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Abstract

Trade liberalization changes the volatility of returns by reducing the negative correlation
between local prices and productivity shocks. In this paper, we explore these second moment
effects of trade. Using forty years of agricultural micro-data from India, we show that falling
trade costs due to expansions of the Indian highway network reduced the responsiveness of local
prices to local yields but increased the responsiveness of local prices to yields elsewhere. In
response, farmers shifted their production toward crops with less volatile yields, especially so for
those with poor access to risk mitigating technologies such as banks. We then characterize how
volatility affects farmer’s crop allocation using a portfolio choice framework where returns are
determined in general equilibrium by a many-location, many-good Ricardian trade model with
flexible trade costs. Finally, we structurally estimate the model—recovering farmers’ risk-return
preferences from the gradient of the mean-variance frontier at their observed crop choices—to
quantify the second moment effects of trade. The simultaneous expansion of both the highway
and rural bank networks increased the mean and the variance of farmer real income, with
the first-moment effect dominating such that expected welfare rose 4.4%. But had rural bank
access remained unchanged, welfare gains would have been only half as great, as risk-mitigating
technologies allowed farmers to take advantage of higher-risk higher-return allocations.
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1 Introduction

While trade liberalization increases average returns through specialization, it also affects the

volatility of returns by reducing the negative correlation between local prices and productivity

shocks. When production is risky, producers are risk averse, and insurance markets are incomplete—

as is the case for farmers in developing countries—the interaction between trade and volatility

may have important welfare implications. Yet we have a limited empirical understanding of the

relationship between trade and volatility. In particular, does volatility magnify or attenuate the

gains from trade; how do agents respond to changes in the risk they face arising from falling trade

costs; and can complementary policies ensure that the gains from trade are maximized?

In this paper, we empirically, analytically, and quantitatively explore the second moment ef-

fects of trade. Using forty years of agricultural micro-data from India, we show empirically that

expansions of the Indian highway network reduced the responsiveness of local prices to local rainfall

but increased the responsiveness of local prices to yields elsewhere. In response, farmers not only

moved toward crops in which they had a comparative advantage, they also shifted their production

toward crops with less volatile yields, an effect that was especially strong for farmers with poor

access to the formal banking sector. We then incorporate a portfolio allocation framework—where

producers optimally allocate resources (land) across risky production technologies (crops)—into a

many location, many good, general equilibrium Ricardian trade model. The model yields analytical

expressions for the equilibrium prices and crop allocations and generates straightforward relation-

ships between observed equilibrium outcomes and underlying structural parameters, allowing us

to quantify the second moment welfare effects of trade. Structural estimates suggest that first

moment gains from specialization outweigh any second moment losses and that improvements in

risk mitigating technologies encourage farmers to choose higher-risk higher-return crop allocations

than they would otherwise have been unwilling to pursue.

Rural India is our empirical setting, home to roughly one-third of the world’s poor and an

environment where agricultural producers face substantial risk. Even today, less than half of agri-

cultural land is irrigated, with realized yields driven by the timing and intensity of the monsoon and

other more-localized rainfall variation. Access to agricultural insurance is limited, forcing farmers—

who comprise more than three quarters of the economically active population—to face the brunt

of the volatility. Furthermore, many are concerned that the substantial fall in trade costs over the

past forty years (due, in part, to expansions of the Indian highway network as well as reductions

in tariffs) has amplified the risk faced by farmers. These concerns, and the importance of better

understanding the link between trade and volatility, are well illustrated by the fact that the Doha

round of global trade negotiations collapsed over India and China’s insistence on special safeguard

mechanisms to protect their farmer; and, more recently, by massive year-long farmer protests over

proposals to improve the efficacy of India’s agricultural markets by liberalizing the 60 year old

mandi system that restricts agricultural trade within India.

Using a dataset containing the annual price, yield, and area planted for 15 major crops across

311 districts and 40 years matched to bilateral travel times along the evolving national highway
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network, we document three sets of stylized facts. First, reductions in trade costs due to the

expansion of the highway network reduced the elasticity of local prices to local yield shocks and

increased the elasticity of local prices to yields elsewhere. Second, this fall in trade costs not

only caused farmers to reallocate toward crops for which they had a comparative advantage—as

traditional trade models would predict—it also caused farmers to reallocate away from risky crops

that had more volatile yields and/or yields that had higher covariances with other crops, an effect

that was particularly pronounced in districts with poor bank access. Third, the combination of the

previous two effects increased the volatility of farmers’ nominal incomes, an effect only partially

offset by a decline in price index volatility.

We next develop a general equilibrium Ricardian model of trade and volatility that both cap-

tures many of the key features of agricultural trade in India and explains the three sets of stylized

facts. In the model, heterogeneous traders engage in the buying and selling of homogeneous agri-

cultural goods to take advantage of price differences between local villages and a central market.

To circumvent the familiar difficulties arising from corner solutions for prices and patterns of spe-

cialization, we assume that the distribution of trade costs these traders face takes a convenient

Pareto form. Consistent with the first stylized fact, this assumption allows equilibrium prices to

be written as a log-linear function of the local yield and the market price, with the relative magni-

tude of these elasticities governed by the shape parameter of the Pareto distribution of trade costs.

This model-implied relationship between prices and yields more closely matches the patterns in

the data compared to the “kinked” relationship between prices and yields implied by traditional

price arbitrage models with homogeneous trade costs. Furthermore, in the absence of volatility,

this model generates a simple expression for the equilibrium pattern of specialization—highlighting

that, as trade costs fall, farmers will reallocate their crops away from those they wish to consume

and toward those in which they have a comparative advantage in production.

Incorporating volatility into the model poses additional challenges. To derive the equilibrium

pattern of specialization in the presence of volatility we embed a portfolio choice problem from the

finance literature (see e.g. Campbell and Viceira (2002)) into our Ricardian trade framework. In

contrast to finance applications, the general equilibrium nature of our trade model means that each

farmer’s decision depends on the distribution of yields of all crops in all locations and the crop

choices of all other farmers. Despite this complication, our expression for the pattern of specializa-

tion remains tractable and is a straightforward generalization of the no volatility case. Consistent

with the second stylized fact, as trade costs fall, farmers re-allocate their land toward crops for

which they have a risk-adjusted comparative advantage. In doing so, they balance traditional “first

moment” gains from trade against “second moment” changes in volatility, with the trade-off gov-

erned by their level of risk aversion. The model also allows us to sign the effect of a fall in trade

costs on the variance of farmers’ nominal incomes and the variance of their price index, with the

former rising and the latter falling, consistent with the third stylized fact.

Finally, we extend the framework to create a “quantitative” version of the model that adds

realism by incorporating a number of additional features of the empirical setting (e.g. a hierarchical
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trading network featuring many different regional markets, arbitrary correlations in yields across

crops and districts, and a manufacturing sector). We then estimate this extended model and use it

to quantify the welfare effects of the expansion of the Indian highway network. Despite the added

complexity, the tractability of the model allows us to recover the key parameters from the data in

a transparent manner. First, as the model implies that the magnitudes of the elasticities of local

prices to local yields and prices elsewhere are governed by the distribution of traders’ costs, we can

recover unobserved trade costs via a linear regression. These trade costs fall with the increases in

market access due to highway expansion. Second, as farmers’ unobserved risk-return preferences

shape the gradient of the mean-variance frontier at the observed crop choices, we can estimate

farmers’ risk aversion from a linear regression derived from their first order conditions. We find

that these risk aversion estimates fall as rural bank access improves, consistent with banks providing

a risk mitigation technology that allows farmers to behave in a less risk averse manner.

We use these parameter estimates to quantify the welfare effects of the expansion of the Indian

highway network. Between the 1970s and 2000s, we estimate that the expansion of the Indian

highways alone (i.e. holding constant farmers’ access to banks) raised the mean real income of

farmers by 2.2%, accompanied by a small decline in the volatility of farmers’ real incomes as

improved market integration elsewhere stabilized market prices. However, when combined with

the observed expansion in rural bank access, we find farmers’ real income volatility increased,

consistent with our third stylized fact. This increase comes from farmers pursuing higher risk

higher return crop allocations that, in the absence of improvements in risk mitigating technologies,

they would have been unwilling to undertake. As a result, the combination of highway expansions

and improved rural bank access boosted real incomes (a 2.8% gain vs. 2.2%) and almost doubled

the welfare gains (4.4% vs 2.3%) compared to highway expansions alone, with the strength of

complementarities hinging on whether the riskiest crops are also the comparative advantage ones.

This paper relates to a number of strands of literature in both international trade and economic

development. There is a longstanding theoretical literature on trade and volatility; see Helpman

and Razin (1978) and references cited therein. In a seminal paper, Newbery and Stiglitz (1984)

develop a stylized model where trade can reduce welfare in the absence of insurance (although to

obtain this stark result they assume farmers and consumers differ in their preferences and do not

consume what they produce).1 In our baseline model farmers are able to produce all goods they

consume and so trade always increases their welfare even in the presence of volatility as in Dixit

and Norman (1980). That said, the lack of risk sharing between agents producing different types

of goods is an important mechanism through which trade may have deleterious second-moment

effects; see e.g. Rodrik (1997). Thus, our quantification extends the model to include an urban

manufacturing sector to allow for the possibility of welfare losses for farmers. More generally, our

paper incorporates the intuition developed in these seminal works into a quantitative trade model

that is sufficiently flexible (e.g. many goods and locations with arbitrary variances and covariances

of returns and flexible trade costs) to be taken to the data.

1Eaton and Grossman (1985) and Dixit (1987, 1989a,b) incorporate imperfect insurance and incomplete markets.
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Recently, several papers have explored the links between macro-economic volatility and trade,

see e.g. Easterly et al. (2001); di Giovanni and Levchenko (2009); Karabay and McLaren (2010);

Lee (2018). Our paper instead focuses on the link between micro-economic volatility—i.e. good-

location specific productivity shocks—and trade. Most closely related to our paper are three papers

exploring volatility through the lens of the canonical Eaton and Kortum (2002) framework. Burgess

and Donaldson (2010, 2012) study the relationship between famines and railroads in colonial India.

Like us, they find that infrastructure improvements reduced the responsiveness of local prices and

increased the responsiveness of real income to rainfall shocks.2 Caselli et al. (2019) quantify the

relative importance of sectoral and cross-country specialization in a world of globally sourced in-

termediate goods. We see our paper as having three distinct contributions relative to these papers.

First, we depart from Eaton and Kortum (2002), instead developing an alternative quantitative

general equilibrium framework that allows us to analyze the pattern of trade while more closely

matching several important characteristics of the empirical setting we consider (e.g. homogenous

goods, a hierarchical trading network, and heterogeneous traders). Second, by embedding a portfo-

lio allocation decision where real returns are determined in a general equilibrium trade setting, we

characterize the endogenous response of agents to trade-induced changes in their risk profile. Third,

we empirically validate that farmers’ land allocation decisions respond as the model predicts.

The paper is also related to a growing literature applying quantitative trade models to the

study of agriculture in the absence of volatility. Much of this literature also builds off Eaton and

Kortum (2002) (see e.g. Sotelo (2020), Costinot and Donaldson (2016), Costinot et al. (2016),

and Bergquist et al. (2019)) with model tractability arising from assuming each location is hetero-

geneous in its productivity across a continuum of crop varieties or a continuum of plots of land.

In contrast, we obtain tractability from traders facing heterogenous costs of trading, consistent

with the empirical setting we consider.3 This trader heterogeneity generates a new and intuitive

arbitrage condition governing price dispersion across locations, which performs better at matching

observed price differentials compared to standard conditions based on homogenous trade costs.

Finally, the paper relates to three strands of the economic development literature. First, we

follow a long tradition of modeling agricultural decisions as portfolio allocation problems (see e.g.

Fafchamps (1992); Rosenzweig and Binswanger (1993); Kurosaki and Fafchamps (2002)). Second,

we build on a substantial development literature examining the effect that access to formal credit

has on farmers (see e.g. Burgess and Pande (2005) and Jayachandran (2006)). Third, we add to

a primarily reduced form literature analyzing the impacts of infrastructure investment (e.g. Duflo

and Pande (2007) for dams and Asher and Novosad (2020) for village roads, both in India). We

contribute to these literatures in three ways: first, our rich data allows us to characterize the

optimal crop choice using the observed mean, variance, and covariance of yield shocks across crops;

2There are important differences between colonial and modern India, notably that trade costs may have risen
between the two periods. As evidence for this claim, we find local rainfall shocks affect local prices in our sample
period 1970–2010 (consistent with substantial barriers to trade across locations), while Donaldson (2018) finds they
did not in Colonial India post railway construction (consistent with low barriers to trade across locations).

3Traders also play important roles in Allen (2014) and Chatterjee (2020); here, we abstract from information
frictions and farmer-trader bargaining and instead focus on the role of volatility and its effect on farmers’ crop choice.
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second, we demonstrate that rural bank access leads farmers to choose riskier crop portfolios; and

third, we examine the interaction between rural bank access and domestic infrastructure policy.

The remainder of the paper is organized as follows. Section 2 describes the empirical context

and the data we have assembled. Section 3 presents three new stylized facts relating trade to

volatility. Section 4 introduces the baseline model, shows that it is consistent with the stylized facts,

and analytically characterizes the second moment welfare effects of trade. Section 5 structurally

estimates an extended version of the model and quantifies these welfare effects. Section 6 concludes.

2 Empirical context and data

2.1 Rural India over the past forty years

This paper focuses on rural India over a forty year period spanning 1970 to 2009. The majority of

rural households derive income from agriculture; 85% of the rural workforce was in agriculture in the

1971 Census and 72% in the 2011 Census. Over this period, there were three major developments

that had substantial impacts on the welfare of rural Indians. First, increased use of irrigation and

high-yield varieties (HYV) raised mean yields and altered the variance of yields. Second, policy-

driven expansion of formal banking into rural areas helped farmers smooth income shocks and so

provided a form of insurance. Appendix A.1.1 provides further details on these two developments.

The third set of changes relate to reductions in inter- and particularly intra-national trade

costs. The reductions were driven by two types of national policy changes. The first—which we

will exploit extensively in the empirical analysis—were major expansions of the Indian inter-state

highway system including the construction of the ‘Golden Quadrilateral’ between Mumbai, Chennai,

Kolkata and Delhi and the ‘North South and East West Corridors’ (see Datta (2012); Ghani et al.

(2016); Asturias et al. (2018) for firm-level impacts). The result was that over the sample period,

India moved from a country where most freight was shipped by rail to one dominated by roads—

in 1970 less than a third of total freight was trucked on roads, four decades later road transport

accounted for 64% of total freight based on Indian government estimates. The second policy change

was the broad economic liberalization program started in 1991 that gradually reduced agricultural

tariffs both across-states within India (see discussion in Atkin (2013)) and with the outside world.

This paper focuses on domestic trade, that is the inter-state and intra-state trade that constituted

the overwhelming majority of India’s agricultural trade over our sample period.

2.2 Agricultural trade in rural India

Agricultural trade in rural India has remained relatively unchanged since the 1960s, when the Agri-

cultural Produce Marketing Committee (APMC) Acts were passed by Indian states. The APMC

Acts established state-level marketing boards to regulate the trade of agricultural commodities,

which in turn created state-regulated markets for agricultural trade called mandis—located in

large towns near production centers—where farmers were legally required to sell their goods.

The basic structure of the trading process is as follows. Upon harvest, farmers either consume

their produce directly or sell it to local traders in their village who transport it to the district
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mandi. At the mandi, the local traders sell the produce to (larger) regional traders who transport

it to terminal markets in the state (or in some cases outside the state), which are typically located

in large cities where the produce is processed for retail consumption. The result is a hierarchical

trading network illustrated in panel (a) of Figure 1. Many farmers trade at the village level,

many villages trade at the mandi level, many mandis trade at the state level, and many states

trade at the national level, intermediated by traders at all but the bottom level. Unlike models

where all locations trade directly with each other, our model below incorporates this more realistic

hierarchical structure. Appendix A.1.2 provides further details on the mandi system.

In addition to the hierarchical trading structure, there are several other characteristics of agri-

cultural trade in rural India that should be emphasized. First, these agricultural goods are best

viewed as homogeneous. In each mandi, there is a market price for each type of good and that price

exhibits very little variation across transactions on a given day.4 Second, traders not only engage in

arbitrage when purchasing farmers’ production, they also engage in arbitrage when selling (poten-

tially processed) agricultural goods for consumption.5 Third, farmers take market prices as given,

with traders earning any profits resulting from arbitrage (see Goyal (2010), Mitra et al. (2018), and

Chatterjee (2020)). Fourth, traders exhibit a large degree of heterogeneity in their scale, varying

from small traders who have no capital and incur large costs to transport goods (e.g. renting a

tractor to carry produce to the mandi) to large multinational corporations. In our model below, we

will incorporate each of these features: modeling goods as homogeneous (instead of as aggregates

of a product with infinite varieties, as commonly assumed), having farmers take prices as given

and traders earning profits (instead of perfect competition in the transport sector, as commonly

assumed), and allowing traders to have heterogeneous trade costs (instead of homogeneous trade

costs, as commonly assumed). Finally, we note that while the model developed below has been

tailored to our empirical context, the characteristics above are common in agricultural settings

throughout the developing world, suggesting its broader applicability.6

2.3 Data

We assemble the following dataset on agricultural production and trade costs covering the entirety

of the forty year period 1970-2009 (see Appendix A.2 for a more thorough data description):

Agricultural Data: Data on district-level cropping patterns (i.e. the area allocated), crop prices

(the farm gate price a farmer receives) and crop yields come from the ICRISAT Village Dynamics

in South Asia database (henceforth VDSA) which compiles various official government datasources.

Cropping patterns, prices, and yields are all observed at the district × crop × year level for 311

districts (using time-invariant 1966 district and state boundaries) in 19 states that contain 95% of

India’s population. The database covers the 15 major crops (covering 73% of cropland) for which

4For example, for mustard, paddy and wheat where we observe daily mandi-level prices from 2006 onward, the
median difference between the max and min price divided by the mode on a given day was 0.04, 0.06, and 0.07.

5The traders selling goods to farmers need not be the same individuals buying from farmers, although Chatterjee
et al. (2020) find that 39% of local traders in their sample also own village shops.

6E.g., see Bergquist et al. (2021) on hierarchical trading networks in Uganda, Grant and Startz (2021) for chains of
intermediation in Nigeria, Bergquist and Dinerstein (2020) and Dhingra and Tenreyro (2020) on imperfect competition
among Kenyan agricultural traders, and Allen (2014) regarding heterogeneous agricultural traders in the Philippines.
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farm harvest prices are available. All Rupee values are deflated by the all-India CPI.

Trade Costs: We obtained all seven editions of the government-produced Road Map of India pub-

lished between 1962 and 2011. We digitized and geo-coded these maps and identified the highways

using an algorithm based on the color of digitized pixels. Figure 2 depicts the substantial expansion

of the the Indian highway network over the forty year period. Using these maps, we construct a

“speed image” of India, assigning a speed of 60 miles per hour on highways and 20 miles per hour

elsewhere. This image allows us to calculate travel times between any two districts using the Fast

Marching Method (see Sethian (1999)), interpolating to obtain years between editions.

Rural Bank Access: RBI bank openings by district come from Fulford (2013).

Consumer Preferences: Consumption data come from National Sample Survey (NSS) Surveys.

Rainfall Data: Gridded weather data come from Willmott and Matsuura (2012).

3 Trade and volatility: Three stylized facts

3.1 Prices and trade

We first demonstrate the key mechanism linking trade and volatility. Appendix A.3 provides further

estimation details (on all three stylized facts) and presents additional robustness exercises.

Stylized Fact 1(a): As trade costs with other locations fall, prices respond less to local yields...

We first show that district-level prices are inversely related to district-level yield shocks, as a supply

and demand model would predict, and that this responsiveness is attenuated as trade costs fall.

To do so, we regress district-level log prices on log yields and explore how the yield coefficient—

the elasticity of price to yield—changes with reductions in the costs of trading with other locations:

lnpigtd=β1lnAigtd+β2lnAigtd×MAinstateid +γgtd+γigd+γit+νigdt, (1)

where lnpigtd is the price in district i of good g in year t decade d, and lnAigtd is the local yield.

The variable MAinstateid captures district i’s trade openness in decade d—as measured by market

access to other districts in the state with the precise definition provided below. To control for

confounds, we include three sets of fixed effects: a crop-year fixed effect γgtd that controls for

changes in national or world prices of the good; a district-crop-decade fixed effect γigd that controls

for slow-moving changes in crop-specific costs, in the area allocated to the crop, in preferences, or

in technologies; and a district-year fixed effect γit that controls for local cost or demand shocks

common to all crops (and sweeps out the level effect of market access). Finally, here and in the

later facts we make our results representative of rural India by weighting observations by the total

area planted with our 15 crops in each district. We note that our specification, including the choice

of fixed effects, will match the expression we derive for equilibrium prices in Section 4 below.

Our district-decade measure of openness derives from our digitized road maps. Motivated by the

hierarchical structure of India’s trading network described in Section 2.2, we consider within-state

market access. (We explore the relevance of national market access below.) Following Donaldson

and Hornbeck (2016), we construct a within-state market access measure for district i in year t by
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taking a weighted sum of the inverse bilateral travel times to other districts in i’s state, the set Si:

MAinstateit =
∑
j∈Si

(
travel time−φijt Yjt

)
, (2)

where Yjt is district j’s income in year t (proxied by total agricultural revenues) and φ>0 determines

how quickly market access declines with travel time. Higher values of market access correspond

to greater trade openness as districts are able to trade more cheaply with places where demand is

high. Averaging district-year values within a decade provides us with our MAinstateid variable.7

To parameterize φ we draw on the gravity literature that measures how rapidly log trade flows

decline with log distance. Following meta-analyses, we set φ= 1.5—the average gravity coefficient

for developing country samples.8 For robustness, we also consider φ=1, a natural benchmark and

close to the average of 1.1 found when considering all countries, as well as alternate estimates of

the off-highway speed of travel (1/4 of highway speed rather than 1/3).

Since farmers may invest more care harvesting crops that have high prices, yields are likely to

respond positively to price shocks, exerting an upward bias on the yield elasticity. To deal with

this endogeneity concern, we instrument local yields with rainfall-predicted yields. Specifically, we

regress log yields on local rainfall shocks in each month of that year interacted with state-crop fixed

effects and include the same fixed effects as in the specification above. This generates a predicted

yield measure that, after conditioning on the fixed effects, depends only on rainfall realizations and

time-invariant parameters (and hence is unaffected by changes in the production technology over

time). Predicted yields interacted with market access serve as our instrument for the interaction

term. The instruments are very strong with a Kleibergen-Paap (KP) first stage F-stat above 2000.

In order for the coefficients on the interaction between yield and market access to be interpreted

causally, we further require that road building does not respond to changes in the elasticity of yields

to prices after controlling for the rich set of fixed effects. Such endogeneity concerns are mitigated

by the fact that much of the highway construction was part of centrally-planned national programs

designed to connect larger regions. Reassuringly, changes in our market access measure are not

associated with changes in relevant district characteristics; see Appendix A.3. To further address

potential confounders we interact yields with various sets of fixed effects below.

Columns 1 and 2 of Table 1 present the OLS and IV estimates of regression specification

(1). As we would expect, a positive shock to supply lowers prices (β1 < 0), with the coefficient

becoming more negative after instrumenting yields (consistent with the upward bias in the OLS

discussed above). More central to our analysis, the elasticity of local prices to local yields increases

significantly—from negative values towards zero—with improvements in market access. That is,

as trade costs fall, the role that local prices play in insuring against yield shocks (i.e. prices rising

when yields are low) is weakened. In terms of magnitudes, a rise in market access equal to the

7We take decadal averages to align with the later stylized facts and with our quantitative analysis.
8Head and Mayer (2014) report an average coefficient on log distance of -1.1 across 159 papers and 2,508 regressions

while Disdier and Head (2008) reports that estimates from developing country samples are lower by an average of
0.44—consistent with distance being more costly in developing countries as found in Atkin and Donaldson (2015).
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median 1970-2009 change in MAinstateid raises the elasticity by 0.017 (from a 1970s mean of -0.047).

These findings are robust to our two alternative market access measures (columns 3 and 4) and

to controlling for crop-specific technological changes or differences in crop suitability across districts

that are correlated with market access by interacting yields with fixed effects (columns 5 and 6).9

Finally, we explore whether the reduced responsiveness of prices to local yields also depends

on changes in trade costs with locations outside the state. Column 7 supplements (1) with an

interaction between local log yields and outside-state market access, MAoutstateid , calculated identi-

cally to MAinstateid but now summing the inverse bilateral distances over all locations outside the

state. The coefficient on the interaction is small and insignificant, consistent with restrictions on

interstate commerce that motivate India’s hierarchical trading network described in Section 2.2.

The primacy of within-state market access will be echoed in all three stylized facts.10

Stylized Fact 1(b): ... and prices respond more to yields elsewhere.

Reductions in trade costs also raise the responsiveness to yields in other districts. To demonstrate

this, column 8 of Table 1 amends specification (1) to further include the log of the area-weighted

average yields in the other districts within the same state, lnA−i,sgtd, as well as its interaction with

within-state market access. Local prices decline with high yields elsewhere, with prices becoming

significantly more responsive to yields elsewhere (i.e. decline more) with increases in market access.

3.2 Crop choices and trade

Our second set of stylized facts provides evidence that farmers respond to declines in trade costs by

trading off traditional first-moment gains from specialization with second moment risk-reduction

strategies, consistent with a portfolio choice model.

Stylized Fact 2(a): As trade costs fall, farmers reallocate their land toward crops for which they

have a comparative advantage and away from crops that are more risky...

We first regress the share of land allocated to each crop on the mean and variance of yields of that

crop, both interacted with our within-state market access measure MAinstateid introduced above:

arcsinhθigd=β1µ
A
igd+β2σ

2,A
igd +β3µ

A
igd×MAinstateid +β4σ

2,A
igd ×MAinstateid +γgd+γid+γig+εigd, (3)

where arcsinhθigd is the inverse hyperbolic sine of the decade-d average share of cropped land

planted with crop g in district i, µAigd is the mean of log yields in that district-crop-decade, and

σ2,A
igd is the variance of log yields in that district-crop-decade (which, unlike the variance of yields, is

mean independent). We saturate the model by including crop-decade, district-decade, and district-

crop fixed effects. These control for both national crop-specific trends, district-decade level shocks,

and persistent differences in local agroclimatic conditions that could potentially be related to local

agricultural technologies and hence bias the β coefficients.

As in Fact 1 above, our choice of specification—including the mean and variance of log yields

9Columns 5 and 6 include interactions with log yield and the full set of either crop-decade fixed effects or crop-
district fixed effects. As discussed in Appendix A.3, we report reduced forms due to the large number of instruments.

10See column 9 of Table 1, columns 5 and 8 of Table 2 and columns 4–6 of Table 3 for these results.
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as independent variables and the choice of fixed effects—arises directly from the expression we

will derive for the equilibrium crop choice in Section 4. The one departure is the use of the

inverse hyperbolic sine transformation in lieu of logging crop shares given that 19% of crop share

observations in our regression sample are equal to zero.

