Note: Each question about variations is based on the 48 variations discussed in class, which are defined based on the usual 12-tone scale.

1. Find the opposite of each of the following.
a) T_{8}
b) $T_{4} R$
c) $T_{4} I$
d) $T_{9} I R$
e) $T_{6} R$
2. Which variations (out of the set of 48 musical variations) are their own opposites?
3. Find the cyclic subgroup generated by each of the following variations:
a) T_{4}
b) $T_{4} R$
c) $T_{3} I R$
d) T_{7}
4. Which musical transpositions have generate a cyclic subgroup consisting of exactly four variations?
5. Determine whether each of the following is a group.
a) The set $\{0,2,4\}$ under addition modulo 5
b) The set $\{0,2,4\}$ under addition modulo 6
c) The set $\{1,2,3,4\}$ under multiplication modulo 7
d) The set $\{1,2,4\}$ under multiplication modulo 7
6. For each of the following sets of variations (using the usual rules for combining variations) determine whether the set is a group. (Remember: to be a group, you need to have an identity, opposites, and closure.)
a) $\left\{T_{0}, R, T_{4}, T_{4} R, T_{8}, T_{8} R\right\}$
b) $\left\{T_{0}, I, T_{4}, T_{4} I\right\}$
c) $\left\{T_{0}, T_{3}, T_{4}, T_{6}, T_{8}, T_{9}\right\}$
d) $\left\{T_{2}, T_{4}, T_{6}, T_{8}, T_{10}\right\}$

SOLUTIONS

1. Find the opposite of each of the following.
a) The opposite of T_{8} is T_{4}. This is because $T_{8} T_{4}=T_{0}$, which is the identity.

Comment: in general, the opposite of T_{n} is T_{12-n}.
b) The opposite of $T_{4} R$ is $T_{8} R$. This is because $T_{4} \underbrace{R T_{8}}_{T_{8} R} R=\underbrace{T_{4}}_{T_{0}} \underbrace{T_{8}}_{T_{0}} \underbrace{R R}=T_{0}$, which is the identity.

Comment: in general, the opposite of $T_{n} R$ is $T_{12-n} R$.
c) The opposite of $T_{4} I$ is $T_{4} I$. (Strangely enough, it is its own opposite!)

$$
T_{4} \underbrace{I T_{4} I}_{T_{8} I} I=\underbrace{T_{4} T_{8}}_{T_{0}} \underbrace{I I}_{T_{0}}=T_{0}
$$

Comment: In fact, it turns out that $T_{n} I$ is always its own opposite. This is an interesting "side-effect" of the rule for switching the order of inversions and transpositions. Actually, the underlying reason behind this property is that every variation of the form $T_{n} I$ is actually another inversion - that is, an inversion centered somewhere other than C. (For example, $T_{2} I$ is the inversion centered at F.)

Here's how it works in general:

$$
T_{n} \underbrace{I T_{n}}_{T_{12-n} I} I=\underbrace{T_{n} T_{12-n}}_{T_{0}} \underbrace{I I}_{T_{0}}=T_{0}
$$

d) The opposite of $T_{9} I R$ is $T_{9} I R$.

Comment: As is the case with variations of the form $T_{n} I$, each variation of the form $T_{n} I R$ is also its own opposite:

$$
T_{n} I \underbrace{R T_{n}}_{T_{n} R} \underbrace{I R}_{R I}=T_{n} \underbrace{I T_{n}}_{T_{12-n} I} \underbrace{R R}_{T_{0}} I=\underbrace{T_{n} T_{12-n}}_{T_{0}}{\underset{T}{0}}^{I I}=T_{0}
$$

e) The opposite of $T_{6} R$ is $T_{6} R$.

Comment: See part (b) - this just applies the same rule for finding the opposite of $T_{n} R$, since $6=12-6$. It's interesting to note, though, that $T_{6} R$ is yet another variation which is its own opposite. This observation leads us to...
2. Which variations (our of all of the 48 possible variations) are their own opposites?

