Certain Lambert Series Identities and their Proof via Trigonometry: Part 1

Introduction

This is yet another post based on a paper of Ramanujan titled "On certain arithmetical functions" which appeared in Transactions of the Cambridge Philosophical Society in 1916. In this paper Ramanujan provided a lot of identities concerning Lambert series and thereby deduced many relations between various divisor functions. Apart from the amazing results proved in this paper, what I liked most is the very elementary approach followed by Ramanujan compared to the methods of modern authors who are seduced by the modular form.

Ramanujan's Functions $\boldsymbol{P}, \boldsymbol{Q}, \boldsymbol{R}$

Ramanujan introduced the following Lambert series and used them extensively in deriving many identities in elliptic function theory:

$$
\begin{align*}
P(q) & =1-24\left(\frac{q^{2}}{1-q^{2}}+\frac{2 q^{4}}{1-q^{4}}+\frac{3 q^{6}}{1-q^{6}}+\cdots\right) \\
& =1-24 \sum_{n=1}^{\infty} \frac{n q^{2 n}}{1-q^{2 n}} \tag{1}\\
Q(q) & =1+240\left(\frac{q^{2}}{1-q^{2}}+\frac{2^{3} q^{4}}{1-q^{4}}+\frac{3^{3} q^{6}}{1-q^{6}}+\cdots\right) \\
& =1+240 \sum_{n=1}^{\infty} \frac{n^{3} q^{2 n}}{1-q^{2 n}} \tag{2}\\
R(q) & =1-504\left(\frac{q^{2}}{1-q^{2}}+\frac{2^{5} q^{4}}{1-q^{4}}+\frac{3^{5} q^{6}}{1-q^{6}}+\cdots\right) \\
& =1-504 \sum_{n=1}^{\infty} \frac{n^{5} q^{2 n}}{1-q^{2 n}} \tag{3}
\end{align*}
$$

We have already met $P(q)$ in a previous post regarding series for $1 / \pi$. Also the $R(q)$ is not to be confused with the Rogers-Ramanujan continued fractions introduced in the last post. Ramanujan also used the alternative notation L, M, N instead of P, Q, R. Again to simplify matters regarding manipulation of above series Ramanujan used the variable $x=q^{2}$ and hence we get the following notation which will be used subsequently in this post:

$$
\begin{align*}
P(x) & =1-24\left(\frac{x}{1-x}+\frac{2 x^{2}}{1-x^{2}}+\frac{3 x^{3}}{1-x^{3}}+\cdots\right) \\
& =1-24 \sum_{n=1}^{\infty} \frac{n x^{n}}{1-x^{n}} \tag{4}\\
Q(x) & =1+240\left(\frac{x}{1-x}+\frac{2^{3} x^{2}}{1-x^{2}}+\frac{3^{3} x^{3}}{1-x^{3}}+\cdots\right) \\
& =1+240 \sum_{n=1}^{\infty} \frac{n^{3} x^{n}}{1-x^{n}} \tag{5}\\
R(x) & =1-504\left(\frac{x}{1-x}+\frac{2^{5} x^{2}}{1-x^{2}}+\frac{3^{5} x^{3}}{1-x^{3}}+\cdots\right) \\
& =1-504 \sum_{n=1}^{\infty} \frac{n^{5} x^{n}}{1-x^{n}} \tag{6}
\end{align*}
$$

The Lambert series above can be easily expressed as generating functions for divisor function. In general for any positive integer r, we can see that

$$
\sum_{n=1}^{\infty} \frac{n^{r} x^{n}}{1-x^{n}}=\sum_{n=1}^{\infty} \sigma_{r}(n) x^{n}
$$

where $\sigma_{r}(n)$ denotes sum of $r^{\text {th }}$ powers of divisors of n.

Ramanujan considered these sums and its generalization below:

$$
\begin{align*}
S_{r}(x) & =E_{r}+\frac{1^{r} x}{1-x}+\frac{2^{r} x^{2}}{1-x^{2}}+\frac{3^{r} x^{3}}{1-x^{3}}+\cdots \\
& =E_{r}+\sum_{n=1}^{\infty} \frac{n^{r} x^{n}}{1-x^{n}} \\
& =E_{r}+\sum_{n=1}^{\infty} \sigma_{r}(n) x^{n} \tag{7}\\
\Phi_{r, s}(x) & =\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} m^{r} n^{s} x^{m n} \tag{8}
\end{align*}
$$

where E_{r} is a suitably chosen constant related with Bernoulli's numbers as we shall see later. It is easy to see that

$$
\begin{align*}
\Phi_{r, s}(x) & =\Phi_{s, r}(x)=\sum_{n=1}^{\infty} n^{s} \sigma_{r-s}(n) x^{n} \tag{9}\\
S_{r}(x) & =E_{r}+\Phi_{0, r}(x) \tag{10}
\end{align*}
$$

Ramanujan was able to express $\Phi_{r, s}(x)$, with $r+s$ an odd positive integer, in terms of P, Q, R in a very elementary manner using trigonometrical series. This is one of the truly amazing proofs which Ramanujan provided. In a way the proof shows that a lot more can be achieved with elementary stuff than people think. To understand the proof we need to develop the series for $\cot (x)$ and there we will see the use of Bernoulli's numbers.