To allay worries about endogenous movements in yields in response to cropping decisions—for

example cropping more marginal lands which alters the mean and variance of yields—we instrument

for the mean and variance of log yields with the same objects predicted from rainfall variation.

Reassuringly, the instruments are strong with a KP first stage F-stat of 117.

The OLS and IV regression coefficients are shown in Columns 1 and 2 of Table 2. The significant

positive β3 coefficient for both the OLS and IV implies that as trade costs fall—and hence market

access improves—farmers respond by reallocating land toward crops in which they are relatively

more productive. The significant negative β4 coefficient indicates that a fall in trade costs also leads

farmers to reallocate towards crops that have lower variances of yields. In terms of magnitudes,

using the IV coefficients, a fall in trade costs equal to the median 1970-2009 change in within-

state market access increases the responsiveness to mean log yields by one fifth and changes the

responsiveness of crop choice to the variance of log yields from a slightly positive one (coefficient

0.010) to a slightly negative one (coefficient −0.004). Similar results obtain when replacing yields

(the exogenous variable in our theory) with the value of production in column 3.

Together, these results suggest that farmers are not only responding to trade cost declines by

specializing in high yield crops in which they have a comparative advantage—the traditional “first

moment”effects—but also by reallocating land toward crops that are less risky—a“second moment”

effect of trade on risk mitigation that our portfolio allocation model below will emphasize.

Farmers may also engage in hedging and allocate more land to crops whose yields are less

correlated with other crops in order to mitigate the increase in risk due to reductions in trade costs.

To test this additional “second moment” effect, we supplement equation (3) with
∑

g′ 6=gσ
A
igg′d—the

sum of the covariance of log yields of crop g with the log yields of each of the other 14 crops—and

its interaction with market access. As a portfolio choice model would predict, column 4 of Table

2 shows a negative and significant coefficient on the interaction between the covariance term and

market access (using rainfall-predicted covariances as instruments), with a magnitude similar to

that on the variance interaction.

Stylized Fact 2(b): ... with yield risk mattering more where risk mitigation technologies are worse.

Fact 2(b) shows that the degree to which farmers trade off the first and second moment forces when

choosing crop allocations depends on their access to risk mitigation technologies. As discussed in

Section 2.1, local rural bank branches provide an important form of insurance as farmers can take

out loans in bad times and repay them in good ones. We explore how this insurance technology

affects crop choices by allowing bank access to affect the responsiveness to the variance of yields.

Specifically, we extend specification (3) to include all interactions between the variance of log

yields, market access and bank access—measured as the decadal average of rural banks per capita

in a district. Once again, we instrument the interaction terms with similar terms that replace the
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variance of log yields with the variance of log predicted yields.11

The estimates are shown in Column 6 of Table 2 with the triple interaction positive and signif-

icantly different from zero at the 1% level. Consistent with farmers being willing to bear more risk

if insured, the presence of more insurance options attenuates the movement into less risky crops

that results from reductions in trade costs. That is, the better the bank access, the more important

the “first moment” effects of trade on specialization and the less important the “second moment”

effects of trade on risk mitigation. In terms of magnitudes, the increase in the responsiveness to

the variance of yields that results from better market access shrinks by 40% when going from the

25th percentile of banks per capita to the 75th. Column 7 repeats this exercise with the covariance

of log yields terms introduced in Fact 2(a) with the triple interaction of the covariance with banks

and market access also positive and significant at the 10% level.

3.3 Volatility and trade

Our third set of stylized facts captures the net impact of the mechanisms highlighted in Facts 1 and

2 by exploring the offsetting effects of reductions in trade costs on income and price index volatility.

Stylized Fact 3(a): As trade costs fall, farmers’ revenue volatility increases...

First, we calculate nominal (gross) income—i.e. the total revenue from the production of all 15

crops—using annual data on agricultural revenues per hectare. Of course, these are gross of crop

costs which may change over time, an issue we confront head on in the structural estimation below.

To explore how the volatility of nominal income—i.e. revenue volatility—responded to reduc-

tions in trade costs, for each district and decade we calculate var(lnnominal income)id. We then

project this object onto within-state market access:

var(lnnominal income)id=β1MAinstateid +γi+γsd+εid. (4)

District fixed effects γi control for persistent differences in volatility while state-decade fixed effects

γsd control for temporal changes common to markets within a state. Note that here we are unable

to exploit variation across crops within a district and time period as we did in Facts 1 and 2, making

endogeneity concerns more substantial even with the inclusion of time trends at the lowest possible

level, i.e. state-decade. Thus, we should be more cautious in interpreting the following results as

causal (and these concerns motivate the need for the quantitative results in Section 5 that isolate

the effects of trade cost reductions alone). That said, it is reassuring that MAinstateid is uncorrelated

with banks, yields, or yield-improving technologies; see Appendix Table A.1.

Column 1 of Table 3 reports the estimated β1 coefficient. Consistent with planting reallocations

(Fact 2) only partially mitigating the reduced responsiveness of prices to yield shocks (Fact 1),

the variance of log nominal income rises significantly with increases in market access. In terms

of magnitudes, a rise in within-state market access equal to the median change in market access

between the 1970s and 2000s increases the variance of log revenue by an amount equal to 78% of

11The first stage F-stat remains strong (a value of 78.6). Endogenous bank placement may still induce a bias but,
as discussed in Appendix A.3, it is reassuring that changes in market access and banks per capita are unrelated.
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the mean 1970s variance. (The average variance rose 3.2 fold over this period with our reductions

in trade costs accounting for 45% this rise.)

Stylized Fact 3(b): ... and the volatility of their price index declines...

To explore the impact of reductions in trade costs on the volatility of farmers’ price indices, we

construct for each district a Cobb-Douglas price index over the 15 crops in our sample.12

Column 2 of Table 3 replaces the dependent variable in (4) with var(lnCD Price Index)id,

the district-decade variance of the log Cobb-Douglas price index. Consistent with the reduced

responsiveness of prices to yields documented in Fact 1—and in contrast to the rising volatility

of nominal income—the coefficient on market access is negative, i.e. the price index becomes less

volatile with reductions in trade costs. While only about a third the size of the effect on revenue

volatility, the coefficient is significantly different from zero with a p-value of 0.110.

Stylized Fact 3(c): ... with the volatility of real income rising on net.

Finally, we turn to impacts of reductions in trade costs on the variance of log real income, the

ratio of log nominal income and the log Cobb-Douglas price index introduced above. Consistent

with the observed rise in the volatility of nominal income coupled with a smaller decline in the

volatility of the price index, column 3 of Table 3 shows that real income volatility increases with

within-state market access. The coefficient on market access falls by 38% compared to the nominal

income specification but the estimate is still positive and statistically significant.

To sum up, we have shown that falling trade costs reduce the responsiveness of prices to local

yields but increase the responsiveness to yields elsewhere (Fact 1). Farmers respond by changing

their crop allocations—trading off first moment gains from specialization against second moment

strategies to mitigate risk (Fact 2)—but not enough to prevent increases in farmers’ real income

volatility (Fact 3). We now present a model that is sufficiently tractable to generate these compara-

tive statics and sufficiently flexible to quantify the welfare impact of the Indian highway expansion.

4 Modeling trade and volatility

In this section, we develop a new general equilibrium Ricardian model of trade and volatility

featuring farmers in many villages producing and consuming homogeneous crops and heterogenous

traders engaged in price arbitrage between villages and markets. In addition to mirroring our

empirical context, the model yields tractable expressions for prices and patterns of specialization,

allows us to incorporate volatility by applying tools from the portfolio choice literature, and yields

predictions consistent with the three stylized facts above.

4.1 Model setup

Geography: There are a large number of locations (“villages”) indexed by i ∈ N and a central

market. Each village i is inhabited by Li identical farmers who produce and consume goods. The

12We obtain district-level expenditure shares for each of these crops from the 1987 household-level NSS surveys
and these (constant) shares serve as the weights in the Cobb Douglas price index. Specifically, lnCD Price Indexit=∑
gbshareiglnpigt where CD Price Indexit is the Cobb Douglas price index.
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central market is inhabited by a set of heterogeneous traders who engage in an arbitrage process

(described below) and drivers who are hired by the traders to ship goods between the central market

and each of the villages.

Production: There are a finite number of homogenous goods (“crops”) indexed by g∈{1,...,G}≡G
that can be produced in each location. Land is the only factor of production. Each farmer is

endowed with a unit of land and chooses how to allocate that land across the production of each

of the G crops. Let θfig denote the fraction of land farmer f living in village i allocates to good g,

where
∑

g∈Gθ
f
ig=1; we refer to

{
θfig

}
g∈G

as farmer f ’s crop choice.

Production is risky. Let the (exogenous) yield of a unit of land in location i for good g be

Aig (s), where s ∈ S is the state of the world. Given her crop choice, farmer f receives nominal

income Y f
i (s)=

∑
g∈Gθ

f
igAig(s)pig(s) in state s, where pig(s) is the price of good g in location i.

While we abstract from idiosyncratic risk in this setup, an alternative (mathematically-equivalent)

interpretation is that farmers face idiosyncratic risk but engage in perfect risk sharing arrangements

with other farmers in the same location. Consistent with this interpretation, Appendix Table A.6

echoes the seminal work of Townsend (1994) by showing that across four NSS survey rounds span-

ning 1987–2005, household consumption is more responsive to district-level rainfall-induced income

shocks than to the same shocks at the household-level.

Preferences: Farmers have constant relative risk aversion preferences with an effective risk aversion

parameter ρi>0:

Ufi (s)≡ 1

1−ρi

((
Zfi (s)

)1−ρi
−1

)
, (5)

where Zfi (s) ≡
∏
g∈G c

f
ig (s)αig is a Cobb-Douglas aggregate of goods, cfig (s) denotes the quantity

consumed of good g in state s, and αig>0 is the expenditure share spent on good g with
∑

g∈Gαig=

1. As Zfi (s) can be written in its indirect utility form as nominal income divided by a price index,

in what follows we refer to Zfi (s) as a farmer’s real income. Traders and drivers are assumed to

have the same Cobb-Douglas preferences over goods.

Following Eswaran and Kotwal (1990), we refer to ρi as the effective risk aversion and interpret it

as combining both the innate risk preferences of the farmer and any access the farmer has to ex-post

risk mitigating technologies (savings, borrowing, insurance, etc.). In Appendix A.6.3, we micro-

found this interpretation by allowing farmers to purchase insurance from perfectly competitive

local money-lenders (“banks”). In the spirit of this interpretation, Appendix Table A.6 extends the

Townsend-like exercise above and shows that as local bank access improves, the responsiveness of

household consumption to household shocks shrinks and the response to district shocks rises.

Trade: A large number of traders arbitrage prices across locations subject to (ad valorem) trade

costs. We assume that traders are heterogeneous in their trading technology and capacity con-

strained.13 As a result of this heterogeneity, the standard no-arbitrage equation—that the trade

13The assumption that traders are capacity constrained is made only for convenience: Appendix A.6.1 shows that
a model where better traders can offer greater capacity is isomorphic to the model presented here.
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costs bound the price ratio—is replaced by an alternative condition (equation (10) below) that has

the intuitive property that more goods flow toward a destination when its relative price is higher.

We now describe the trading process that delivers this key arbitrage equation. However, our

results hold for any process that micro-founds this equation. For example, Appendix A.6.4 shows

it also arises from iceberg trade costs that are increasing and convex in the quantity shipped.

Every farmer wishing to buy or sell is randomly matched to a trader. If a farmer wishes to sell a

unit of good g, the trader she is matched to pays her the local market price pig(s) and then decides

whether to sell it locally or export it to the central market. If the trader decides to sell the good

locally, he sells it for pig(s), making zero profit. If the trader exports the good, he sells it for the

central market price p̄g(s), incurs an (iceberg) trade cost τig, and earns profit p̄g(s)−τigpig(s).14

The process works in reverse for a farmer wishing to buy some quantity of good g. She is

randomly matched to a trader and buys for the local price pig(s). The trader previously decided

whether to import the good from the central market (paying p̄g(s) but incurring iceberg trade cost

τ , for a profit of pig(s)−τigp̄g(s)) or to source it locally (paying pig(s), earning zero profit).

Trade costs τig to ship good g between village i and the central market (in either direction) are

heterogenous across traders and drawn from a Pareto distribution with shape parameter εi∈(0,∞):

Pr{τig≤ τ̄}=1−τ̄−εi . (6)

The greater the value of εi, the lower the average trade costs between the village and central market

(as εi→0 trade becomes infinitely costly and as εi→∞ trade becomes costless for all traders).

Discussion: We draw three distinctions between this setup and agricultural trade models based

on the canonical framework of Eaton and Kortum (2002) (e.g., Donaldson (2018), Costinot et al.

(2016), Sotelo (2020), and Bergquist et al. (2019)). First, unlike in Eaton and Kortum (2002)

where tractability arises from assuming that each location draws different productivities for each

of a continuum of varieties of a crop (with Frechet distributed draws), here, tractability arises from

trade costs being heterogeneous across traders (with Pareto distributed draws). Second, unlike in

Eaton and Kortum (2002) where every location trades directly with every other location (as in

panel (b) of Figure 1), here, trade between villages occurs only indirectly through the traders in

a central market. Third, unlike in Eaton and Kortum (2002) where buyers alone engage in price

arbitrage by choosing the seller offering the lowest price, here traders engage in price arbitrage

both when buying from farmers and when selling to them. Each of these distinctions serve to more

closely match the reality of agricultural trade in India described in Section 2.2.

4.2 Trade and prices

We begin by characterizing equilibrium trade and prices.

Villages: Consider first a trader selling produce to a farmer and deciding from where to source

14We assume the trade cost is a transfer paid to agents (“drivers”) that, along with traders, inhabit the central
market and for whom moving goods provides all their income. By assuming drivers have no other income, we abstract
from the gains from trade arising from the direct reduction of resources necessary to move goods, instead focusing on
gains arising from comparative advantage and specialization. In what follows, we present combined welfare results
for all residents of the central market; Appendix A.6.2 provides separate expressions for trader and driver income.
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the good. If the village price is lower than the central market price, i.e. pig (s)≤ p̄g (s), then no

arbitrage opportunity exists and all traders will source the good locally. But if the central market

price is lower than the local price, pig(s)>p̄g(s), some traders will engage in price arbitrage, buying

in the central market and selling for a profit in the village. Now consider a trader buying produce

from a farmer and deciding where to sell it. If the village price is greater than the central market

price, pig(s)≥ p̄g(s), then no arbitrage opportunity exists and all traders will sell the good locally.

But if the central market price is greater than the village price, p̄g(s)>pig(s), then some traders

will engage in price arbitrage, buying in the village and selling for a profit in the central market.

Thus, for the market of good g in village i to clear when pig (s)> p̄g (s), i.e. when good g is

flowing into the village, it must be the case that the quantity produced by the village is equal to the

total quantity consumed locally multiplied by the probability that traders source from the village:

Cig×Pr{pig(s)≤τigp̄g(s)}=Qig. (7)

For the market of good g in village i to clear when pig(s)<p̄g(s), i.e. when good g is flowing out

of the village, it must be the case that the quantity consumed locally is equal to the total quantity

produced locally multiplied by the probability that the traders sell to the village:

Qig×Pr{τigpig(s)≥ p̄g(s)}=Cig. (8)

Combining equations (7) and (8) with the Pareto distribution of trade costs from (6), we imme-

diately see that—regardless of the relative prices and hence regardless the direction of trade—the

relationship between relative prices, and quantities consumed and produced can be written as:

Cig(s)=

(
pig(s)

p̄g(s)

)εi
Qig(s). (9)

Intuitively, equation (9) states that trader arbitrage results in the good flowing toward locations

with higher relative prices with an elasticity governed by the distribution of trade costs εi.

Combining equation (9) with the farmers’ Cobb-Douglas demand we obtain:

lnpig(s)=−
(

1

1+εi

)
lnQig(s)+

(
εi

1+εi

)
lnp̄g(s)+

(
1

1+εi

)
ln(αigYi(s)). (10)

Equation (10) shows how a village’s openness (summarized by its Pareto shape parameter εi)

determines how its own production affects its equilibrium prices. In autarky (εi = 0), the price

elasticity is one, consistent with the Cobb-Douglas demand. But as trade costs fall (εi increases),

the elasticity of prices to own quantity produced falls, with the elasticity tending to zero as trade

becomes costless (εi →∞). This fall in the elasticity of local prices to local production occurs

simultaneously with an increase in the elasticity of local prices to the prices in the central market.

It is useful to contrast this relationship between prices and quantity with the relationship in a

model in which trade costs are assumed to be homogeneous: In such a model, local prices equal

autarky village prices as long as the absolute price gap between the autarky village price and the

central market price is less than or equal to the costs of trading. But whenever the price gap exceeds
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this value, traders engage in arbitrage and the local price is pinned down by the central market

price net of trade costs. This results in a “kinked” demand curve—illustrated in panel (a) of Figure

3. In our model—illustrated in panel (b) of Figure 3—there are no such kinks in the demand curve:

instead, trader heterogeneity ensures a smooth relationship (log linear given the Pareto assumption)

between prices and quantities. In panel (c) of Figure 3, we compare the two arbitrage models’

abilities to explain the observed relationship between prices and (rainfall-predicted) quantities (see

Appendix A.10 for details). The “smooth” model substantially outperforms the more-standard

“kinked” model, explaining a larger fraction of the observed variation with an average R2 of 0.15

(versus 0.11 in a “kinked” model) across district-decades.

Central Market: The quantity consumed in the central market is equal to the total net inflows of

goods from each village:

C̄g(s)=
∑
i∈N

(
1−
(
pig(s)

p̄g(s)

)εi)
Qig(s), (11)

and the income of central market residents (i.e. traders and drivers) is equal to the total arbitrage

revenues earned across all crops and villages:

Ȳ (s)=
∑
g∈G

∑
i∈N

(p̄g(s)−pig(s))
(

1−
(
pig(s)

p̄g(s)

)εi)
Qig(s). (12)

Combining the arbitrage equation (10) with equations (11) and (12)—and imposing the Cobb-

Douglas demands of central market residents—one can calculate the equilibrium prices in the central

market, and hence each village via equation (10). Formally:

Definition 1. Given any set of preferences {αig}g∈Gi∈N , trade costs {εi}i∈N , the population distribution

{Li}i∈N , and any state of the world s ∈ S such that quantity produced is {Qig(s)}g∈Gi∈N , a state

equilibrium is a set of village prices {pig(s)}g∈Gi∈N , village consumption {Cig(s)}g∈Gi∈N , central market

prices {p̄g(s)}g∈G , and central market consumption
{
C̄g(s)

}
g∈G such that:

1. Markets clear within each village, i.e. (a) farmers’ income equals the value of their produce;

(b) farmers maximize utility given their income; and (c) traders optimally engage in arbitrage.

2. Markets clear within the central market, i.e. (a) traders’ and drivers’ combined income is

equal to arbitrage revenue; and (b) central market prices equate demand and supply.

The following proposition shows that the equilibrium is well defined.

Proposition 1. Given any set of preferences {αig}g∈Gi∈N , trade costs {εi}i∈N , and any state of the

world s∈S such that quantity produced is {Qig(s)}g∈Gi∈N :

1. There exists a state equilibrium.

2. If the trade costs {εi}i∈N are sufficiently close to 1, then that equilibrium is unique.

Proof. See Appendix A.5.1.
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Part 1 of Proposition 1 shows that the equilibrium is well defined for any geography of trade costs

and realized quantities produced. Part 2 provides sufficient conditions for uniqueness by establishing

conditions under which the excess demand function satisfies the gross substitutes property. As

gross substitutes is itself a sufficient but not necessary condition, we expect uniqueness is a more

general phenomenon; consistent with this conjecture, an iterative algorithm based on equation (11)

converges rapidly to an equilibrium for a wide variety of {εi}; see Appendix A.8 for details.

4.3 Optimal crop choice

We now derive a convenient expression showing how trade affects farmers’ optimal crop choice. To

provide intuition, we first consider the special case where production is not volatile.

No volatility In the absence of volatility, and taking prices as given, a farmer will equalize her

income per unit of land (i.e. her factor price) across all goods she produces:15

pigAig=λi ∀g∈{1,...,G}, (13)

where λi>0 is the shadow value of land. Substituting in the equilibrium price from equation (10),

imposing symmetry across farmers so that θfig =θig for all farmers f in village i, and applying the

constraint that land shares sum to one yields:

θig=
αig(Aigp̄g)

εi∑
h∈Gαih(Aihp̄h)εi

. (14)

Farmers specialize more in the production of good g the greater their own demand for that good

(αig) and the greater the market returns from producing that good (Aigp̄g), with the relative weights

of the two considerations depending on the degree of openness to trade (εi). As a village becomes

more open (i.e. εi increases), farmers allocate a greater fraction of their land toward goods that

have high market returns rather than towards goods they wish to consume.

What about the gains from trade? It turns out that in the absence of volatility, farmers’ welfare

does not depend on the degree of openness. As in a standard Ricardian model, opening up to trade

increases the returns to goods that a location has a comparative advantage in, causing farmers to

grow more of those crops. Unlike a standard Ricardian trade model, however, local prices fall as

more comparative advantage crops are grown since not all of the excess production is exported by

the heterogenous traders. Farmers continue to reallocate toward their comparative advantage crops

up to the point that their returns per unit land are equalized across crops, resulting in the same

autarkic relative prices and thus leaving their welfare unchanged.16 This is not to say that there

are no gains from specialization: there are. But these gains are captured entirely by the traders

engaging in price arbitrage—a model feature that we believe is realistic given the large literature

15In equilibrium, all goods will be produced in all locations as equation (10) implies that the price of a good will
become infinite as the land allocated to that good tends to zero.

16A crucial assumption underlying this result is that each farmer takes the market prices as given. If, instead,
farmers internalized the effect of their crop allocation choice on equilibrium prices—say through the formation of an
agricultural collective—they would choose to restrict the degree to which they specialize, increasing the price of their
comparative advantage goods and improving their terms of trade. See Appendix A.6.5 for further details.
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referenced above documenting the substantial market power traders have over small farmers. This

result also helps isolate the source of farmers’ gains from trade in a world with volatility.

Volatility We now turn to the more general case where productivity is volatile, due for example

to variation in rainfall. Farmers now equalize their marginal expected utility (rather than marginal

nominal income) across crops, necessitating a characterization of the distribution of farmers’ real

income over all states of the world. To do so, we combine techniques from the portfolio choice

literature in finance with the general equilibrium trade framework above. This general equilibrium

structure adds substantial complication to the problem since the distribution of farmers’ real in-

comes depends on the geography of trade costs, the distribution of yields, and the crop choices of

all other farmers. Despite this complexity, however, we are still able to derive an explicit expression

for farmers’ equilibrium crop choice that is a straightforward generalization of equation (14).

We begin by positing the following distribution of crop yields across states of the world:

Assumption 1 (Log normal distribution of yields). Assume that the joint distributions of yields

across goods are log normal within village i and are independently distributed across villages. In

particular, define Ai(s) as the G×1 vector of Aig(s). Then lnAi∼N
(
µA,i,ΣA,i

)
for all i∈{1,...,N},

where µA,i≡
[
µA,ig

]
is a G×1 vector and ΣA,i≡

[
ΣA,i
gh

]
is a G×G variance-covariance matrix.

That yield realizations are independently distributed across many locations implies that the

(endogenous) central market price is state invariant, i.e. shocks to yields in individual villages

“average out” in the aggregate. While helpful for simplifying the exposition, we relax this indepen-

dence assumption in the quantification in Section 5 by allowing yield shocks to be correlated across

villages and central market prices to be state dependent.

We next follow the finance literature (see, e.g. Campbell and Viceira (2002)) and approximate

the real income of farmer f by taking a second-order approximation around its (log) mean (see

Appendix A.4 for derivations of this and later expressions in this section):17

lnZfi (s)≈µZi +
∑
g∈G

((
εi

1+εi

)
θfi,g+

(
1

1+εi

)
αig

)(
lnAig(s)−µA,ig

)
, (15)

where µZi —defined in Appendix equation (30)—is a scalar that depends on crop choice and equi-

librium market prices, but not on the particular state of the world s. Equation (15) states that

the more open a village (i.e. the higher εi), the more a farmer is engaged with buying and selling

goods in the market, and the more a farmer’s real income depends on the realized local yield shocks

(lnAig(s)−µA,ig ) of the crops she grows (θfi,g) than on the yields of the crops she consumes (αig).

Next, we calculate the expected utility of farmers as a function of their crop choice (and the crop

choices of all other farmers). From equation (15), it immediately follows that farmer real income

is (approximately) log normally distributed across states of the world, i.e. lnZfi ∼N
(
µZi ,σ

2,Z
i

)
,

17The second order approximation implies that the sum of log normal variables is itself approximately log normal.
Campbell and Viceira (2002) approximate around zero returns which is valid over short horizons; because our time
period is a year, we approximate around the mean log yields. In the quantitative results in Section 5.3 below, we find
that the approximated expected utility is highly correlated (exceeding 0.999) with the actual expected utility.
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where the variance of her log real income σ2,Z
i —defined in Appendix equation (31)—depends on

her equilibrium crop choice. This in turn implies that expected utility takes a convenient form:

E
[
Ufi

]
=

1

1−ρi

(
exp
(

(1−ρi)
(

lnE
(
Zfi

)
−ρiσ2,Z

i

))
−1
)
, (16)

where E
(
Zfi

)
= exp

(
µZi + 1

2σ
2,Z
i

)
since Zfi is log-normally distributed. Thus, farmer f trades off

the (log of the) mean of her real income with the variance of her (log) real income, with the exact

trade-off governed by the degree of effective risk aversion ρi.

The first order conditions of the farmer’s crop choice problem then imply that the marginal

contribution of each crop to expected utility should be equalized:

µZig−ρi
(

εi
1+εi

)∑
h∈G

((
εi

1+εi

)
θfi,h+

(
1

1+εi

)
αih

)
ΣA,i
gh =λi, (17)

where µZig≡
∂lnE

(
Zfi

)
∂θfig

is the marginal contribution of crop g to the log of the mean real income and

λi is the shadow value of land. Equation (17)—which generalizes the indifference condition (13) to

accommodate volatility—is intuitive: a good with a higher marginal contribution to the variance

of real returns must have higher marginal contribution to the mean real returns (i.e. a high µZig) to

compensate for the additional risk. This expression will prove essential when estimating farmers’

effective risk aversion from their observed crop choices in Section 5.2 below.

Finally, by combining farmers’ first order conditions (17), imposing symmetry across farmers

within village, and imposing that crop shares sum to one, we can derive an expression for the

equilibrium crop choice that generalizes equation (14) to incorporate volatility:

θig=
αig(Bigp̄g)

εi∑
h∈Gαih(Bihp̄h)εi

, (18)

where Big is the risk adjusted productivity of farmers in location i producing crop g.18 In the

absence of volatility, the risk adjusted productivity is simply the actual productivity, i.e. Big=Aig,

and equation (18) collapses to (14). But in the presence of volatility (and for sufficiently high risk

aversion ρi), Big is smaller the greater g’s marginal contribution to the aggregate volatility of real

returns, so that farmers trade off traditional “first moment” benefits from specializing in crops with

higher mean yields against “second moment” benefits of specializing in less risky crops.

