Math 105 - Practice Exercises: Variations and Groups (with solutions)
Solutions start on the second page of this document. As always, try to solve each problem on your own before reading the solution.

Note: Exercises \#1-\#5 are based on the musical variations introduced in Section 2.1 of the class notes.

1. For each of the following variations, find its opposite.
a) T_{8}
b) $T_{4} R$
c) $T_{4} I$
2. Show that each of the following variations is its own opposite:
a) $T_{8} I$
b) $T_{6} R$
c) $T_{2} I R$
3. Find the cyclic subgroup (of the group of 48 variations) generated by each of the following.
a) T_{4}
b) $T_{4} R$
c) $T_{3} I R$
d) T_{7}
4. Which musical transpositions generate a cyclic subgroup consisting of exactly four variations? (Hint: there are four such variations. Can you find them all?)
5. For each of the following sets of variations (using the usual rules for combining variations) determine whether the set is a group. (Remember: to be a group, you need to have an identity, opposites, and closure.)
a) $\left\{T_{0}, R, T_{4}, T_{4} R, T_{8}, T_{8} R\right\}$
b) $\left\{T_{0}, I, T_{4}, T_{4} I\right\}$
c) $\left\{T_{0}, T_{3}, T_{4}, T_{6}, T_{8}, T_{9}\right\}$
d) $\left\{T_{2}, T_{4}, T_{6}, T_{8}, T_{10}\right\}$

Exericses \#6 and \#7 use "modular arithmetic" (as defined in Section 2.2 of the class notes).
6. Determine whether each of the following is a group.
a) The set $\{0,2,4\}$ under addition modulo 5
b) The set $\{0,2,4\}$ under addition modulo 6
c) The set $\{1,2,3,4\}$ under multiplication modulo 7
d) The set $\{1,2,4\}$ under multiplication modulo 7
7. For each group, find the indicated cyclic subgroups.
a) For the group $\{0,1,2,3,4,5\}$ under mod 6 addition, find the subgroups $\langle 2\rangle,\langle 3\rangle$, and $\langle 4\rangle$.
b) For the group $\{0,1,2, \ldots, 14\}$ under mod 15 addition, find the subgroups $\langle 3\rangle$ and $\langle 5\rangle$.
c) For the group $\{1,2,3,4,5,6\}$ under mod 7 multiplication, find the subgroups $\langle 2\rangle$ and $\langle 3\rangle$.
d) For the group $\{1,2,3, \ldots, 12\}$ under mod 13 multiplication, find the subgroups $\langle 3\rangle$ and $\langle 4\rangle$.

Solutions and Comments

1. Find the opposite of each of the following.
a) The opposite of T_{8} is T_{4}. This is because $T_{8} T_{4}=T_{0}$, which is the identity.

Comment: in general, the opposite of T_{n} is T_{12-n}.
b) The opposite of $T_{4} R$ is $T_{8} R$. This is because $T_{4} \underbrace{R T_{8}}_{T_{8} R} R=\underbrace{T_{4} T_{8}}_{T_{0}} \underbrace{R R}_{T_{0}}=T_{0}$, which is the identity.

Comment: in general, the opposite of $T_{n} R$ is $T_{12-n} R$.
c) The opposite of $T_{4} I$ is $T_{4} I$. (Strangely enough, it is its own opposite!)

$$
T_{4} \underbrace{I T_{4} I}_{T_{8} I} I=\underbrace{T_{4} T_{8}}_{T_{0}} \underbrace{I I}_{T_{0}}=T_{0}
$$

Comment: In fact, it turns out that $T_{n} I$ is always its own opposite. This is an interesting "side-effect" of the rule for switching the order of inversions and transpositions. Actually, the underlying reason behind this property is that every variation of the form $T_{n} I$ is actually another inversion - that is, an inversion centered somewhere other than C . (For example, $T_{2} I$ is the inversion centered at F.)