Expansion of $\boldsymbol{\operatorname { c o t }} \boldsymbol{x}$

We know that the Bernoulli's numbers B_{n} are defined by

$$
\begin{equation*}
\frac{x}{e^{x}-1}=\sum_{n=0}^{\infty} B_{n} \frac{x^{n}}{n!} \tag{11}
\end{equation*}
$$

Now we can see that

$$
\frac{x}{e^{x}-1}=\frac{1}{1+\frac{x}{2!}+\frac{x^{2}}{3!}+\cdots}=1-\frac{x}{2}+\cdots
$$

and it is easy to verify that $\left\{x /\left(e^{x}-1\right)\right\}+(x / 2)$ is an even function therefore it follows that:

$$
\begin{equation*}
B_{0}=1, B_{1}=\frac{-1}{2}, B_{2}=\frac{1}{6}, B_{4}=\frac{-1}{30}, B_{3}=B_{5}=\cdots=B_{2 n+1}=0 \tag{12}
\end{equation*}
$$

Next we proceed to find expansion of $\cot x$ in powers of x. We have

$$
\begin{align*}
\cot x & =\frac{\cos x}{\sin x}=i \cdot \frac{e^{i x}+e^{-i x}}{e^{i x}-e^{-i x}}=i \cdot \frac{e^{2 i x}+1}{e^{2 i x}-1}=i \cdot\left(1+\frac{2}{e^{2 i x}-1}\right) \\
& =i+\frac{1}{x} \cdot \frac{2 i x}{e^{2 i x}-1} \\
& =i+\frac{1}{x}\left(1-\frac{2 i x}{2}+B_{2} \cdot \frac{(2 i x)^{2}}{2!}+B_{4} \cdot \frac{(2 i x)^{4}}{4!}+\cdots\right) \\
& =\frac{1}{x}-B_{2} \frac{2^{2} x}{2!}+B_{4} \frac{2^{4} x^{3}}{4!}-B_{6} \frac{2^{6} x^{5}}{6!}+\cdots \tag{13}
\end{align*}
$$

Differentiating with respect to x we get

$$
\begin{align*}
-\operatorname{cosec}^{2} x & =-\frac{1}{x^{2}}-B_{2} \frac{2^{2}}{2!}+3 B_{4} \frac{2^{4} x^{2}}{4!}-5 B_{6} \frac{2^{6} x^{4}}{6!}+\cdots \\
\Rightarrow 1+\cot ^{2} x & =\frac{1}{x^{2}}+\frac{1}{3}-3 B_{4} \frac{2^{4} x^{2}}{4!}+\cdots \\
\Rightarrow \cot ^{2} x & =\frac{1}{x^{2}}-\frac{2}{3}-3 B_{4} \frac{2^{4} x^{2}}{4!}+5 B_{6} \frac{2^{6} x^{4}}{6!}-7 B_{8} \frac{2^{8} x^{6}}{8!}+\cdots \tag{14}
\end{align*}
$$

A Trigonometrical Identity

Ramanujan next uses the formula for sum of cosines of angles in arithmetic progression in the following manner

$$
\begin{aligned}
2\{\cos \theta+\cos 2 \theta+\cdots+\cos (n-1) \theta\} & =\frac{2 \cos \frac{n \theta}{2} \sin \frac{(n-1) \theta}{2}}{\sin \frac{\theta}{2}} \\
& =\frac{\sin \left(n-\frac{1}{2}\right) \theta-\sin \frac{\theta}{2}}{\sin \frac{\theta}{2}} \\
& =\frac{\sin n \theta \cos \frac{\theta}{2}-\cos n \theta \sin \frac{\theta}{2}}{\sin \frac{\theta}{2}}-1 \\
& =\cot \frac{\theta}{2} \sin n \theta-\cos n \theta-1
\end{aligned}
$$

to get

$$
\begin{equation*}
\cot \frac{\theta}{2} \sin n \theta=1+2 \cos \theta+2 \cos 2 \theta+\cdots+2 \cos (n-1) \theta+\cos n \theta \tag{15}
\end{equation*}
$$