4.4 Characterizing the equilibrium of the model

Definition 2. Given any set of preferences {αig}g∈Gi∈N , trade costs {εi}i∈N , and distributions of yields

across states of the world
{
µA,i,ΣA,i

}
i∈N , an equilibrium is a set of crop allocations {θig}g∈Gi∈N and,

for each state of the world s∈S, a set of village prices {pig(s)}g∈Gi∈N , village consumption {Cig(s)}g∈Gi∈N ,

central market prices {p̄g(s)}g∈G , and central market consumption
{
C̄g(s)

}
g∈G such that:

1. Each state of the world s∈S is in a state equilibrium.

18Specifically, Big≡ exp(µA,ig )/
(
λi−

(
1
2

(
εi

1+εi

)2
ΣA,igg +

εi
(1+εi)

2

∑
h∈GαihΣ

A,i
gh
−ρi

(
εi

1+εi

)∑
h∈G

((
εi

1+εi

)
θi,h+

(
1

1+εi

)
αih

)
Σ
A,i
gh

))
.
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2. Farmers optimally choose their crop allocation to maximize their expected utility across all

states, i.e. crop choice satisfies equation (18).

Because Proposition 1 holds for any realized quantities produced {Qig(s)}g∈Gi∈N—including those that

would arise from the optimal crop allocation—it immediately implies the following corollary:

Corollary 1. For any set of preferences {αig}g∈Gi∈N , trade costs {εi}i∈N , and distributions of yields

across states of the world
{
µA,i,ΣA,i

}
i∈N , there exists an equilibrium and it is unique if each

{εi}i∈N is sufficiently close to one.

Having characterized the equilibrium of the model, we now turn to its qualitative implications.

4.5 Qualitative implications

Explaining the stylized facts The model generates the stylized facts in Section 3:

Proposition 2. Consider a small increase in village i′s openness to trade εi:

(a) [Stylized Fact 1] Any increase in openness: (1a) decreases the responsiveness of local prices

to local yield shocks; and (1b) increases the responsiveness of local prices to the central market price.

(b) [Stylized Fact 2] Starting from autarky, an increase in openness: (2a) causes farmers to

reallocate production toward crops with higher mean and less volatile yields (as long as ρi>1, i.e.

farmers are sufficiently risk averse); and (2b) the reallocation toward less volatile crops is attenuated

the greater the access to insurance (i.e. the lower ρi).

(c) [Stylized Fact 3] Any increase in openness: (3a) increases farmers’ nominal income volatility;

(3b) decreases farmers’ nominal price volatility; and (3c) has an ambiguous effect on farmers’ real

income volatility.

Proof. See Appendix A.5.2 for the mathematical statements and proofs.

As trade costs fall and a village becomes more open, more traders engage in arbitrage which

reduces the responsiveness of prices to local yields and increases the responsiveness of local prices to

the central market price—consistent with Stylized Fact 1. Farmers react to the increase in openness

by changing their crop allocation, placing less weight on crops they consume and more weight on

those in which they have a comparative advantage. But at the same time, to mitigate the increased

risk farmers now face due to local prices being less responsive to local yields, farmers respond by

moving into crops with less volatile yields. The trade-off between these traditional “first moment”

gains from specialization and “second moment” efforts to reduce risk is governed by their level of

risk aversion—consistent with Stylized Fact 2. Because prices become less responsive to local yields,

farmers face more volatile nominal incomes at the same time as more stable consumption prices—

consistent with Stylized Fact 3, with the net effect on the volatility of real income depending on

the extent to which a farmer’s crop allocation is more risky than her expenditure allocation.

20



Volatility and the gains from trade We now turn to the welfare implications of the model. We

summarize the relationship between welfare, trade costs and volatility in the following proposition:

Proposition 3. 1) In the presence of volatility, moving from autarky to costly trade improves farmer

welfare, i.e. the gains from trade are positive; 2) moving from a world with no volatility to one with

volatility amplifies farmers’ gains from trade; but 3) increasing the volatility in an already volatile

world may attenuate farmers’ gains from trade.

Proof. See Appendix A.5.3.

Part (1) of Proposition 3 arises from a standard revealed preference argument (see, e.g. Dixit

and Norman (1980)). Because all farmers in a location are identical, in autarky each consumes

what she produces in all states of the world. With trade, a farmer always has the option to make

the same planting decisions; moreover, because the farmer both buys and sells to traders at the

local price, she always has the option to consume what she produces. Hence, in all states of the

world, a farmer can always achieve the same level of utility as in autarky, so her expected utility

must be at least as great. Furthermore, given the model structure, the expected utility gains are

strictly positive, as prices with trade will differ from autarkic prices with probability one.

Combining Part (1) with the result above that farmers’ gains from trade are zero in the absence

of volatility, Part (2) follows immediately. Intuitively, volatility amplifies the gains from trade

via two mechanisms. First, on the consumption side, farmers are now able to maintain a more

balanced consumption basket by trading crops with relatively good yield realizations to purchase

crops with relatively bad yield realizations—essentially, volatility creates an option value of trading

away good harvests that is not present in the absence of volatility. Second, on the production side,

by decoupling production and consumption decisions, trade allows farmers to alter their planting

decisions in order to reduce their risk exposure. However, part (3) shows that additional volatility—

e.g. making “safe” crops more volatile—can attenuate the gains from trade by reducing farmers’

ability to use their crop allocation to reduce their risk; Appendix Table A.7 offers an example.

It is important to emphasize that Proposition 3 hinges on the assumption that farmers can

produce all that they wish to consume; if, for example, farmers also consume manufactures they

cannot produce, as in Newbery and Stiglitz (1984) gains from trade in the presence of volatility

need not be positive—a possibility we introduce in the quantitative version of our model below.19

5 Quantifying the welfare effects of trade and volatility

We now bring the framework developed above to the rural Indian data to quantify the welfare

effects of trade in the presence of volatility.

5.1 Extending the baseline model

We first extend the basic framework above to create a “quantitative” model that adds realism by

incorporating a number of additional features.

19Newbery and Stiglitz (1984) provide an extreme example where farmers only wish to consume non-farm goods
whose productivity is not volatile while non-farm producers only wish to consume volatile farm goods.
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Constant elasticity of substitution preferences In the baseline model above, we assumed that

agents consumed a Cobb-Douglas aggregate of goods; we now generalize to constant elasticity of

substitution (CES) preferences with elasticity of substitution σ (σ̄) for village (market) residents.

A Manufacturing Good In the baseline model, we assumed that farmers are able to produce all

goods in the economy; while convenient, certain goods (such as services or manufacturing) are less

commonly produced in rural India. As noted above, the presence of such goods has potentially

important implications for the gains from trade. We extend the model to incorporate a numeraire

good g= 0 that is produced only in markets. This numeraire good is costlessly traded and agents

have Cobb-Douglas preferences across the good and the (CES) consumption bundle of agricultural

goods (with βi equal to the agricultural expenditure share).

Finite number of villages with correlated productivity shocks We amend Assumption 1 to allow

for arbitrary yield correlations across crops and a finite number N of villages:

Assumption 2 (Log normal distribution of yields (generalized)). Assume that the joint distributions

of yields across all goods and villages are log normally distributed across states of the world. In

particular, define A(s) as the (G×N)×1 vector of {Aig(s)}g∈G,i∈N . Then lnA∼N
(
µA,ΣA

)
, where

µA≡
[
µAig

]
is a GN×1 vector and ΣA≡

[
ΣA
ig,jh

]
is a GN×GN variance-covariance matrix.

With a finite number of villages and correlated yield shocks, equilibrium market prices are now

state dependent. As a result, the volatility of famers’ real income will be affected not only by

changes in a village’s own trade costs but also changes in trade costs elsewhere in the network. As

we will see below, this new second-moment effect will have important quantitative implications.

Multiple markets In the baseline model, we assume that all villages trade with the same central

market. To better capture India’s hierarchical trading network described in Section 2.2, we now

incorporate multiple layers of markets. While in principal the model can be extended to include an

arbitrary number of layers, given data limitations we consider a three-layer hierarchy where each

village i∈N (an Indian district in our empirics) trades with a regional market m∈M≡{1,...,M}
(the largest city within each state in our empirics), which in turn trades with a central market

(Delhi in our empirics). Panel (c) of Figure 1 depicts the resulting trading network.20

5.1.1 The quantitative model: A summary

We briefly summarize how the results presented in Section 4 change with these model extensions;

Appendix A.7 provides further details.

Equilibrium prices Conditional on the equilibrium regional market prices, the arbitrage process

between villages and their regional markets remains unchanged allowing us to generalize the equi-

librium price equation (10) to:

lnpig(s)=− 1

σ+εi
lnAig(s)+

εi
σ+εi

lnp̄m(i)g(s)+δig+δi(s), (19)

20While there is also a trade across villages within a district (see Figure 1), comprehensive agricultural data at the
sub-district level do not exist. We also omit an easy-to-accommodate international trade layer linking the central
market with a world market given India’s highly restrictive agricultural trade regime during our sample period.
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where δig is a location-good term that is constant across all states of the world and δi(s) is a location-

state of world term that is the same across all goods.21 Echoing equation (10), the equilibrium

price in a location lnpig (s) responds less to local yield shocks and more to prices in its regional

market lnp̄m(i)g(s) as trade costs fall (i.e. εi increases).

The fractal nature of the hierarchical trading network means that a very similar expression

governs the equilibrium regional market prices lnp̄mg(s):

lnp̄mg(s)=− 1

σ̄+εm
lnQ̄mg(s)+

εm
σ̄+εm

lnp∗g(s)+δmg+δm(s), (20)

where σ̄ is the regional market resident’s elasticity of substitution across agricultural goods, εm

is the Pareto shape parameter governing the distribution of trade costs across traders engaging in

arbitrage between regional market m and the central market, Q̄mg(s) is the net quantity of a good

that arrives to the market, δmg is a market-good term that is constant across all states of the world,

and δm(s) is a market-state of world term that is the same across all goods.22 Similar to village

level prices, regional market prices depend both on the quantity of goods that arrive at the market

and the central market prices lnp∗g(s). And, as above, lower trade costs (i.e. higher εm) increase

the responsiveness to the latter relative to the former.

Equilibrium crop choice As in the baseline model, we apply a second order approximation to

characterize the distribution of farmers’ real returns across states of the world; we additionally apply

a first order log-linear approximation of the equilibrium regional market prices around their (log)

mean yield to incorporate the fact that market prices are state dependent. These approximations

imply farmer real income is approximately log normally distributed with mean µZi and variance

σ2,Z
i defined by equations (70) and (72) in Appendix A.7. The first order conditions from the

farmer’s crop choice then again follow equation (17), where the marginal effect on the log of mean

real income and variance of log real income, µZig and σZig, are defined in equations (73) and (74)

in Appendix A.7. The intuition remains as before: farmers equate the marginal increases in risk-

adjusted real returns across all crops, where the risk-return trade-off is determined by the farmer’s

effective level of risk aversion. The farmer’s first order conditions imply the following equilibrium

crop choice (which generalizes equation (18)):

θig=
αigB

εi+σ−1
ig p̄εim(i)g∑G

h=1αhB
εi+σ−1
ih p̄εim(i)h

, (21)

where Big is again the risk-adjusted productivity (defined in equation (76) in Appendix A.7).

To summarize, the quantitative model remains tractable while being a more realistic description

of India. And as in the baseline model, two sets of structural parameters play key roles in determin-

ing the strength of the central economic forces. First, the distribution of trade costs ({εi} and {εm})
determines the relative responsiveness of local prices to local shocks and to prices elsewhere—and

hence how trade affects volatility. Second, the effective risk aversion parameters ({ρi}) determine

21In particular, δig≡ 1
σ+εi

ln(βiαig/Liθig) and δi(s)≡ 1
σ+εi

ln(Yi(s)/∑G
h=1αih(pih(s))1−σ).

22In particular, δmg≡ 1
σ+εm

lnαmg and δm(s)≡ 1
σ+εm

ln(βmȲm(s)/∑G
h=1αmh(p̄mh(s))1−σ).
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how farmers trade off risk versus return—and hence how they respond to changes in volatility. We

turn now to the estimation of these key parameters.

5.2 Estimation of structural parameters

We now summarize the estimation of the structural parameters—with particular attention paid to

the key trade cost distributions and effective risk aversion parameters highlighted above; Appendix

A.9 provides further details.

Observed parameters: Budget shares, market sizes, and the distribution of yields

We choose district-specific agricultural expenditure shares βi and district-crop-specific CES demand

shifters αig to match observed district-average expenditure shares from the 1987-88 NSS described in

Section 2.3; see Appendix Table A.8 for summary statistics. Regional and central market preferences

are set equal to the average preferences of their constituent districts.

We set the size of each district to its average total cropped area. We set the size of each regional

market—which determines the quantity of the numeraire good it produces—so that its size (relative

the total size of all its constituent districts) matches the observed urban-rural population ratio in

the state, thereby ensuring that each person in India either grows crops on one unit of land or

produces one unit of the numeraire good. We set the size of the central market to match the

relative size of Delhi compared to the total urban population of India.

We draw the distribution of (log) yields in each decade from the data by treating each year within

the decade as an independent draw from a common underlying distribution.23 Appendix Figures

A.2 and A.3 depict the distribution of mean (log) yields as well as the full variance-covariance

matrix across crops and districts for the 1970s, with both displaying substantial heterogeneity.

Estimating the trade openness and elasticities of substitution

Treating each year as a different realized state of the world, the empirical analog of equation (19)

provides a simple and intuitive equation for estimating district i trade openness each decade d, εid:

lnpigtd=− 1

σ+εid
lnAigtd+

εid
σ+εid

lnp̄m(i)gtd+δigd+δitd+νigtd, (22)

where δigd and δitd are district-crop-decade and district-year-decade fixed effects, respectively, and

the residual νigtd captures measurement error in district prices pigtd, district yields Aigtd, and

regional market prices p̄m(i)gtd. Consistent with the empirical context described in Section 2.2, we

treat each Indian state as its own regional market. Because we do not directly observe regional

market prices, we set p̄m(i)gtd equal to quantity-weighted average state prices. Similarly to Section

3, we instrument with the rainfall-predicted yields and state-level average prices leaving out own-

district prices to: (a) correct for potential endogeneity in yields (e.g. farmers putting more care

into high price crops); (b) avoid the mechanical reflection problem in the market-level price; and

(c) correct for classical measurement error in yields and market prices.

As a first pass, we recover a common trade openness parameter, i.e. εid = ε, along with the

23Consistent with this assumption, we find no serial correlation in (log) yields within crop-district-decade.
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elasticity of substitution σ, directly from the estimated regression coefficients. The IV specification

is reported in column 2 of panel (a) of Table 4 and implies ε= 2.1 and σ = 6.2. However, these

averages belie substantial variation across space and time. Echoing Stylized Fact 1, columns 3 and

4 interact yields and prices with within-state market access MAinstateid and find that prices are both

less responsive to local yield shocks and more responsive to state-market prices when the highway

system expands. Thus, to estimate district-decade openness εid, we impose the parameterization

εid=β0+β1MAinstateid and estimate β0 and β1 using GMM and the same moment conditions as our

IV specification. Column 6 of panel (a) of Table 4 presents these results. Consistent with districts

becoming more open with highway improvements, we find average values of εid growing from 1.9

in the 1970s to 2.2 in the 2000s. We estimate an elasticity of substitution of σ=6.0 across crops.

As discussed above, equilibrium market-level prices are characterized much like district-level

prices given the fractal nature of the hierarchical trading structure. Accordingly, our estimation

of market-level trade openness ε̄md and the elasticity of substitution σ̄ proceeds similarly to their

district-level analogs (except we allow them to vary with travel time to Delhi rather than MAinstateid )

and is summarized in Table 4 panel (b) with further details relegated to Appendix A.9.24

Estimating the effective risk aversion and costs of cultivation

Recall that farmers’ choose a land allocation along their mean-variance frontier, with the gradient

at the chosen allocation equal to their effective risk-aversion parameter ρid. This relationship is

summarized by the farmer’s first order conditions (equation (17)), which we re-write as:

µZigd=ρidσ
Z
ig+δid+δig+δgd+ζigd, (23)

where the marginal contribution to the mean and variance of real returns, µZig and σZig, are calcu-

lated from the mean and variance-covariance of the (observed) nominal gross yields µA and ΣA

(see equations (73) and (74) in the Appendix). The δid fixed effect is the district-decade level

Lagrange multiplier λid; while a district-good fixed effect δig, a crop-decade fixed effect δgd, and an

idiosyncratic district-good-decade error term ζigd together capture any unobserved differences in

the cost of cultivation across crops (i.e. we calibrate the unobserved crop costs so that farmers in

all districts and all decades are producing at the optimal point along their mean-variance frontier).

Given that our variance-covariance matrix is an estimate, to correct for (classical) measurement

error, we instrument for the marginal contribution to the variance term σZig with an instrument

constructed using the rainfall predicted variance-covariance matrix of log yields.

Table 5 first presents results assuming a common effective risk aversion parameter ρid=ρ. Mean

real returns are increasing in the variance of real returns with the IV estimates implying a ρ slightly

greater than one (ρ=1.3), consistent with previous estimates of risk aversion of Indian farmers (e.g.

Rosenzweig and Wolpin (1993)). Consistent with Stylized Fact 2, we allow ρid to be a function

of rural bank access, with a parameterization ρid = ρAbankid+ρB. Column 4 of Table 5 presents

our preferred estimate and shows that farmers choose less conservative crop allocations when they

24We find that the average values of ε̄im increase only slightly from 1.91 to 1.94 as a result of Indian highway
expansion. We estimate an elasticity of substitution of σ̄=4.8 across crops.
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have greater bank access, with an average effective risk aversion of 2.2 (with an interquartile range

of 0.8) in the 1970s, which falls to to 1.2 in the 2000s (interquartile range of 0.9). Reassuringly,

the combination of the fixed effects and residuals from regression (23)—which we interpret as

the unobserved crop costs that ensure the crop choices we observe are optimal from the farmer’s

perspective—positively correlate with the actual crop costs we observe at the state level for a subset

of our sample period; see Appendix Table A.9.

5.3 The welfare impacts of the expansion of India’s highway network

We now use our structural estimates to quantify the welfare effects of the expansion of the Indian

highway network. We first consider the impact of highway expansion in isolation, holding all

structural parameters, including the access to banks, constant at their 1970s levels except for the

district- and state-level trade costs εid and ε̄md. We allow these trade costs to evolve to match

observed changes in within-state market access and travel time to Delhi as described in Section 5.2.

We then calculate the equilibrium distributions of real incomes and crop choices in all districts; see

Appendix A.8 for details. Finally, we calculate the equilibrium realized real income in all locations

using the realized yields in each year in the 1970s. This procedure ensures that effects depend on

the log normal approximation above only through farmers’ optimal crop choice.

Panel (a) of Table 6 presents the results, reported as the percentage change relative to the 1970s

averaged across districts.25 On its own, the expansion of the Indian highway network between the

1970s and 2000s increased mean real incomes for farmers by 2.2% with small decreases in the

variance of real income, leading to an increase in expected welfare of 2.3%. Lower trade costs,

and the associated decline in arbitrage revenue going to traders, resulted in declines in the average

mean real income of market residents—including traders, drivers, and producers of the homogeneous

good—of 0.9% and small declines in the variability of their real income.

These average effects belie substantial spatial heterogeneity. Panel (a) of Figure 4 plots changes

in state-level market access between the 1970s and 2000s. Panel (b) shows that districts whose state-

level market access grew the most experienced greater increases in the mean of their real income.

Column 1 of Table 7 projects the district-level gains for each decade on within-state market access

and the crop-area weighted average of within-state market access for all other districts in the same

state; consistent with gains coming primarily through improvements in a district’s own market

access, the coefficient on own market access is more than five times larger than that on market

access improvements elsewhere in the state.

A different pattern emerges for the impact of the highway expansion on volatility. Even though

real income volatility declines by a small amount on average, an analogous analysis—see panel (c)

of Figure 4 and column 2 of Table 7—shows that districts with the greatest improvements in their

own within-state market access actually saw their real incomes become more volatile. As Sections

3 and 4 highlight, declines in one’s own trade costs reduce the insurance that the response of local

25We report welfare as the percentage increase in nominal income that an agent receives with certainty, holding all
parameters at their 1970s values, that would yield the equivalent change in expected utility as from the counterfactual,
i.e. the certainty equivalent variation (CEV). See equation (50) and the surrounding discussion in Appendix A.6.3.
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prices to local yield shocks naturally provides. But greater integration elsewhere has an opposite

effect, reducing volatility by making market prices less susceptible to idiosyncratic shocks. As a

result of these opposing forces, real income volatility only increased in 111 of 311 districts. Finally,

as panel (d) of Figure 4 and column 3 of Table 7 illustrate, the welfare gains that combine both

these first and second moment effects come from improvements in own and others’ market access.

5.4 Improvements in risk-mitigating technologies and the gains from trade

We now turn to examining how the growth in rural bank access—a risk mitigation technology—

altered the impacts of the highway expansion. As we saw in Stylized Fact 2 and Section 5.2, farmers

were willing to incur greater risk in their crop allocations as bank access improved. How did this

fall in farmers’ effective risk aversion affect the gains from trade? To answer this question, Table

6 panel (b) examines the combined impact of highways and banks by allowing both trade costs,

εid and ε̄md, and effective risk aversion, ρid, to evolve together based on the observed expansions

of highways and banks. Increases in the number of rural banks per capita encouraged farmers to

pursue more risky crop allocations than they would have with the highway expansion alone. Relative

to our previous counterfactual that held banks at their 1970s levels, mean real incomes rise by an

additional 0.6 percentage points—a 27% increase. To achieve these greater mean incomes, farmers

incurred greater risk, substantially increasing the volatility of real income, with the variance of log

real income now rising by 0.7. The welfare gains nearly double from 2.1% to 4.4%.

Panel (c) of Table 6 further asks how much greater would the gains from highway expansion

have been if rural India had uniformly-good bank access. To do so, we bring any district below the

75th percentile of bank access in a particular decade up to the 75th percentile. Both the mean and

variance of incomes rise further as farmers pursue even higher-risk higher-return cropping strategies,

with welfare gains climbing to 5.9%.

From where did the additional welfare gains in panels (b) and (c) arise? Improved bank access

makes volatility less costly and allows farmers to pursue riskier crop allocations. But improvements

in bank access and infrastructure may also be substitutes, encouraging farmers to reallocate crops

in incompatible ways. To explore these effects, we first calculate the direct impact of bank access by

changing effective risk aversion to account for improved bank access (denoted by ρ=ρB), but holding

crop allocations (denoted by θ=θZR,ZB) and trade costs at their 1970s levels; column 4 presents these

results.26 We then assess the total impact of bank access on welfare by also allowing crop allocations

to respond to the change in ρ still holding trade costs at 1970’s levels (i.e. θ=θZR,B, ρ=ρB); column

5 presents these results. Focusing on panel (b) and comparing these numbers to the 2.1 percentage

point increase in welfare relative to panel (a), we find that most of the additional welfare gains

arise from the direct impact of banks on the welfare cost of volatility. And, if anything, there is a

small amount of substitution between improvements in bank access and infrastructure.

These mean effects again mask substantial heterogeneity across districts. Column 1 of Table

26As above, we report the CEV. In these counterfactuals, we hold fixed farmers’ innate risk aversion but allow their
effective risk aversion to change with technological improvements (i.e. bank access). Appendix A.6.3 microfounds
this approach including the expression for the CEV.
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8 projects the additional welfare gain from the combination of banks and highways relative to

highways alone on within-state market access, the change in effective risk aversion from improved

bank access (i.e. ρi,d−ρi,70s) and the interaction of the two. Both highways and banks increase

welfare, but act as substitutes on average. Column 2 shows that whether the two are substitutes

or complements hinges on whether the riskiest crops are also the comparative advantage ones. In

districts where riskier crops have higher yields (i.e. the mean and variance of log yields correlate

positively), banks and highways are complements—in these locations farmers need to act more risk

loving to take full advantage of first moment gains from trade. Conversely, column 3 finds that

highways and banks are substitutes when riskier crops have lower yields as here reallocating toward

comparative advantage crops also reduces volatility. Column 4 confirms this heterogeneity via a

triple interaction between market access, changes in risk aversion, and mean-variance correlations.

If allocations with higher mean real incomes were available, why did farmers not pursue them

without the bank expansion? Column 6 of Table 6 answers this question by evaluating the change in

welfare from each panel’s chosen crop reallocations had effective risk aversion been fixed at the level

consistent with 1970s bank access (i.e. θ= θR,B, ρ= ρZB). In both panels (b) and (c), the welfare

gains from the more aggressive crop allocations would have been smaller than for the crop choices

in panel (a). That is, farmers were only willing to pursue the riskier crop allocations necessary to

achieve greater first-moment returns if they also had better risk-mitigation technologies.

Taken together, our structural results imply that while first moment gains from specialization

outweigh any second moment losses, better access to risk-mitigating technologies amplifies the gains

by encouraging farmers to take advantage of higher-return higher-risk crop allocations—with the

degree of amplification determined by whether riskier crops are also comparative advantage crops.

6 Conclusion

This paper examines the relationship between trade and volatility in the context of Indian

agriculture. We first document that reductions in trade costs due to the expansion of the Indian

highway network reduced the elasticity of local prices to local yields, leading farmers to reallocate

their land toward crops with lower yield volatility, especially those with worse access to banks.

We then embed a portfolio allocation decision into a novel many-location Ricardian trade model.

Risk averse producers choose their optimal allocation of resources across goods. This allocation,

along with the distributions of trade costs and yields, determines the general equilibrium distribu-

tion of real incomes. The model yields tractable equations governing prices and farmers’ resource

allocations and matches well 40 years of district-level data on yields, prices and cropping patterns.

