	to	B…		
(Note:	the	just	intonation	frequency	ratios	that	we	use	are	given	in	the	diagram	for	exercise	#12.)	

	

C#	(one	semitone):	648× !"
!"
= !"#$%

!"
= !"#$

!
= 691.2 𝐻𝑧	

D	(two	semitones):	648× !
!
= !"#$

!
= 729 𝐻𝑧	

	(Note:	the	above	calculation	becomes	a	bit	easier	if	you	notice	that	8	is	a	factor	of	648:	

	
This	cross-cancellation	is	not	strictly	necessary,	but	it	helps!	We’ll	use	it	below	where	applicable…)	
	
D#	(three	semitones):	648× !

!
= !"""

!
= 777.6 𝐻𝑧	

E	(four	semitones):	648× !
!
= !"#

!
× !
!
= !"#

!
× !
!
= 810 𝐻𝑧			

F	(five	semitones):	648× !
!
= !"#

!
× !
!
= !"#

!
× !
!
= 864 𝐻𝑧	

F#	(six	semitones):	648× !"
!"
= !"

!
× !"

!
= !"#$

!
= 911.25 𝐻𝑧	

G	(seven	semitones):	648× !
!
= !"#

!
× !
!
= 324×3 = 972 𝐻𝑧	

G#	(eight	semitones):	648× !
!
= !"#$

!
= 1036.8 𝐻𝑧	

A	(nine	semitones):	648× !
!
= !"#

!
× !
!
= !"#

!
× !
!
= 1080 𝐻𝑧	

A#	(ten	semitones):	648× !
!
= !"#$

!
= 1166.4 𝐻𝑧	

B	(eleven	semitones):	648× !"
!
= !"#

!
× !"

!
= !"

!
× !"

!
= 1215 𝐻𝑧	

C	(twelve	semitones):	648×2 = 1296 𝐻𝑧	
	
	
Part	(c)	–	Equal	Temperament:	Under	12-TET,	we	raise	the	base	tone	by	𝑛	semitones	by	multiplying	its	
frequency	by	2! !".		
	
C#	(one	semitone	above	C):	648×2! !" ≈ 686.53 𝐻𝑧	 D	(two	semitones	above	C):	648×2! !" ≈ 727.36 𝐻𝑧		
D#	(3	semitones):	648×2! !" ≈ 770.61 𝐻𝑧	 	 E:	(4	semitones):	648×2! !" ≈ 816.43 𝐻𝑧	
F:	(5	semitones):	648×2! !" ≈ 864.98 𝐻𝑧		 	 F#:(6	semitones):	648×2! !" ≈ 916.41 𝐻𝑧	
G:	(7	semitones):	648×2! !" ≈ 970.90 𝐻𝑧	 	 G#:	(8	semitones):	648×2! !" ≈ 1028.64 𝐻𝑧	
A:	(9	semitones):	648×2! !" ≈ 1089.80 𝐻𝑧	 	 A#:	(10	semitones):	648×2!" !" ≈ 1154.60 𝐻𝑧	
B:		(11	semitones):	648×2!! !" ≈ 1223.26 𝐻𝑧	 	 C:	(12	semitones):	648×2 = 1296 𝐻𝑧	
	
	
	
	 	



5.	For	the	following,	use	a	just	intonation	frequency	ratio	for	each	interval:	
Suppose,	from	a	starting	pitch	of	360	Hz,	the	pitch	is	raised	by	an	octave,	then	lowered	by	a	perfect	fifth,	
then	lowered	by	a	major	sixth,	then	raised	by	a	perfect	fourth,	then	lowered	by	an	octave,	and	finally	raised	
by	a	minor	third.			
a)	At	what	frequency	do	we	end	up?	What	are	the	other	frequencies	we	hit	on	the	way	there?		
b)	What	is	the	frequency	ratio	of	the	interval	formed	by	the	ending	pitch	and	the	starting	pitch	(360	Hz)?	
c)	Can	you	think	of	a	way	we	could	have	found	the	answer	to	part	(b)	more	quickly	(without	necessarily	
finding	the	answers	to	(a))?	
	
