
Certain Lambert Series Identities and their Proof via
Trigonometry: Part 1

Introduction

This is yet another post based on a paper of Ramanujan titled "On certain arithmetical

functions" which appeared in Transactions of the Cambridge Philosophical Society in 1916. In

this paper Ramanujan provided a lot of identities concerning Lambert series and thereby

deduced many relations between various divisor functions. Apart from the amazing results

proved in this paper, what I liked most is the very elementary approach followed by

Ramanujan compared to the methods of modern authors who are seduced by the modular

form.

Ramanujan's Functions 

Ramanujan introduced the following Lambert series and used them extensively in deriving

many identities in elliptic function theory:

We have already met  in a previous post regarding series for . Also the  is not to

be confused with the Rogers-Ramanujan continued fractions introduced in the last post.

Ramanujan also used the alternative notation  instead of . Again to simplify

matters regarding manipulation of above series Ramanujan used the variable  and hence

we get the following notation which will be used subsequently in this post:
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The Lambert series above can be easily expressed as generating functions for divisor function.

In general for any positive integer , we can see that

where  denotes sum of  powers of divisors of .

Ramanujan considered these sums and its generalization below:

where  is a suitably chosen constant related with Bernoulli's numbers as we shall see later. It

is easy to see that

Ramanujan was able to express , with  an odd positive integer, in terms of

 in a very elementary manner using trigonometrical series. This is one of the truly

amazing proofs which Ramanujan provided. In a way the proof shows that a lot more can be

achieved with elementary stuff than people think. To understand the proof we need to develop

the series for  and there we will see the use of Bernoulli's numbers.

Expansion of 

We know that the Bernoulli's numbers  are defined by
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Now we can see that

and it is easy to verify that  is an even function therefore it follows

that:

Next we proceed to find expansion of  in powers of . We have

Differentiating with respect to  we get

A Trigonometrical Identity

Ramanujan next uses the formula for sum of cosines of angles in arithmetic progression in the

following manner
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to get

Out of the blue Ramanujan now sets out to consider the expression

Let  and then the above expression can be written as

where using  we can express  in terms of cosines as:

and  can also be expressed in terms of cosines as follows:

and thus  can be arranged in a series of the form

Now it is clear that the contribution to  from  is  and from  the
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For , the part of  coming from  is

and the part of  coming from  is

Thus it follows that for 

The crucial part in the above proof are the easily verifiable identities:

Finally putting all the pieces together we can see that

C0 = +
1

2
∑
m=1

∞

um

1

2
∑
m=1

∞

u2
m

= (1 + )
1

2
∑
m=1

∞

um um

=
1

2
∑
m=1

∞
xm

(1 − xm)2

= n
1

2
∑
m=1

∞

∑
n=1

∞

xmn

= = n
1

2
∑
n=1

∞
nxn

1 − xn

1

2
∑
n=1

∞

un

k > 0 Ck T1

+ = +
1

2
uk ∑

m=k+1

∞

um

1

2
uk ∑

l=1

∞

uk+l

Ck T2

+ − = −
1

2
∑

m−n=k

umun

1

2
∑

n−m=k

umun

1

2
∑

m+n=k

umun ∑
l=1

∞

uluk+l

1

2
∑
l=1

k−1

uluk−l

k > 0

Ck = + + −
1

2
uk ∑

l=1

∞

uk+l ∑
l=1

∞

uluk+l

1

2
∑
l=1

k−1

uluk−l

= + (1 + ) −
1

2
uk ∑

l=1

∞

uk+l ul

1

2
∑
l=1

k−1

uluk−l

= + ( − ) − (1 + + )
1

2
uk ∑

l=1

∞

uk ul uk+l

1

2
∑
l=1

k−1

uk ul uk−1

= { + ( − ) − (1 + + )}uk

1

2
∑
l=1

∞

ul uk+l

1

2
∑
l=1

k−1

ul uk−l

= { + + +⋯ + − − ( + +⋯ + )}uk

1

2
u1 u2 uk

k − 1

2
u1 u2 uk−1

= {1 + − }uk uk

k

2

(1 + ) = ( − ), = (1 + + )uk+l ul uk ul uk+l uluk−l uk ul uk−l

Certain Lambert Series Identities and their Proof via Trigonometry: Part 1 | Paramanand's Math Notes

5



Ramanujan proved the above without using the symbols  and  and expressed his formula

directly as:

The presentation we have offered above is from G. H. Hardy's Ramanujan: Twelve Lectures on

Subjects Suggested by his Life and Work. The proof above may look complicated because of

symbolism, but in reality it involves basic algebraic manipulations.