The model provides intuitive and transparent estimating equations that identify both trade

costs—using the relationship between local prices, yield shocks, and prices elsewhere—and farmers’

risk preferences—using the slope of the mean-variance frontier at the observed crop choices. Using

these estimates, we show that first moment gains from specialization dominate second moment

effects and that improvements in risk mitigating technologies allow farmers to achieve greater first

moment gains by pursuing riskier crop reallocations.
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Table 2: Crop Choice and Openness

Dependent variable: IHS fraction of land planted by crop
(1) (2) (3) (4) (5) (6) (7) (8)

OLS IV IV IV IV IV IV IV

Mean(log Yield) 0.001 0.004 -0.002 0.005* -0.006** 0.002 0.002 -0.007**
(0.002) (0.002) (0.002) (0.002) (0.003) (0.002) (0.002) (0.003)

Var(log Yield) 0.008* 0.028** 0.021*** 0.006 0.038** 0.080*** 0.004 0.066**
(0.004) (0.012) (0.007) (0.012) (0.016) (0.023) (0.026) (0.027)

Mean × MAinstate 0.012*** 0.010*** 0.015*** 0.010** 0.001 0.012*** 0.012*** 0.003
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

Var × MAinstate -0.034** -0.125*** -0.056*** -0.074** -0.080*** -0.224*** -0.083 -0.174***
(0.016) (0.031) (0.014) (0.034) (0.028) (0.062) (0.075) (0.058)

Covar(log Yield) 0.028*** 0.066***
(0.009) (0.020)

Covar × MAinstate -0.076** -0.133**
(0.030) (0.060)

Mean × MAoutstate 0.021*** 0.022***
(0.005) (0.005)

Var × MAoutstate -0.044* 0.002
(0.026) (0.044)

Var × Bank -13.319*** -3.019 -10.835**
(3.665) (4.025) (5.053)

Var × MAinstate × Bank 22.719*** 7.370 16.277**
(8.327) (9.956) (7.709)

Covar × Bank -8.646***
(3.013)

Covar × MAinstate × Bank 13.646*
(8.045)

Var × MAoutstate × Bank -1.066
(4.820)

Crop-Decade FE Yes Yes Yes Yes Yes Yes Yes Yes
District-Decade FE Yes Yes Yes Yes Yes Yes Yes Yes
District-Crop FE Yes Yes Yes Yes Yes Yes Yes Yes
R-squared 0.972 -0.001 -0.000 -0.015 0.005 -0.006 -0.034 0.001
Observations 18,639 18,626 15,503 18,626 18,626 18,626 18,626 18,626
First-Stage F Stat . 117.1 216.0 37.7 84.3 78.6 14.8 22.9

Notes: The dependent variable is the inverse hyperbolic sine of the fraction of land planted with a particular crop. Each
observation is a district-crop-decade triplet. Columns (2)-(8) instrument for mean log yields and the variance of log yields with
the mean and variance of log predicted yields from a regression of log yield on local rainfall shocks for each month interacted
with state-crop fixed effects and controlling for crop-decade, district-decade, and district-crop fixed effects. Interactions with
market access are instrumented with the predicted yield instruments interacted with market access. Columns (6)-(8) include
additional interactions with district banks per capita. Column (3) replaces functions of yields with functions of the value of
production, priced at state-average prices (and instrumented using functions of predicted yields multiplied by district-leave-out
state prices). Columns (4) and (7) includes the sum of the covariance of yields with the other 14 crops plus interactions with
within-state market access (instrumented with the covariance of predicted yields and interactions with within-state market
access). Columns (5) and (8) repeat the interaction analysis with outside-state market access (i.e. access to districts in other
states). Market access variables multiplied by 100,000 and banks per capita multiplied by 1000. Observations are weighted by
the district-decade total cropped area divided by the number of observations in a district decade. Standard errors clustered at
the district-decade level reported in parentheses. Stars indicate statistical significance: * p<.10 ** p<.05 *** p<.01.
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Table 4: Estimated openness to trade

Panel (a): District Level Openness (εi)

Dependent variable: District price (ln pigt)
(1) (2) (3) (4) (5) (6)

OLS IV OLS IV GMM GMM

Log yield -0.034∗∗∗ -0.120∗∗∗ -0.040∗∗∗ -0.151∗∗∗

(0.002) (0.006) (0.004) (0.010)

MAinstate × Log yield 0.322∗ 1.576∗∗∗

(0.178) (0.420)

Log state price 0.385∗∗∗ 0.256∗∗∗ 0.382∗∗∗ 0.227∗∗∗

(0.009) (0.014) (0.013) (0.021)

MAinstate × Log state price 0.142 1.375∗∗

(0.438) (0.616)

District trade openness (εi) 11.315∗∗∗ 2.134∗∗∗ 2.134∗∗∗ 1.705∗∗∗

(0.913) (0.190) (0.190) (0.240)

District trade openness (εi) × MAinstate 16.860∗∗

(7.215)

District elasticity of substitution (σ) 18.084∗∗∗ 6.196∗∗∗ 6.196∗∗∗ 5.969∗∗∗

(1.309) (0.307) (0.307) (0.284)

Observations 85918 85918 85918 85918 85918 85918
First Stage F-statistic 7293.04 3095.02 291.99 150.50
Crop-District-Decade FE Yes Yes Yes Yes Yes Yes
District-Year-Decade FE Yes Yes Yes Yes Yes Yes

Panel (b): State Market Access (εm)

Dependent variable: State price (ln p̄mgt)
(1) (2) (3) (4) (5) (6)

OLS IV OLS IV GMM GMM

Log state quantity -0.097∗∗∗ -0.146∗∗∗ 0.020 0.075
(0.021) (0.048) (0.049) (0.141)

Travel time to Delhi × Log state quantity 0.122∗∗ 0.229
(0.054) (0.150)

Log India price 0.549∗∗∗ 0.287∗∗∗ 0.296∗∗ 0.172∗

(0.064) (0.058) (0.115) (0.104)

Travel time to Delhi × Log India price -0.261∗∗ -0.118
(0.133) (0.120)

State trade openness (εm) 5.643∗∗∗ 1.967∗∗ 1.967∗∗∗ 1.126
(1.445) (0.818) (0.546) (0.694)

State trade openness (εm) × Travel time to Delhi -0.725
(0.850)

State elasticity of substitution (σ) 4.645∗∗∗ 4.881∗∗∗ 4.881∗∗∗ 4.531∗∗∗

(1.147) (1.602) (1.181) (1.448)

Observations 6870 6870 6870 6870 6870 6870
First Stage F-statistic 651.22 192.18 8.49 4.64
Crop-State-Decade FE Yes Yes Yes Yes Yes Yes
State-Year-Decade FE Yes Yes Yes Yes Yes Yes

Notes: Each observation is a crop-district-year triplet (panel (a)) or a crop-state-year triplet (panel (b)). The dependent
variable in columns (1)-(4) is the (log) price in the district (panel (b)) or state (panel (b)), where the state price is the total
value produced in the state (at district level prices) divided by the total quantity produced in the state. In columns (2) and
(4), yields/quantities are instrumented with rainfall predicted yields/quantities, respectively, and prices are instrumented with
prices in the rest of the state (panel (a)) or the rest of the country (panel (b)). Columns (5) and (6) use a GMM specification,
where column (5) replicates the results of column (2) and column (6) allows for the implied openness measures to vary with
within-state market access (panel (a)) or distance to Delhi (panel (b)). Each observation is weighted by the total area in the
district (panel (a)) or state (panel (b)) within a decade. Robust standard errors are reported in parentheses. Stars indicate
statistical significance: * p<.10 ** p<.05 *** p<.01.
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Table 5: Estimated effective risk aversion

Dependent variable: Mean real returns (µZig)

(1) (2) (3) (4)
OLS IV OLS IV

Variance of real returns (σZig) 0.554** 1.325*** 1.710*** 3.265***

(0.224) (0.429) (0.443) (1.111)
Variance of real returns (σZig) × Banks -0.310*** -0.454**

(0.098) (0.217)

District-decade FE Yes Yes Yes Yes
District-crop FE Yes Yes Yes Yes
Crop-decade FE Yes Yes Yes Yes
First stage F-stat 421.468 76.953
R-squared 0.969 -0.004 0.969 -0.005
Observations 14916 14916 14916 14916

Notes: Each observation is a crop-district-decade triplet. The dependent variable is the marginal
contribution of a crop to (log) mean real returns (µZig). The independent variable is the marginal

contribution of a crop to the variance of (log) real returns (σZig) and, in columns (3) and (4), its
interaction with rural banks per capita. In IV columns, the variance of real returns is instrumented
using the variance-covariance matrix of rainfall predicted yields instead of the actual variance-
covariance matrix. Both the dependent and independent variables are winsorized at the 1%/99%
level. Each observation is weighted by the total area allocated to the crop within a district-decade.
Robust standard errors are reported in parentheses. Stars indicate statistical significance: * p<.10
** p<.05 *** p<.01.
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Table 6: Welfare impact of the expansion of the Indian highway network

Panel (a): Highway expansion only

Districts Markets

Welfare

(1) (2) (3) (4) (5) (6) (7) (8)
Mean Variance θR,B,ρB θZR,ZB,ρB θZR,B,ρB θR,B,ρZB Mean Variance

2.237∗∗∗ -0.048∗∗∗ 2.297∗∗∗ 0.000 0.000 2.297∗∗∗ -0.926 -0.008∗∗

(0.178) (0.008) (0.177) (.) (.) (0.177) (0.702) (0.003)

N 311 311 311 311 311 311 17 17

Panel (b): Highway and bank expansion

Districts Markets

Welfare

(1) (2) (3) (4) (5) (6) (7) (8)
Mean Variance θR,B,ρB θZR,ZB,ρB θZR,B,ρB θR,B,ρZB Mean Variance

2.843∗∗∗ 0.692∗∗∗ 4.388∗∗∗ 1.874∗∗∗ 2.160∗∗∗ 2.082∗∗∗ -0.906 0.004
(0.201) (0.123) (0.242) (0.176) (0.192) (0.204) (0.725) (0.002)

N 311 311 311 311 311 311 17 17

Panel (c): Highway and (counterfactual) improved bank expansion

Districts Markets

Welfare

(1) (2) (3) (4) (5) (6) (7) (8)
Mean Variance θR,B,ρB θZR,ZB,ρB θZR,B,ρB θR,B,ρZB Mean Variance

3.130∗∗∗ 1.311∗∗∗ 5.926∗∗∗ 3.041∗∗∗ 3.704∗∗∗ 1.633∗∗∗ -0.956 0.018∗∗

(0.217) (0.238) (0.326) (0.258) (0.303) (0.281) (0.775) (0.008)

N 311 311 311 311 311 311 17 17

Notes: This table reports the estimated effects of the Indian highway expansion. In panel (a), we hold the
effective risk-aversion parameter in each district at its 1970s value. In panel (b), we allow each district’s
effective risk-aversion parameter to change based on its observed change in bank access. In panel (c), we
consider a counterfactual where all districts are given effective risk-aversion parameters consistent with
being in the upper quartile of rural bank access from the 1980s onward. In columns 1 and 2, we report
the average change across districts in the (log of the) mean real returns and the variance (of the log of)
real returns, respectively. Columns 3–6 report the change in welfare measured as the certainty equivalent
variation (CEV), i.e. the percentage increase in income that an agent receives with certainty that would
generate the equivalent change in expected utility as the counterfac tual in question, with the θ and ρ
denoting crop choice and effective risk aversion, respectively, the subscript R (ZR) indicating that the road
expansion did (did not) occur, and B (ZB) indicating that the bank expansion considered in the panel did (did
not occur). That is, column 3 reports the actual CEV from both the road and bank expansion; column 4
reports the CEV using the 1970s crop allocation but allowing the bank expansion to occur; column 5 reports
the CEV calculating the optimal crop re-allocation from only the bank expansion; and column 6 reports
the CEV using the same crop allocation as in column 3 but evaluating the welfare using the 1970s effective
risk-aversion parameters. All values are log differences multiplied by 100. Standard errors are reported in
parentheses. Stars indicate statistical significance: ∗ p<0.10, ∗∗ p<0.05, ∗∗∗ p<0.01.
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Table 7: Explaining the heterogeneity across districts in the gains from the expan-
sion of the Indian highway network

Dependent variable: Mean Variance Welfare
(1) (2) (3)

MAinstate 138.211*** 0.901** 137.032***
(19.459) (0.450) (19.526)

MAinstate elsewhere 25.838* -1.998*** 28.533*
in state (15.382) (0.676) (15.320)

District FE Yes Yes Yes
R-squared (within) 0.853 0.016 0.858
Observations 1244 1244 1244

Notes: Each observation is a district-decade pair; there are 4 decades and 311 districts.
The dependent variables are the effect of the Indian highway expansion on the (log of
the) mean real returns (column 1), variance (of the log of) real returns (column 2) and
the expected welfare (column 3), respectively, holding all other parameters constant at
1970s levels. State market access elsewhere in the state is the crop-area weighted average
state market access in that decade for all other districts within the state. Units are in
log basis points (i.e. approximately percentage points). Standard errors clustered at the
district level are reported in parentheses. Stars indicate statistical significance: * p<.10
** p<.05 *** p<.01.

Table 8: The additional gains from the Indian highway network expansion with im-
proved bank access

Dependent variable: Additional Welfare
(1) (2) (3) (4)

MAinstate 10.023* -41.251* 14.164** -23.866**
(5.574) (22.596) (6.931) (11.113)

∆ Effective risk aversion (ρi,d−ρi,70s) -2.548*** -0.858*** -3.048*** -1.847***
(0.310) (0.217) (0.392) (0.231)

MAinstate × (ρi,d−ρi,70s) 27.003*** -32.058* 37.992*** -3.695
(8.385) (16.580) (10.090) (9.512)

MAinstate × Corr
(
µAi,g,σ

A
i,g

)
-129.013***

(43.171)

(ρi,d−ρi,70s) × Corr
(
µAi,g,σ

A
i,g

)
3.155***

(1.162)

MAinstate × (ρi,d−ρi,70s) × Corr
(
µAi,g,σ

A
i,g

)
-122.454***

(45.026)

District FE Yes Yes Yes Yes
R-squared (within) 0.354 0.518 0.374 0.387
Observations 1244 244 1000 1244

Sample Full Corr
(
µAi,g,σ

A
i,g

)
>0 Corr

(
µAi,g,σ

A
i,g

)
<0 Full

Notes: Each observation is a district-decade pair; there are 4 decades and 311 districts. The dependent variable is the additional
impact of the Indian highway expansion and rural bank expansion on welfare relative to the Indian highway expansion alone
holding all other parameters constant at 1970s levels. Column 2 (3) only includes districts where the correlation across crops
within district of the log mean yield and the variance of log yields is positive (negative) in the 1970s, i.e. districts where the
high (low) return crops are more riskier. Welfare is measured as the percentage increase in nominal income that an agent
receives with certainty that would yield the equivalent change in expected utility as from the counterfactual, i.e. the certainty
equivalent variation (CEV). Standard errors clustered at the district level are reported in parentheses. Stars indicate statistical
significance: * p<.10 ** p<.05 *** p<.01.
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Figure 1: A new (more realistic) model of the agricultural trade network

(a) The Indian agricultural trade network

(b) Standard “horizontal” trade network (c) New “hierarchical” trade network

Notes: This figure depicts the Indian agricultural trading network and compares it to the network assumed in a

standard trade model and that assumed in our model. Panel (a) illustrates the actual structure of a typical Indian

agricultural trading network. Panel (b) depicts the trading network of a standard trade model where each location

can trade directly with all other locations (for readability, only a random 1% sample of links are shown). Panel

(c) depicts the “hierarchical” trading network in our model, where each district only trades directly with a regional

market, which in turn trades with a central market. Note panels (a) and (c) coincide except for the village-to-district

trading links, which are excluded in the model due to the absence of village level data.
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Figure 3: A new (more realistic) model of price arbitrage

(a) Standard “kinked” arbitrage model (b) New “smooth” arbitrage model

(c) Explaining the observed price-yield relationship

Notes: This figure compares our model to a standard model of price arbitrage. Panel (a) depicts the “kinked”

relationship between local prices and local quantities produced in a standard trade model, where (log) local prices

are equal to the (log) world price plus/minus an iceberg trade cost other than in a narrow range where relative prices

are sufficiently similar that no trade occurs and prices are determined by autarkic demand. Panel (b) depicts the

“smooth” relationship between local prices and local quantities in our model, where heterogeneous trade costs ensure

that some trade occurs at all prices, and the distribution of trade costs across traders determines the elasticity of local

prices to local quantities produced. Panel (c) compares the fit of the two models to Indian data on rainfall-predicted

quantities and observed yields and reports the distribution of R2 for each model across all district-decade pairs in

our sample; see Section 4.2 for details.
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Figure 4: The spatial distribution of the gains from trade

(a) Change in market access (b) Change in mean real income

(c) Change in variance of (log) real income (d) Change in expected welfare

Notes: This figure presents the spatial distribution of the gains from trade resulting from the expansion of the Indian

highway network from the 1970s to the 2000s. Panel (a) depicts the change in the observed (within-state) market

access; panel (b) depicts the change in the (log of) mean real income; panel (c) depicts the change in the variance (of

the log) of real income; and panel (c) depicts the change in expected welfare. The units of panels (b), (c), and (d)

are log basis points (i.e. approximately percentage points). In all panels, reds (yellow) indicate higher (lower) deciles

of changes.
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Volatility and the Gains from Trade: Appendix

Treb Allen and David Atkin

Appendix

A.1 Empirical context

A.1.1 Background on rural India

The first set of changes occurring in rural India over the forty year period spanning 1970 to 2009 relate to

the technology of agricultural production and the policy-driven expansion of formal banking into rural areas.

Increased use of irrigation and high-yield varieties (HYV) raised mean yields and altered the variance of

yields.

In our VDSA data we find that irrigation coverage rose from 23 to 49% of arable land and HYV use rose

from 9 to 32%. Some HYV crops had lower variance due to greater resistance to pests and drought, others

higher due to greater susceptibility to weather deviations, see Munshi (2004). While we find no evidence

that the adoption of HYV is correlated with improvements market access (see discussion in Appendix A.3),

our analysis will flexibly incorporate observed changes in the means, correlations, and covariances of crop

yields over time.

The second major change was the policy-driven expansion of formal banking into often unprofitable rural

areas (see Burgess and Pande (2005) and Fulford (2013)). Basu (2006) and Shah et al. (2007) document

that this expansion increased both the number of loans taken out and the deposits made in rural areas, and

the share of rural household debt from banks rose from 2.4% to 29% between 1971 and 1991. By 2003, 44%

of large farmers (55% of India’s agricultural land), 31% of small farmers (40% of land) and 13% of marginal

farmers (15% of land) had an outstanding loan from a formal bank.

The availability of credit helped farmers smooth income shocks and so provided a form of insurance.

We note that India also has a subsidized crop insurance scheme although, even today, only 6% of farmers

voluntarily purchase coverage (a further 11% have agricultural loans with mandatory insurance requirements,

see Mahul et al. (2012)).

The third set of changes relate to reductions in inter- and particularly intra-national trade costs. As we

discuss in Section 2.1, these changes were driven by major expansions of the highway network and the broad

economic liberalization program started in 1991. While the second of these changes affected both internal

and external barriers to trade within India, external agricultural trade remained subject to a restrictive

license system until April 2001.

The paper focuses on domestic trade that constituted the overwhelming majority of India’s agricultural

trade over our sample period. Focusing on the three most traded products—rice, sugar and wheat—external

trade (international exports plus imports) equaled 0.5, 0.3 and 11% of production by weight in the 1970s,

and 2.8, 0.7 and 3% in the 2000s, respectively. Unfortunately, India only records internal trade by rail, river

and air (recall from Section 2.1 that road accounted for between one and two thirds of freight); and then only

for trade between 40 or so large trading blocks in India. Using rail, river and air data that likely severely

underestimate inter-district trade, internal trade equaled 3.8, 1.3 and 21.4% of production by weight in the

1970s, and 10.2, 0.9 and 16.3% in the 2000s.

1



A.1.2 Agricultural trade in rural India

The APMC Acts created state-regulated markets for agricultural trade called mandis—located in large towns

near production centers—where farmers were legally required to sell their goods. The typical Indian district

has one mandi; e.g. in 2006 there were 610 mandis selling rice (paddy) across 600 districts. In 2003, the

Indian government proposed that states allow producers to sell outside the mandi system, but most states

opted not to implement major changes to their APMC Acts (see e.g. Gautam (2015)). As mentioned in the

introduction, subsequent attempts at reform by the national government have led to ongoing protests and

ultimately capitulation by the government.

Farmers typically sell to local traders in their village who transport the produce to the district mandi.

Chatterjee et al. (2020) find that only the largest farmers transport their produce to the mandi themselves.

At the mandi, local traders sell to (larger) regional traders who transport it to terminal markets in the state

(or in some cases outside the state). While trader size increases with the level of the hierarchy, there also

exists substantial heterogeneity within the same level; see e.g. Chand (2012), and Kapur and Krishnamurthy

(2014), as well as Upton and Fuller (2004) who discuss the participation of multinational corporations.

For staple crops, local traders also have the option of selling to the public distribution systems (PDS),

which guarantees a minimum support price (MSP). In practice, however, there are costs associated with

selling to the PDS, including the uncertainty of when payment arrives. As a result, the MSP is typically

not binding. Appendix Figures A.4–A.7 plot the distribution of log prices alongside the MSPs for applicable

crops. There is little evidence of price heaping just at or above the MSPs, and substantial mass below the

MSPs, suggesting any attenuation from abstracting from MSPs in our model is limited.

A.2 Data

Agricultural Data: Data on district-level cropping patterns (i.e. the area allocated), crop prices27 and crop

yields come from the ICRISAT Village Dynamics in South Asia Macro-Meso Database (henceforth VDSA)

which is a compilation of various official government datasources. Cropping patterns, prices, and yields are

all observed at the district × crop × year level for 311 districts (using time-invariant 1966 district and state

boundaries) in 19 states that contain 95% of India’s population. The database spans the 1966-67 crop year

through 2009-10 and covers the 15 major crops for which farm harvest prices are available. For comparability,

all Rupee values are deflated by the all-India CPI.

The 15 crops are barley, chickpea, cotton, finger millet, groundnut, linseed, maize, pearl millet, pigeon

pea, rice, rape and mustard seed, sesame, sorghum, sugarcane, and wheat. Where paddy rather than rice

prices are available we convert to rice prices using the average ratio of the paddy to rice price in that state

and decade. These 15 crops accounted for an average of 73% of total cropped area across districts and

years. The data are at the annual level and combine both the rabi and kharif cropping seasons. Data

coverage across crops with districts is good: in the median district-decade pair, we observe at least one year

of production data for 13 of the 15 crops and at least one year of price data for 11 of the 15 crops. In the 5%

of cases where we observe prices but yields are missing, we interpolate yields by taking weighted averages

of non-missing yields in all districts for the same crop and year using inverse squared-log-distance weights.

To deal with extreme yield values that are likely erroneous, we winsorize the resulting yields at the 1st and

99th percentiles. We do not interpolate missing prices, as they are equilibrium outcomes, an issue we discuss

when calculating total revenues in Appendix A.3 when discussing Stylized Fact 3(a).

Trade Costs: We obtained seven editions of the government-produced Road Map of India, published in

the years 1962, 1969, 1977, 1988, 1996, 2004 and 2011. We digitized and geo-coded these maps and identified

27These are the farm harvest prices—i.e. the farm gate price a farmer receives.
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the highways using an algorithm based on the color of digitized pixels. Figure 2 depicts the substantial

expansion of the the Indian highway network over the forty year period. Using these maps, we construct a

“speed image” of India, assigning a speed of 60 miles per hour on highways and 20 miles per hour elsewhere.

This image allows us to calculate travel times between any two districts in each year using the Fast Marching

Method (see Sethian (1999)).28

Rural Bank Data: Data on rural bank access, an important source of insurance in India, come from RBI

bank openings by district assembled by Fulford (2013).

Consumer Preferences: Consumption data come from the National Sample Survey (NSS) Schedule 1.0

Surveys produced by the Central Statistical Organization. We primarily use round 43 collected between July

1987 and June 1988 that falls in the middle of our sample.

Rainfall Data: Gridded weather data come from Willmott and Matsuura (2012) and were matched to each

district by taking the inverse distance weighted average of all the grid points within the Indian subcontinent.

A.3 Stylized facts: Additional details and robustness

Stylized Fact 1(a)

Appendix Table A.1 shows that changes in our market access measure are not associated with changes in

district characteristics such as bank access and HYV adoption that may impart an endogeneity bias. We

use the same specification that we later use to analyze district-decade level outcomes in Stylized Fact 3 and

find no significant associations between within-state market access and district-decade level characteristics

including banks per capita, the (crop-share weighted) mean and variance of log yields, or the proportion

of land planted with high yield varieties or under irrigation. Even if there were, the main effect of market

access is swept out by the district-decade fixed effects in specification (1) and so such associations would not

necessarily lead to bias.

Columns 5 and 6 of Table 1 include interactions with log yield and either the full set of crop-decade fixed

effects or the full set of crop-district fixed effects. As running a specification with 100s of endogenous variables

and 100s of instruments is both infeasible and inadvisable, here we present the reduced form that replaces

yields with predicted yields. That said, we note that the coefficient on the interaction between predicted

yield and market access potentially combines the effects of market access on the elasticity of price to yield

and any effect of market access on yield-increasing technologies. This is not an issue for the coefficients on

the interaction between yield and market access in the OLS and IV regressions since in those cases such yield-

improving technologies are already captured through measured yields (OLS) or the first stage regressions

(IV). As we find a positive coefficient on the interaction between predicted yield and market access in the

first stage for log yields corresponding to column 5 and a negative one for column 6, the reduced form will

tend to be too small and too large, respectively.

Stylized Fact 1(b)

Column 9, only briefly mentioned in the main text, further includes the log of the area-weighted average

of yields in districts in other states and its interaction with outside-state market access (alongside the

lnAigtd×MAoutstateid interaction introduced above). We find that when access to markets in other states

improves, local prices respond less to local yields and respond more to other state’s yields. But the former

effect is again not significant, and the increased responsiveness to national yields is smaller in magnitude

than that to state yields, consistent with the hierarchical trading network.

28We linearly interpolate travel times in years between editions of the Road Map of India. See Allen and Arkolakis
(2014) for a previous application of the Fast Marching Method to estimate trade costs.
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Stylized Fact 2(a)

We regress the share of land allocated to each crop on the mean and variance of yields of that crop, both

interacted with MAinstateid :

arcsinhθigd=β1µ
A
igd+β2σ

2,A
igd +β3µ

A
igd×MAinstateid +β4σ

2,A
igd ×MAinstateid +γgd+γid+γig+εigd, (24)

where arcsinhθigd is the inverse hyperbolic sine of the decade-d average share of cropped land planted with

crop g in district i, µAigd is the mean of log yields in that district-crop-decade, and σ2,A
igd is the variance of log

yields in that district-crop-decade.

As the variance of log yields, σ2,A
igd , displays extreme values, we winsorize this variable at the 1st and 99th

percentiles. Appendix Table A.2 shows that while our instruments have a weaker first stage F-stat without

this adjustment, the coefficients are essentially unaffected and remain statistically significant. (Similarly

when forming
∑
g′ 6=gσ

A
igg′d, the covariances of log yields between g and the 14 other crops, we winsorize

the sum of the covariance terms at the 1st and 99th percentiles both for
∑
g′ 6=gσ

A
igg′d and its instrument

constructed using rainfall-predicted yield covariances.)

As crop choices are not independent, standard errors are clustered at the district-decade level. Finally,

to ensure our results are representative at the district-decade level, we again weight observations by the total

area planted in the district.

We instrument for the mean and variance of log yields with the mean and variance of log yields as

predicted by rainfall variation. We use a method analogous to the predicted yields in Fact 1: we regress log

yields on local rainfall shocks for each month interacted with state-crop fixed effects, controlling for the fixed

effects in specification (24), and use the mean and variance of these predicted values. We then winsorize the

variance terms at the 1st and 99th percentiles as we do for the endogenous variances.

