
MATH 210, TEST #1

SOLUTIONS

1. Assume that A, B and C are sets. Solve each of the following problems. No additional work or

explanation is required for the problems on this page.

a) Describe, in words, the set (𝐴 ∩ 𝐵′) ∪ (𝐵 ∩ 𝐶). Your written description may not include any of

the words “union,” “intersection,” or “complement.”

Solution (wording may vary slightly):

The set of all elements that are in A and not in B, or that are in both B and C.

Note: something like “set A and not set B…” is in the ballpark, but doesn’t make sense as

written. When describing a set, you are specifically describing a criterion that each element of

the set must satisfy. If there’s no mention of “elements” (or something with that meaning), then

you didn’t get full credit since your explanation was not clear.

b) Shade in the region of the Venn diagram below which corresponds to the set (𝐵 ∩ 𝐶)′.
Solution: Shade the entire diagram except for the region corresponding to 𝐵 ∩ 𝐶, as shown:

c) Use set operations (union, intersection, complement) to describe the set that corresponds to the

shaded region in the Venn diagram below.

Solution: The simplest way (there are other

correct ways) to describe the shaded area is as

(𝑨 ∪ 𝑪)′ ∪ (𝑩 ∩ 𝑪).

Another correct answer is
(𝑨′ ∩ 𝑩′ ∩ 𝑪′) ∪ (𝑩 ∩ 𝑨′) ∪ (𝑨 ∩ 𝑩 ∩ 𝑪)

2. Use a truth table to determine whether the proposition

((𝒑 → 𝒒) ∧ (𝒑 ∨ 𝒒)) ↔ 𝒒

is a theorem. Explain your conclusion (write at least one sentence of explanation).

Solution:

𝑝 𝑞 𝑝 → 𝑞 𝑝 ∨ 𝑞 (𝑝 → 𝑞) ∧ (𝑝 ∨ 𝑞) ((𝑝 → 𝑞) ∧ (𝑝 ∨ 𝑞)) ↔ 𝑞

T T T T T T

T F F T F T

F T T T T T

F F T F F T

Since the ((𝑝 → 𝑞) ∧ (𝑝 ∨ 𝑞)) ↔ 𝑞 column consists entirely of T’s, we can see that this proposition is

always true, regardless of the status of 𝑝 or 𝑞. Therefore, this proposition is a theorem.

(Note: it would suffice to stop with the next-to-last column above, then write a sentence observing that
(𝑝 → 𝑞) ∧ (𝑝 ∨ 𝑞) is true if and only if 𝑞 is true.)

3. Use an element chasing argument to prove: (𝑨 ∩ 𝑩) ∪ (𝑩′ ∪ 𝑪)′ ⊆ 𝑩.

Solution: We want to prove that every element of (𝐴 ∩ 𝐵) ∪ (𝐵′ ∪ 𝐶)′ must be an element of B.

Proof: Let 𝑥 ∈ (𝐴 ∩ 𝐵) ∪ (𝐵′ ∪ 𝐶)′. There are two cases to consider.

 Case 1: Suppose 𝑥 ∈ (𝐴 ∩ 𝐵). Then, x is in both set A and set B, by definition of intersection.

Thus, x is an element of set B.

 Case 2: Suppose ∈ (𝐵′ ∪ 𝐶)′. Then, 𝑥 is not an element of 𝐵′ ∪ 𝐶. This means 𝑥 is not in the

union of 𝐵′ and C – that is, x can be and element of neither B’ nor C. Since x is not an element

B’, it follows that x is an element of set B.

In both cases, we can conclude that 𝑥 ∈ 𝐵. Thus, every element of (𝐴 ∩ 𝐵) ∪ (𝐵′ ∪ 𝐶)′ must be an

element of B. It follows that (𝐴 ∩ 𝐵) ∪ (𝐵′ ∪ 𝐶)′ ⊆ 𝐵. ∎

Comment: If you did not read the instructions carefully, and tried to do a full element chasing proof of

set equality, then you should have been unsuccessful, since 𝐵 ⊈ (𝐴 ∩ 𝐵) ∪ (𝐵′ ∪ 𝐶)′. For example, any

element of 𝐴 which is not also an element of B would be an element of (𝐴 ∩ 𝐵) ∪ (𝐵′ ∪ 𝐶)′, but not of

B.

4. Do ONE of the following; pick the one you feel more comfortable with. If you try both, clearly

indicate which one you want to have graded. (You won’t get extra credit for doing both!)

a. Use appropriate Boolean identity laws to prove the theorem:

�̅�𝒚 + (𝒛 + 𝒙̅̅ ̅̅ ̅̅ ̅) = �̅�(𝒚 + �̅�).

Show all necessary steps of your proof. (Hint: You should be able to complete this proof using only

those laws you were instructed to memorize – commutative, associative, distributive, and/or De Morgan)

Solution: We’ll start with the left-hand side, and show it’s equal to the right-hand side…

�̅�𝑦 + (𝑧 + 𝑥̅̅ ̅̅ ̅̅ ̅) = �̅�𝑦 + 𝑧̅ �̅� (𝐷𝑒 𝑀𝑜𝑟𝑔𝑎𝑛)
= �̅�𝑦 + �̅� �̅� (𝐶𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑣𝑒)

 = �̅�(𝑦 + �̅�) (𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑣𝑒)

b. Use appropriate set identity laws to prove the identity:

(𝑨′ ∩ 𝑩) ∪ (𝑪 ∪ 𝑨)′ = 𝑨′ ∩ (𝑩 ∪ 𝑪′)

Solution: We’ll start with the left-hand side, and show it’s equal to the right-hand side…

(𝐴′ ∩ 𝐵) ∪ (𝐶 ∪ 𝐴)′ = (𝐴′ ∩ 𝐵) ∪ (𝐶′ ∩ 𝐴′) (𝐷𝑒 𝑀𝑜𝑟𝑔𝑎𝑛)
= (𝐴′ ∩ 𝐵) ∪ (𝐴′ ∩ 𝐶′) (𝐶𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑣𝑒)
= 𝐴′ ∩ (𝐵 ∪ 𝐶′) (𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑣𝑒)

Comment: Aside from context (Boolean variables vs. sets), these proofs are identical!