Out of the blue Ramanujan now sets out to consider the expression

$$
S=\left(\frac{1}{4} \cot \frac{\theta}{2}+\frac{x \sin \theta}{1-x}+\frac{x^{2} \sin 2 \theta}{1-x^{2}}+\frac{x^{3} \sin 3 \theta}{1-x^{3}}+\cdots\right)^{2}
$$

Let $u_{m}=x^{m} /\left(1-x^{m}\right)$ and then the above expression can be written as

$$
\begin{aligned}
S & =\left(\frac{1}{4} \cot \frac{\theta}{2}+u_{1} \sin \theta+u_{2} \sin 2 \theta+u_{3} \sin 3 \theta+\cdots\right)^{2} \\
& =\left(\frac{1}{4} \cot \frac{\theta}{2}+\sum_{m=1}^{\infty} u_{m} \sin m \theta\right)^{2} \\
& =\left(\frac{1}{4} \cot \frac{\theta}{2}\right)^{2}+\frac{1}{2} \cot \frac{\theta}{2} \sum_{m=1}^{\infty} u_{m} \sin m \theta+\left(\sum_{m=1}^{\infty} u_{m} \sin m \theta\right)^{2} \\
& =\left(\frac{1}{4} \cot \frac{\theta}{2}\right)^{2}+T_{1}+T_{2}
\end{aligned}
$$

where using (14) we can express T_{1} in terms of cosines as:

$$
T_{1}=\sum_{m=1}^{\infty} u_{m}\left\{\frac{1}{2}+\cos \theta+\cos 2 \theta+\cdots+\cos (m-1) \theta+\frac{1}{2} \cos m \theta\right\}
$$

and T_{2} can also be expressed in terms of cosines as follows:

$$
\begin{aligned}
T_{2} & =\sum_{m=1}^{\infty} u_{m} \sin m \theta \sum_{n=1}^{\infty} u_{n} \sin n \theta \\
& =\frac{1}{2} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\{\cos (m-n) \theta-\cos (m+n) \theta\} u_{m} u_{n}
\end{aligned}
$$

and thus $T_{1}+T_{2}$ can be arranged in a series of the form

$$
T_{1}+T_{2}=\sum_{k=0}^{\infty} C_{k} \cos k \theta
$$

Now it is clear that the contribution to C_{0} from T_{1} is $(1 / 2) \sum u_{m}$ and from T_{2} the contribution is $(1 / 2) \sum u_{m}^{2}$ and therefore

$$
\begin{aligned}
C_{0} & =\frac{1}{2} \sum_{m=1}^{\infty} u_{m}+\frac{1}{2} \sum_{m=1}^{\infty} u_{m}^{2} \\
& =\frac{1}{2} \sum_{m=1}^{\infty} u_{m}\left(1+u_{m}\right) \\
& =\frac{1}{2} \sum_{m=1}^{\infty} \frac{x^{m}}{\left(1-x^{m}\right)^{2}} \\
& =\frac{1}{2} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} n x^{m n} \\
& =\frac{1}{2} \sum_{n=1}^{\infty} \frac{n x^{n}}{1-x^{n}}=\frac{1}{2} \sum_{n=1}^{\infty} n u_{n}
\end{aligned}
$$

For $k>0$, the part of C_{k} coming from T_{1} is

$$
\frac{1}{2} u_{k}+\sum_{m=k+1}^{\infty} u_{m}=\frac{1}{2} u_{k}+\sum_{l=1}^{\infty} u_{k+l}
$$

and the part of C_{k} coming from T_{2} is

$$
\frac{1}{2} \sum_{m-n=k} u_{m} u_{n}+\frac{1}{2} \sum_{n-m=k} u_{m} u_{n}-\frac{1}{2} \sum_{m+n=k} u_{m} u_{n}=\sum_{l=1}^{\infty} u_{l} u_{k+l}-\frac{1}{2} \sum_{l=1}^{k-1} u_{l} u_{k-l}
$$

Thus it follows that for $k>0$

$$
\begin{aligned}
C_{k} & =\frac{1}{2} u_{k}+\sum_{l=1}^{\infty} u_{k+l}+\sum_{l=1}^{\infty} u_{l} u_{k+l}-\frac{1}{2} \sum_{l=1}^{k-1} u_{l} u_{k-l} \\
& =\frac{1}{2} u_{k}+\sum_{l=1}^{\infty} u_{k+l}\left(1+u_{l}\right)-\frac{1}{2} \sum_{l=1}^{k-1} u_{l} u_{k-l} \\
& =\frac{1}{2} u_{k}+\sum_{l=1}^{\infty} u_{k}\left(u_{l}-u_{k+l}\right)-\frac{1}{2} \sum_{l=1}^{k-1} u_{k}\left(1+u_{l}+u_{k-1}\right) \\
& =u_{k}\left\{\frac{1}{2}+\sum_{l=1}^{\infty}\left(u_{l}-u_{k+l}\right)-\frac{1}{2} \sum_{l=1}^{k-1}\left(1+u_{l}+u_{k-l}\right)\right\} \\
& =u_{k}\left\{\frac{1}{2}+u_{1}+u_{2}+\cdots+u_{k}-\frac{k-1}{2}-\left(u_{1}+u_{2}+\cdots+u_{k-1}\right)\right\} \\
& =u_{k}\left\{1+u_{k}-\frac{k}{2}\right\}
\end{aligned}
$$