In a similar manner Ramanujan uses the trigonometric identity:

and establishes the following result:

The algebraic manipulations in this case are of similar nature but bit more complicated and

hence will not be presented here. From  it is clear that
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and

Hence the LHS of  can be written as

It is now time to relate  of  with Bernoulli's numbers as follows:

and then using  we can write the LHS of  as:

To compute the RHS of  we need to first square the equation . Instead of squaring the

series expansion on right of  I prefer to use derivatives of the expansion given in .
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We can now clearly see that the RHS of  is given by

and finally the equation  is transformed into

For even integer  we equate the coefficients of  on both sides to obtain the following

euqation

where

is the usual binomial coefficient.

Now it is easy to see that we have

and hence using the relation  we can evaluate  in terms of  for all

integers . For small values of  it is easy to apply the formula and derive the following:

Ramanujan does not stop here and actually uses the relation  to evaluate
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did all this for his love of numbers and we show one example here which sheds light on the

nature of numbers he dealt with:

In the next post we will analyze the equation  and the results derived from it.

Postscript: L. C. Shen provided another proof of  in 1993 using derivatives of theta

functions which we reproduce below:

We have from these posts

Differentiating twice the infinite series representation of  with respect to  we get

Again differentiating  with respect to  we get

and thus we arrive at the partial differential equation satisfied by 
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Noting that  and performing logarithmic

differentiation with respect to  we get

Using differential equation  we get
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q2mne−2imz

= − − ( n + n )1

4q

2

q
∑
n=1

∞
nq2n

1 − q2n

2

q
∑
m=1

∞

e2imz ∑
n=1

∞

q2mn ∑
m=1

∞

e−2imz ∑
n=1

∞

q2mn

= − − ( + )1

4q

2

q
∑
n=1

∞
nq2n

1 − q2n

2

q
∑
m=1

∞

e2imz q2m

(1 − q2m)2
∑
m=1

∞

e−2imz q2m

(1 − q2m)2

= − − cos 2nz
1

4q

2

q
∑
n=1

∞
nq2n

1 − q2n

4

q
∑
n=1

∞
q2n

(1 − q2n)2

(24)
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Now differentiating equation  with respect to  we get

Now using  and  we get

If we replace  by  and  by  and divide resulting equation by  we get the identity

 obtained by Ramanujan using algebraic manipulation.

 

= −1+ 16 cos 2nz + 8
1

θ1

∂2θ1

∂z2
∑
n=1

∞
q2n

(1 − q2n)2
∑
n=1

∞
nq2n

1 − q2n
(26)

(25) z

( )∂

∂z

1

θ1

∂θ1

∂z

⇒ −
1

θ1

∂2θ1

∂z2
( )1

θ1

∂θ1

∂z

2

⇒ ( )1

θ1

∂θ1

∂z

2

= −1 − z + 8 cos 2nzcot2 ∑
n=1

∞
nq2n

1 − q2n

= −1 − z + 8 cos 2nzcot2 ∑
n=1

∞
nq2n

1 − q2n

= 1+ z − 8 cos 2nz +cot2 ∑
n=1

∞
nq2n

1 − q2n

1

θ1

∂2θ1

∂z2

(25) (26)

(cot z + 4 )∑
n=1

∞ sin 2nzq2n

1 − q2n

2

= z + 16 + 8 (1 − cos 2nz)cot2 ∑
n=1

∞ cos 2nzq2n

(1 − q2n)2
∑
n=1

∞
nq2n

1 − q2n

z θ/2 q2 x 16

(16)
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