Here's how this works out in general: $T_{n} \underbrace{I T_{n}}_{T_{12-n} I} I=\underbrace{T_{n} T_{12-n}}_{T_{0}} \underset{T_{0}}{I I}=T_{0}$
2. Show that each of the following variations is its own opposite:
a) $T_{8} I$ is its own opposite because combining $T_{8} I$ with itself leaves us with the identity, T_{0} :

$$
T_{8} I T_{8} I=T_{8} \underbrace{I T_{8}}_{T_{12-8} I} I=\underbrace{T_{8} T_{4}}_{T_{0}} \underbrace{I I}_{T_{0}}=T_{0}
$$

(As noted in the above comment on \#1 part (c), $T_{n} I$ is its own opposite for all values of n.)
b) $T_{6} R$ is its own opposite: $T_{6} R T_{6} R=\underbrace{T_{6} T_{6}}_{T_{0}} \underbrace{R R}_{T_{0}}=T_{0}$
c) $T_{2} I R$ is its own opposite:
$T_{2} I \underbrace{R T_{2}}_{T_{2} R} I R=T_{2} \underbrace{I T_{2}}_{T_{10} I T_{2}} \underbrace{R I}_{I R} R=\underbrace{T_{2} T_{10}}_{T_{0}} \underbrace{I I}_{T_{0}} \underbrace{R R}_{T_{0}}=T_{0}$
(Note: similarly to $T_{n} I$, it turns out that $T_{n} I R$ is its own opposite for all values of n.)
Comment on \#2: It turns out that there are 28 variations (more than half of the set of all 48 variations) that are their own opposites. As noted above, all variations of the form $T_{n} I$ or $T_{n} I R$ are their own opposites. There are 12 variations of each of these forms (one for each value of n between 0 and 11 , inclusive), for a total of 24 variations with ths property. The other four variations that are their own opposites are: T_{0}, T_{6}, R, and $T_{6} R$.
3. Find the cyclic subgroup (of the group of 48 variations) generated by each of the following.
a) T_{4}

Answer: the cyclic subgroup generated by T_{4} is $\left\{T_{4}, T_{8}, T_{0}\right\}$. This is because combining T_{4} with itself repeatedly gives us T_{4}, then T_{8}, then T_{0}.
b) $T_{4} R$

Answer: The cyclic subgroup generated by $T_{4} R$ is $\left\{T_{4} R, T_{8}, R, T_{4}, T_{8} R, T_{0}\right\}$. See below for details:
One repetition: $T_{4} R$
Two repetitions:

$$
T_{4} R T_{4} R=T_{8}
$$

Three repetitions: Note that we know two repetitions give us T_{8}, so we don't need to do that again - just "add" another $T_{4} R$ to the previous result, which was T_{8} :

$$
\underbrace{T_{8} T_{4}}_{T_{0}} R=R
$$

Four repetitions: As before, just "add" another $T_{4} R$ to the preceding result:

$$
\underbrace{R T_{4} R}_{T_{4} R}=T_{4} R R=T_{4}
$$

Five repetitions: Proceed as before:

$$
\underbrace{T_{4} T_{4}}_{T_{8}} R=T_{8} R
$$

Six repetitions:

$$
T_{8} \underbrace{R T_{4}}_{T_{4} R} R=\underbrace{T_{8} T_{4}}_{T_{0}} \underbrace{R R}_{T_{0}}=T_{0}
$$

We see that six repetitions of $T_{4} R$ result in the identity, and this is the smallest number of repetitions which give us this result.
c) $T_{3} I R$

Answer: As we noted above (in the solution for \#1(d), and again in the solution for \#2), any variation of the form $T_{n} I R$ is its own opposite. Therefore, $T_{3} I R T_{3} I R=T_{0}$, so the cyclic subgroup generated by $T_{3} I R$ only has two variations: $\left\{T_{3} I R, T_{0}\right\}$.
d) T_{7}

You would need to repeat $T_{7} 12$ times to end up with the identity, T_{0}. You should verify this for yourself. I won't show all the calculations here, but you should end up with - in order (relative to the number of times you've repeated T_{7}) - the following results:

$$
T_{7}, T_{2}, T_{9}, T_{4}, T_{11}, T_{6}, T_{1}, T_{8}, T_{3}, T_{10}, T_{5}, T_{0}
$$

Comment/question: Why do you suppose some variations (like T_{4}, as seen earlier) only run through a few different transpositions when repeated over and over, while others (such as T_{7}) run through all twelve?
4. Which musical transpositions have generate a cyclic subgroup consisting of exactly four variations?