	

Solution:		
a)	The	final	pitch	is	230.4	Hz.	The	intermediate	pitches	are,	in	order:	
	

• “raised	by	an	octave:”	360×2 = 𝟕𝟐𝟎	Hz	
• “lowered	by	a	perfect	fifth:”	720÷ !

!
= 720× !

!
= 𝟒𝟖𝟎	Hz	

• “lowered	by	a	major	sixth:”	480÷ !
!
= 480× !

!
= 𝟐𝟖𝟖	Hz	

• “raised	by	a	perfect	fourth:”	288× !
!
= 𝟑𝟖𝟒	Hz		

• “lowered	by	an	octave:”	384× !
!
= 𝟏𝟗𝟐	Hz	

• “raised	by	a	minor	third:”	192× !
!
= 𝟐𝟑𝟎.𝟒	Hz	

	
b)	We	started	at	360	Hz	and	ended	up	at	230.4	Hz.	To	compute	a	frequency	ratio	we	typically	divide	the	higher	
frequency	by	the	lower	frequency;	in	this	case,	this	gives	us	a	frequency	ratio	of	

!"#
!"#.!

= 1.5625.	
	
c)	We	could	have	found	the	answer	more	quickly	by	combining	all	of	the	operations	of	part	(a)	into	one	
computation.	Starting	from	360	Hz,	we	knew	(from	the	instructions)	that	we’d	have	to	multiply	by	2,	then	2/3,	
then	3/5,	then	4/3,	then	½,	then	6/5.	Since	multiplication	is	commutative	(order	doesn’t	matter)	and	
associative	(groupings	are	arbitrary),	we	could	have	proceeded	as	follows:	

	
…	and	360× !"

!"
= 230.4 𝐻𝑧,	as	expected	(since	that	was	the	answer	to	part	(a).)	Again,	the	point	here	is	that	

we	could	have	multiplied	all	of	the	frequency	ratios	first,	to	find	that	the	ratio	of	the	ending	frequency	to	the	
beginning	frequency	is	16/25,	then	multiplied	360	by	that	number	to	get	our	result.	
	
Note:	The	reason	our	ratio	from	(b),	1.5625,	and	our	ratio	from	(c),	16/25	(or	0.64)	are	unequal	is	that	they	
work	in	different	“directions,”	since	in	(c)	we	determined	how	to	lower	(rather	than	raise)	from	the	beginning	
frequency	to	the	ending	frequency.	Another	way	to	look	at	this:	since	we’re	actually	lowering	360	Hz	down	to	
230.4	Hz,	we	can	look	at	the	above	step	of	multiplying	by	16/25	as	actually	dividing	by	25/16	–	which,	if	you	
calculate	its	decimal	form,	is	equal	to	1.5625,	corresponding	to	our	result	for	part	(b).		 	



6.	Redo	#5,	but	use	equal	temperament	rather	than	just	intonation	frequency	ratios.		
	
Answers:		
Remember	that	under	12-TET,	all	frequency	ratios	are	of	the	form	2! !",	where	x	is	the	number	of	semitones	
between	the	upper	and	lower	tones	in	the	interval.	So,	we	get	the	following	results…	
	
a)	The	final	pitch	is	230.4	Hz.	The	intermediate	pitches	are	given	in	order	below.	Note	that	I’ve	rounded	each	
individual	result	off	to	the	nearest	hundredth;	however,	you	should	leave	it	as-is	on	your	calculator	to	go	from	
one	step	to	the	next	(otherwise	you’ll	get	some	errors,	due	to	rounding	at	intermediate	steps)…	
	