The crucial part in the above proof are the easily verifiable identities:

$$
u_{k+l}\left(1+u_{l}\right)=u_{k}\left(u_{l}-u_{k+l}\right), u_{l} u_{k-l}=u_{k}\left(1+u_{l}+u_{k-l}\right)
$$

Finally putting all the pieces together we can see that

$$
\begin{aligned}
S & =\left(\frac{1}{4} \cot \frac{\theta}{2}+\frac{x \sin \theta}{1-x}+\frac{x^{2} \sin 2 \theta}{1-x^{2}}+\frac{x^{3} \sin 3 \theta}{1-x^{3}}+\cdots\right)^{2} \\
& =\left(\frac{1}{4} \cot \frac{\theta}{2}\right)^{2}+\frac{1}{2} \sum_{n=1}^{\infty} n u_{n}+\sum_{k=1}^{\infty} u_{k}\left(1+u_{k}-\frac{k}{2}\right) \cos k \theta \\
& =\left(\frac{1}{4} \cot \frac{\theta}{2}\right)^{2}+\sum_{m=1}^{\infty} u_{m}\left(1+u_{m}\right) \cos m \theta+\frac{1}{2} \sum_{m=1}^{\infty} m u_{m}(1-\cos m \theta) \\
& =\left(\frac{1}{4} \cot \frac{\theta}{2}\right)^{2}+\sum_{m=1}^{\infty} \frac{x^{m} \cos m \theta}{\left(1-x^{m}\right)^{2}}+\frac{1}{2} \sum_{m=1}^{\infty} \frac{m x^{m}}{1-x^{m}}(1-\cos m \theta)
\end{aligned}
$$

Ramanujan proved the above without using the symbols \sum and u_{m} and expressed his formula directly as:

$$
\begin{align*}
& \left(\frac{1}{4} \cot \frac{\theta}{2}+\frac{x \sin \theta}{1-x}+\frac{x^{2} \sin 2 \theta}{1-x^{2}}+\frac{x^{3} \sin 3 \theta}{1-x^{3}}+\cdots\right)^{2} \\
& \quad=\left(\frac{1}{4} \cot \frac{\theta}{2}\right)^{2}+\frac{x \cos \theta}{(1-x)^{2}}+\frac{x^{2} \cos 2 \theta}{\left(1-x^{2}\right)^{2}}+\frac{x^{3} \cos 3 \theta}{\left(1-x^{3}\right)^{2}}+\cdots \\
& \quad+\frac{1}{2}\left\{\frac{x(1-\cos \theta)}{1-x}+\frac{2 x^{2}(1-\cos 2 \theta)}{1-x^{2}}+\frac{3 x^{3}(1-\cos 3 \theta)}{1-x^{3}}+\cdots\right\} \tag{16}
\end{align*}
$$

The presentation we have offered above is from G. H. Hardy's Ramanujan: Twelve Lectures on Subjects Suggested by his Life and Work. The proof above may look complicated because of symbolism, but in reality it involves basic algebraic manipulations.

In a similar manner Ramanujan uses the trigonometric identity:

$$
\begin{align*}
\cot ^{2} & \frac{\theta}{2} \\
& (1-\cos n \theta) \\
= & (2 n-1)+4(n-1) \cos \theta+4(n-2) \cos 2 \theta+\cdots \tag{17}\\
& \quad+4 \cos (n-1) \theta+\cos n \theta
\end{align*}
$$

and establishes the following result:

$$
\begin{align*}
& \left\{\frac{1}{8} \cot ^{2} \frac{\theta}{2}+\frac{1}{12}+\frac{x(1-\cos \theta)}{1-x}\right. \\
& \left.+\frac{2 x^{2}(1-\cos 2 \theta)}{1-x^{2}}+\frac{3 x^{3}(1-\cos 3 \theta)}{1-x^{3}}+\cdots\right\}^{2} \\
& \quad=\left(\frac{1}{8} \cot ^{2} \frac{\theta}{2}+\frac{1}{12}\right)^{2} \\
& \quad+\frac{1}{12}\left\{\frac{1^{3} x(5+\cos \theta)}{1-x}+\frac{2^{3} x^{2}(5+\cos 2 \theta)}{1-x^{2}}\right. \\
& \left.\quad+\frac{3^{3} x^{3}(5+\cos 3 \theta)}{1-x^{3}}+\cdots\right\} \tag{18}
\end{align*}
$$