As noted in the main text, we use the inverse hyperbolic sine transformation in lieu of logging crop

shares given that 19% of crop share observations in our regression sample are equal to zero. Logging crop

choice—thereby dropping the zero-share observations—will generate a selected sample (unlike in our model

where no crop will be allocated exactly zero land). Appendix Table A.2 reports very similar results using

either the actual crop share as the dependent variable or the log of the crop share with zero-crop-share values

replaced by the first percentile value of non-missing log crop shares (along with non-missing values below

the first percentile).

Our baseline focuses on the mean and volatility of yields, which are the exogenous variables in our theory,

but similar results obtain when replacing yields with the value of production in column 3 of Table 2. We

calculate crop value by multiplying yields by (crop-area-weighted) state-level average prices, both because of

missing price data issues (see Appendix A.3 Stylized Fact 3(a)) and because Section 4.3 will show that this

is the theoretically-consistent price to use. As above, we instrument means and variances of log values with

means and variances of predicted yields multiplied by state average prices that leave out own-district prices

to avoid reverse causality. Similar results also obtain for the two alternative market access measures (see

Appendix Table A.3). Appendix Table A.4 further interacts our independent variables with the proportion of

land cropped with HYV varieties to guard against endogenous HYV adoption decisions driving our findings

and finds qualitatively similar results (although there is some attenuation when we replace missing HYV

information with zeroes rather than leaving those observations as missings).

Finally, column 5 extends equation (3) by including interactions with outside-state market access. Echo-

ing earlier findings, increases in market access outside of the state move farmers further toward low variance

crops but to a lesser degree than increases in within-state market access (although movements to higher-mean
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crops appear more pronounced).

Stylized Fact 2(b)

When exploring interactions with risk mitigation technologies, we extend specification (24) to include the

triple interaction of the variance of log yields, market access and bank access. We instrument the interaction

terms with similar terms that replace the variance of log yields with the variance of log predicted yields.

Despite the instruments and fixed effects, a remaining concern is that bank branch placement is endogenous.

One potential mechanism is that rural banks are attracted to locations with improved market access (although

to bias our estimate of the triple interaction, given our main effects and fixed effects, this entry would need

to be focused on places where district-crop-decade preference shocks increased relative demand for more

volatile crops). Empirically, however, it turns out the two are uncorrelated in our context: across the 311

districts, the correlation between the change in market access and rural banks per capita between the 1970s

and 2000s is -0.0832 and the association is negative and insignificant when using district-decade variation as

shown in Appendix Table A.1 (in part because of government mandated bank expansions into less profitable

locations documented in Burgess and Pande (2005)).

The estimates of this extended specification are shown in Column 6 of Table 2 of the main text, with

the triple interaction positive and significantly different from zero at the 1% level. Similar results obtain

for the two alternative market access measures in Appendix Table A.3. Appendix Table A.3 also shows

that these results are robust to including interactions between banks, market access and the mean of log

yields. Appendix Table A.2 reports similar results not winsorizing the variance terms and using alternative

transformations of crop shares. Finally, column 8 of Table 2 includes both within-state and outside-state

market access measures. These insurance interactions are absent for market access outside of the state,

providing further evidence for the primacy of within-state market access.

Stylized Fact 3(a)

To explore how the volatility of nominal income responded to reductions in trade costs, for each district and

decade we project var(lnnominal income)id onto within-state market access:

var(lnnominal income)id=β1MAinstateid +γi+γsd+εid. (25)

We calculate nominal (gross) income—i.e. the total revenue from the production of all 15 crops—using

annual data on agricultural revenues per hectare. As above, we make our results representative by weighting

observations by the total area planted with our 15 crops in each district-decade. Recall that we only have

revenue data for the 73% of arable land devoted to these 15 crops. Thus, this analysis provides a somewhat

incomplete picture of the revenue volatility faced by Indian farmers.

Unlike in Facts 1 and 2 where missing price data generates missing district-crop level observations, here

missing prices are more pernicious as they result in missing components of revenue. As Fact 1 shows, prices

are endogenous to local yields and market access, making imputation using prices elsewhere infeasible. To

mitigate the most troubling cases, in the main text we restrict attention to the 96.4% of district-decade pairs

where at least 25% of area cropped has non-missing prices. Instead of restricting attention to a subset of

district-decades with better data, Appendix Table A.5 follows our Fact 2 strategy of winsorizing the variances

of log nominal income at the 1st and 99th percentile (along with the variance of the price index and real

income we explore below). Results are qualitatively similar although the coefficient shrinks for the variance

of nominal income and is magnified for the variance of the price index.

Appendix Table A.5 presents qualitatively similar results using our two alternative measures of market
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access.

Stylized Fact 3(b)

Column 2 of Table 3 replaces the dependent variable in specification (25) with var(lnCD Price Index)id,

the district-decade variance of the log price index. As foreshadowed above, the p-value falls to 0.087 when we

winsorize the variance of the price index rather than dropping district-decades with poor data in Appendix

Table A.5.

The variance of the log price index may be amplified by the presence of district-decade specific time

trends in the price index and, if these time trends are correlated with market access (conditional on district

and state-decade fixed effects), this may bias our estimates in column 2. To assess if this is the case, we

estimate a district-decade specific linear time trend for the price index in all 1,244 district-decades. Of those

1,244 estimated time trends, only 200 (16%) have t-statistics greater than two in absolute value, suggesting

that our procedure of deflating by the all-India consumer price index does a good job capturing inflationary

trends. Moreover, there is no statistically significant relationship between the estimated time trends and

market access (the raw correlation is 0.0008 and the t-statistic of a regression of the time trend on market

access with district and state-decade fixed effects is just 0.6), suggesting that any bias arising from time-trends

in our nationally-deflated price indices is small.

Stylized Fact 3(c)

Column 3 of Table 3 replaces the dependent variable in specification (25) with var(lnreal income)id, the

district-decade variance of log real income, i.e. the ratio of log nominal income and the log price index.

Columns 4–6 repeat the whole exercise in Fact 3 but further including outside-state market access.

Echoing earlier findings, improvements in within-state rather than outside-state market access drive these

results.

A.4 Model derivations

In this subsection, we present the derivations of several results in the main paper.

Approximation of real returns (Equation (15)) First, to calculate the income of farmers in a village, we

substitute the arbitrage equation (10) into farmers’ income as a sum of revenue across all crops to yield:

Yi(s)=

∑
g∈G

αig

(
p̄g(s)Qig(s)

αig

) εi
1+εi


1+εi
εi

. (26)

Similarly, combining equation (5) with (10) yields the following expression for the period welfare of a farmer

in village i:

Zfi (s)=
1

Li
×

∑
g∈G

αig

(
p̄g(s)Qig(s)

αig

) εi
1+εi

×∏
g∈G

(
Qig(s)

(
αig

p̄g(s)Qig(s)

) εi
1+εi

)αig
(27)

In the autarky (i.e. εi = 0), equation (27) simplifies to Zf,auti (s) ≡ 1
Li

∏
g∈G (Qig(s))

αig , as farmers con-

sume what they produce. In free trade (i.e. εi → ∞), equation (27) simplifies to Zf,freei (s) ≡ 1
Li
×(∑

g∈G p̄g(s)Qig(s)
)
×
∏
g∈G

(
αig
p̄g(s)

)αig
,as farmers sell what they produce and purchase what they consume

at the central market prices.

We now note that with a large number of villages and idiosyncratic shocks that p̄g (s) = p̄g, i.e. the
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central market prices is state invariant. Taking logs of equation (27) then yields:

lnZfi (s)=ln

∑
g∈G

θfig×
αig
θig

(
p̄g(s)θig
αig

Aig(s)

) εi
1+εi


+

(
1

1+εi

)∑
g∈G

αiglnAig(s)+
∑
g∈G

αig

(
ln

(
αig

(
p̄gθig
αig

) 1
1+εi

)
−lnp̄g

)
(28)

We then apply the following second-order approximation implying that the sum of log normal variables is

itself approximately log normal (see, e.g. Campbell and Viceira (2002)). Suppose that lnxi(s)∼N (µxi ,Σi)

and Xi (s) ≡ ln
(∑

g∈Gwi,gxi,g(s)
)

for some weights
∑
g∈Gwi,g = 1. Then a second order approximation

around the mean log returns is:

Xi(s)≈ ln

∑
g∈G

wi,gexp
(
µxi,g

)+
∑

wi,g(lnxi,g(s)−µxi,g)−
1

2

∑
h∈G

∑
g∈G

wi,gwi,hσ
x
i,gh+

1

2

∑
g∈G

wi,gσ
x
i,gg. (29)

In our case, we have:

lnxig(s)≡ ln

(
αig
θig

)
+

εi
1+εi

ln

(
p̄gθig
αig

)
+

εi
1+εi

ln(Aig(s))

and wi,g ≡ θfi,g which implies that µxi,g = ln
(
αig
θig

)
+ εi

1+εi
ln
(
p̄gθig
αig

)
+ εi

1+εi
µA,ig and σxi,gh =

(
εi

1+εi

)2

σAi,gh.

Applying the approximation (29) to the real returns (28) results in:

lnZfi (s)≈µZi +
∑
g∈G

((
εi

1+εi

)
θfi,g+

(
1

1+εi

)
αig

)(
lnAig(s)−µA,ig

)
,

where

µZi ≡
∑
g∈G

((
εi

1+εi

)
θfi,g+

(
1

1+εi

)
αig

)
µA,ig +ln

∑
g∈G

θfig×
αig
θig

(
p̄gθig
αig

exp
(
µA,ig

)) εi
1+εi


− εi

1+εi

∑
g∈G

θfi,gµ
A,i
g +

∑
g∈G

αig

(
ln

(
αig

(
p̄gθig
αig

) 1
1+εi

)
−lnp̄g

)

+
1

2

(
εi

1+εi

)2
∑
g∈G

θfi,gΣ
A,i
gg −

∑
h∈G

∑
g∈G

θfi,gθ
f
i,hΣA,igh

, (30)

as required.

It immediately follows that farmer utility is (approximately) log normally distributed across states of the

world:

lnZfi ∼N
(
µZi ,σ

2,Z
i

)
,

where

σ2,Z
i ≡

∑
g∈G

∑
h∈G

((
εi

1+εi

)
θfi,g+

(
1

1+εi

)
αig

)((
εi

1+εi

)
θfi,h+

(
1

1+εi

)
αih

)
ΣA,igh . (31)
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Optimal crop choice first order conditions (equation (17)) Beginning with the maximization problem:

max
{θfig}

µZi +
1

2
(1−ρi)σ2,Z

i s.t. Σg∈Gθ
f
ig=1

and substituting in the expressions for µZi and σ2,Z
i from equations (30) and (31) results in:

max
{θfig}

ln

∑
g∈G

θfig
αig
θig

(
p̄gθig
αig

exp
(
µA,ig

)) εi
1+εi

+

(
1

1+εi

)∑
g∈G

αigµ
A,i
g +

∑
g∈G

αig

(
ln

(
αig

(
p̄gθig
αig

exp
(
µA,ig

)) 1
1+εi

)
−lnp̄g

)

+
1

2

(
εi

1+εi

)2
∑
g∈G

θfi,gΣ
A,i
gg −

∑
h∈G

∑
g∈G

θfi,gθ
f
i,hΣA,igh


+

1

2
(1−ρi)

∑
g∈G

∑
h∈G

((
εi

1+εi

)
θfi,g+

(
1

1+εi

)
αig

)((
εi

1+εi

)
θfi,h+

(
1

1+εi

)
αih

)
ΣA,igh

subject to:

Σg∈Gθ
f
ig=1.

Taking the first order conditions with respect to θfig (note that each farmer makes her crop choice taking the

crop choice of other farmers as given) results in the following first order conditions:

αig
θig

(
p̄gθig
αig

exp
(
µA,ig

)) εi
1+εi

∑
g∈Gθ

f
ig×

αig
θig

(
p̄gθig
αig

exp
(
µA,ig

)) εi
1+εi

+
1

2

(
εi

1+εi

)2

ΣA,igg +
εi

(1+εi)
2

∑
h∈G

αihΣA,igh

−ρi
(

εi
1+εi

)∑
h∈G

((
εi

1+εi

)
θfi,h+

(
1

1+εi

)
αih

)
ΣA,igh =λi

or equivalently:

µZig−ρi
(

εi
1+εi

)∑
h∈G

((
εi

1+εi

)
θfi,h+

(
1

1+εi

)
αih

)
ΣA,igh =λi,

where µZig≡ 1
θig

αig
(
p̄gθig
αig

exp(µA,ig )
) εi

1+εi

∑
g∈Gαig

(
p̄gθig
αig

exp(µA,ig )
) εi

1+εi

+ 1
2

(
εi

1+εi

)2

ΣA,igg + εi
(1+εi)

2

∑
h∈GαihΣA,igh , as required.

Equilibrium crop choice (equation (18)) We re-write the first order conditions as:

αig
θig

(
p̄gθig
αig

exp
(
µA,ig

)) εi
1+εi

∑
g∈Gθ

f
ig×

αig
θig

(
p̄gθig
αig

exp
(
µA,ig

)) εi
1+εi

=λi−(
1

2

(
εi

1+εi

)2

ΣA,igg +
εi

(1+εi)
2

∑
h∈G

αihΣA,igh

−ρi
(

εi
1+εi

)∑
h∈G

((
εi

1+εi

)
θi,h+

(
1

1+εi

)
αih

)
ΣA,igh )⇐⇒

θig∝αig(p̄gBig)εi =⇒

θig=
αig(p̄gBig)

εi∑
h∈Gαih(p̄hBih)

εi ,
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whereBig≡
expµA,ig(

λi−
(

1
2

(
εi

1+εi

)2
ΣA,igg +

εi

(1+εi)
2

∑
h∈GαihΣA,igh −ρi

(
εi

1+εi

)∑
h∈G

((
εi

1+εi

)
θi,h+

(
1

1+εi

)
αih

)
ΣA,igh

)) 1+εi
εi

, as required.

A.5 Proofs

This subsection contains the proofs of Propositions 1 and 2.

A.5.1 Proof of Proposition 1

We first restate the proposition:

Proposition. Given any set of preferences {αig}g∈G, trade costs {εi}i∈N , and any state of the world s∈ S
such that quantity produced is {Qig(s)}g∈Gi∈N :

(a) There exists a state equilibrium.

(b) If the trade costs {εi}i∈N are sufficiently close to 1, then that equilibrium is unique.

Proof of part (a) (existence)

Proof. In what follows, we omit dependence of prices pig (s) and quantities Qig (s) on state s for clarity.

To prove existence, we first show that it is sufficient to focus on the excess demand function of the central

market. We then show that the central market excess demand function satisfies all conditions necessary to

guarantee existence from Proposition 17.C.1 of Mas-Colell et al. (1995).

We first note that given quantities {Qig}g∈Gi∈N and the equilibrium central market prices {p̄g}g∈G , village

level incomes {Yi}i∈N are given immediately from equation prices (26); in turn, given village incomes {Yi}i∈N ,

village level prices {pig}g∈Gi∈N are then given immediately from equation (10); and finally, given village level

prices {pig}g∈Gi∈N , village level consumption {Cig}g∈Gi∈N are given immediately from equation (9). That is, given

quantities {Qig}g∈Gi∈N and the equilibrium central market prices {p̄g}g∈G , it is straightforward to find a set of

village prices {pig(s)}g∈Gi∈N and village consumption {Cig(s)}g∈Gi∈N such that markets clear within each village

(and condition 1 of the state equilibrium is satisfied). Hence, all that remains to determine the full state

equilibrium is the set of equilibrium central market prices {p̄g}g∈G such that the central market clears.

To find the equilibrium central market prices, we consider the following central market excess demand

function Z≡{Zg}g∈G :RG→RG:

Zg

(
{p̄g}g∈G

)
:

ᾱg
∑
h

∑
ip̄h

(
1−
(
p̄h
pih

)−1
)(

1−
(
p̄h
pih

)−εi)
Qih

p̄g
−
∑
i

(
1−
(
p̄g
pig

)−εi)
Qig⇐⇒

Zg

(
{p̄g}g∈G

)
:

ᾱg
∑
h

∑
ip̄h

1−

αih( α
1

1+εi
ih Q

εi
1+εi
ih p̄

εi
1+εi
h∑

lα
1

1+εi
il Q

εi
1+εi
il p̄

εi
1+εi
l

)−1
 1

εi


1−αih

(
α

1
1+εi
ih Q

εi
1+εi
ih p̄

εi
1+εi
h∑

lα
1

1+εi
il Q

εi
1+εi
il p̄

εi
1+εi
l

)−1
Qih

p̄g

−
∑
i

1−

αig
 α

1
1+εi
ig Q

εi
1+εi
ig p̄

εi
1+εi
g∑

hα
1

1+εi

ih Q
εi

1+εi

ih p̄
εi

1+εi

h

−1

Qig, (32)

where the first term of Zg is the quantity of good g demanded by the central market at price vector {p̄g}g∈G
(see equation (12)) and the second term is the quantity of good g supplied to the central market at price

vector {p̄g}g∈G (see equation (11)) and the second line uses equations (10) and (26) to substitute out for

village level prices.

9



We now verify that the excess demand function defined by (32) satisfies conditions (i) to (v) of Proposition

17.B.2 of Mas-Colell et al. (1995), which from Proposition 17.C.1 of Mas-Colell et al. (1995) guarantees the

existence of a set of central market prices {p̄g(s)}g∈G and central market consumption
{
C̄g(s)

}
g∈G that clear

the central market (i.e. satisfy condition 2 of the state equilibrium).

Condition (i): Continuity. This is self evident from equation (32).

Condition (ii): Homogeneity of degree zero in prices. For any C>0, we have:

Zg({Cp̄g})=

ᾱg
∑
h

∑
ip̄h

1−

αih( α
1

1+εi
ih Q

εi
1+εi
ih (Cp̄h)

εi
1+εi∑

lα
1

1+εi
il Q

εi
1+εi
il (Cp̄l)

εi
1+εi

)−1
 1

εi


1−αih

(
α

1
1+εi
ih Q

εi
1+εi
ih (Cp̄h)

εi
1+εi∑

lα
1

1+εi
il Q

εi
1+εi
il (Cp̄l)

εi
1+εi

)−1
Qih

p̄g

−
∑
i

1−

αig
 α

1
1+εi
ig Q

εi
1+εi
ig (Cp̄g)

εi
1+εi∑

hα
1

1+εi

ih Q
εi

1+εi

ih (Cp̄h)
εi

1+εi

−1

Qig

=

ᾱg
∑
h

∑
ip̄h

1−

αih( α
1

1+εi
ih Q

εi
1+εi
ih p̄

εi
1+εi
h∑

lα
1

1+εi
il Q

εi
1+εi
il p̄

εi
1+εi
l

)−1
 1

εi


1−αih

(
α

1
1+εi
ih Q

εi
1+εi
ih p̄

εi
1+εi
h∑

lα
1

1+εi
il Q

εi
1+εi
il p̄

εi
1+εi
l

)−1
Qih

p̄g

−
∑
i

1−

αig
 α

1
1+εi
ig Q

εi
1+εi
ig p̄

εi
1+εi
g∑

hα
1

1+εi

ih Q
εi

1+εi

ih p̄
εi

1+εi

h

−1

Qig

=Zg({p̄g}),

as required.

Condition (iii): Walras’ law. We have:

∑
g

p̄gZg=
∑
g

ᾱg
∑
h

∑
i

p̄h

1−

αih
 α

1
1+εi

ih Q
εi

1+εi

ih p̄
εi

1+εi

h∑
lα

1
1+εi

il Q
εi

1+εi

il p̄
εi

1+εi

l

−1


1
εi


1−αih

 α
1

1+εi

ih Q
εi

1+εi

ih p̄
εi

1+εi

h∑
lα

1
1+εi

il Q
εi

1+εi

il p̄
εi

1+εi

l

−1
Qih

−
∑
g

p̄g
∑
i

1−

αig
 α

1
1+εi
ig Q

εi
1+εi
ig p̄

εi
1+εi
g∑

hα
1

1+εi

ih Q
εi

1+εi

ih p̄
εi

1+εi

h

−1

Qig

=−
∑
h

∑
i


(∑

lα
1

1+εi

il Q
εi

1+εi

il p̄
εi

1+εi

l

) 1
εi

α
− 1

1+εi

ih Q
− εi

1+εi

ih p̄
− εi

1+εi

h

+
∑
h

∑
i


(∑

lα
1

1+εi

il Q
εi

1+εi

il p̄
εi

1+ε

h

) 1+εi
εi

α−1
ih


=

(∑
l

α
1

1+εi

il Q
εi

1+εi

il p̄
εi

1+εi

l

) 1
εi
[
−
∑
h

∑
i

α
1

1+εi

ih Q
εi

1+εi

ih p̄
εi

1+εi

h +
∑
h

∑
i

αih
∑
l

α
1

1+εi

il Q
εi

1+εi

il p̄
εi

1+εi

l

]

=

(∑
l

α
1

1+εi

il Q
εi

1+εi

il p̄
εi

1+εi

l

) 1
εi
[
−
∑
h

∑
i

α
1

1+εi

ih Q
εi

1+εi

ih p̄
εi

1+εi

h +
∑
i

∑
l

α
1

1+εi

il Q
εi

1+εi

il p̄
εi

1+εi

l

]
=0,

as required.

10



Condition (iv): Bounded below. In particular, we need that there is an s> 0 such that Zg(p)>−s for

all p and all goods g. This is straightforward as the first sum must be nonnegative. To see this, note that

in each term we have something of the formp̄h(1−x)
(

1−x
1
εi

)
with x> 0. If x> 1, both 1−x and 1−x

1
εi

are negative and the term is positive. Similarly, if x<1, both terms are positive. If x=0, It is zero. For the

second sum, we have something of the form 1−x for each term with x>0. Therefore,

Zg({p̄g})=

ᾱg
∑
h

∑
ip̄h

1−

αih( α
1

1+εi
ih Q

εi
1+εi
ih p̄

εi
1+εi
h∑

lα
1

1+εi
il Q

εi
1+εi
il p̄

εi
1+εi
l

)−1
 1

εi


1−αih

(
α

1
1+εi
ih Q

εi
1+εi
ih p̄

εi
1+εi
h∑

lα
1

1+εi
il Q

εi
1+εi
il p̄

εi
1+εi
l

)−1
Qih

p̄g

−
∑
i

1−

αig
 α

1
1+εi
ig Q

εi
1+εi
ig p̄

εi
1+εi
g∑

hα
1

1+εi

ih Q
εi

1+εi

ih p̄
εi

1+εi

h

−1

Qig

≥−
∑
i

Qig

Then we can take s=maxg
∑
iQig, and Zg({p̄g})≥−s for all g and {p̄g}.

Condition (v): Limiting behavior as prices go to zero. Condition (v) requires that if pn→p, where p 6=0

and pg=0 for some g, then maxglimn→∞Zg(p
n)→∞. To see this, choose g such that limn

png
pnh
<∞ for all h;

intuitively, png goes to 0 as fast or faster than any other price pnh. Since p 6=0, there must be an h′ such that

limn
png
pn
h′

=0. We have that

Zg(p
n)=

ᾱg
∑
h

∑
ip
n
h

1−

αih( α
1

1+εi
ih Q

εi
1+εi
ih (pnh)

εi
1+εi∑

lα
1

1+εi
il Q

εi
1+εi
il (pnl )

εi
1+εi

)−1
 1

εi


1−αih

(
α

1
1+εi
ih Q

εi
1+εi
ih (pnh)

εi
1+εi∑

lα
1

1+εi
il Q

εi
1+εi
il (pnl )

εi
1+εi

)−1
Qih

png

−
∑
i

1−

αig
 α

1
1+εi
ig Q

εi
1+εi
ig

(
png
) εi

1+εi∑
hα

1
1+εi

ih Q
εi

1+εi

ih (pnh)
εi

1+εi

−1

Qig

=ᾱg
∑
h

∑
i

pnh
png

1−

αih
 α

1
1+εi

ih Q
εi

1+εi

ih∑
lα

1
1+εi

il Q
εi

1+εi

il

(
pnl
pnh

) εi
1+εi


−1

1
εi


1−αih

 α
1

1+εi

ih Q
εi

1+εi

ih∑
lα

1
1+εi

il Q
εi

1+εi

il

(
pnl
pnh

) εi
1+εi


−1Qih

−
∑
i

1−

αig
 α

1
1+εi
ig Q

εi
1+εi
ig∑

hα
1

1+εi

ih Q
εi

1+εi

ih

(
pnh
png

) εi
1+εi


−1

Qig
This goes to ∞ as n → ∞. To see this, consider the h such that limn

pnh
png

= ∞. Then to guarantee

Zg(p
n)→∞ , we simply need that

αih

∑
lα

1
1+εi

il Q
εi

1+εi

il

(
pl
ph

) εi
1+εi

α
1

1+εi

ih Q
εi

1+εi

ih
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does not equal 1 for one of those h and i. If there is any l and h such that limn
pnl
pnh

=0 and limn
pnh
png

=∞, then

clearly this must be the case as pl
ph

=∞. The alternative is that there are is some subset (ph1
,...,phn) such

that 0<
phi
phj

<∞ and
pg
phi

=0 for all of the other goods. For Zg to not explode, these must all equal 0. That

gives n equations for a given i

α
1

1+εi

ihj
Q

εi
1+εi

ihj
p

εi
1+εi

hj
=αihj

∑
k

α
1

1+εi

ihk
Q

εi
1+εi

ihk
p

εi
1+εi

hk
,∀j

The only solution to this linear system is α
1

1+εi

ihj
Q

εi
1+εi

ihj
p

εi
1+εi

hj
=0. This contradicts the fact that p 6=0. Therefore,

we must have that one of these does not equal to 1, meaning that Zg(p
n)→∞.

Since the excess demand function Zg

(
{p̄g}g∈G

)
satisfies conditions (i)-(v), recall from above that Propo-

sition 17.C.1 of Mas-Colell et al. (1995) guarantees the existence of a set of central market prices {p̄g(s)}g∈G
and central market consumption

{
C̄g(s)

}
g∈G that clear the central market (i.e. satisfy condition 2 of the

state equilibrium). As condition 1 is then trivially satisfied (see above), this establishes the existence of a

state equilibrium.

Proof of part (b) (uniqueness)

Proof. To establish sufficient conditions for uniqueness, we show that the excess demand function Zg

(
{p̄g}g∈G

)
defined in equation (32) satisfies the gross substitutes property ∂Zg

(
{p̄g}g∈G

)
/∂p̄h>0 for all h′ 6=g as long

as {εi} is sufficiently close to one for all i∈N . Then from Proposition 17.F.3 of Mas-Colell et al. (1995),

there exists at most one equilibrium, which, when combined with part (a) (existence) of this proposition,

implies that the equilibrium is unique.