*	“raised	by	an	octave:”	360×2 = 𝟕𝟐𝟎	Hz	
*	“lowered	by	a	perfect	fifth:”	720÷ 2! !" ≈ 𝟒𝟖𝟎.𝟓𝟒	Hz	
*	“lowered	by	a	major	sixth:”	previous	result	÷ 2! !" ≈ 𝟐𝟖𝟓.𝟕𝟑 Hz	
*	“raised	by	a	perfect	fourth:”	previous	result	×2

!
!" ≈ 𝟑𝟖𝟏.𝟒𝟏 Hz		

*	“lowered	by	an	octave:”	previous	result	× !
!
≈ 𝟏𝟗𝟎.𝟕𝟎	Hz	

*	“raised	by	a	minor	third:”	previous	result	×2
!
!" ≈ 𝟐𝟐𝟔.𝟕𝟗	Hz	

	
b)	As	in	#5,	divide	the	higher	by	the	lower:	

!"#
!!".!"

≈ 1.587…	
	
c)	This	problem	is	actually	MUCH	easier	to	do	if	we	combine	steps.	In	fact,	we	can	make	use	of	the	fact	that	
we’re	in	equal	temperament	–	in	which	every	semitone	is	consistent	–	to	observe	that	all	we	really	have	to	do	
here	is	count	semitones!	Step	by	step:	first,	“raise	by	an	octave”	means	we	raise	by	12	semitones.	Next,	“lower	
by	a	perfect	fifth”	means	lower	by	7	semitones;	“lower	by	a	major	sixth”	means	lower	by	9	semitones;	and	so	
on.	Proceeding	in	this	way,	we	can	find	the	number	of	semitones’	difference	between	the	starting	and	ending	
tones…		+12 

!"#$%
!"#$%&

–  7
!"#$%
!"!#!

 –  9
!"#$%

!"#.!"#$!

 + 5
!"#$%
!"#$%!

 –  12
!"#$%
!"#$%&

 + 3
!"#$%

!"#.!!!"#

 =  −8	.	That	is,	the	ending	tone	is	eight	semitones	below	

the	starting	tone.	In	12-TET,	in	order	to	lower	a	pitch	by	8	semitones,	we	divide	by	the	corresponding	
frequency	ratio	of	2! !".	So,	our	result	is	360÷ 2! !" ≈ 𝟐𝟐𝟔.𝟕𝟗 𝑯𝒛	
	
(Comment:	Note	that	2! !" ≈ 1.587,	corresponding	to	our	result	from	part	(b)	above.)	
	
	
	
	
	
	
	
	
	 	



	
	
7.	Convert	each	of	the	following	frequency	ratios	into	“cents.”	Round	each	answer	to	the	nearest	whole	
number.	
	

Solutions:	For	each,	we	may	use	the	formula	𝑐 = 1200× !"# !
!"# !

	to	convert	from	a	frequency	ratio	into	cents:	

	

a) 1200× !"# ! !
!"# !

≈ 267	cents		
	

b) 1200× !"# !"/!
!"# !

≈ 933	cents	
	

c) 1200× !"# !! !
!"# !

≈ 1049	cents	
	

d) 1200× !"# !/!
!"# !

≈ 583	cents	
	

e) 1200× !"#(!"/!)
!"# !

≈ 1783	cents	
	

f) 1200× !"# !
!"# !

≈ 1902	cents	
	
	
	 	



8.	Convert	each	of	the	following	to	frequency	ratios;	round	your	answers	to	the	nearest	hundredth.		
	

Solutions:	For	each,	use	the	formula	𝑟 = 2! !"##	(that’s	2	to	the	power	𝑐/1200)	to	convert	from	cents	into	a	
frequency	ratio:	
	

a) 2!"# !"## ≈ 1.22			
	

b) 2!"# !"## ≈ 1.40	
	

c) 2!!" !"## ≈ 1.67	
	

d) 2!"! !"## ≈ 1.73	
	

e) 2!"#" !"## ≈ 2.25	
 

f) 2!"#$ !"## ≈ 2.50 
	
	
	
