
The Riemann Integral: Part 1

Introduction

The theory of integration forms an important part of mathematical analysis. Historically

integration was used to find areas of plane figures. Archimedes used the very same process to

find areas of parabola but he called it the method of exhaustion. The idea used by Archimedes

was to divide the desired area in terms of smaller and smaller areas so that the sum of the

areas of these smaller parts tended to a finite limit. It was the genius of Newton (and Leibniz

too) to recognize that the process of integration could be viewed as the inverse process of

differentiation. This greatly helped in finding areas of curves for which summing the areas of

smaller parts was difficult. After Newton people started thinking of integration as the inverse of

differentiation and the older approach based on summation was put at the back front.

At the beginning of nineteenth century Joseph Fourier started the new field of harmonic

analysis using which a function could be expressed as a linear combination of sines and cosines

as follows:

While analyzing such trigonometric series lot of questions arose about the idea of a function.

While each term in the trigonometric series is continuous, differentiable (in fact differentiable

as many times as we please) the sum of such series was not even guaranteed to be continuous.

This shook the mathematical community and mathematicians were forced to rethink about the

concept of a function. Before Fourier's time a function was thought of as a mathematical

expression like  etc. where one could calculate the value of function for a given value

of  using a formula. Fourier's trigonometric series forced mathematicians to take into account

functions which were much weirder. And the question put forward was: what kind of functions

does a trigonometric series represent?

Bernhard Riemann (pronounced Ree-maann) arrived on the mathematical scene in the

mid-nineteenth century and he reasoned that a function should be viewed more as a

correspondence so that to each value of the argument a unique value of the function could be

associated. Inherent in the theory of Fourier's trigonometric series is the technique of

integration of a function to calculate the coefficients of the series:

Riemann thus realized that a proper investigation of the Fourier series could not be done

unless there was a proper theory of integration. He chose to resort to the old age method of

summation to define the integration. And in his approach he made only one assumption about
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the nature of a function: the function should be bounded in the range under consideration.

Apart from this restriction the function could behave in weird ways. Riemann formalized the

concept of integration as a process of summation and put it on a solid foundation.

In this series of posts we will discuss the approach used by Riemann and will focus mostly on

the subtle points and not on the routine stuff (which is easily available in many textbooks). Our

main focus would be the formal definition of integration provided by Riemann and the

characterization of Riemann-integrable functions. The material presented in this regard would

be somewhat abstract but it represents the true spirit of mathematical analysis and explores the

themes of rigor and formalism in mathematics.

Riemann Integral: De�nition

Riemann started with the basic geometrical notion of treating the integral as an area under a

given curve. And like his predecessors he chose to calculate the area by splitting the region in

smaller rectangles and then adding the areas of the rectangles. Following the path of Riemann,

we begin with a function  defined on closed interval  with the only restriction that  is

bounded on . The boundedness property seems to be natural to assume otherwise the

graph of the function looks unbounded and seems to suggest that the area of the region under

the graph would be infinite.

Area approximated by Riemann Sum

In the above graph we have shown that  is positive in , but this is only for purposes of

illustration. Riemann used a partition  of interval  and formed

the sum:

where  is any arbitrary point in . Riemann argued that under a reasonable set of

assumptions the sums of type  would converge to a limit when the norm of the

partition  (i.e. ) gets smaller and smaller and finally tends to zero. Note that

f [a, b] f

[a, b]

f [a, b]

P = { , , , … , }x0 x1 x2 xn [a, b]

S(P , f) = f( )( − ) = f( )∆∑
k=1

n

tk xk xk−1 ∑
k=1

n

tk xk

tk [ , ]xk−1 xk

S(P , f)

P ∥P∥

The Riemann Integral: Part 1 | Paramanand's Math Notes

2



corresponding to any given partition there can be infinitely many Riemann sums based on the

choice of points . This idea can be formalized into a definition as follows:

Let  be a bounded function in closed interval . The number  is said to be the Riemann

integral of  on  if for any given number , there exists a  such that

for any Riemann sum  corresponding to any partition  with norm . When

such a number  exists we say that  is Riemann-integrable on interval  and we write

Riemann's Condition for Integrability

The definition above does not give any hint about deciding whether a function is Riemann-

integrable or not because the test mentioned in the definition requires us to have prior

knowledge of the number  with which the test of integrability can be performed. To

understand the question of integrability further we need to examine the behavior of a  function

in more detail. It turns out that a very clear picture emerges when we replace the values 

in the Riemann sum with the supremum and infimum of  in the interval . This idea

leads to the definition of Darboux sums.

As before let  be bounded in  and let  be a partition of .

Let  be the supremum and  be the infimum of  in interval .  exist

because the function  is bounded in . We form the Darboux Upper Sum

and the Darboux Lower Sum
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Upper and Lower Darboux sums

In the above figure the light blue rectangles represent a lower Darboux sum and the light blue

plus the yellow rectangles represent an upper Darboux sum.