We have:

pg
∂Zg(p)

∂ph′
=
∑
i

ᾱgQih′−ᾱg
Qih′

1+εi
α

εi
1+εi

ih′ Q
− εi

1+εi

ih′ p
− εi

1+εi

h′

(∑
h

α
1

1+εi

ih p
εi

1+εi

h Q
εi

1+εi

ih

)

−ᾱg
εi

1+εi

(∑
h

α
εi

1+εi

ih p
1

1+εi

h Q
1

1+εi

ih

)
α

1
1+εi

ih′ Q
εi

1+εi

ih′ p
− 1

1+εi

h′ +
εi

1+εi
α

εi
1+εi
ig Q

1
1+εi
ig p

1
1+εi
g α

1
1+εi

ih′ p
− 1

1+εi

h′ Q
εi

1+εi

ih′

=
∑
i

ᾱgQih′−ᾱg
Qih′

1+εi
α

εi
1+εi

ih′ Q
− εi

1+εi

ih′ p
− εi

1+εi

h′

(∑
h

α
1

1+εi

ih p
εi

1+εi

h Q
εi

1+εi

ih

)

−ᾱg
εi

1+εi
Qih′

(∑
h

α
εi

1+εi

ih p
1

1+εi

h Q
1

1+εi

ih

)
α

1
1+εi

ih′ Q
− 1

1+εi

ih′ p
− 1

1+εi

h′ +
εi

1+εi
α

εi
1+εi
ig Q

1
1+εi
ig p

1
1+εi
g α

1
1+εi

ih′ p
− 1

1+εi

h′ Q
εi

1+εi

ih′

≥
∑
i

ᾱgQih′
εi

1+εi

[
α

εi
1+εi

ih′ Q
− εi

1+εi

ih′ p
− εi

1+εi

h′

(∑
h

α
1

1+εi

ih p
εi

1+εi

h Q
εi

1+εi

ih

)
−α

1
1+εi

ih′ Q
− 1

1+εi

ih′ p
− 1

1+εi

h′

(∑
h

α
εi

1+εi

ih p
1

1+εi

h Q
1

1+εi

ih

)]

+
εi

1+εi
α

εi
1+εi
ig Q

1
1+εi
ig p

1
1+εi
g α

1
1+εi

ih′ p
− 1

1+εi

h′ Q
εi

1+εi

ih′

When εi=1 for all i∈N we then have:

pg
∂Zg(p)

∂ph′
≥ εi

1+εi
α

εi
1+εi
ig Q

1
1+εi
ig p

1
1+εi
g α

1
1+εi

ih′ p
− 1

1+εi

h′ Q
εi

1+εi

ih′ ⇐⇒

pg
∂Zg(p)

∂ph′
>0,

since εi
1+εi

α
εi

1+εi
ig Q

1
1+εi
ig p

1
1+εi
g α

1
1+εi

ih′ p
− 1

1+εi

h′ Q
εi

1+εi

ih′ > 0. Moreover, by continuity, the exists a δ > 0 where, for all
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εi such that |εi−1|<δ: we have

εi
1+εi

α
εi

1+εi
ig Q

1
1+εi
ig p

1
1+εi
g α

1
1+εi

ih′ p
− 1

1+εi

h′ Q
εi

1+εi

ih′ ≥

∣∣∣∣∣∣∣∣
∑
i

ᾱgQih′
εi

1+εi

 α
εi

1+εi

ih′ Q
− εi

1+εi

ih′ p
− εi

1+εi

h′

(∑
hα

1
1+εi

ih p
εi

1+εi

h Q
εi

1+εi

ih

)
−α

1
1+εi

ih′ Q
− 1

1+εi

ih′ p
− 1

1+εi

h′

(∑
hα

εi
1+εi

ih p
1

1+εi

h Q
1

1+εi

ih

)

∣∣∣∣∣∣∣∣

so that pg
∂Zg(p)
∂ph′

>0 for all εi such that |εi−1|<δ, as claimed.

A.5.2 Proof of Proposition 2

We first restate the proposition:

Proposition. Consider a village i which increases its openness to trade, i.e. εi increases by a small amount.

Then:

(1) [Stylized Fact 1] Any increase in openness: (1a) decreases the responsiveness of local prices to local

yield shocks; and (1b) increases the responsiveness of local prices to the central market price:

d

dεi

(
− ∂lnpig(s)

∂lnAig(s)

)
<0 and

d

dεi

(
∂lnpig(s)

∂lnp̄g

)
>0.

(2) [Stylized Fact 2] Starting from autarky, an increase in openness: (2a) causes farmers to reallocate

production toward crops with higher mean and less volatile yields (as long as ρi > 1, i.e. farmers are

sufficiently risk averse); and (2b) the reallocation toward less volatile crops is attenuated the greater the

access to insurance (i.e. the lower ρi). Formally, for any two crops g 6=h:

d

dεi

∂(lnθig−lnθih)

∂
(
µA,ig −µA,ih

)
|εi=0>0,

d

dεi

 ∂lnθig−∂lnθih

∂
(∑

h′∈Gαh′Σ
A,i
g,h′−

∑
h′∈Gαh′Σ

A,i
h,h′

)
|εi=0<0,

and − d2

dεidρi

 ∂lnθig−∂lnθih

∂
(∑

h′∈Gαh′Σ
A,i
g,h′−

∑
h′∈Gαh′Σ

A,i
h,h′

)
|εi=0>0.

(3) [Stylized Fact 3] Consider a decomposition of the variance of real returns as follows:

σ2,Z
i =σ2,Y

i +σ2,P
i −2covY,Pi ,

where

σ2,Y
i ≡var(lnYi(s)−ci(s))

is the farmers’ nominal income volatility,

σ2,P
i ≡var

∑
g∈G

αiglnpig(s)+ci(s)


is the farmers’ nominal price volatility,

covY,Pi ≡cov

lnY fi (s)−ci(s),
∑
g∈G

αiglnpig(s)+ci(s)


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is the co-variance between the two and ci(s) is a nuisance term capturing the aggregate scale of both nominal

prices and incomes, which does not affect the aggregate real returns nor the volatility of the real returns. Any

increase in openness increases the farmers’ nominal income volatility (3a); decreases the farmers’ nominal

price volatility (3b); and has an ambiguous effect on farmers’ real income volatility (3c). Formally, we have:

∂σ2,Y
i

∂εi
>0,

∂σ2,P
i

∂εi
<0, and

∂σ2,Z
i

∂εi
≶0.

As sufficient condition for farmers’ real income volatility to increase with openness, i.e.
∂σ2,Z

i

∂εi
≥ 0, is∑

g∈Gθi,g

(∑
h∈GΣA,igh αih

)
≥
∑
g∈Gαig

(∑
h∈GΣA,igh αih

)
, which (loosely speaking) occurs when a farmers’ crop

allocation is more risky than her expenditure allocation.

Proof. Stylized Fact 1. From equation (10) we have:

lnpig(s)=−
(

1

1+εi

)
lnQig(s)+

εi
1+εi

lnp̄g(s)+
1

1+εi
ln(αigYi(s))⇐⇒

lnpig(s)=−
(

1

1+εi

)
lnAig(s)−

(
1

1+εi

)
lnθig−

(
1

1+εi

)
lnLi+

εi
1+εi

lnp̄g+
1

1+εi
lnαig+

1

1+εi
lnYi(s)

so that:
∂lnpig(s)

∂lnAig(s)
=− 1

1+εi

and hence:
d

dεi

(
− ∂lnpig(s)

∂lnAig(s)

)
=

d

dεi

(
1

1+εi

)
=− 1

(1+εi)
2 <0.

Similarly:
∂lnpig(s)

∂lnp̄g
=

εi
1+εi

and hence:
d

dεi

(
∂lnpig(s)

∂lnp̄g

)
=

d

dεi

(
εi

1+εi

)
=

1

(1+εi)
2 >0,

as claimed.

Stylized Fact 2a. From equation (18) we have:

θig=
αig(p̄gBig)

εi∑
h∈Gαih(p̄hBih)

εi ,

where Big≡
expµA,ig(

λi−
(

1
2

(
εi

1+εi

)2
ΣA,igg +

εi

(1+εi)
2

∑
h∈GαihΣA,igh −ρi

(
εi

1+εi

)∑
h∈G

((
εi

1+εi

)
θi,h+

(
1

1+εi

)
αih

)
ΣA,igh

)) 1+εi
εi

so that:

lnθig−lnθih=ln(αig)−ln(αih)+εi(lnp̄g−lnp̄h)+εi(lnBig−lnBih)

Differentiating this expression with respect to εi and evaluating at εi=0 yields:

d

dεi

∂(lnθig−lnθih)

∂
(
µA,ig −µA,ih

)
|εi=0 =1>0,

as claimed.
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Stylized Fact 2b. We proceed similarly. Differentiating respect to εi and evaluating at εi=0 yields:

d

dεi
(∂lnθig−∂lnθih)|εi=0 =

1

λi
(1−ρi)

(∑
h′∈G

αh′
(
∂ΣA,igh′−∂ΣA,ihh′

))

so that:

d

dεi

 ∂lnθig−∂lnθih

∂
(∑

h′∈Gαh′Σ
A,i
g,h′−

∑
h′∈Gαh′Σ

A,i
h,h′

)
|εi=0 =

1

λi
(1−ρi),

d

dεi

(
∂lnθig−∂lnθih

∂ΣA,igg

)
|εi=0 =

1

λi
(1−ρi)αig,

which is negative as long as ρi>1, as claimed.

Stylized Fact 2c. From the previous expression, we immediately have:

d2

dεidρ

 ∂lnθig−∂lnθih

∂
(∑

h′∈Gαh′Σ
A,i
g,h′−

∑
h′∈Gαh′Σ

A,i
h,h′

)
|εi=0 =−αh

′

λi
.

Stylized Fact 3. Let us first decompose the distribution of real returns into a price term, and income

term, and a covariance term. We have:

Zfi (s)=
∏
g∈G

(cig(s))
αig

=
∏
g∈G

(
αigY

f
i (s)

pig(s)

)αig
=Y fi (s)×

∏
g∈G

(αig)
αig×

∏
g∈G

(pig(s))
−αig

so that:

lnZfi (s)=lnY fi (s)+
∑
g∈G

αiglnαig−
∑
g∈G

αiglnpig(s).

Hence, we can decompose the variance of the real returns as follows:

σ2,Z
i =σ2,Y

i +σ2,P
i +2covY,Pi , (33)

where:

σ2,Y
i ≡var

(
lnY fi (s)−ci(s)

)
σ2,P
i ≡var

−∑
g∈G

αiglnpig(s)+ci(s)


covY,Pi ≡cov

lnY fi (s)−ci(s),−
∑
g∈G

αiglnpig(s)+ci(s)


and ci(s)≡ ln

(
Yi(s)
Li

) 1
1+εi

term captures the aggregate scale of both prices and incomes, which because it

affects both terms with opposite signs, does not affect the aggregate returns nor the volatility of the real
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returns. Let us examine each term in turn.

Focusing first on the income term we have:

lnY fi (s)−ln

(
Yi(s)

Li

) 1
1+εi

=ln

∑
g∈G

θfigAig(s)pig(s)

−ln

(
Yi(s)

Li

) 1
1+εi

⇐⇒

lnY fi (s)−ln

(
Yi(s)

Li

) 1
1+εi

=ln

∑
g∈G

(
θfig
θig

)
×αig

(
p̄gAig(s)θig

αig

) εi
1+εi


Applying the same second order approximation as in the main text we have:

lnY fi (s)−ln

(
Yi(s)

Li

) 1
1+εi

≈ln

∑
g∈G

αig

(
p̄gexp

(
µA,ig

)
θig

αig

) εi
1+εi

−∑
g∈G

θigln

θ−1
ig αig

(
p̄gexp

(
µA,ig

)
θig

αig

) εi
1+εi


+
∑
g∈G

θigln

(
θ−1
ig αig

(
p̄gAig(s)θig

αig

) εi
1+εi

)
−−1

2

∑
h∈G

∑
g∈G

θigθihΣA,igh +
1

2

∑
g∈G

θigΣ
A,i
gh

so that:

σ2,Y
i =

(
εi

1+εi

)2∑
g∈G

∑
h∈G

θigθihΣA,igh (34)

Now focusing on the price term we have:

−
∑
g∈G

αiglnpig(s)+ln

(
Yi(s)

Li

) 1
1+εi

=
∑
g∈G

αigln

((
p̄gAig(s)θig

αig

) 1
1+εi

(p̄g)
−1

)
⇐⇒

=

(
1

1+εi

)∑
g∈G

αiglnAig(s)+
∑
g∈G

αigln

((
p̄gθig
αig

) 1
1+εi

(p̄g)
−1

)

so that the variance of the prices can be written as:

σ2,P
i =

(
1

1+εi

)2∑
g∈G

∑
h∈G

ΣA,igh αigαih (35)

pig=(AigθigLi)
− 1

1+εi (p̄g)
εi

1+εi (αigYi)
1

1+εi

Finally, the covariance between prices and incomes can be written as:

covY,Pi =
εi

(1+εi)
2

∑
g∈G

∑
h∈G

θigαihΣA,igh . (36)

It is straightforward to verify that applying the decomposition (33) to expressions (34), (35), and (36)

immediately yields expression (31) for the variance of the total real returns.

Now consider a small increase in the openness of a location. How does it affect the variance of farmers’

incomes, prices, and the co-variance between the two? We immediately have:

∂σ2,Y
i

∂εi
=2

ε2
i

(1+εi)
3

∑
g∈G

∑
h∈G

θigθihΣA,igh >0
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∂σ2,P
i

∂εi
=−2

1

(1+εi)
3

∑
g∈G

∑
h∈G

ΣA,igh αigαih<0,

as required.

Let us turn now to the variance of the total real returns. Recall from equation (31) that the variance of

real returns is:

σ2,Z
i ≡

∑
g∈G

∑
h∈G

((
εi

1+εi

)
θfi,g+

(
1

1+εi

)
αig

)((
εi

1+εi

)
θfi,h+

(
1

1+εi

)
αih

)
ΣA,igh ⇐⇒

=
∑
g∈G

∑
h∈G

(
ωiθ

f
i,g+(1−ωi)αig

)(
ωiθ

f
i,h+(1−ωi)αih

)
ΣA,igh ,

where ωi ≡ εi
1+εi

. Note that ∂ωi
∂εi

= 1
1+εi
− εi

1+εi
1

1+εi
= 1

1+εi

(
1− εi

1+εi

)
= 1

(1+εi)
2 , so that

∂σ2,Z
i

∂εi
= 1

(1+εi)
2

∂σ2,Z
i

∂ωi
.

We then have:

∂σ2,Z
i

∂εi
=

1

(1+εi)
2

∂

∂ωi

∑
g∈G

∑
h∈G

(
ωiθ

f
i,g+(1−ωi)αig

)(
ωiθ

f
i,h+(1−ωi)αih

)
ΣA,igh

⇐⇒
=

2

(1+εi)
2

ωi
∑
g∈G

∑
h∈G

(
θfi,g−αih

)(
θfi,h−αih

)
ΣA,igh

+
∑
g∈G

∑
h∈G

(
θfi,g−αig

)
αihΣA,igh


Because ΣA,igh is positive definite, we know that

∑
g∈G

∑
h∈G

(
θfi,g−αih

)(
θfi,h−αih

)
ΣA,igh ≥ 0 for any crop

allocation
{
θfi,g

}
and expenditure shares {αig}. Hence,

∂σ2,Z
i

∂εi
≥0 if:

∑
g∈G

∑
h∈G

(
θfi,g−αig

)
αihΣA,igh ≥0⇐⇒

∑
g∈G

θfi,g

(∑
h∈G

ΣA,igh αih

)
≥
∑
g∈G

αig

(∑
h∈G

ΣA,igh αih

)
,

as required.

A.5.3 Proof of Proposition #3

We first restate the proposition:

Proposition. 1) In the presence of volatility, moving from autarky to costly trade improves farmer welfare,

i.e. the gains from trade are positive; 2) moving from a world with no volatility to one with volatility amplifies

farmers’ gains from trade; but 3) increasing the volatility in an already volatile world may attenuate farmers’

gains from trade

Proof. Part 1. From equation (27), the real income of farmer f in village i ∈ N in state s ∈ S with crop

allocation
{
θfig

}
g∈G

can be written as:

Zfi

(
s;
{
θfig

}
g∈G

)
=

(∑
g∈Gθ

f
ig×

αig
θig

(
p̄gθig
αig

Aig(s)
) εi

1+εi

)∏
g∈G

(
αig

(
p̄gθig
αig

Aig(s)
) 1

1+εi

)αig
∏
g∈G(p̄g)

αig . (37)

Consider first the case of autarky, where εi = 0. From equation (18), a farmers’ optimal autarkic crop
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allocation is simply equal to her expenditure share, i.e. θfig = αig,so that from equation (37) her autarkic

welfare is:

Zf,auti (s)=
∏
g∈G

(αig×Aig(s))αig .

Now consider the case of (costly) trade, where εi>0 but farmer f chooses her autarkic crop allocation. Then

from equation (37), her real income is:

Zfi

(
s;{αig}g∈G

)
=

(∑
g∈Gαig×

αig
θig

(
p̄gθig
αig

Aig(s)
) εi

1+εi

)∏
g∈G

(
αig

(
p̄gθig
αig

Aig(s)
) 1

1+εi

)αig
∏
g∈G(p̄g)

αig . (38)

Note that from the generalized mean inequality we have:

∑
g∈G

αig×
αig
θig

(
p̄gθig
αig

Aig(s)

) εi
1+εi

≥
∏
g∈G

(
αig
θig

(
p̄gθig
αig

Aig(s)

) εi
1+εi

)αig
,

with equality only in the case where
αig
θig

(
p̄gθig
αig

Aig(s)
) εi

1+εi
=ci for all g∈G. Substituting this inequality into

equation (38) immediately implies

Zfi

(
s;{αig}g∈G

)
≥Zf,auti (s),

again with equality only in the case where
αig
θig

(
p̄gθig
αig

Aig(s)
) εi

1+εi
= ci for all g ∈ G. Intuitively, as long as

the equilibrium price vector is not exactly equal to the slope of the production possibility frontier, farmers

can gain by selling goods for which they are relatively more productive and buying goods for which they are

relatively less productive. As the productivity realizations are log-normally distributed across states of the

world, this equality only occurs with measure zero. Hence, for almost all s∈S, we have Zfi

(
s;{αig}g∈G

)
>

Zf,auti (s) , which in turn implies that the expected utility of a farmer choosing her autarkic allocation

with costly trade is strictly greater than the expected utility of a farmer in autarky choosing her autarkic

allocation, i.e. E
[
Ufi

(
{αig}g∈G

)]
>E
[
Uf,auti

]
. Finally, as farmers make their crop choice to maximize their

expected utility, their actual expected welfare with costly trade is at least as great as their expected utility

holding their crop choice at the autarkic allocation, so that E
[
max{θig}g∈GU

f
i

(
{θig}g∈G

)]
>E

[
Uf,auti

]
, i.e.

the gains from trade are strictly positive, as claimed.

Part 2. In the absence of volatility, farmers’ utility is invariant to εi, i.e. there are zero gains from trade.

From Part 1, in the presence of volatility, there are strictly positive gains from trade. Taken together, this

implies that the presence of volatility amplifies the gains from trade, as claimed.

Part 3. We prove the statement by example, illustrated in Appendix Table A.7. Consider a world

where there are two types of villages (1 and 2) and two crops (A and B). Suppose both villages have equal

expenditure shares on both crops in equal proportions and the means of both crops in both villages is

identical. Suppose first that crop A in village 1 and crop B in village 2 are “risky” (i.e. have equally volatile

yields), whereas crop B in village 1 and crop A in village 2 are “safe” (i.e. have zero yield volatility). In

autarky, both village types grow equal amounts of both crops, but with trade, the two types of villages can

specialize in the “safe” crops, achieving positive gains from trade (Case 1 in Appendix Table A.7). Suppose

now that we increase the volatility of the safe crop in both village types so that it receives the same yield

shock as the risky crop (i.e. the two crops have perfectly correlated yields within each village, although

independent yield realizations across villages). As the relative yields between the two crops are always equal
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in both types of villages, there are no gains from trade (Case 2 in Appendix Table A.7), illustrating that

increasing the volatility in an already volatile world can reduce the gains from trade, as required.

A.6 Model isomorphisms, extensions, and additional results

In this subsection, we present isomorphisms, extensions, and additional results for the model presented in

the main paper.

A.6.1 Endogenous capacity constraints

In this subsection, we show how the framework presented in the paper is isomorphic to one in which better

traders exchange greater amounts of goods, i.e. have greater capacity for arbitrage. To do so, we suppose

that traders with lower trade costs (i.e. lower τ ’s) are able to offer greater capacity, with the following

constant elasticity function:

Q(τ)=ciτ
−λ

When λ= 0, capacity is fixed, but for λ> 0 we have the intuitive result that better traders (with lower τ)

are able to engage in greater amounts of trade. The constant elasticity form – while analytically convenient

– can be viewed as a first-order log-linear approximation to any function where better traders have greater

capacity. The scalar ci is determined to ensure that a single trader handles each unit of production (if traders

are buying goods in the village to sell to the market) or consumption (if traders are buying goods in the

market to sell to the village). We consider each case in turn.

Suppose first that p̄≥pi so that traders buy goods produced in the village and sell them in the market.

In this case, it must be that each unit produced in the village is handled by a trader, i.e.:

Qi=

∫
Q(τ)dF (τ).

Maintaining the assumption in the main text that the distribution of traders is Pareto distributed with shape

parameter εi, we have:

Qi=ciεi

∫ ∞
1

τ−λ−εi−1dτ ⇐⇒

Qi

(
λ+εi
λ

)
=ci

It is straightforward to calculate the quantity of units the traders purchase in the village and sell to the

market:

Qim=

∫ p̄
pi

1

Q(τ)dF (τ)⇐⇒

Qim=

(
1−
(
p̄

pi

)−(λ+εi)
)
Qi

And the remainder of the production is sold to consumers locally so that:

Ci=

(
p̄

pi

)−(λ+εi)

Qi. (39)
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Suppose now that p̄<pi so that traders buy goods in the market and sell them to farmers in the village.

In this case, it must be that each unit consumed in the village is handled by a trader, i.e.:

Ci=

∫
Q(τ)dF (τ),

which yields through an identical derivation as above:

Ci

(
λ+εi
λ

)
=ci.

It is then straightforward to calculate the quantity of units the traders purchase in the market and sell to

the village:

Qmi=

∫ pi
p̄

1

Q(τ)dF (τ)⇐⇒

Qim=

(
1−
(
pi
p̄

)−(λ+εi)
)
Ci.

The remainder of the consumption in the village comes from local production, i.e.:

Qi=

(
pi
p̄

)−(λ+εi)

Ci. (40)

Equations (39) and (40) are identical and isomorphic to equation (9) in the main text. This demonstrates

that the shape parameter of the Pareto distribution εi (where traders are assumed to be infinitely capacity

constrained) can be equivalently thought of as a combination of the exogenous heterogeneity of the trade

costs across traders and an endogenous component related to the fact that better traders are able to engage

in greater amounts of arbitrage.

A.6.2 Expressions for trader and driver incomes

In this subsection, we derive the trader and driver income separately. Let Y traderig (s) and Y driverig (s) be the

income earned by the trader (from price-arbitrage) and the driver (from the iceberg trade costs), respectively,

for the trade of good g between village i and the central market.

It is convenient to first calculate the sum of the trader and driver incomes. Suppose first that the central

market price p̄g (s) exceeds the village price pig (s), so that trade will flow from the village to the central

market. In this case, the sum of trader and driver income can be expressed as:

Y traderig (s)+Y driverig (s)=(p̄g(s)−pig(s))(Qig(s)−Cig(s))

Suppose now that the central market price p̄g is below the village price pig(s), so that trade will flow from

the central market to the village. In this case, the sum of trader and driver income can be expressed as:

Y traderig (s)+Y driverig (s)=(pig(s)−p̄g(s))(Cig(s)−Qig(s)).

In both cases, when combined with equation (9), the following expression for combined income of traders
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and drivers is obtained:

Y traderig (s)+Y driverig (s)=(p̄g(s)−pig(s))
(

1−
(
pig(s)

p̄g(s)

)εi)
Qig(s). (41)

Total trader and driver income can then be calculated by summing across all villages and all goods, as in

equation (12).

Now consider the income of traders alone. Suppose first that the central market price exceeds the village

price, i.e. p̄g(s)≥pig(s). Then the trader income earned from arbitrage can be calculated by integrating the

arbitrage profits across the distribution of trade costs incurred by traders:

Y traderig (s)= Qig(s)︸ ︷︷ ︸
# of matches

∫ ∞
1

(p̄g(s)−τpig(s))︸ ︷︷ ︸
arbitrage profits

1{p̄g(s)≥τpig(s)}︸ ︷︷ ︸
only trade if profitable

dF (τ)︸ ︷︷ ︸
trader dist.

.

Given the assumed Pareto distribution of trade costs from equation (6) and equation (9), this expression

simplifies to:

Y traderig (s)=
1

εi
p̄g(s)(Qig(s)−Cig(s))+

1

εi−1
(p̄g(s)Cig(s)−pig(s)Qig(s)). (42)

Suppose now that the central market price is below the village price, i.e. p̄g(s)≤pig(s). Then the trader in-

come earned from arbitrage can again be calculated by integrating the arbitrage profits across the distribution

of trade costs incurred by traders:

Y traderig (s)= Cig(s)︸ ︷︷ ︸
# of matches

∫ ∞
1

(pig(s)−τ p̄g(s))︸ ︷︷ ︸
arbitrage profits

1{pig(s)≥τ p̄g(s)}︸ ︷︷ ︸
only trade if profitable

dF (τ)︸ ︷︷ ︸
trader dist.

.

Again, given the assumed Pareto distribution of trade costs from equation (6) and equation (9), this expres-

sion simplifies to:

Y traderig (s)=
1

εi
pig(s)(Cig(s)−Qig(s))+

1

εi−1
(pig(s)Qig(s)−p̄g(s)Cig(s)). (43)

Together, equations (42) and (43) characterize the portion of trade income earned by the trader; the difference

between the expressions and the total income to both traders and drivers given in equation (41) is then the

income earned by the driver.

A.6.3 A microfoundation for insurance

In the baseline model presented in Section 4, the farmer’s utility function is given by equation (5):

Ufi (s)≡ 1

1−ρi

((
Zfi (s)

)1−ρi
−1

)

where ρi is the “effective” risk aversion parameter and we show that lnZfi (s) ∼ N
(
µZi ,σ

2,Z
i

)
, which then

implies that farmers’ expected utility can be written as in equation (16):

E
[
Ufi

]
=

(
1

1−ρi

)(
exp

(
(1−ρi)

(
µZi +

1

2
(1−ρi)σ2,Z

i

))
−1

)
. (44)

In what follows, we will show that there exists a micro-foundation for the“effective”risk aversion parameter ρi

whereby farmers purchase insurance from perfectly competitive lenders (“banks”). In this micro-foundation,
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the “effective” risk aversion parameter ρi can then be written as a function of the (fundamental) risk aversion

of farmers and a (technological) parameter governing the efficiency of the insurance market. As a result,

we can interpret changes to the “effective” risk aversion parameter as technological changes in the access to

banks, allowing us to perform normative counterfactual analysis.