#8.5	–	Optional	exercise	-	The	answers	to	#8	could	be	considered	“close,”	respectively,	to	the	following:	
	

• 2!"# !"## ≈ 1.22,	which		could	reasonably	be	considered	“close”	to	either	6/5	(exactly	1.2)	or	11/9	(1.222…)	
	

• 2!"# !"## ≈ 1.40,	which	is	7/5		
	

• 2!!" !"## ≈ 1.67,	which	is	very	close	to	5/3	(1.6666…)	
	

• 2!"! !"## ≈ 1.73,	which	is	pretty	close	to	7/4	(1.75)	or	19/11	(1.727272…)	
	

• 2!"#" !"## ≈ 2.25	,	which	is	9/4		
 

• 2!"#$ !"## ≈ 2.50	,	which	is	5/2 
 

	 	



9.	Simplify	each	of	the	following,	using	properties	of	exponents.	You	should	be	able	to	write	each	answer	as	a	
whole	number.	

a)	3!×3!!				 b)	 5! ! !
				 c)	9! !					 d)	8! !				 	e)	

!"!"×!"!"

!"!"
	

	
Answers:	
a)	By	the	product	rule,	we	can	add	exponents:	3!×3!! = 3!!! = 3!	=	9.	

b)	By	the	power-of-a-power	rule,	we	can	multiply	exponents:	 5! ! ! = 5
!
! ×! = 5! = 25.	

c)	Recall	that	a	fraction	exponent	means	that	we	will	first	find	a	root,	and	then	raise	that	root	to	a	power.	In	
this	case,	an	exponent	of	3/2	means	the	second	root	of	9	will	be	raised	to	the	third	power.	The	second,	or	

“square,”	root	of	9	is	3;	3	to	the	third	power	is	3×3×3 = 27.	Thus,	9! ! = 9! ! ! = 3! = 27.	
d)	Similar	to	part	(c)	–	this	time	we’re	finding	the	third	root	of	8,	then	raising	that	to	the	second	power.	

The	third	root	of	8	is	2	(since	2! = 8),	so	8! ! = 8! ! ! = 2! = 4.	
e)	By	the	product	rule,	the	numerator	of	this	expression	is	12!"!!" = 12!".		
By	the	quotient	rule	(which	allows	us	to	subtract	one	exponent	from	another),	then,		

12!"×12!"

12!" =
12!"

12!" = 12!"!!" = 12! = 12.	
	
10.	Simplify	each	of	the	following,	using	properties	of	logarithms.	You	should	be	able	to	write	each	answer	as	a	
whole	number.	
	
a)	log!"(100)				b)	log!(32)					c)	log!(32)				d)	log! 9!""" 	
	
For	each	of	these,	remember	that	the	expression	“log!(𝑛)”	stands	for	an	exponent	–	specifically,	it	stands	for	
the	unique	real	number,	𝑥,	such	that	𝑏!	will	be	equal	to	𝑛.	
	
Answers:	
a)	We’d	raise	10	to	the	2nd	power	to	get	100;	therefore,	by	definition	of	logarithm,	log!"(100) = 2	
	
b)	What	power	of	2	gives	us	32?	It	turns	out	to	be	a	whole	number	–	if	you	multiply	by	2	five	times,	the	result	
is	32.	Therefore,	2! = 32,	which	means	the	value	of	log!(32)	is	5.	
	
c)	What	power	of	4	gives	us	32?	This	one	turns	out	not	to	be	a	whole	number.	This	is	because	4! = 16,	and	
4! = 64,	so	log!(32)	must	be	somewhere	between	2	and	3.	To	answer	this	without	a	calculator,	we	need	the	
following	observations:	first,	note	that	we	already	figured	out	(part	(b))	that	2! = 32.	Next,	notice	that	2	is	the	
square	root	of	4	–	that	is,	2 = 4! !.	Put	this	together,	and	we	have	the	following:	if	we	take	the	second	
(“square”)	root	of	2,	then	raise	that	number	to	the	5th	power,	the	result	is	32	–	that	is,	

2! = 4! !