Solution: This is easier to answer if you work through \#1 first (see above). We find that all variations of the form $T_{n} I$ or $T_{n} I R$ are their own opposites. There are 12 of each of these (one for each value of n between 0 and 11 , inclusive), which gives us 24 variations which are their own opposites. As seen in part (e) of $\# 1$, there are others as well $-T_{6} R$ is its own opposite. Similarly, T_{6} is its own opposite as well. The only other variations which are their own opposites are R and T_{0}. This gives us a total of 28 (out of 48) variations which are their own opposites.
3. Find the cyclic subgroup generated by each of the following variations:
a) T_{4}

Answer: the cyclic subgroup generated by T_{4} is $\left\{T_{4}, T_{8}, T_{0}\right\}$. This is because combining T_{4} with itself repeatedly gives us T_{4}, then T_{8}, then T_{0}.
b) $T_{4} R$

Answer: The cyclic subgroup generated by $T_{4} R$ is $\left\{T_{4} R, T_{8}, R, T_{4}, T_{8} R, T_{0}\right\}$. See below for details:
One repetition: $T_{4} R$
Two repetitions:

$$
T_{4} R T_{4} R=T_{8}
$$

Three repetitions: Note that we know two repetitions give us T_{8}, so we don't need to do that again - just "add" another $T_{4} R$ to the previous result, which was T_{8} :

$$
\underbrace{T_{8} T_{4}}_{T_{0}} R=R
$$

Four repetitions: As before, just "add" another $T_{4} R$ to the preceding result:

$$
\underbrace{R T_{4}}_{T_{4} R} R=T_{4} R R=T_{4}
$$

Five repetitions: Proceed as before:

$$
\underbrace{T_{4} T_{4}}_{T_{8}} R=T_{8} R
$$

Six repetitions:

$$
T_{8} \underbrace{R T_{4}}_{T_{4} R} R=\underbrace{T_{8} T_{4}}_{T_{0}} \underbrace{R R}_{T_{0}}=T_{0}
$$

We see that six repetitions of $T_{4} R$ result in the identity, and this is the smallest number of repetitions which give us this result.
c) $T_{3} I R$

Answer: As we noted above (in the solution for \#1(d), and again in the solution for \#2), any variation of the form $T_{n} I R$ is its own opposite. Therefore, $T_{3} I R T_{3} I R=T_{0}$, so the cyclic subgroup generated by $T_{3} I R$ only has two variations: $\left\{T_{3} I R, T_{0}\right\}$.
d) T_{7}

You would need to repeat $T_{7} 12$ times to end up with the identity, T_{0}. You should verify this for yourself. I won't show all the calculations here, but you should end up with - in order (relative to the number of times you've repeated T_{7}) - the following results:

$$
T_{7}, T_{2}, T_{9}, T_{4}, T_{11}, T_{6}, T_{1}, T_{8}, T_{3}, T_{10}, T_{5}, T_{0}
$$

Comment/question: Why do you suppose some variations (like T_{4}, as seen earlier) only run through a few different transpositions when repeated over and over, while others (such as T_{7}) run through all twelve?
4. Which musical transpositions have generate a cyclic subgroup consisting of exactly four variations?

Answers: Recall that any variation which involves an inversion (i.e. $T_{n} I$ or $T_{n} I R$) is its own opposite. So, a variation that generates more than two variations must be either a transposition or a transposition followed by a retrograde.

Since 3 goes into 12 four times, we can see pretty quickly that four repetitions of T_{3} will result in transposition by $3+3+3+3=12$ semitones; that is, $T_{3} T_{3} T_{3} T_{3}=T_{0}$. Similarly, four repetitions of $T_{3} R$ has the same effect as four repetitions of T_{3} and four retrogrades.

The other variations with this property are T_{9} and $T_{9} R$. This isn't as readily apparent as the other two answers, but they both work: $T_{9} T_{9}=T_{18}=T_{6} ; T_{9} T_{9} T_{9}=T_{27}=T_{3} ; T_{9} T_{9} T_{9} T_{9}=T_{36}=T_{0}$. Similarly, $T_{9} R$ generates a subgroup of size four as well.

