Variations - Supplemental Practice Exercises (Part I)

Here are a few examples for you to try. We'll go over these in class, as needed. Solutions are given on pages 2-4 of this handout.

For each, I'll just give you a "melody" as an ordered list of notes. Your job is to apply the given variation to each one, to find the new variation. You can write just write them as a list of notes, or (if you prefer) on a music staff. You can find some sheet music on the "notes" section of the class web page (click the "free sheet music" link).

Reminder: The notation "I," without a subscript, always refers to inversion centered at C - this is the inversion that is defined in the text.

1. G, F\#, A, G, G, C - find: $T_{4}, T_{4} R$, and $T_{4} I$
2. D, C, B, A, A, G, B - find $T_{6}, T_{6} I$, and $I T_{6}$
3. $\mathrm{D}, \mathrm{D}, \mathrm{C} \#, \mathrm{~A}, \mathrm{~B}, \mathrm{C} \#, \mathrm{D}$ - find $I R$ and $T_{2} I R$
4. E, G, D, G, C, D, E, F, D, G - find I, R, and T_{8}
5. G, F\#, A, G, G, C - find: $T_{4}, T_{4} I$, and $I T_{4}$

Recall that you find T_{4} by raising each note by four semitones.

$T_{4}:$ B, A\#, C\#, B, B, E

$T_{4} I$: To find this variation, apply the inversion to T_{4}, which you already found. Recall that you find the inversion by "reflecting" each note across a "C" - or, equivalently, by "reflecting" each note horizontally across the "musical clock" diagram.
$T_{4}: ~ B, ~ A \#, ~ C \#, ~ B, ~ B, ~ E ~$

T_{4} I: C\#, D, B, C\#, C\#, G\#

$I T_{4}$: This is the inversion followed by T_{4}. It's tempting to just assume that the answer here will be same as the answer for

$T_{4} I$, but that assumption would be incorrect! To see for yourself, first find the inversion of the original melody:

Melody: G, F\#, A, G, G, C
Inversion: F, F\#, D\#, F, F, C
...then, apply T_{4} to the result...
I: F, F\#, D\#, F, F, C
$I T_{4}: \mathrm{A}, \mathrm{A} \#, \mathrm{G}, \mathrm{A}, \mathrm{A}, \mathrm{E}$

Comments:

- Note that the results of $T_{4} I$ and $I T_{4}$ are NOT the same! This shows that inversions and transpositions are not "interchangeable" (or "commutative," to use the mathematical term) - the order in which they're applied does matter!
- However, note that there is some similarity between the two answers...
$I T_{4}: ~ \mathrm{~A}, \mathrm{~A}, \mathrm{G}, \mathrm{A}, \mathrm{A}, \mathrm{E}$
$T_{4} I: \quad \mathrm{C} \#, \mathrm{D}, \mathrm{B}, \mathrm{C} \#, \mathrm{C} \#, \mathrm{G} \#$
Note the "jumps" between consecutive notes: first up one semitone (from A to A\#, or from C\# to D), then down two semitones (from A\# to G, or from D to B), and so on. This similarity is consistent with how transpositions behave; in fact, these two answers are transpositions of each other. Specifically, if you were to transpose the first variation $\left(I T_{4}\right)$ up by four semitones, you would end up with the second variation $\left(T_{4} I\right)$. .

2. D, C, B, A, A, G, B - find transposition $T_{6}, T_{6} I$, and $I T_{6}$
$T_{6}: \mathrm{G} \#, \mathrm{~F} \#, \mathrm{~F}, \mathrm{D} \#, \mathrm{D} \#, \mathrm{C} \#, \mathrm{~F}$
$T_{6} I:$ E, F\#, G, A, A, B, G

To find $I T_{6}$, we must start with the inversion of the original
 melody, and then transpose that result up by 6 semitones:

I: A\#, C, C\#, D\#, D\#, F, C\#
$I T_{6}: \mathrm{E}, \mathrm{F} \#, \mathrm{G}, \mathrm{A}, \mathrm{A}, \mathrm{B}, \mathrm{G}$

Comment: We noted earlier (see the comments after \#1 on the previous page) that $I T_{n}$ isn't usually the same as $T_{n} I$. However, an exception to this rule is when $n=6$ - that is, $T_{6} I$ and $I T_{6}$ DO give us the same variation; this always works! (Why is T_{6} the exception to the rule?)

Note: Exercise \#2 originally asked about $T_{7}, T_{7} I, I T_{7}$ rather than the variations shown here. (This was a typo caught by a student - thanks Justin!) Here are the answers for those variations...
$T_{7}: ~ A, ~ G, ~ F \#, ~ E, ~ E, ~ D, ~ F \# ~$
$T_{7} I: \mathrm{D} \#, \mathrm{~F}, \mathrm{~F} \#, \mathrm{G} \#, \mathrm{G} \#, \mathrm{~A} \#, \mathrm{~F} \#$
$I T_{7}:$ F, G, G\#, A\#, A\#, C, G\#
3. D, D, C\#, A, B, C\#, D
$T_{-5}: \mathrm{A}, \mathrm{A}, \mathrm{G} \#, \mathrm{E}, \mathrm{F} \#, \mathrm{G} \#, \mathrm{~A}$
Comment: as noted in class, this transposition is the same as T_{7} (since $-5+12=7$; that is, -5 and 12 are "equivalent" under the mod 12 arithmetic rules. So, we'll usually call this variation T_{7} rather than T_{-5} (or T_{19}, T_{31}, T_{-17}, or any other equivalent transposition) from now on.

I: A\#, A\#, B, D\#, C\#, B, A\#
IR: A\#, B, C\#, D\#, B, A\#, A\#
Comment: R denotes the "retrograde," which simply reverses the order of the notes in a melody.
4. E, G, D, G, C, D, E, F, D, G - find $I I, R R$, and T_{8}

Answers: $I I$ and $R R$ both leave us with the original melody; that is, I is its own opposite, and R is its own opposite:

I: G\#, F, A\#, F, C, A\#, G\#, G, A\#, F $I I: \mathrm{E}, \mathrm{G}, \mathrm{D}, \mathrm{G}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{D}, \mathrm{G}$

$R: \quad \mathrm{G}, \mathrm{D}, \mathrm{F}, \mathrm{E}, \mathrm{D}, \mathrm{C}, \mathrm{G}, \mathrm{D}, \mathrm{G}, \mathrm{E}$
$R R: \mathrm{E}, \mathrm{G}, \mathrm{D}, \mathrm{G}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{D}, \mathrm{G}$
T_{8} : C, D\#, A\#, D\# G\#, A\#, C, C\#, A\#, D\#