!!!" !" 
!"#$% !" !

! = 4! ! = 32.	

	
This	idea	of	raising	a	root	to	a	power	is	exactly	what	leads	us	to	fractional	exponents	–	in	particular,	the	
second	root	gives	us	a	denominator	(in	the	exponent)	of	2,	and	the	fifth	power	gives	us	a	numerator	of	5.	So,	
what	we’re	describing	here	is	raising	4	to	the	5/2	power.	Therefore,	log!(32) = 5/2.	
	

(Short	answer:	log! 32 = log!(2!) = log! 4! ! ! = log!(4! !) = 5/2. )	
	



c)	(cont.)	Another	way	to	figure	out	the	value	of	log!(32)	is	to	observe	that	32 = 2!.	This	allows	us	to	use	the	
“log-of-a-power”	property	of	logarithms	as	follows:	

log! 32 = log! 2! = 5 ⋅ log! 2 .	
	
At	this	point,	note	that	2	is	the	square	root	of	4	–	that	is,	2 = 4! !-	which	implies	log!(4) = 1/2.		
Therefore,	we	can	substitute	½	for	log!(4)	in	the	above	calculation,	giving	us:	

log! 32 = log! 2! = 5 ⋅ log! 2 = 5 ⋅ 1 2 = 5 2.	
	
	
d)	To	find	the	value	of	log! 9!""" ,	we	must	answer	the	question:	what	power	of	3	gives	us	9!""".	(Resist	the	
urge	to	turn	on	your	calculator	–	it	probably	won’t	be	able	to	help	anyway!)		The	key	to	this	problem	is	to	
observe	that	9 = 3!;	therefore,	anywhere	we	see	a	9	we	can	substitute	3!	in	its	place.	In	particular:	

9!""" = (3!)
!!!" !"
!"#$% 
!! !

!""" = 3!×!"""
!"#" !" !"! !ℎ! 
!"#$% !" ! !"#$%

!"#$…

= 3!""".	

Thus,	9!"""	is	equal	to	3!""";	that	is,	we’d	have	to	raise	3	to	the	2000th	power	to	get	9!""".	
In	other	words:	log! 9!""" = 2000.	
	
(Short	answer:	log! 9!""" = log! 3! !""" = log! 3!""" = 2000.)	
	
Alternative	solution	–	again,	using	the	“log-of-a-power”	rule,	we	could	compute	log! 9!""" 	as	follows:	

log!(9!""") = 1000 ⋅ log! 9
!!!!,   !"
!"#! ! !!

= 1000 ⋅ 2 = 2000.	

	
	
11.	Consider	the	following	diagram,	which	represents	our	version	of	just	intonation	based	on	“C”:	
	
Answers	for	part	(a)	shown	in	the	diagram	below:

	
Solutions:		
a)	Each	frequency	ratio	is	found	based	on	the	fact	that	the	frequency	ratio	of	an	octave	is	2/1.	So,	for	example:	
the	G#	in	the	second	octave	is	one	octave	above	the	G#	in	the	first	octave,	whose	frequency	(as	shown)	is	8/5	
of	the	base	frequency.	Therefore,	to	raise	by	an	octave,	we	multiply	the	frequency	ratio	by	two,	giving	us	
!
!
× !
!
= !"

!
	of	the	base	frequency.		

	
	 	



#11,	cont.		
	
b)	Here	are	a	few	examples	of	“broken	fifths:”	

• D	–	A:	This	one	is	explained	in	the	instructions	(it	was	given	as	an	example	of	a	“broken	fifth”).	
	