The algebraic manipulations in this case are of similar nature but bit more complicated and hence will not be presented here. From (14) it is clear that

$$
\begin{equation*}
\frac{1}{8} \cot ^{2} \frac{\theta}{2}+\frac{1}{12}=\frac{1}{2}\left(\frac{1}{\theta^{2}}-\frac{3 B_{4}}{4!} \theta^{2}+\frac{5 B_{6}}{6!} \theta^{4}-\frac{7 B_{8}}{8!} \theta^{6}+\cdots\right) \tag{19}
\end{equation*}
$$

and

$$
\frac{m x^{m}}{1-x^{m}}(1-\cos m \theta)=\frac{m x^{m}}{1-x^{m}}\left(\frac{m^{2} \theta^{2}}{2!}-\frac{m^{4} \theta^{4}}{4!}+\cdots\right)
$$

Hence the LHS of (18) can be written as

$$
\left\{\frac{1}{2 \theta^{2}}+\frac{\theta^{2}}{2!}\left(-\frac{B_{4}}{2 \cdot 4}+\sum_{m=1}^{\infty} \frac{m^{3} x^{m}}{1-x^{m}}\right)-\frac{\theta^{4}}{4!}\left(-\frac{B_{6}}{2 \cdot 6}+\sum_{m=1}^{\infty} \frac{m^{5} x^{m}}{1-x^{m}}\right)+\cdots\right\}^{2}
$$

It is now time to relate E_{r} of (7) with Bernoulli's numbers as follows:

$$
E_{r}=-\frac{B_{r+1}}{2(r+1)}
$$

and then using (7) we can write the LHS of (18) as:

$$
\left\{\frac{1}{2 \theta^{2}}+\frac{\theta^{2}}{2!} S_{3}(x)-\frac{\theta^{4}}{4!} S_{5}(x)+\cdots\right\}^{2}
$$

To compute the RHS of (18) we need to first square the equation (19). Instead of squaring the series expansion on right of (19) I prefer to use derivatives of the expansion given in (14). Thus on differentiating (14) we get

$$
\begin{aligned}
2 \cot x\left(-1-\cot ^{2} x\right) & =-\frac{2}{x^{3}}-2 \cdot 3 B_{4} \frac{2^{4} x}{4!}+4 \cdot 5 B_{6} \frac{2^{6} x^{3}}{6!}-\cdots \\
\Rightarrow \cot x+\cot ^{3} x & =\frac{1}{x^{3}}+2 \cdot 3 B_{4} \frac{2^{3} x}{4!}-4 \cdot 5 B_{6} \frac{2^{5} x^{3}}{6!}+\cdots
\end{aligned}
$$

and using (13) we get

$$
\cot ^{3} x=\frac{1}{x^{3}}-\frac{1}{x}+\frac{2^{2}}{4!}\left(2 \cdot 2 \cdot 3 B_{4}+3 \cdot 4 B_{2}\right) x-\frac{2^{4}}{6!}\left(2 \cdot 4 \cdot 5 B_{6}+5 \cdot 6 B_{4}\right) x^{3}+\cdots
$$

Differentiating the above equation we get

$$
\begin{aligned}
3 \cot ^{2} x\left(-1-\cot ^{2} x\right)= & -\frac{3}{x^{4}}+\frac{1}{x^{2}}+\frac{2^{2}}{4!}\left(2 \cdot 2 \cdot 3 B_{4}+3 \cdot 4 B_{2}\right) \\
& -\frac{2^{4}}{6!} \cdot 3\left(2 \cdot 4 \cdot 5 B_{6}+5 \cdot 6 B_{4}\right) x^{2}+\cdots \\
\Rightarrow 3 \cot ^{2} x+3 \cot ^{4} x= & \frac{3}{x^{4}}-\frac{1}{x^{2}}-\frac{2^{2}}{4!}\left(2 \cdot 2 \cdot 3 B_{4}+3 \cdot 4 B_{2}\right) \\
& +\frac{2^{4}}{6!} \cdot 3\left(2 \cdot 4 \cdot 5 B_{6}+5 \cdot 6 B_{4}\right) x^{2}-\cdots
\end{aligned}
$$

Adding this equation and (14) (and values of B_{2}, B_{4}) we get

$$
\begin{align*}
3 \cot ^{4} x+4 \cot ^{2} x= & \frac{3}{x^{4}}-\frac{14}{15}+\frac{2^{5} B_{6}}{6} \cdot \frac{x^{2}}{2!} \\
& -\frac{2^{7} B_{8}}{8} \cdot \frac{x^{4}}{4!} \\
& +\frac{2^{9} B_{10}}{10} \cdot \frac{x^{6}}{6!}-\cdots \tag{20}
\end{align*}
$$