Answers: Recall that any variation which involves an inversion (i.e. $T_{n} I$ or $T_{n} I R$) is its own opposite. So, a variation that generates more than two variations must be either a transposition or a transposition followed by a retrograde.

Since 3 goes into 12 four times, we can see pretty quickly that four repetitions of T_{3} will result in transposition by $3+3+3+3=12$ semitones; that is, $T_{3} T_{3} T_{3} T_{3}=T_{0}$. Similarly, four repetitions of $T_{3} R$ has the same effect as four repetitions of T_{3} and four retrogrades.

The other variations with this property are T_{9} and $T_{9} R$. This isn't as readily apparent as the other two answers, but they both work: $T_{9} T_{9}=T_{18}=T_{6} ; T_{9} T_{9} T_{9}=T_{27}=T_{3} ; T_{9} T_{9} T_{9} T_{9}=T_{36}=T_{0}$. Similarly, $T_{9} R$ generates a subgroup of size four as well.

Comment: The mathematical reason why T_{9} generates a subgroup of size 4 is that $9+9+9+9-$ that is, $9 \times 4-$ is the smallest multiple of 9 that is also a multiple of 12 . That is, $9 \times 4=36$, which is a multiple of 12 , and no smaller multiple of 9 is a multiple of 12. In other words, the "least common multiple" of 9 and 12 is $9 \times 4=36$. Contrast this result with \#3(d) above, in which T_{7} turns out to generate a subgroup of size 12 ; this occurs because the "least common multiple" of 7 and 12 is $7 \times 12=84$; no smaller multiple of 7 turns out to also be a multiple of 12 .
5. For each of the following sets of variations (using the usual rules for combining variations) determine whether the set is a group. (Remember: to be a group, you need to have an identity, opposites, and closure.)
a) $\left\{T_{0}, R, T_{4}, T_{4} R, T_{8}, T_{8} R\right\}$
b) $\left\{T_{0}, I, T_{4}, T_{4} I\right\}$
c) $\left\{T_{0}, T_{3}, T_{4}, T_{6}, T_{8}, T_{9}\right\}$
d) $\left\{T_{2}, T_{4}, T_{6}, T_{8}, T_{10}\right\}$

Answers: (a) is a group; (b), (c) and (d) are not groups.
For (a), we'll use a table to show that all of the group criteria are satisfied:

	T_{0}	R	T_{4}	$T_{4} R$	T_{8}	$T_{8} R$
T_{0}	T_{0}	R	T_{4}	$T_{4} R$	T_{8}	$T_{8} R$
R	R	T_{0}	$T_{4} R$	T_{4}	$T_{8} R$	T_{8}
T_{4}	T_{4}	$T_{4} R$	T_{8}	$T_{8} R$	T_{0}	R
$T_{4} R$	$T_{4} R$	T_{4}	$T_{8} R$	T_{8}	R	T_{0}
T_{8}	T_{8}	$T_{8} R$	T_{0}	R	T_{4}	$T_{4} R$
$T_{8} R$	$T_{8} R$	T_{8}	R	T_{0}	$T_{4} R$	T_{4}

Note that we have the identity (T_{0} is an element of the set), closure (since every entry in the table was also in the original set), and opposites (since the identity, T_{0}, appears in each row).

Comment: This set of variations also happens to be the cyclic subgroup generated byh $T_{4} R$ (see exercise \#3(b)). Since cyclic subgroups are always groups, this would be a valid alternative way of showing that this set is a group.
b) $\left\{T_{0}, I, T_{4}, T_{4} I, T_{8}\right\}$

This is not a group because it is not closed. For example, $T_{4} T_{4} I=T_{8} I$, which is not in the set.
Comment: Note that it's not necessary to make a complete operation table (as we did in part a) to show that a set under an operation is NOT a group; to invalidate one of the criteria for a group, all we need to do is find one single example to the contrary. (The point of making a complete table is that it's a way to prove that no such contrary examples exist.)
c) $\left\{T_{0}, T_{3}, T_{4}, T_{6}, T_{8}, T_{9}\right\}$

This is not a group because it is not closed. For example: T_{3} and T_{4} are both in the set; however, $T_{3} T_{4}=T_{7}$ but T_{7} is not in the set. (There are other examples we could use here, but one is sufficient.)

