B.TECH DEGREE EXAMINATION, MAY 2012
 Fourth Semester
 EN 010401 - ENGINEERING MATHEMATICS -III
 (Regular - 2010 Admissions)
 [Common to all Branches]

Time: Three Hours
Maximum: 100 Marks

Part A

Answer all questions.
Each question carries $\mathbf{3}$ marks.

1. Expand $\pi x-x^{2}$ in a half range sine series in the interval ($0, \pi$) upto the first three terms.
2. Find the Fourier Transform of $f(x)=\left\{\begin{array}{l}1 \text { for }|x|<1 \\ 0 \text { for }|x|>1 .\end{array}\right.$
3. Form the partial differential equation by eliminating the arbitrary functions from $f\left(x+y+z, x^{2}+y^{2}+z^{2}\right)=0$.
4. During war, one ship out of nine was sunk on an average in a certain voyage. What was the probability that exactly 3 out of a convoy of 6 ships would arrive safely?
5. A random sample of 900 members has a mean 3.4 cm . Check if it can reasonably regarded as a sample of large population of mean 3.2 cm and $\mathrm{SD}=2.3 \mathrm{~cm}$.

$$
\text { (5 x } 3 \text { = } 15 \text { marks) }
$$

Part B

Answer all questions

Each question carries 5 marks.
6. Obtain Fourier series for the function
$f(x)=n x, \quad 0 \leq x \leq 1$
$=\pi(2-x) \quad 1 \leq x \leq 2$
7. Find the Fourier cosine transform of $f(x)=\frac{1}{1+x^{2}}$ and hence derive Fourier sine Transform of $\phi(x)=\frac{x}{1+x^{2}}$.
8. Solve $\frac{\partial^{2} x}{\partial x \partial y}=\sin x \sin y$, given that $\frac{\partial z}{\partial y}=-2 \sin y$, when $\mathrm{x}=0$ and $\mathrm{z}=0$, when y is an odd multiple of $\frac{\pi}{2}$.
9. Assume that the probability of an individual coal-miner being killed in a mine accident during a year is $\frac{1}{2400}$. Use Poisson's distribution to calculate the probability that in a mine employing 200 miners, there will be at least on fatal accident in a year.
10. A coin was tossed 400 times and the head turned up 216 times. Test the hypothesis that the coin is unbiased.

Part C

Answer any one full question from each module.
Each full question carries $\mathbf{1 2}$ marks.
MODULE 1
11. If $f(x)=x, \quad 0<x<\pi / 2$
$=\pi-x, \quad \frac{\pi}{2}<x<\pi$, show that
(a) $f(x)=\frac{4}{\pi}\left[\sin x-\frac{\sin 3 x}{3^{2}}+\frac{\sin 5 x}{5^{2}}-\cdots\right]$.
(b) $f(x)=\frac{\pi}{4}-\frac{2}{\pi}\left[\frac{\cos 2 x}{1^{2}}+\frac{\cos 6 x}{3^{2}}+\frac{\cos 10 x}{5^{2}}+\cdots\right]$.
(5 marks)
(7 marks)
Or
12. Obtain the first three coefficients in the Fourier series for y from the following data:

x	$:$	0	1	2	3	4	5
y	$:$	4	8	15	7	6	2

MODULE 2

13.

(a) Using Fourier integral representation, show that $\int_{0}^{\infty} \frac{\cos \omega x}{1+\omega^{2}} d \omega=\frac{\pi}{2} e^{-x} \quad(x \geq 0)$. (6 marks)
(b) Solve for $\mathrm{F}(\mathrm{x})$ the integral equation $\int_{0}^{\infty} F(x) \sin t x d x=\left\{\begin{array}{cc}1, & 0 \leq t<1 \\ 2, & 1 \leq t<2 \\ 0, & t \geq 2\end{array}\right.$
14.
(a) Using Parseval's identity, prove that $\int_{0}^{\infty} \frac{d t}{\left(a^{2}+t^{2}\right)\left(b^{2}+t^{2}\right)}=\frac{\pi}{2 a b(a+b)}$.
(5 marks)
(b) Solve the integral equation $\int_{0}^{\infty} F(x) \cos p x d x=\left\{\begin{array}{cc}1-p, & 0 \leq p \leq 1 \\ 0, & p>1\end{array}\right.$ and hence deduce that $\int_{0}^{\infty} \frac{\sin ^{2} t}{t^{2}} d t=\frac{\pi}{2}$.

MODULE 3
15. Solve $2 z x-p x^{2}-2 p x y+p q=0$.
(12 marks)
Or
16. Solve:
(a) $\left(D^{2}-2 D D^{\prime}+{D^{\prime}}^{2}\right) z=e^{(2 x+3 y)}$.
(b) $\frac{\partial^{2} x}{\partial x^{2}}+3 \frac{\partial^{2} z}{\partial x \partial y}+2 \frac{\partial^{2} z}{\partial y^{2}}=12 x y$.

MODULE 4

17. A random variable X has the following probability distribution values of X :

x	$:$	0	1	2	3	4	5	6	7	8	9
$p(x)$	$:$	a	$3 a$	$5 a$	$7 a$	$9 a$	$11 a$	$13 a$	$15 a$	$17 a$	$19 a$

(a) Determine the value of a.
(b) Find $P(X<3), P(X \geq 3), P(2 \leq X<5)$.
(c) What is the smallest value for which $P(X \leq x)>0.5$?
18. A sample of 100 button cells tested to find the length of life, produced the following results: $\bar{x}=12$ hours, $\sigma=3$ hours. Assuming the data to be normally distributed, what percentage of button cells are expected to have life
(a) more than 15 hours;
(b) less than 6 hours; and
(c) between 10 and 14 hours?

MODULE 5
19. Two independent sample sizes of 7 and 6 has the following values:

| Sample A | $:$ | 28 | 30 | 32 | 33 | 31 | 29 | 34 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| Sample B | $:$ | 29 | 30 | 30 | 24 | 27 | 28 | \ldots |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Examine whether the samples have been drawn from normal populations having the same variance.
(12 marks)
Or
20. Records taken of the number of male and female births in 800 families having four children are as follows:
$\begin{array}{lllllll}\text { No. of male births } & : & 0 & 1 & 2 & 3 & 4\end{array}$
No. of female births : $4 \begin{array}{llllll} & 4 & 2 & 1 & 0\end{array}$
$\begin{array}{llllllll}\text { No. of families } & : & 32 & 178 & 290 & 236 & 94\end{array}$
Test whether the data are consistent with hypothesis that the binomial law holds and the chance of male birth is equal to that of the female birth, namely, $p=q=\frac{1}{2}$.
(12 marks)
[5 x 12 = 60 marks]