Again going back to the equation (19) we see that square of its LHS is given by

$$
\begin{aligned}
\left(\frac{1}{8} \cot ^{2} \frac{\theta}{2}+\frac{1}{12}\right)^{2} & =\frac{1}{3 \cdot 2^{6}}\left(3 \cot ^{4} \frac{\theta}{2}+4 \cot ^{2} \frac{\theta}{2}\right)+\frac{1}{144} \\
& =\frac{1}{4 \theta^{4}}+\frac{1}{480}+\frac{1}{24}\left(\frac{B_{6}}{6} \cdot \frac{\theta^{2}}{2!}-\frac{B_{8}}{8} \cdot \frac{\theta^{4}}{4!}+\cdots\right) \\
& =\frac{1}{4 \theta^{4}}-\frac{B_{4}}{16}+\frac{1}{24}\left(\frac{B_{6}}{6} \cdot \frac{\theta^{2}}{2!}-\frac{B_{8}}{8} \cdot \frac{\theta^{4}}{4!}+\cdots\right) \\
& =\frac{1}{4 \theta^{4}}+\frac{E_{3}}{2}-\frac{1}{12}\left(E_{5} \cdot \frac{\theta^{2}}{2!}-E_{7} \cdot \frac{\theta^{4}}{4!}+\cdots\right)
\end{aligned}
$$

We can now clearly see that the RHS of (18) is given by

$$
\frac{1}{4 \theta^{4}}+\frac{S_{3}(x)}{2}-\frac{1}{12}\left(\frac{\theta^{2}}{2!} S_{5}(x)-\frac{\theta^{4}}{4!} S_{7}(x)+\cdots\right)
$$

and finally the equation (18) is transformed into

$$
\begin{align*}
& \left\{\frac{1}{2 \theta^{2}}+\frac{\theta^{2}}{2!} S_{3}(x)-\frac{\theta^{4}}{4!} S_{5}(x)+\cdots\right\}^{2} \\
& \quad=\frac{1}{4 \theta^{4}}+\frac{S_{3}(x)}{2}-\frac{1}{12}\left(\frac{\theta^{2}}{2!} S_{5}(x)-\frac{\theta^{4}}{4!} S_{7}(x)+\cdots\right) \tag{21}
\end{align*}
$$

For even integer $n>2$ we equate the coefficients of θ^{n} on both sides to obtain the following euqation

$$
\begin{align*}
\frac{(n-2)(n+5)}{12(n+1)(n+2)} S_{n+3}(x)= & \binom{n}{2} S_{3}(x) S_{n-1}(x) \\
& +\binom{n}{4} S_{5}(x) S_{n-3}(x)+\cdots \\
& +\binom{n}{n-2} S_{n-1}(x) S_{3}(x) \tag{22}
\end{align*}
$$

where

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!}
$$

is the usual binomial coefficient.

Now it is easy to see that we have

$$
P(x)=-24 S_{1}(x), Q(x)=240 S_{3}(x), R(x)=-504 S_{5}(x)
$$

and hence using the relation (22) we can evaluate $S_{2 n-1}(x)$ in terms of P, Q, R for all integers $n>0$. For small values of n it is easy to apply the formula and derive the following:

$$
\begin{aligned}
1+480 \Phi_{0,7}(x) & =Q^{2} \\
1-264 \Phi_{0,9}(x) & =Q R \\
691+65520 \Phi_{0,11}(x) & =441 Q^{3}+250 R^{2} \\
1-24 \Phi_{0,13}(x) & =Q^{2} R
\end{aligned}
$$

Ramanujan does not stop here and actually uses the relation (22) to evaluate $S_{7}(x), S_{9}(x), \ldots, S_{31}(x)$ and gives his results in terms of the function $\Phi_{r, s}(x)$. Ramanujan
did all this for his love of numbers and we show one example here which sheds light on the nature of numbers he dealt with:

$$
\begin{aligned}
7709321041217+32640 \Phi_{0,31}(x)= & 764412173217 Q^{8}(x) \\
& +5323905468000 Q^{5}(x) R^{2}(x) \\
& +1621003400000 Q^{2}(x) R^{4}(x)
\end{aligned}
$$

In the next post we will analyze the equation (16) and the results derived from it.