5. Find the maxterm and minterm expansions for the Boolean function, 𝑓, which is defined by the

following table:

𝑥 𝑦 𝑧 𝑓(𝑥, 𝑦, 𝑧)

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

Solutions:

To find the minterm expansion, focus on the cases in which 𝑓 = 1:

Row 1 minterm: �̅� �̅� 𝑧̅
Row 2 minterm: �̅� �̅� 𝑧

Row 4 minterm: �̅� 𝑦 𝑧

Row 5 minterm: 𝑥 �̅� 𝑧̅
Row 7 minterm: 𝑥 𝑦 𝑧̅

So, 𝑓(𝑥, 𝑦, 𝑧) = �̅� �̅� 𝑧̅ + �̅� �̅� 𝑧 + �̅� 𝑦 𝑧 + 𝑥 �̅� 𝑧̅ + 𝑥 𝑦 𝑧̅ .

To find the maxterm expansion, we’ll first find the minterm expansion for 𝑓:̅
𝑓(̅𝑥, 𝑦, 𝑧) = �̅� 𝑦 𝑧̅ + 𝑥 �̅� 𝑧 + 𝑥 𝑦 𝑧

The maxterm expansion for 𝑓 is the negation of the minterm expansion for 𝑓:̅

𝑓(𝑥, 𝑦, 𝑧) = �̅� 𝑦 𝑧̅ + 𝑥 �̅� 𝑧 + 𝑥 𝑦 𝑧̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
= �̅� 𝑦 𝑧̅̅̅ ̅̅ ̅̅ 𝑥 �̅� 𝑧̅̅ ̅̅ ̅̅ 𝑥 𝑦 𝑧̅̅ ̅̅ ̅̅
= (𝑥 + �̅� + 𝑧)(�̅� + 𝑦 + 𝑧̅) (�̅� + �̅� + 𝑧̅)

6. Consider the following argument:

PREMISES

Everyone who can drive has a driver’s license.

No toddler has a driver’s license.

Ruby cannot drive.

CONCLUSION

Ruby is a toddler.

a) Use propositional calculus to write the premises and the conclusion of this argument symbolically.

(Clearly define each of your “atoms” – don’t make me guess at what your notation means.)

b) Determine whether the argument is valid. Show all necessary work, and write at least one sentence to

explain your conclusion.

Solution:

Your atoms should be as follows (though your notation may be different):

D: It can drive.

L: It has a driver’s license.

R: It is Ruby.

T: It is a toddler.

Then, the argument may be written as follows:

Premises: 𝐷 → 𝐿 ; 𝑇 → ¬𝐿 ; 𝑅 → ¬𝐷

Conclusion: 𝑅 → 𝑇

So, the argument is equivalent to the following proposition:

((𝐷 → 𝐿) ∧ (𝑇 → ¬𝐿) ∧ (𝑅 → ¬𝐷)) → (𝑅 → 𝑇)

We can use the contrapositive and deduction laws to simplify this somewhat. By the contrapositive law,

𝑇 → ¬𝐿 is equivalent to 𝐿 → ¬𝑇. So, deduction gives us: ((𝐷 → 𝐿) ∧ (𝐿 → ¬𝑇)) → (𝐷 → ¬𝑇). So, we

can deduce the following:

((𝐷 → 𝐿) ∧ (𝑇 → ¬𝐿) ∧ (𝑅 → ¬𝐷)) ↔ ((𝐷 → 𝐿) ∧ (𝐿 → ¬𝑇) ∧ (𝑅 → ¬𝐷))

→ ((𝐷 → ¬𝑇) ∧ (𝑅 → ¬𝐷))

Unfortunately, we’re stuck at this point – it’s not possible to conclude from (𝐷 → ¬𝑇) and (𝑅 → ¬𝐷)

that 𝑅 → 𝑇 is true. It is tempting to substitute ¬𝐷 → 𝑇 for 𝐷 → ¬𝑇 (since this would allow us to

conclude 𝑅 → ¬𝐷 → 𝑇 by deduction); however, this would be invalid, since an implication is not

logically equivalent to its inverse. (We could, by the contrapositive law, substitute 𝑇 → ¬𝐷 for

𝐷 → ¬𝑇, but this would not help.)

In summary: If all of the premises are true, it is possible for R to be true while T is false; that is, it’s

possible that Ruby is not a toddler. More specifically: if atom R is true (it is Ruby) while D, L and T are

all false (Ruby can’t drive, doesn’t have a license, and isn’t a toddler), then all three premises are true

but the conclusion is false. Thus, the argument is rendered invalid.

Or, in other words: based on the premises, we don’t assume anything at all about people who can’t

drive. So, the fact that Ruby can’t drive gives us no further information about her – in particular, we

don’t know whether or not she’s a toddler. (Nor, for that matter, do we even know – based on the

premises – whether she has a driver’s license!)

By the way: in reality, all of the premises are true, and…

…it just so happens that Ruby is, in fact, a toddler!

BUT – and this is an important point – even though the conclusion of the argument happens to be true,

the fact remains that the argument is invalid! Make sure you understand the difference!