Comment: Notice that while we don't have "closure," this set does satisfy the other two criteria for a group - it has an identity, T_{0}, and every element of the group has an opposite: T_{3} and T_{9} are opposites, T_{4} and T_{8} are opposites, T_{6} is its own opposite, and T_{0} is its own opposite.
d) $\left\{T_{2}, T_{4}, T_{6}, T_{8}, T_{10}\right\}$

We know that for any group of variations, the identity element will be T_{0}. Since T_{0} is not included in this set, we can immediately determine that it is not a group (since it does not contain an identity element).
(Note: Adding T_{0} to this set would make it into a group - verify this for yourself.)
6. Determine whether each of the following is a group.
a) The set $\{0,2,4\}$ under addition modulo 5
b) The set $\{0,2,4\}$ under addition modulo 6
c) The set $\{1,2,3,4\}$ under multiplication modulo 7
d) The set $\{1,2,4\}$ under multiplication modulo 7

Answers: (b) and (d) are groups; (a) and (c) are not groups.
(a) This set is not a group under addition $\bmod 5$ because it is not closed. For example, $2+4=1(\bmod 5)$, but 1 isn't in the set. (Also, neither 2 nor 4 has an opposite in the set.)
(c) This set is not a group under multiplication mod 7 because it is not closed. For example, 2*3=6 (mod 7), but 7 isn't in the set. (Also, 3 has no opposite in the set.)

For each of (b) and (d), you can make a table to verify that each set is a group under the given operation. (Ask if you need help with this!)
7. For each group, find the indicated cyclic subgroups.
a) For the group $\{0,1,2,3,4,5\}$ under mod 6 addition, find the subgroups $\langle 2\rangle,\langle 3\rangle$, and $\langle 4\rangle$.

- Adding 2 repeatedly gives us $2,4,0,2,4,0, \ldots$, so $\langle 2\rangle=\{0,2,4\}$.
- Adding 3 repeatedly gives us $3,0,3,0,3,0, \ldots$, so $\langle 3\rangle=\{0,3\}$.
- Adding 4 repeatedly gives us $4,2,0,4,2,0, \ldots$, so $\langle 4\rangle=\{0,2,4\}$.

Comment: Note that 2 and 4 generate the same subgroup. This happens because 4 is in the subgroup genereated by 2 (and viceversa).
b) For the group $\{0,1,2, \ldots, 14\}$ under $\bmod 15$ addition, find the subgroups $\langle 5\rangle$ and $\langle 6\rangle$.

- Adding 5 repeatedly gives us $5,10,0,5,10,0, \ldots$, so $\langle 5\rangle=\{0,5,10\}$.
- Adding 6 repeatedly gives us $6,12,3,9,0, \ldots$, so $\langle 6\rangle=\{0,3,6,9,12\}$.
c) For the group $\{1,2,3,4,5,6\}$ under mod 7 multiplication, find the subgroups $\langle 2\rangle$ and $\langle 3\rangle$.
- Multiplying by 2 gives us $2,4,1,2,4,1, \ldots$, so $\langle 2\rangle=\{1,2,4\}$.
- Multiplying by 3 gives us $3,2,6,4,5,1, \ldots$, so $\langle 3\rangle=\{1,2,3,4,5,6\}$.

Comment: note that $\langle 3\rangle$ is the same as the entire group. This is fine, since any group is technically a subgroup of itself. In a case such as this, the element 3 is called a "generator" for the entire group $\{1,2,3,4,5,6\}$. This group actually contains one other such "generator;" can you find it?
d) For the group $\{1,2,3, \ldots, 12\}$ under mod 13 multiplication, find the subgroups $\langle 3\rangle$ and $\langle 4\rangle$.

- Multiplying by 3 gives us $3,9,1,3,9,1, \ldots$, so $\langle 3\rangle=\{1,3,9\}$.
- Multiplying by 4 gives us $4,3,12,9,10,1, \ldots$, so $\langle 4\rangle=\{1,3,4,9,10,12\}$.

Comment: Notice that every element of $\langle 3\rangle$ is also contained in $\langle 4\rangle$, but not vice-versa. Thus, $\langle 3\rangle$ is a subgroup of $\langle 4\rangle$.