Suppose that all farmers have identical and fundamental risk aversion parameters ρ0 and have access

to banks that offer insurance at perfectly competitive rates. To save on notation, in what follows, we will

omit the location of the farmer and denote states of the world with subscripts, the probability of state of the

world s with πs. Suppose that the insurance allows pays out one unit of the consumption bundle in state

of the world s for price ps.
29 Hence, consumption in state of the world s will be the sum of the realized

consumption in that state and the insurance payout less the cost of insurance: Cs=Zs+qs−
∑
tptqt, where

qs is the quantity of insurance for state s purchased by the farmer. A farmer’s expected utility function

ex-post insurance is then:

E
[
Uf,ins

]
=
∑
s

πs
1

1−ρ0

(
(Cs)

1−ρ0−1
)
.

Farmers purchase their insurance from a large number of “money-lenders” (or, equivalently, banks). Money-

lenders have the same income realizations and preference-structure as farmers and face the same prices, but

are distinct from farmers in that they are less risk averse. Let money-lenders’ risk aversion parameter be

denoted by λ≤ρ0, where we view λ as a technological parameter governing the quality/access farmers have

to credit: the better farmers’ access to credit, the lower the risk aversion of money-lenders.

Because lenders are also risk averse, farmers will not be able to perfectly insure themselves. Money

lenders compete with each other to lend money, and hence the price of purchasing insurance in a particular

state of the world is determined by the marginal cost of lending money. We first calculate the price of a

unit of insurance in state of the world s. Since the price of insurance is determined in perfect competition,

it must be the case that each money lender is just indifferent between offering insurance and not:

∑
t 6=s

πt
1

1−λ
(Zt+εps)

1−λ
+πs

1

1−λ
(Zt+εps−ε)1−λ

=
∑
t

πt
1

1−λ
Z1−λ
t ,

where the left hand side is the expected utility of a money-lender offering an small amount ε of insurance

(which pays εps with certainty but costs ε in state of the world s) and the right hand side is expected utility

of not offering the insurance. Taking the limit as ε approaches zero yields that the price ensures that the

marginal utility benefit of receiving psε in all other states of the world is equal to the marginal utility cost

of paying ε(1−ps) in state of the world s.

psε
∑
t 6=s

πtZ
−λ
t =ε(1−ps)πsZ−λs ⇐⇒

ps=
πsZ

−λ
s∑

tπtZ
−λ
t

. (45)

Equation (45) is intuitive: it says that the price of insuring states of the world with low aggregate income is

high.

Now consider the farmer’s choice of the optimal level of insurance. Farmers will choose the quantity of

29For simplicity – and without loss of generality as the state of the world defines the price index – we measure both
the insurance payout and the prices in real (i.e. price index adjusted) units.
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insurance to purchase in each period in order to maximize their expected utility:

max
{qs}

∑
s

πs
1

1−ρ0

(Zs+qs−
∑
t

ptqt

)1−ρ0

−1


which yields the following FOC with respect to qs:

πs

(
Zs+qs−

∑
t

ptqt

)−ρ0

=ps
∑
t

πt

(
Zt+qt−

∑
t

ptqt

)−ρ0

⇐⇒

πsC
−ρ0
s∑

tπtC
−ρ0

t

=ps. (46)

Substituting the equilibrium price from equation (45) into equation (46) and noting that E[C−ρ0 ]=
∑
tπtC

−ρ0

t

and E
[
I−λ

]
=
∑
tπtI

−λ
t yields:

C−ρ0
s

E[C−ρ0 ]
=

Z−λs
E[Z−λ]

. (47)

Because the first order conditions (46) are homogeneous of degree zero in consumption, they do not pin down

the scale of ex-post real income, so to ensure that access to insurance only affects welfare through the second

moment of returns, we assume that access to insurance does not affect the log mean real returns of farmers,

i.e. E[lnCs]=µZ . As a result, we can write:

Cs=Z
λ
ρ0
s

(
exp
(
µZ
))1− λ

ρ0 , (48)

i.e. access to insurance means that the ex-post realized real returns after insurance payouts are a Cobb-

Douglas combination of the ex-ante realized returns prior to insurance payouts and the (log) mean real

returns. This is intuitive: when money lenders have the same level of risk aversion as the farmers (i.e.

λ = ρ0), farmers’ ex-post returns are equal to their ex-ante returns, i.e. there is no scope for insurance.

Conversely, when money lenders are risk-neutral (i.e. λ= 0), farmers’ ex-post returns are simply equal to

their mean real returns, i.e. they are perfectly insured. When money-lenders are still risk averse but less so

than farmers, there is scope for imperfect insurance, where the scope depends on the degree of risk aversion

of the money-lenders. Indeed, equation (48) can be viewed as a first-order log-linear approximation of any

insurance technology that reduces the variance of ex-post realized returns around its mean.

Given that the ex-ante realized returns are log-normally distributed lnZs ∼ N
(
µZ ,σ2,Z

)
, the ex-post

realized returns are also log-normally distributed with:

lnCs∼N

(
µZ ,

(
λ

ρ0

)2

σ2,Z

)

so that farmers’ expected utility ex post insurance can be written as:

E
[
Uf,ins

]
=

1

1−ρ0

(
exp

(
(1−ρ0)

(
µZ+

1

2
(1−ρ̃)σ2,Z

))
−1

)
, (49)

where

ρ̃=1+(ρ0−1)

(
λ

ρ0

)2

23



is the effective level of risk aversion. As a result, we have now shown that the effective level of risk aversion

can be written as a function of the innate risk aversion of farmers (ρ0) and the technological parameter

governing their access to insurance markets (as captured by λ), as claimed.

Finally, consider the evaluation of the welfare impact of some counterfactual that changes potentially both

the access to insurance markets and the distribution of real returns from
{
λA,µ

Z
A,σ

2,Z
A

}
to
{
λB ,µ

Z
B ,σ

2,Z
B

}
.

The change in expected utility is:

(1−ρ0)
(
E
[
Uf,insB

]
−E
[
Uf,insA

])
=exp

(
(1−ρ0)

(
µZB+

1

2
(1−ρ0)

(
λB
ρ0

)2

σ2,Z
B

))

−exp

(
(1−ρ0)

(
µZA+

1

2
(1−ρ0)σ2,Z

A

(
λA
ρ0

)2
))

.

We now define what we call the certainty equivalent variation (CEV), which is the hypothetical percentage

increase in income an individual would need to receive with certainty that would yield an equivalent change

in expected welfare as the counterfactual, holding constant all prices and parameters constant at the baseline.

It is straightforward to show that the CEV can be written as:

CEV =

(
µZB+

1

2
(1−ρ0)

(
λB
ρ0

)2

σ2,Z
B

)
−

(
µZA+

1

2
(1−ρ0)

(
λA
ρ0

)2

σ2,Z
A

)
, (50)

or, equivalently, we can write the CEV in terms of the effective risk aversion:

CEV =

(
µZB+

1

2
(1−ρ̃B)σ2,Z

B

)
−
(
µZA+

1

2
(1−ρ̃A)σ2,Z

A

)
,

where ρ̃A ≡ 1 + (ρ0−1)
(
λA
ρ0

)2

and ρ̃B ≡ 1 + (ρ0−1)
(
λB
ρ0

)2

are the effective risk aversion parameters we

estimate in Section 5.2. This is the welfare metric we report in Section 5.

A.6.4 Convex transportation costs

In equation (9), we show that under the appropriate set of assumptions, heterogeneous traders and a market

clearing condition imply the following no-arbitrage condition:

Cig(s)

Qig(s)
=

(
pig(s)

p̄g(s)

)εi
i.e. goods flow toward locations with higher relative prices. In this subsection, we provide an alternative

setup that generates the same no-arbitrage condition assuming that transportation costs are increasing and

convex in the quantity traded.30 For notational simplicity, we omit the good g and state s notation in what

follows.

As in the model in the paper, suppose there is a (small) village i engaging in trade with a (large) market

subject to trade costs. Unlike the model in the paper where the trade costs are heterogeneous across traders,

suppose now that they increase convexly with the quantity shipped between the village and the market. In

particular, let M̄i denote the quantity of goods imported by village i from the market and X̄i denote the

quantity of goods exported by village i to the market. Suppose that the iceberg trade cost τi between the

30We are grateful to Rodrigo Adao for pointing out this alternative setup.
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village i and its market can be written as:

lnτi=
1

εi
ln

(
1+

M̄i

Qi
+
X̄i

Ci

)
, (51)

where Qi and Ci are the quantity produced and consumed in village i, respectively. Intuitively, equation

(51) says that the greater the flows of goods between the village and the market – relative to the quantity

produced in i for imports and relative to the quantity consumed in i for exports – the greater the iceberg

trade costs incurred.

Now consider what equation (51) implies when combined with a no-arbitrage condition. Suppose first

that the market price exceeds the village price, i.e. p̄≥pi. In this case, the village will only export the good

to the market, i.e. M̄i=0 and X̄i≥0 and the following no-arbitrage condition will hold:

lnp̄−lnpi=lnτi⇐⇒

lnp̄−lnpi=
1

εi
ln

(
1+

X̄i

Ci

)
⇐⇒

1+
X̄i

Ci
=

(
p̄

pi

)εi
(52)

Now consider the case where the village price exceeds the market price, i.e. pi≥ p̄. In this case, the village

will only import the good from the market, i.e. M̄i≥0 and X̄i=0 and the following no-arbitrage condition

will hold:

lnpi−lnp̄=lnτi⇐⇒

lnpi−lnp̄=
1

εi
ln

(
1+

M̄i

Qi

)
⇐⇒

1+
M̄i

Qi
=

(
pi
p̄

)εi
(53)

Finally, we impose market clearing in village i, which requires that the total quantity consumed in village i

is equal to the total quantity it produces less the net quantity it exports to the market:

Ci=Qi+M̄i−X̄i.

Combined with either equation (52) or (53), the market clearing condition immediately yields the same

equation:
Ci
Qi

=

(
pi
p̄

)εi
,

which is identical to equation (9) in the main text, as claimed.

A.6.5 Farmer cooperative

In the baseline model, we assume that each farmer makes her crop choice taking the prices as given. Here

we explore what would occur if a farmer takes into account the effect of her crop choice on prices, e.g. if all

the farmers worked together to form a cooperative. In this case, the cooperative will maximize:

max
θg

(Yi({θig}))
∏
g

(
αig

pig({θig})

)αig
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subject to: ∑
g

θig=1.

Recall:

pig=(AigθigLi)
− 1

1+εi (p̄g)
εi

1+εi (αigYi)
1

1+εi

Yi(s)=

∑
g∈G

αig

(
p̄g(s)Qig(s)

αig

) εi
1+εi


1+εi
εi

so that we have

Zi=(Yi)
∏
g

(
αig

(AigθigLi)
− 1

1+εi (p̄g)
εi

1+εi (αigYi)
1

1+εi

)αig
⇐⇒

Zi=Y
εi

1+εi
i

∏
g

(
αig(AigθigLi)

1
1+εi

(p̄g)
εi

1+εi

)αig
⇐⇒

Zi=

∑
g∈G

αig

(
p̄gAigLiθig

αig

) εi
1+εi

∏
g

(
αig(AigθigLi)

1
1+εi

(p̄g)
εi

1+εi

)αig
⇐⇒

Zi=

∑
g∈G

αig

(
p̄gAigLiθig

αig

) εi
1+εi

∏
g

(
αig(AigθigLi)

1
1+εi

(p̄g)
εi

1+εi

)αig

Relative to the case where prices are taken as given, the first order conditions of the farmer cooperative

are a little more involved. We have:

∂Zi
∂θig

=ri⇐⇒

θig∝εi

 αig

(
p̄gAigLiθig

αig

) εi
1+εi

∑
g∈Gαig

(
p̄gAigLiθig

αig

) εi
1+εi

+αig =⇒

θig=

εi

 αig
(
p̄gAigLiθig

αig

) εi
1+εi

∑
g∈Gαig

(
p̄gAigLiθig

αig

) εi
1+εi

+αig

∑
g

εi
 αig

(
p̄gAigLiθig

αig

) εi
1+εi

∑
g∈Gαig

(
p̄gAigLiθig

αig

) εi
1+εi

+αig

 .

Recall that when farmers take prices as given, their equilibrium crop choice is given my equation (14):

θig=
(Aigp̄g)

εiαig∑
h∈G(Aihp̄h)

εiαih
,

so this demonstrates that the farmer cooperative chooses a different optimal crop allocation. In particular,

the elasticity of the relative crop choice to the central market price p̄g is smaller for the cooperative (where

it is bounded above by εi
1+εi

) than for the price taking farmers (where it is equal to εi). Intuitively, the

cooperative purposefully restricts the quantity produced of its high value (high p̄g) crops to ensure greater

26



local prices.

A.7 The quantitative model: Detailed derivations

In this section, we provide a complete description of the quantitative model used in Section 5 to quantify

the welfare impacts of the expansion of the Indian highway network. Recall there are four innovations in the

quantitative model relative to the baseline model presented in Section 4: 1) more general (CES) preferences;

2) the presence of an tradable manufacturing good not produced in villages; 3) a finite number of villages with

arbitrarily correlated yield realizations; and 4) multiple markets arranged hierarchically in which arbitrage

occurs.

As in the baseline model, suppose there are N villages, indexed by i∈{1,...,N}≡N and G agricultural

goods. Suppose now though that there is a single costlessly traded (numeraire) good 0 and M regional

markets indexed by m∈ {1,...,M}≡M, and a single central market. Let m(i) denote the regional market

with which village i ∈ N engages in trade. Each market m ∈M is inhabited by traders, drivers, and Lm

producers of the numeraire good. We assume each producer can produce one unit of the numeraire good in

any state of the world, so that Q0m=Lm.

A.7.1 Equilibrium village prices and incomes

We begin by noting that the arbitrage process between villages and their regional markets is unchanged by the

various model extensions. So while the equilibrium regional market prices will be affected by the addition of

the manufacturing good, the more general preferences, and the presence of other regional markets, conditional

on the equilibrium regional market prices, the arbitrage process between village i∈N and its regional market

m(i)∈M for any agricultural good g∈{1,...,G} continues to satisfy equation (9):

Cig(s)=

(
pig(s)

p̄m(i)g(s)

)εi
Qig(s),

for any quantityQig(s) produced. We can then combine this arbitrage with the demand equation pig(s)Cig(s)=

βi
αig(pig(s))1−σ∑
h∈Gαih(pih(s))1−σ Yi(s) and supply equation Qig(s) =LiθigAig(s) and take logs to yield the following ex-

pression for equilibrium prices:

lnpig(s)=− 1

σ+εi
lnAig(s)+

εi
σ+εi

lnp̄m(i)g(s)+
1

σ+εi
ln

(
βiαigYi(s)

Liθig
∑G
h=1αih(pih(s))

1−σ

)
, (54)

which generalizes equation (10) to incorporate CES preferences over agricultural goods and the presence of

a manufacturing good. Substituting equation (54) into the income expression Yi(s)=
∑G
g=1pig(s)Aig(s)θigLi

and solving simultaneously with the price index component
∑G
h=1αih (pih(s))

1−σ
allows us to express all

endogenous variables in the village as functions of the realized yields, crop choice, and the market prices as

follows:

(
Yi(s)

Li

)
=

(
G∑
g=1

(θigAig(s))
− 1
σ+εi

(
p̄m(i)g(s)

) εi
σ+εi (βiαig)

1
σ+εiAi(s)θig

) εi+1

εi

×

∑
g∈G

αig

(
(θigAig(s))

− 1
σ+εi

(
p̄m(i)g(s)

) εi
σ+εi (βiαig)

1
σ+εi

)1−σ
− 1

εi

(55)
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∑
g∈G

αig(pig(s))
1−σ

=

(
G∑
g=1

(θigAig(s))
− 1
σ+εi

(
p̄m(i)g(s)

) εi
σ+εi (βiαig)

1
σ+εiAi(s)θig

)−σ−1
εi

×

∑
g∈G

αig

(
(θigAig(s))

− 1
σ+εi

(
p̄m(i)g(s)

) εi
σ+εi (βiαig)

1
σ+εi

)1−σ


εi+σ−1

εi

, (56)

which together generalize equation (26) in the baseline model.

A.7.2 Equilibrium market prices

Equations (54), (55), and (56) together characterize the equilibrium village prices in a given state of the

world, taking as given the prices in the regional markets. We proceed by calculating the equilibrium prices

in the markets.

Consider a state of the world s∈S whose realized yields and crop allocations result in a quantity Qig(s)

being produced of good g∈{1,...,G} in village i∈N . Let the price of a good in village be denoted by pig(s),

let the price of the good in market m∈M be denoted by p̄mg(s), and let the price of the good in the central

market be denoted by p∗g(s).

Suppose an arbitrage process – analogous in structure to the arbitrage process between villages and

regional markets – occurs between each regional market and the central market, resulting in the following

arbitrage relationship:

C̄mg(s)=

(
p̄mg(s)

p∗g(s)

)εm
Q̄mg(s), (57)

where C̄mg (s) is the quantity agents in regional market m consume of good g ∈ {1,...,G} in state s and

Q̄mg(s) is the quantity of good g that arrives in market m from its constituent villages through the arbitrage

process, which from equation (11) can be related to the quantities produced in these villages as:

Q̄mg(s)=
∑
i∈Nm

(
1−
(
pig(s)

p̄g(s)

)εi)
Qig(s), (58)

where Nm≡{i∈N|m(i)=m} is the set of villages that trade with regional market m.

The quantity agents demand in the regional market of good g∈{1,...,G} for consumption is:

p̄g(s)C̄mg(s)=βm
αmg(p̄g(s))

1−σ∑G
h=1αmh(pih(s))

1−σ Ȳm(s), (59)

where Ȳm (s) is the income earned by agents in the regional market both through the production of the

numeraire good and through arbitrage:

Ȳm(s)=Lm+

G∑
g=1

∑
i∈Nm

(p̄g(s)−pig(s))
(

1−
(
pig(s)

p̄g(s)

)εi)
Qig(s), (60)

where the arbitrage profits are as in equation (12). Combining the equations (57) and (59) yields:

p̄mg(s)=
(
p∗g(s)

) εm
1+εm

(
βm

αmg(p̄mg(s))
1−σ∑G

h=1αmh(p̄mh(s))
1−σ

Ȳm(s)

Q̄mg(s)

) 1
1+εm

, (61)

which – when combined with equations (58), (60) (for the quantity traded and income of the market) and
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(54), (55), and (56) (for the equilibrium prices in each village as a function of the market prices) – allow us

to express the regional market prices only as a function of the central market price.

Note that equation (61) can be re-written as follows:

lnp̄mg(s)=− 1

σ+εm
lnQ̄mg(s)+

εm
σ+εm

lnp∗g(s)+δmg+δm(s), (62)

where δmg ≡ 1
σ+εm

lnαmg is a district-crop fixed effect and δm (s) ≡ 1
σ+εm

(
lnβm

Ȳm(s)∑G
h=1αmh(p̄mh(s))1−σ

)
is a

market-state fixed effect. Hence, just as with the villages, we can identify the degree of openness of a regional

market by regressing its equilibrium price on the quantity flowing into that market, after conditioning on

the appropriate set of fixed effects and with the appropriate moment conditions.

The central market price, in turn, has the analogous quantity consumed as in equation (11):

C∗g (s)=
∑
m∈M

(
1−
(
p̄mg(s)

p∗g(s)

)εm)
Q̄mg(s)

and total income:

Y ∗(s)=L∗+

G∑
g=1

∑
m∈M

(
p∗g(s)−p̄mg(s)

)(
1−
(
p̄mg(s)

p∗g(s)

)εm)
Q̄mg(s)

Finally, given that traders residing in the central market also have the same CES demand, the following

expression determines the equilibrium central market price:

p∗g(s)=

(
β∗

α∗g∑G
h=1αih(p∗h(s))

1−σ
Y ∗(s)

C∗g (s)

) 1
σ

, (63)

which can be solved for simultaneously with equations (61) and (54) to determine the equilibrium prices in

all markets and villages.

A.7.3 Distribution of real returns

As in the baseline model, we can also calculate the real income of farmers in the village:

Zfi (s)=
(

(1−βi)1−βiββii

) ∑G
g=1θ

f
igAig(s)pig(s)(∑G

g=1αig(pig(s))
1−σ
) βi

1−σ

. (64)

Substituting equations (54), (55), and (56) into (64) allows us to write the real returns of a farmer f in

village i ∈ S as a function of her crop allocation
{
θfig

}
g∈{1,..,G}

, realized yields, and the regional market
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price:

Zfi

(
s;
{
θfig

}
g∈{1,...,G}

)
=
(

(1−βi)1−βiββii

)
×

G∑
g=1

θfig(Aig(s))
εi+σ−1

σ+εi (θig)
− 1
σ+εi

(
p̄m(i)g(s)

) εi
σ+εi (βiαig)

1
σ+εi

×

(
G∑
g=1

θig(Aig(s))
εi+σ−1

σ+εi (θig)
− 1
σ+εi

(
p̄m(i)g(s)

) εi
σ+εi (βiαig)

1
σ+εi

)( εi+σ
εi

)(
1−βi
σ+εi

)

×

∑
g∈G

αig

(
(θigAig(s))

− 1
σ+εi

(
p̄m(i)g(s)

) εi
σ+εi (βiαig)

1
σ+εi

)1−σ

(
−σ+εi

εi

)(
1−βi
σ+εi

)
+

βi
σ−1

.

(65)

The three summation terms capture the effect of the farmer’s crop choice on her nominal income, the effect

of the total production in the village on the relative price of manufacturing and agricultural goods, and the

effect of the realized yields on the farmer’s price index. Note that this expression collapses to equation (28)

in the basic model when βi=1 and σ→1.

Given Assumption 2, an equivalent second-order approximation from above implying that the sum of

log normal variables is itself approximately log normal, and a log-linearization of the equilibrium market

prices around their means yields, we can then approximate the distribution of real returns across states of

the world as itself log normal.

To characterize the distribution of real returns across states of the world, we begin by approximating

the equilibrium market prices. Let lnp̄(s)≡ [lnp̄mg(s)]
g∈{1,...,G}
m∈{1,..,M} denote the (M×G)×1 vector of equilib-

rium prices in the M markets with which villages trade directly in state of the world s ∈ S. A log-linear

approximation of the equilibrium prices around the mean (log) yields in all locations yields the following

result:

lnp̄(s)≈ lnp̄+B
(
lnA(s)−µA

)
, (66)

where ln p̄ ≡ [lnp̄mg]
g∈{1,...,G}
m∈{1,..,M} are the equilibrium market prices when all villages realize the mean (log)

productivity of all crops and B≡
[
∂lnp̄mg
∂lnAig

|lnA(s)=µA

]
is an (M×G)× (N×G) matrix of elasticities. Expo-

nentiating allows us to write:

p̄m(i)g(s)≈ p̄m(i)g

G∏
g′=1

N∏
j=1

(
Ag′j(s)

µAg′j

)Bm(i)g,jg′

where Bmg,jg′≡ ∂lnp̄mg
∂lnAjg′

|lnA(s)=µA .

We proceed by applying the an equivalent second-order approximation from above implying that the
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sum of log normal variables is itself approximately log normal. Taking logs of equation (65) yields:

lnZfi

(
s;
{
θfig

}
g∈{1,...,G}

)
=ln

(
(1−βi)1−βiββii

)
+ln

G∑
g=1

θfig(Aig(s))
εi+σ−1

σ+εi (θig)
− 1
σ+εi

(
p̄m(i)g(s)

) εi
σ+εi (βiαig)

1
σ+εi

+

(
1−βi
εi

)
ln

(
G∑
g=1

θig(Aig(s))
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so that applying equation (66) combined with the second order approximation results in:

lnZfi

(
s;
{
θfig

}
g∈{1,...,G}

)
≈µZi +

G∑
g=1

ωAig
(
lnAig(s)−µAig

)
+
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ωBig
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N∑
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Bm(i)g,jg′
(
lnAg′j(s)−µAg′j

)
(67)

where:

ΣY ≡
((

εi+σ−1

σ+εi

)
I+

(
εi

σ+εi

)
B

)
ΣA
((

εi+σ−1

σ+εi

)
I+

(
εi

σ+εi

)
B

)T
(68)

ΣP ≡
((

σ−1

σ+εi

)
I+

(1−σ)εi
σ+εi

B

)
ΣA
((

σ−1

σ+εi

)
I+

(1−σ)εi
σ+εi

B

)T
(69)

are the variance-covariance matrices of the income terms and price index terms, respectively, and where I is

(G×N)×(G×N) identity matrix and B≡
[
Bm(i)g,jh

]
is an (G×N)×(G×N) matrix,

ωAig≡
(
εi+σ−1

σ+εi

)(
θfig+

(
1−βi
εi

)
θig

)
+

(
βi

σ+εi
−
(

1−βi
εi

)(
σ−1

σ+εi

))
αig

ωBig≡
(

εi
σ+εi

)(
θfig+

(
1−βi
εi

)
θig

)
+

(
(1−βi)(σ−1)

εi
−βi

)
αig

are the weights placed on each of the local productivity shocks and productivity shocks throughout the world
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in location i′s real returns, respectively, and

µZi ≡ln
(

(1−βi)1−βiββii

)
+ln
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αigαihΣPig,ih+
1

2

(
−1−βi

εi
+

βi
σ−1

)2 G∑
g=1

αigΣ
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are the mean log returns. Equation (67) extends equation (15) to account for the fact that the market prices

now are state dependent, depending on the realized yields of all crops in all locations.

From equation (67), we can characterize the approximate distribution of real returns in location i as

follows:

lnZfi

({
θfig

}
g∈{1,...,G}

)
∼N

(
µZi ,σ

2,Z
i

)
, (71)

where:

σ2,Z
i ≡

(
ωAi +ωBi B

)
ΣA
(
ωAi +ωBi B

)T
(72)

and ωAi ≡
[
0,...,0,ωAi1,..,ω

A
ig,...,ω

A
iG,0,...,0

]
and ωBi ≡

[
0,...,0,ωBi1,..,ω

B
ig,...,ω

B
iG,0,...,0

]
are 1× (G×N) matrices

with zeros everywhere except in the portion of the matrix corresponding to location i which extends the

equations (30) and equation (31) to incorporate the consumption of the manufacturing good and the cor-

relation in real returns across locations that arise through market prices and the correlated productivity

shocks.

A.7.4 Optimal crop choice

We now turn to farmers’ crop choice. Given these updated definitions for µZi and σ2,Z
i , the expression for

farmers expected utility – equation (16) – remains unchanged, as does the farmers’ crop choice problem:

max
{θfig}

µZi +
1

2
(1−ρi)σ2,Z

i s.t. Σg∈Gθ
f
ig=1.