• F#	-	C#:		These	two	tones	are	separated	by	seven	semitones.	However,	the	frequency	ratio	of	this	
interval	–	that	is,	the	higher	frequency	divided	by	the	lower	frequency	–	is	

32
15÷

45
32 =

32
15×

32
45 =

1024
675 ≈ 1.52.	

	
This	is	not	equal	to	1.5,	so	F#	-	C#	is	a	“broken	fifth”	under	this	version	of	just	intonation.		
	

• A#	-	F:	These	are	also	separated	by	seven	semitones;	however,	the	frequency	ratio	of	this	interval	is	
8
3÷

9
5 =

8
3×

5
9 =

40
27 ≈ 1.48,	

	
which	is	not	equal	to	1.5.	Therefore,	A#-F	is	yet	another	“broken	fifth”	under	this	intonation.	

	
These	are	all	the	examples	of	“broken	fifths”	that	I	found.	(Did	I	miss	any?)	
	
c)	A	few	examples	of	“broken	major	thirds”	(see	if	you	can	find	others)…	

• E	–	G#:		These	two	notes	are	four	semitones	apart;	however,	the	frequency	ratio	of	this	interval	is	
8
5÷

5
4 =

8
5×

4
5 =

32
25 = 1.28,	

	
which	is	not	equal	to	1.25.	Thus,	this	is	a	“broken	major	third.”		

	
• F#	-	A#:	These	two	notes	are	four	semitones	apart;	however,	the	frequency	ratio	of	this	interval	is	

9
5÷

45
32 =

9
5×

32
45 =

288
225 = 1.28,	

	
which	is	not	equal	to	1.25.	Thus,	this	is	another	“broken	major	third.”		

	
• A	–	C#:	These	two	notes		are	four	semitones	apart;	however,	the	frequency	ratio	of	this	interval	is	

32
15÷

5
3−

32
15×

3
5 =

96
75 = 1.28,	

	
which	is	not	equal	to	1.25.	Thus,	this	is	another	“broken	major	third.”		
	
(Note	that	E-G#,	F#-A#,	and	A-C#	all	have	exactly	the	same	frequency	ratio:	36/25,	or	1.28.	This	isn’t	
necessarily	significant,	but	it	is	interesting!)	

	
These	are	all	the	“broken	major	thirds”	that	I	found.	(Did	I	miss	any?)	
	 	



12.	Suppose	a	musician	decides	to	construct	a	keyboard	that	divides	the	octave	into	17	tones,	rather	than	the	
usual	12,	using	equal	temperament.	(In	other	words,	consider	“17-TET.”)	Note	–	just	for	the	following	
questions,	we’ll	refer	to	the	interval	between	two	consecutive	tones	of	the	17-tone	scale	as	a	“semitone.”	
	

a)	What	would	be	the	frequency	interval	of	each	“semitone”	(rather	than	the	usual	 12/12 ,	or	12 2 )?	
	
Answer:	Under	17-TET,	each	semitone’s	frequency	ratio	would	be	2! !"	rather	than	2! !",	so	that	raising	by	a	
“semitone”	17	times	would	have	a	cumulative	effect	of	doubling	the	original	frequency,	resulting	in	an	octave.	
	
b)	Find	the	frequency	of	each	tone	in	an	octave	(as	a	multiple	of	the	base	frequency).	Give	an	exact	answer	for	
each,	as	well	as	a	decimal	rounded	to	the	nearest	thousandth	(three	places).		
	