Postscript: L. C. Shen provided another proof of (16) in 1993 using derivatives of theta functions which we reproduce below:

We have from these posts

$$
\begin{align*}
\theta_{1}(z, q) & =2 q^{1 / 4} \sin z \prod_{n=1}^{\infty}\left(1-q^{2 n}\right)\left(1-2 q^{2 n} \cos 2 z+q^{4 n}\right) \\
& =2 q^{1 / 4} \sum_{n=0}^{\infty}(-1)^{n} q^{n(n+1)} \sin (2 n+1) z \tag{23}
\end{align*}
$$

Differentiating twice the infinite series representation of $\theta_{1}(z, q)$ with respect to z we get

$$
\frac{\partial^{2} \theta_{1}}{\partial z^{2}}=-2 q^{1 / 4} \sum_{n=0}^{\infty}(-1)^{n} q^{n(n+1)}(2 n+1)^{2} \sin (2 n+1) z
$$

Again differentiating $\theta_{1}(z, q)$ with respect to q we get

$$
\begin{aligned}
\frac{\partial \theta_{1}}{\partial q} & =2 \sum_{n=0}^{\infty}(-1)^{n}(n+1 / 2)^{2} q^{(n+1 / 2)^{2}-1} \sin (2 n+1) z \\
& =\frac{1}{2} q^{-3 / 4} \sum_{n=0}^{\infty}(-1)^{n} q^{n(n+1)}(2 n+1)^{2} \sin (2 n+1) z
\end{aligned}
$$

and thus we arrive at the partial differential equation satisfied by θ_{1}

$$
\begin{equation*}
\frac{\partial^{2} \theta_{1}}{\partial z^{2}}=-4 q \frac{\partial \theta_{1}}{\partial q} \tag{24}
\end{equation*}
$$

Next by logarithmic differentiation of the product expansion of $\theta_{1}(z, q)$ with respect to z we get

$$
\left.\begin{array}{rl}
\frac{1}{\theta_{1}} \frac{\partial \theta_{1}}{\partial z} & =\cot z+4 \sum_{n=1}^{\infty} \frac{q^{2 n} \sin 2 z}{1-2 q^{2 n} \cos 2 z+q^{4 n}} \\
& =\cot z+\frac{4}{2 i} \sum_{n=1}^{\infty} \frac{q^{2 n}\left(e^{2 i z}-e^{-2 i z}\right)}{\left(1-q^{2 n} e^{2 i z}\right)\left(1-q^{2 n} e^{-2 i z}\right)} \\
& =\cot z+\frac{4}{2 i} \sum_{n=1}^{\infty} q^{2 n}\left(\frac{e^{2 i z}}{1-q^{2 n} e^{2 i z}}-\frac{e^{-2 i z}}{1-q^{2 n} e^{-2 i z}}\right) \\
& =\cot z+\frac{4}{2 i}\left(\sum_{n=1}^{\infty} \frac{q^{2 n} e^{2 i z}}{1-q^{2 n} e^{2 i z}}-\sum_{n=1}^{\infty} \frac{q^{2 n} e^{-2 i z}}{1-q^{2 n} e^{-2 i z}}\right) \\
& =\cot z+\frac{4}{2 i}\left(\sum_{n=1}^{\infty} \sum_{m=1}^{\infty}\left\{q^{2 n} e^{2 i z}\right\}^{m}-\sum_{n=1}^{\infty} \sum_{m=1}^{\infty}\left\{q^{2 n} e^{-2 i z}\right\}^{m}\right) \\
& =\cot z+\frac{4}{2 i}\left(\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} q^{2 m} e^{2 i m z} q^{2 m(n-1)}\right. \\
& =\cot z+\frac{4}{2 i}\left(\sum_{m=1}^{\infty} q^{2 m} e^{2 i m z} \sum_{n=1}^{\infty} q^{2 m(n-1)}\right. \\
& =\cot z+\frac{4}{2 i}\left(\sum_{m=1}^{\infty} \frac{q^{2 m} e^{2 i m z}}{1-q^{2 m}}-\sum_{m=1}^{\infty} e^{-2 i m z} q^{2 m(n-1)} q^{2 m} e^{-2 i m z} \sum_{n=1}^{\infty} q^{2 m(n-1)} e^{-2 i m z}\right. \\
1-q^{2 m}
\end{array}\right)
$$

Noting that $1-2 q^{2 n} \cos 2 z+q^{4 n}=\left(1-q^{2 n} e^{2 i z}\right)\left(1-q^{2 n} e^{-2 i z}\right)$ and performing logarithmic differentiation with respect to q we get