Comment: The mathematical reason why T_{9} generates a subgroup of size 4 is that $9+9+9+9$ - that is, 9×4 - is the smallest multiple of 9 that is also a multiple of 12 . That is, $9 \times 4=36$, which is a multiple of 12 , and no smaller multiple of 9 is a multiple of 12 . In other words, the "least common multiple" of 9 and 12 is $9 \times 4=$ 36. Contrast this result with $\# 3(\mathrm{~d})$ above, in which T_{7} turns out to generate a subgroup of size 12 since the "least common multiple" of 7 and 12 is $7 \times 12=84$; no smaller multiple of 7 turns out to also be a multiple of 12 .
5. Determine whether each of the following is a group.
a) The set $\{0,2,4\}$ under addition modulo 5
b) The set $\{0,2,4\}$ under addition modulo 6
c) The set $\{1,2,3,4\}$ under multiplication modulo 7
d) The set $\{1,2,4\}$ under multiplication modulo 7

Answers: (b) and (d) are groups; (a) and (c) are not groups.
(a) This set is not a group under addition $\bmod 5$ because it is not closed. For example, $2+4=1(\bmod 5)$, but 1 isn't in the set. (Also, neither 2 nor 4 has an opposite in the set.)
(c) This set is not a group under multiplication $\bmod 7$ because it is not closed. For example, $2 * 3=6(\bmod 7)$, but 7 isn't in the set. (Also, 3 has no opposite in the set.)

For each of (b) and (d), you can make a table to verify that each set is a group under the given operation.
6. For each of the following sets of variations (using the usual rules for combining variations) determine whether the set is a group. (Remember: to be a group, you need to have an identity, opposites, and closure.)
a) $\left\{T_{0}, R, T_{4}, T_{4} R, T_{8}, T_{8} R\right\}$
b) $\left\{T_{0}, I, T_{4}, T_{4} I\right\}$
c) $\left\{T_{0}, T_{3}, T_{4}, T_{6}, T_{8}, T_{9}\right\}$
d) $\left\{T_{2}, T_{4}, T_{6}, T_{8}, T_{10}\right\}$

Answers: (a) is a group; (b), (c) and (d) are not groups.

For (a), we'll use a table to show that all of the group criteria are satisfied:

	T_{0}	R	T_{4}	$T_{4} R$	T_{8}	$T_{8} R$
T_{0}	T_{0}	R	T_{4}	$T_{4} R$	T_{8}	$T_{8} R$
R	R	T_{0}	$T_{4} R$	T_{4}	$T_{8} R$	T_{8}
T_{4}	T_{4}	$T_{4} R$	T_{8}	$T_{8} R$	T_{0}	R
$T_{4} R$	$T_{4} R$	T_{4}	$T_{8} R$	T_{8}	R	T_{0}
T_{8}	T_{8}	$T_{8} R$	T_{0}	R	T_{4}	$T_{4} R$
$T_{8} R$	$T_{8} R$	T_{8}	R	T_{0}	$T_{4} R$	T_{4}
a)						

Note that we have the identity (T_{0} is an element of the set), closure (since every entry in the table was also in the original set), and opposites (since the identity, T_{0}, appears in each row).
b) $\left\{T_{0}, I, T_{4}, T_{4} I\right\}$

This is not a group because it is not closed. For example, $T_{4} T_{4} I=T_{8} I$, which is not in the set. (There are other examples we could use here, but one is sufficient.)
c) $\left\{T_{0}, T_{3}, T_{4}, T_{6}, T_{8}, T_{9}\right\}$

This is not a group because it is not closed. For example: T_{3} and T_{4} are both in the set; however, $T_{3} T_{4}=T_{7}$ but T_{7} is not in the set. (There are other examples we could use here, but one is sufficient.)

Comment: Note that it's not necessary to make a complete operation table (as we did in parts a and b) to show that a set under an operation is NOT a group; to invalidate one of the criteria for a group, all we need to do is find one single example to the contrary. (The point of making a complete table is that it's a way to prove that no such contrary examples exist.)

Comment: Notice that while we don't have "closure," this set does satisfy the other two criteria for a group - it has an identity, and every element of the group has an opposite in the set: T_{3} and T_{9} are opposites, T_{4} and T_{8} are opposites, T_{6} is its own opposite, and T_{0} is its own opposite.
d) $\left\{T_{2}, T_{4}, T_{6}, T_{8}, T_{10}\right\}$

We know that for any group of variations, the identity element will be T_{0}. Since T_{0} is not included in this set, we can immediately determine that it is not a group (since it does not contain an identity element).