Unlike the Riemann sums the Darboux sums are uniquely determined for a given partition 

of . It is quite obvious that any Riemann sum lies between its corresponding lower and

upper Darboux sums i.e. . If we add an extra point say  of the

subinterval  in partition  to make it finer say , it is clear that

It therefore follows that  whenever . In

plain English the Darboux upper sums decrease and the Darboux lower sums increase when

the partition is made finer. Let  be the supremum and infimum of  in  so that

 and . Therefore we see that the upper sums are bounded below by

 and the lower sums are bounded above by . It

follows that there exist two numbers  such that

If  are any partitions of  then  is also a partition of  which is

finer than both  and  and hence

so that any lower sum cannot exceed any upper sum. It hence follows that

The number  is called the upper Darboux integral of  on  and is denoted by
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Similarly the value  is called the lower Darboux integral of  on  and is denoted by

If  then  is the unique number such that for any  there are partitions 

of  such that

If we replace  by their union  then we see that for any partition 

(i.e.  finer than ) we have

It follows that for any given  there is a partition  such that  for

any partition  of . We shall identify this number  with the Riemann integral of 

in . We need to ensure that under these conditions there is a  such that

 whenever . The argument for this is bit abstract but highly

instructive and reader should pay great attention here.

We replace  by  and let  (this  is to guarantee

). Then we have a partition  such that

whenever . Let  be the number of points in  and we take .

Let  be such that . Then we can write  where the

sum  corresponds to those subintervals of  which contain no points of  (and hence these

subintervals are contained fully in subintervals of ) and  corresponds to other subintervals

made by .

Clearly we have

so that . Similarly we can show that . It follows that

 whenever . It follows that the number  is the Riemann integral of

 over .

What we have shown above is that:

A sufficient condition for the function  to be integrable on  is that

and in this case  is the Riemann integral of  on .
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In the course of establishing the above result we have also shown that the following can be

taken as an alternative and simpler definition of Riemann integral:

Let  be bounded on . If there is a number  such that for any  there is a partition

 of  such that  whenever  then the function  is said to be

Riemann integrable on  and  is called the Riemann integral of  on .

The condition of integrability mentioned above in terms of upper and lower Darboux integrals

is also necessary as we shall see below. Let us then suppose that  is Riemann integrable over

 and let  be its Riemann integral over . Then for any  we have a partition 

such that  whenever . Then we have

so that

Since we know that , it follows that we

can choose points  such that

Therefore we can see that

It now follows that we must have  and thus .

We have now established the condition of integrability as follows:

Let  be bounded on . Then  is Riemann integrable on  if and only if

or equivalently if and only if corresponding to any  there is a partition  of  such

that

 whenever .
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Since making a partition finer never increases  finding only one partition 

to meet above criteria is sufficient and therefor we have the following condition for

integrability given by Riemann:

If  is bounded in  then  is Riemann integrable on  if and only if for a given 

we can find a partition  of  such that

The reader should observe that the sum  is represented by the yellow

rectangles in the last figure and should try to deduce the geometrical meaning of the above

condition.

Introductory De�nition of the Riemann Integral

We can now understand the rationale behind the definition of integral provided in introductory

textbooks of calculus as a limit of sum. We take the partition such that every sub-interval is of

equal length. Thus we divide the interval  into  sub-intervals of equal length

 and the points  are chosen as . And the integral is then defined

as:

Apart from being simple (in the sense that it can be used to evaluate integrals of functions like

) this definition is not at all useful for theoretical investigations. For

complicated functions like  for a general  the above definition does not help. But if we

change the partition in such a way that the points of partition themselves form a geometrical

progression with  and  then we can evaluate the integral for . Clearly this

works only when  are of same sign. Let's assume  so that  is defined

and as , . We then have for 
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This example alone shows the power of the general definition of Riemann even for purposes of

calculation.

Cauchy's Condition for Integrability

If  is integrable over  then for any  we have a partition  such that

 for all partitions . Clearly this implies that

 whenever . It can be shown that this works in the

reverse direction too. In other words if for any given  we have a partition  of 

such that  whenever  then the function  is integrable

over .

For any given positive integer  we have a partition  such that 

whenever . If  is not finer than  then we can replace  by 

and therefore it is safe to assume that . Now consider the sequence  given by
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Clearly if  then we have  and therefore  is a Cauchy sequence

and hence has a unique limit . Letting  we see that the inequality 

is transformed into . Next let  be given and we choose a positive integer

. Let  be a partition of  with  and then we can see that

It therefore follows that  is integrable on . Thus we have established the Cauchy's
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A function  bounded on  is Riemann integrable on  if and only if for any given

 there exists a partition  of  such that  whenever

.

Note that using the standard definition of Riemann integral the above condition can also be

expressed as:

A function  bounded on  is Riemann integrable on  if and only if for any given

 there exists a number  such that  whenever

.

We have provided the definitions of Riemann integral (limit of Riemann sums as the norm of

partition gets smaller and smaller or as the partitions get finer and finer) and discussed the

conditions of integrability in this post. In the next post we will focus on certain classes of

integrable functions and study some of the important properties of Riemann integral.
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