$$
\begin{aligned}
\frac{1}{\theta_{1}} \frac{\partial \theta_{1}}{\partial q}= & \frac{1}{4 q}-\frac{2}{q} \sum_{n=1}^{\infty} \frac{n q^{2 n}}{1-q^{2 n}}-\frac{2}{q}\left(\sum_{n=1}^{\infty} \frac{n q^{2 n} e^{2 i z}}{1-q^{2 n} e^{2 i z}}+\sum_{n=1}^{\infty} \frac{n q^{2 n} e^{-2 i z}}{1-q^{2 n} e^{-2 i z}}\right) \\
= & \frac{1}{4 q}-\frac{2}{q} \sum_{n=1}^{\infty} \frac{n q^{2 n}}{1-q^{2 n}}-\frac{2}{q}\left(\sum_{n=1}^{\infty} n q^{2 n} e^{2 i z} \sum_{m=1}^{\infty}\left\{q^{2 n} e^{2 i z}\right\}^{m-1}\right. \\
& \left.\quad+\sum_{n=1}^{\infty} n q^{2 n} e^{-2 i z} \sum_{m=1}^{\infty}\left\{q^{2 n} e^{-2 i z}\right\}^{m-1}\right) \\
= & \frac{1}{4 q}-\frac{2}{q} \sum_{n=1}^{\infty} \frac{n q^{2 n}}{1-q^{2 n}}-\frac{2}{q}\left(\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} n q^{2 m n} e^{2 i m z}+\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} n q^{2 m n} e^{-2 i m z}\right) \\
= & \frac{1}{4 q}-\frac{2}{q} \sum_{n=1}^{\infty} \frac{n q^{2 n}}{1-q^{2 n}}-\frac{2}{q}\left(\sum_{m=1}^{\infty} e^{2 i m z} \sum_{n=1}^{\infty} n q^{2 m n}+\sum_{m=1}^{\infty} e^{-2 i m z} \sum_{n=1}^{\infty} n q^{2 m n}\right) \\
= & \frac{1}{4 q}-\frac{2}{q} \sum_{n=1}^{\infty} \frac{n q^{2 n}}{1-q^{2 n}}-\frac{2}{q}\left(\sum_{m=1}^{\infty} e^{2 i m z} \frac{q^{2 m}}{\left(1-q^{2 m}\right)^{2}}+\sum_{m=1}^{\infty} e^{-2 i m z} \frac{q^{2 m}}{\left(1-q^{2 m}\right)^{2}}\right) \\
= & \frac{1}{4 q}-\frac{2}{q} \sum_{n=1}^{\infty} \frac{n q^{2 n}}{1-q^{2 n}}-\frac{4}{q} \sum_{n=1}^{\infty} \frac{q^{2 n}}{\left(1-q^{2 n}\right)^{2}} \cos 2 n z
\end{aligned}
$$

Using differential equation (24) we get

$$
\begin{equation*}
\frac{1}{\theta_{1}} \frac{\partial^{2} \theta_{1}}{\partial z^{2}}=-1+16 \sum_{n=1}^{\infty} \frac{q^{2 n}}{\left(1-q^{2 n}\right)^{2}} \cos 2 n z+8 \sum_{n=1}^{\infty} \frac{n q^{2 n}}{1-q^{2 n}} \tag{26}
\end{equation*}
$$

Now differentiating equation (25) with respect to z we get

$$
\begin{aligned}
\frac{\partial}{\partial z}\left(\frac{1}{\theta_{1}} \frac{\partial \theta_{1}}{\partial z}\right) & =-1-\cot ^{2} z+8 \sum_{n=1}^{\infty} \frac{n q^{2 n}}{1-q^{2 n}} \cos 2 n z \\
\Rightarrow \frac{1}{\theta_{1}} \frac{\partial^{2} \theta_{1}}{\partial z^{2}}-\left(\frac{1}{\theta_{1}} \frac{\partial \theta_{1}}{\partial z}\right)^{2} & =-1-\cot ^{2} z+8 \sum_{n=1}^{\infty} \frac{n q^{2 n}}{1-q^{2 n}} \cos 2 n z \\
\Rightarrow\left(\frac{1}{\theta_{1}} \frac{\partial \theta_{1}}{\partial z}\right)^{2} & =1+\cot ^{2} z-8 \sum_{n=1}^{\infty} \frac{n q^{2 n}}{1-q^{2 n}} \cos 2 n z+\frac{1}{\theta_{1}} \frac{\partial^{2} \theta_{1}}{\partial z^{2}}
\end{aligned}
$$

Now using (25) and (26) we get

$$
\begin{aligned}
& \left(\cot z+4 \sum_{n=1}^{\infty} \frac{q^{2 n} \sin 2 n z}{1-q^{2 n}}\right)^{2} \\
& \quad=\cot ^{2} z+16 \sum_{n=1}^{\infty} \frac{q^{2 n} \cos 2 n z}{\left(1-q^{2 n}\right)^{2}}+8 \sum_{n=1}^{\infty} \frac{n q^{2 n}}{1-q^{2 n}}(1-\cos 2 n z)
\end{aligned}
$$

If we replace z by $\theta / 2$ and q^{2} by x and divide resulting equation by 16 we get the identity (16) obtained by Ramanujan using algebraic manipulation.