Answer:	These	would	be:	2! !", 2! !", 2! !", etc…	all	the	way	up	to	2!" !"	(the	16th	note	of	the	scale,	just	
before	the	octave	is	reached),	and	then	2	(for	the	octave).	The	decimal	approximations	should	be	as	follows:	
	

2! !" ≈ 1.042;  2! !" ≈ 1.085; 2! !" ≈ 1.130;  2!/!" ≈ 1.177; 2!/!" ≈ 1.226;  2! !" ≈ 1.277; 	
2! !" ≈ 1.330; 2! !" ≈ 1.386;  2! !" ≈ 1.443;  2!" !" ≈ 1.503; 2!! !" ≈ 1.566; 2!" !" ≈ 1.631; 	

2!" !" ≈ 1.699; 2!" !" ≈ 1.770;  2!" !" ≈ 1.843;  2!" !" ≈ 1.920; 2!" !" = 2. 	
 		
	
c)	Under	a	17-TET	tuning	system,	an	interval	of	how	many	“semitones”	comes	the	closest	to	approximating	a	
perfect	fifth?	(Hint:	because	we’re	currently	in	17-TET	rather	than	12-TET,	the	answer	will	not	be	seven	
“semitones.”)	
		
Solutions:	A	perfect	fifth	has	a	frequency	ratio	of	1.5,	so	we’d	want	to	find	the	frequency	ratio	from	part	(b)	
that	is	closest	to	this	value.	Of	these	ratios,	the	closest	fit	is	2!"/!" ≈ 1.503;	therefore,	under	17-TET,	a	ten-
“semitone”	interval	would	be	the	closest	approximation	to	a	perfect	fifth.	(The	next	closest	fit	would	be	a	
nine-“semitone”	interval,	whose	frequency	ratio	is	2!/!" ≈ 1.443.	These	frequency	ratios	are	“off”	by	0.003	
and	0.057	respectively.)		
	

Comment:	Recall	that	under	12-TET,	the	seven-semitone	interval	has	frequency	ratio	2
!
!" ≈ 1.498,	which	is	

closer	to	the	desired	3/2	ratio	than	we	can	achieve	in	a	17-TET	scale.	This	serves	to	illustrate	why	12-TET	is	
generally	used	in	preference	to	other	equal	temperament	systems	such	as	17-TET.	(In	fact,	no	ET	tuning	
system	gives	us	a	better	fit	to	the	perfect	fifth	unless	we	are	willing	to	consider	scales	with	more	than	40	tones	
per	octave!)	
	
d)	How	many	17-TET	“semitones”	would	most	closely	approximate	a	perfect	fourth?	…a	major	third?	…a	major	
sixth?	
	
Solution:	We’ll	just	look	at	the	major	third	here	as	an	example.	The	frequency	ratio	for	a	major	third	is	1.25.	
Looking	at	the	frequency	ratios	we	found	in	part	(b)	above,	we	see	that	none	of	the	notes	in	the	17-tone	scale	
comes	very	close	to	this.	The	closest	ones	are	1.226	(for	a	5-tone	interval)	or	1.277	(for	a	6-tone	interval).	The	
former	is	off	by	0.024	(that	is,	1.250-1.226=0.024),	while	the	latter	is	off	by	0.027,	so	in	that	sense	the	5-step	
interval	is	slightly	closer.		
	
Another	good	way	to	compare	intervals	is	by	using	“cents”	measurement.	We’ll	use	“cents”	here,	just	for	a	
little	extra	practice	with	the	formula…	 	



	

A	“pure”	major	third	has	a	width	of	1200× !"# !.!"
!"# !

≈ 386.3	cents	
	

The	5-step	interval,	whose	frequency	ratio	is	2!/!",	would	have	a	width	of	1200× !"# !! !"

!"# !
≈ 352.9	cents	

The	6-step	interval,	whose	frequency	ratio	is	2! !",	would	have	a	width	of	1200× !"# !! !"

!"# !
≈ 423.5	cents	

The	5-step	interval	is	off	by	386.3-352.9=33.4	cents;	the	6-step	interval	is	off	by	423.5-386.3=37.2	cents.	
So,	the	“winner,”	by	about	3.8	cents,	is	the	5-“semintone”	interval	in	17-TET.	(Note:	with	a	33-cent	“error,”	
this	is	not	a	very	good	approximation	of	a	pure	major	third.)	
	
	 	



 