The resulting first order conditions can be written as:

µZig−ρiσZig=λi
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where:

µZig≡
(
exp
(
µAig
)) εi+σ−1

σ+εi (θig)
− 1
σ+εi

(
p̄m(i)g

) εi
σ+εi (αig)

1
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f
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(
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(
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σ+εi (θig)
− 1
σ+εi

(
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σ+εi (αig)
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−
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θfihΣYi,gh+
1

2
ΣYi,gg (73)

+
(
ωAi +ωBi B

)
ΣA

((
εi+σ−1

σ+εi

)
1ig+

(
εi

σ+εi

)
1igB

)T
and:

σZig=
(
ωAi +ωBi B

)
ΣA

((
εi+σ−1

σ+εi

)
1ig+

(
εi

σ+εi

)
1igB

)T
(74)

and 1ig is an (G×N)×1 vector with zeros everywhere except in the element ig. Imposing symmetry and

the land clearing constraint then allows us to write optimal crop choice as:

θig=
αigB

εi+σ−1
ig p̄εim(i)g∑G

h=1αihB
εi+σ−1
ih p̄εim(i)h

, (75)

where

Big≡
exp
(
µAig
)

(
λi−

(
1
2ΣYi,gg−

∑G
h=1θ

f
ihΣYi,gh+ 1

2 (1−ρi)σZig
)) σ+εi

εi+σ−1

, (76)

which is the generalization of equation (18).

A.8 The quantitative model: Calculating the equilibrium

Here we briefly describe how we calculate the equilibrium of the quantitative model to perform the coun-

terfactual results in Section 5. The calculation is centered around two sub-routines - the price function

and the crop choice function. The price function calculates the equilibrium price at the districts, states

(regional markets) and central market given crop choice at the districts (not necessarily optimal) and yield

realizations. The crop choice function calculates the farmers’ optimal crop choices given state and central

market preferences, trade costs, network linkages and crucially, moments of the yields distribution over the

time period in question. We describe each in turn.

A.8.1 Price Function

In the interior price function routine, we take the realized quantities produced of all crops in all districts

as given and calculate the market clearing prices. The basic structure of the algorithm as follows: given

an initial guess of prices, we first hold constant the aggregate demand in all locations (so that the partial

equilibrium excess demand function is assured to satisfy the gross substitutes property) and then use a

bisection method to find the prices such that the excess demand is equal to zero in all locations. We then

update the aggregate demand from these market clearing prices and iterate until convergence.

Algorithm 1 details the process, where we maintain the notation that X refers to a value of variable X

at the district level, X̄ refer to its corresponding value at the regional market level, and X∗ refer to its value

in the central market.

A.8.2 Crop Choice Function

The outer crop choice function computes the optimal crop choice of district farmers. The basic structure of

the algorithm is as follows: given an initial guess of crop choice, we calculate the equilibrium prices and the
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elasticity of all market prices to yields of all crops in all districts. This allows us to calculate the (approximate)

distribution of real returns for farmers in all locations. We then evaluate the first order conditions of farmers

crop choice problem, and increase (decrease) their allocation of crops with higher (lower) marginal returns.

We then iterate the procedure to convergence.

Algorithm 2 details the process.

A.8.3 The welfare effects of a counterfactual

Given the optimal crop allocations, we proceed by calculating the welfare. To do so, we calculate the

equilibrium real returns

{
Zfi

(
s;
{
θfig

}
g∈{1,...,G}

)}
from equation (65) given those optimal crop allocations

and the actual observed yields for each year t ∈ {1970,1971,...,1979}, i.e. we determine what the realized

returns for all agents would have been given a particular year’s actual yield realizations and their (potentially

counterfactual) crop choice. We then calculate the (log of the) mean and variance (of the log) of real returns

by calculating the corresponding sample moments across the ten years within the decade, e.g.:

E[Zid(s)]≡
1

10

1979∑
t=1970

Zfi

(
st,{θigd}g∈{1,...,G}

)

σ2,Z
id ≡

1

10

1979∑
t=1970

(
lnZfi

(
st,{θigd}g∈{1,...,G}

)
− 1

10

1979∑
τ=1970

lnZfi

(
sτ ,{θigd}g∈{1,...,G}

))2

,

where {θigd}g∈{1,...,G} are the optimal crop allocations. Similarly, we can calculate the expected utility as

the average of the utility across the ten years from equation (5):

E[Uid(s)]≡
1

10

1979∑
t=1970

(
1

1−ρ0

((
Zfi (st)

)1−ρid
−1

))
.

We remark that if the observed yields are distributed log normal and we apply the second order approximation

used in equation (71) to determine the optimal crop choice, then we have:

E[Uid(s)]≈
1

1−ρ0
exp

(
(1−ρ0)

(
lnE
[
Zfi (s)

]
− 1

2
ρidσ

2,Z
id

))
,

which turns out to be an excellent approximation in the quantitative exercise (with a correlation across

districts exceeding 0.999).

With these calculations in hand, we construct counterfactual results reported in Table 6. To do so, we

first note that as the crop cultivation costs are calibrated to ensure the observed crop allocations are optimal,

we can calculate the mean, volatility, and expected welfare for the actual 1970s by simply holding trade costs

and bank access constant at their observed 1970s levels and proceeding with the calculations above, which

provides a baseline set of parameters
{
E[Zi0(s)],σ2,Z

i0 ,E[Ui0(s)]
}

. Columns 1 and 2 simply report the average

difference across districts between the (log of the) mean real returns and variance (of the log) of real returns

between the counterfactual and baseline values, i.e. lnE[Zid(s)]− lnE
[
Zfi0(s)

]
and σ2,Z

id −σ
2,Z
i0 . Because the

expected utility is of course an ordinal measure, we instead calculate percentage increase in guaranteed income

– holding constant everything else constant at the baseline values – that would yield the equivalent change

in utility as the counterfactual being considered, which we refer to as the “certainty equivalent variation”.

Noting that demand is homothetic (i.e. the realized returns are homogeneous of degree one in income) and
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using the log-normal formulation of the expected utility from above, we can calculate CEV as follows:

E[Uid(s)]−E[Ui0(s)]=
1

1−ρi0
exp

(
(1−ρi0)

(
lnE[(exp(CEV ))Zi0(s)]− 1

2
ρi0σ

2,Z
i0

))
− 1

1−ρi0
exp

(
(1−ρi0)

(
lnE[Zi0(s)]− 1

2
ρi0σ

2,Z
i0

))
⇐⇒

CEV =

(
lnE[Zid(s)]−

1

2
ρidσ

2,Z
id

)
−
(

lnE[Zi0(s)]− 1

2
ρi0σ

2,Z
i0

)
, (77)

i.e. the certainty equivalent variation is simply the difference between counterfactual and baseline in the

combination of the (log of the) mean real returns and the variance (of the log) of the real returns, with the

weight on the variance governed by the effective risk aversion parameter. (Note that this is consistent with

the interpretation of the effective risk aversion parameter as a technological parameter governed by access

to insurance, see Appendix A.6.3 for details.
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A.9 The quantitative model: Estimation details

In this subsection, we offer additional details pertaining to the structural estimation procedure described in

Section 5.2.

Observed parameters: Budget shares, market sizes, and the distribution of yields

As mentioned in Section 5.2, we determine the distribution of (log) yields in each decade by treating each

year within the decade as an independent draw from a common underlying distribution.31 Maintaining

Assumption 2 that the yields across all 15 crops and 311 districts are multivariate log-normally distributed,

we equate the mean log yield to the average log yield observed across years within each decade.32 As is

evident in Appendix Figure A.2, there is substantial variation across districts. For example, southern India

is relatively more productive in sugarcane while northern India is relatively more productive in wheat.

Similarly, we calculate the full variance covariance matrix ΣA
d ≡ [σigd,jhd] from annual yield variation

across crops and districts within decades, where σigd,jhd is the decade-d covariance between the log yields of

crop g in district i and the log yields of crop h in district j. Appendix Figure A.3 provides a graphical depiction

of the matrix. There is substantial correlation of yields across crops within districts, across districts within

crops, and even across different crops in different districts, highlighting the importance of incorporating such

flexibility in the quantitative model.

A small digression on missing yield data. Unlike in Section 3.2, we now require estimates of the spatial

covariances across locations. Thus, we cannot rely on spatial interpolation of missing yields which mechan-

ically imposes a specific spatial correlation structure and so we estimate the distribution of yields from the

70.6% of yield observations that are non-missing.33 Any bias in our structural estimates is minimized by

the fact that, to make results representative, we weight each observation by its cropped area and missing

yields are typically associated with zero or negligible cropped areas. Finally, we note that conditional on

our estimates of the structural parameters, our choice of crop cultivation costs will rationalize observed crop

choices—mitigating the concern that our structural results will be sensitive to mis-measurement of the mean

and variance-covariance of log yields of crops with small cropped areas.

Estimating the district-level trade openness εid and elasticity of substitution σ

Intuitively, estimating equation (22) implies that districts are more open to trade the less responsive their

local prices are to local yield shocks and the more responsive their local prices are to regional market prices

(conditional on the appropriate set of fixed effects).

As a first pass, we recover a common trade openness parameter, i.e. εid=ε, along with the elasticity of

substitution σ directly from the estimated regression coefficients. The IV specification is reported in column

2 of panel (a) of Table 4 and implies ε=2.1 and σ=6.2. However, these averages belie substantial variation

across space and time. Echoing Stylized Fact 1, columns 3 and 4 interact yields and prices with within-

state market access MAinstateid and find that prices are both less responsive to local yield shocks and more

responsive to state-market prices when the highway system expands. Finally, to estimate district-decade

openness εid, we impose the parameterization εid = β0 +β1MAinstateid and estimate β0 and β1 using GMM

31Consistent with this assumption, we find no serial correlation in (log) yields conditional on crop-district-decade
fixed effects.

32The division of the forty years of data into four different decades is not only convenient, it also offers the maximum
likelihood of observing the realized yields across the 1,771 possible partitions of the data into four distinct time periods
of at least five years in length.

33To reduce the risk of outliers driving subsequent results, we only calculate district i-crop g × district j-crop h
covariances for which we observe both sets of yields for all years within a decade, otherwise setting their covariance
equal to zero.
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and the same moment conditions as our IV specification.34 Column 6 of panel (a) of Table 4 presents these

results. Consistent with districts becoming more open with highway improvements, we find average values of

εid growing from 1.9 in the 1970s (with an interquartile range of 0.2) to 2.2 in the 2000s (with an interquartile

range of 0.3). We also estimate an elasticity of substitution of σ=6.0 across crops.35

Estimating the market-level trade openness ε̄md and elasticity of substitution σ̄

Equilibrium regional market level prices are characterized much like district level prices given the fractal

nature of the hierarchical trading structure. Accordingly, our estimation of the market-level trade openness

ε̄md and elasticity of substitution σ̄ proceed similarly to their district-level analogs, with equation (20)

yielding the following empirical specification:

lnp̄mgtd=− 1

σ̄+ε̄md
lnQ̄mgtd+

ε̄md
σ̄+ε̄md

lnp∗gtd+δmgd+δmtd+ν̄mgtd, (78)

where δmgd and δmtd are market-crop-decade and market-year-decade fixed effects, respectively, and ν̄mgtd

captures measurement error in market-level prices p̄mgtd, market-level quantities Q̄mgtd, and central market

prices p∗gtd. We measure the central market price as the quantity-weighted average price across all of India.

Intuitively, the more open a region is, i.e. ε̄m is higher, the less responsive the regional market price is to

the quantity produced within the region and the more responsive the regional price is to prices in the rest of

India. Once again, we pursue an instrumental variables strategy, instrumenting with the predicted quantities

from rainfall-predicted yields throughout the state and with the average price in all districts outside of the

state.

Mimicking the district-level analysis, the first two columns of Table 4 panel (b) assume a common level

of openness in all markets and periods, i.e. ε̄md = ε̄. The IV implies ε̄= 2.0 and σ̄ = 4.9. Parameterizing

market openness as a function of travel time to Delhi, and using IV GMM , column 6 estimates that regional

markets with greater travel times to Delhi are less open—although the estimated coefficient is small and

statistically insignificant. Thus, the average values of ε̄im increase only slightly from 1.91 in the 1970s to

1.94 in the 2000s as a result of the expansion of the Indian highway network. We estimate an elasticity of

substitution of σ̄=4.8 across crops.

Estimating the effective risk aversion ρid and costs of cultivation

Given recovered crop costs from equation (23) and the other estimated structural parameters, the farmers’

first order conditions will hold with equality at their observed land allocation. In other words, we calibrate

the unobserved crop costs so that farmers in all districts and all decades are producing at the optimal point

along their mean-variance frontier. Because of the presence of the Lagrange multiplier, crop costs are only

identified up to scale. In the results that follow, we normalize the cost of the first crop (barley) to zero in

each district-decade; this normalization does not affect the estimated change in welfare.

Under the assumptions regarding crop costs, ρid can be estimated using equation (23) via ordinary least

squares. However, given that our variance-covariance matrix is itself an estimate, to correct for (classical)

measurement error, we instrument for the marginal contribution to the variance term σZig with an instrument

constructed using the rainfall predicted variance-covariance matrix of log-yields (also appropriately trans-

formed using equation (74) in the Appendix). As described in Section A.3, to mitigate outlier concerns, we

34While in principle we could estimate the district level trade openness εid non-parametrically, the small number
of time periods and goods relative to the number of districts means such estimates are extremely noisy.

35This estimate is similar to the large literature that estimates trade elasticities that imply an elasticity of substi-
tution of around five; see e.g. Simonovska and Waugh (2014). In the Indian context, Van Leemput (2021) and Tomar
(2016) find an elasticity of substitution in agriculture of 2.3 and 3.3, respectively.
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winsorize µZig and σZig at the 1% and 99% level.

Table 5 begins by presenting results assuming a common effective risk aversion parameter ρid=ρ. Mean

real returns are increasing in the variance of real returns with the IV estimates implying an effective risk

aversion parameter slightly greater than one (ρ=1.3), consistent with previous estimates of risk aversion of

Indian farmers (e.g. Rosenzweig and Wolpin (1993)).

In Stylized Fact 2, however, we saw that farmers with greater access to rural banks placed less emphasis on

second moment concerns when making their crop choice. And as the effective risk aversion parameter captures

both the inherent risk aversion of farmers and their access to risk-mitigating technologies, we incorporate

such heterogeneity by assuming that ρid is a function of rural bank access, i.e. ρid=ρAbankid+ρB , where we

expect ρA< 0. While the assumed linear relationship with bankid is consistent with the empirical evidence

above, it is agnostic about the particular mechanism through which access to rural banks serves as a risk

mitigating technology. The modeling of banks’ decisions regarding lending, expansion, entry, pricing, etc.—

see e.g. Salim (2013)—is beyond the scope of this paper, although we explore in Section 5.4 how the welfare

impacts of India’s highway expansions vary under alternative assumptions regarding the evolution of bank

access. One limitation of assuming linearity is that for 11% of district-decades, the linear relationship implies

ρid< 0. In our counterfactuals, we truncate these district-decades to have ρid = 0, i.e. we impose they are

risk-neutral. Non-parametric estimation of the risk aversion parameter by quartile of bank access confirms

that ρid≥0 for each quartile. Columns 3 and 4 of Table 5 provide support for this hypothesis with farmers

now accepting lower mean real returns to compensate for the same amount of volatility when they have bank

access, i.e. they choose less conservative crop allocations. Our preferred IV specification implies an average

effective risk aversion of 2.2 (with an interquartile range between 1.9 and 2.7) in the 1970s, which falls to to

1.2 in the 2000s (with an interquartile range between 0.7 and 1.6).

As mentioned in the main text, the combination of the fixed effects and residuals from regression (23)—

which we interpret as the unobserved crop costs that ensure the crop choices we observe are optimal from

the farmer’s perspective—positively correlate with the actual crop costs we observe at the state level for a

subset of our sample period; see Appendix Table A.9 for further details. This is particularly reassuring given

that our static model abstracts from dynamic crop choice considerations, including crop-rotation, switching

costs, etc; see Scott (2013). Note, however, that such dynamic concerns are more relevant when considering

year-to-year changes in crop choices than when examining decade-to-decade changes as we do here. That

said, our crop choice results from Stylized Fact 2a are essentially unchanged when we allow the adjustment to

take place annually within each decade (see columns 5–6 of Appendix Table A.4). Because we calibrate the

unobserved crop cultivation costs so that the observed crop choice is the equilibrium crop choice, abstracting

from dynamic considerations does not affect the model fit; however, there remains the possibility that the

model incorrectly predicts the extent to which farmers’ crop allocations respond to changes in trade costs.

Reassuringly, we find a strong positive correlation between the observed change in crop choices and the

model-predicted change resulting from the expansion of Indian’s highways; see Appendix Table A.10.

A.10 Comparing the model to a traditional arbitrage model

In this subsection, we describe the methodology used to construct panel (c) of Figure 3 that compares the

price arbitrage of our model to a traditional arbitrage model where iceberg trade costs are homogeneous. In

both cases, consider a “village” (a district, in the data) whose autarkic relationship between prices and yields

follows from CES preferences and the market clearing:

logpautig =− 1

σ
logAig+

1

σ
logβiαig+

1

σ
log

∑G
h=1p

aut
ih LiθihAih

Liθig
∑G
h=1αih(pautih )1−σ

, (79)
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where we omit the state of the world for readability. Suppose that the village is small in size relative to a

market (a state, in the data) which has a price p̄g. Note that given estimates of β, α and σ from Section

5.2 and observed yields {Aig}, allocations {θig}, and land areas {Li}, there exists a unique (to-scale) set of

autarkic prices pautig that satisfy equation (79).

A standard “kinked” model First consider a standard trade model, where the village is separated from

the regional market by an iceberg trade costs τi > 1. Then a standard no-arbitrage condition delivers the

following relationship between the equilibrium local prices pig, the given market price, p̄g and the autarkic

local price pautig :

logpig−logp̄g=


logτi for logpautig −logp̄g> logτi

logpautig −logp̄g for logpautig −logp̄g∈ [−logτi,logτi]

−logτi for logpautig −logp̄g<−logτi

(80)

The difference between the equilibrium local prices and the regional market prices then are a“kinked”function

of the trade costs between the two (when trade occurs and the no-arbitrage equation holds) and the autarkic

price pautig (when the trade costs are sufficiently high such that no trade occurs).

Our “smooth” model Now consider our framework, where from equation (54) equilibrium prices are:

logpig=− 1

σ+εi
logAig+

εi
σ+εi

logp̄m(i)g+
1

σ+εi
logβiαig+

1

σ+εi
log

∑G
h=1pihLiθihAih

Liθig
∑G
h=1αih(pih)1−σ

(81)

Combining equations (81) and (79) we can then write the difference between the equilibrium local price and

the central market price

logpig−logp̄g=
σ

σ+εi
(logpautig −logp̄g) (82)

Hence, unlike equation (80), equation (82) states that the local price relative to the market price should

smoothly vary with the difference with the local autarkic price relative to the market price. Note that

equations (80) and (82) coincide with each other under autarky (εi=0, τi=∞) or free trade (εi=∞, τi=1).

Empirical Strategy The basic idea is to compare the model fit of equations (80) and (82). In order to do

so, we have to first solve a few implementation issues. First, as autarkic prices are only identified up to scale,

we add a location specific constant ci to both models, so that the standard “kinked” model becomes:

logpig−logp̄g=


logτi+ci for logpautig −logp̄g> logτi+ci

logpautig −logp̄g for logpautig −logp̄g∈ [−logτi+ci,logτi+ci],

−logτi+ci for logpautig −logp̄g<−logτi+ci

(83)

and our “smooth” model becomes:

logpig−logp̄g=
σ

σ+εi
(logpautig −logp̄g)+ci (84)

The advantage of the additional constant is that both models are now ensured to have an R-squared statistic

between 0 and 1, which will be our statistic for goodness of fit. The second issue is how to measure prices.

Because of the potential endogeneity of yields to prices, as in Section 5.2, we use rainfall-predicted yields

to construct a rainfall-predicted measure of autarkic prices from equation (79). Also as in Section 5.2, we

measure the market price as the quantity weighted average price in all districts within a state except the one
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being examined to avoid mechanical correlations between market and local prices.

Estimation and Results As in Section 5.2, we allow the trade costs to vary by district-decade. To do so,

we conduct the estimation of both the standard “kinked” model and our “smooth” model separately for each

district-decade combination. The estimation for our smooth model is simply a linear regression of the log

district price (relative to the state leave-one-out price) on the log rainfall-predicted autarkic price (again

relative to the state leave-one-out price). The kinked model is similar, but uses a non-linear least squares

routine to capture the kinks present in equation (83), where we constrain logτi ≥ 0. Note that in both

cases, we are estimating just two parameters using the same left hand side and right hand side variables: the

constant ci and a measure of trade costs (logτi for the standard model and σ
σ+εi

for our model).

We compare the residual sum of squares from both models and normalize this by the variance of the

dependent variable to create a comparable version of the R2 for comparison. Panel (c) of Figure 3 plots the

cumulative density of the fits for the two models. The smooth model has a better fit than the kinked model

in nearly 71% of all district-decade combinations. The mean R2 of the smooth and kinked model runs are

0.11 and 0.15 respectively.
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Algorithm 1: Calculate equilibrium prices given crop choice

Require: preference parameters (α, ᾱ,α∗,β, β̄,β∗,σ, σ̄,σ∗), populations (L,L̄,L∗), trade openness
parameters (ε, ε̄), yield realization (A), trade network linkage from districts to states, initial
guesses of equilibrium price (p̄0,p

∗
0), number of goods (G), number of districts (N), number of

states (M)
Ensure: ∆price between consecutive iterations are small (specified tol=10−8)

Initialize difference in price updates between iterations ∆P←1
Initialize guess p̄0 =JGM ,p

∗
0 =JG1

Initialise updating step size =0.1
while ∆P ≥ tol do

Step 1: Calculate district market clearing prices (p) using (p̄0,p
∗
0) from equation (54) (using

equations (55) and (56))

Step 2: Calculate regional market clearing prices (p̄1) consistent with (p,p∗0)

Initialise {p̄ub,p̄lb} as upper and lower bounds for p̄
while p̄ub−p̄lb≥ tol do
p̄1 = p̄ub+p̄lb

2
Calculate supply to state from districts (C̄supply) using equation (58)
Calculate state demand (C̄demand) using equation (59)
if C̄demand>C̄supply then
p̄lb= p̄1

else if C̄demand<C̄supply then
p̄ub= p̄1

end if
end while

Step 3: Calculate central market clearing prices (p∗1) consistent with (p,p̄1)

Repeat Step 2 for central market using the corresponding supply to central market and central
market demand equations

C∗g,supply(s)=
∑
m∈M

(
1−
(
p̄mg(s)

p∗g(s)

)εm)
Q̄mg(s)

C∗g,demand(s)=β∗
α∗gY

∗(s)p∗g(s)
−σ∑G

h=1α
∗
h

(
p∗h(s)

)1−σ
Step 4: Update price guess (p̄0,p

∗
0)

Update logp̄0 =update∗logp̄0+(1−update)∗logp̄1

Update logp∗0 =update∗logp∗0+(1−update)∗logp∗1
Calculate ∆price between iterations ∆P =norm(logp∗0−logp∗1)+norm(logp̄0−logp̄1)

end while

Notes: This psuedo-code describes the interior algorithm used to calculate the equilibrium prices;
see Appendix A.8 for details.
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Algorithm 2: Calculate optimal crop choice

Require: preference parameters (α, ᾱ,α∗,β, β̄,β∗,σ, σ̄,σ∗), populations (L,L̄,L∗), trade openness
parameters (ε,ε̄), yield realisation (A), yield covariance matrix (Σ), utility costs of cultivation,
risk aversion coefficient (ρ), trade network linkage from districts to states, initial guesses of
equilibrium price (p̄0,p

∗
0), number of goods (G), number of districts (N), number of states (M)

Ensure: ∆θ between consecutive iterations are small (specified tol=10−3)

Initialize θ0 as initial guess (observed crop choices in decade)
Initialise ∆θ←1
while ∆θ≥ tol do

Step 1: Compute prices at θ0 using price function

Step 2: Calculate the regional market price elasticity of supply (perturbations in yield real-
isation) at θ0 and the subsequent covariance matrices for income and price indices (equations
(68) and (69))

Perturb the mean of (log) yields for a crop g in district i by a small difference (specified
dlnµig=0.001)

Compute the new equilibrium regional market price p̄new at the perturbed yield
The regional price elasticity matrix Big= logp̄new−logp̄

dlnµig

Step 3: Calculate how close θ0 is to satisfying first order condition (FOC) and update

Calculate λig=µZig−ρiσZig from equations (73) and (74)
Calculate targeted shadow cost λi for each district as average of λig
Calculate deviance from FOC for each district-crop as ∆=λig−λi and update θ0 as θ1 =θ0e

∆

Normalise θ1 to sum to 1 within each district

Step 4: Update crop choice guesses (θ0)

Update logθ0 =update∗logθ1+(1−update)∗logθ0

Calculate ∆θ as the difference between crop choice updates ∆θ=norm(θ1−θ0)
end while

Notes: This psuedo-code describes the algorithm used to calculate the equilibrium crop choice; see
Appendix A.8 for details.
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Table A.3: Crop Choice and Openness: Part 2

Dependent variable: IHS crop choice, φ=1 IHS crop choice, 1/4 highway speed IHS crop choice

(1) (2) (3) (4) (5) (6) (7)
IV IV IV IV IV IV IV

Mean(log Yield) 0.002 0.003 0.001 0.003 0.004 0.002 -0.011***
(0.002) (0.003) (0.002) (0.002) (0.003) (0.002) (0.004)

Var(log Yield) 0.046*** 0.015 0.098*** 0.031** 0.005 0.085*** 0.064**
(0.015) (0.015) (0.028) (0.013) (0.013) (0.024) (0.028)

Mean × MAinstate 0.005** 0.005** 0.006*** 0.009*** 0.009** 0.011*** -0.004
(0.002) (0.002) (0.002) (0.003) (0.004) (0.003) (0.007)

Var × MAinstate -0.092*** -0.053** -0.140*** -0.109*** -0.053 -0.190*** -0.183***
(0.021) (0.023) (0.043) (0.027) (0.033) (0.054) (0.062)

Covar(log Yield) 0.035*** 0.033***
(0.011) (0.010)

Covar × MAinstate -0.045** -0.079***
(0.018) (0.029)

Mean × MAoutstate 0.024***
(0.007)

Var × MAoutstate 0.000
(0.044)

Var × Bank -13.150*** -13.721*** -9.522*
(3.995) (3.851) (5.437)

Var × MAinstate × Bank 11.135* 18.484** 18.457**
(5.786) (7.378) (8.584)

Var × MAoutstate × Bank -1.737
(4.853)

Mean × Bank 1.121*
(0.619)

Mean × MAinstate × Bank 1.080
(0.810)

Mean × MAoutstate × Bank -0.640
(0.701)

Crop-decade FE Yes Yes Yes Yes Yes Yes Yes
District-decade FE Yes Yes Yes Yes Yes Yes Yes
District-crop FE Yes Yes Yes Yes Yes Yes Yes
R-squared -0.003 -0.017 -0.006 -0.000 -0.016 -0.005 0.002
Observations 18,626 18,626 18,626 18,626 18,626 18,626 18,626
First-Stage F Stat 135.8 39.6 79.2 115.1 39.0 77.5 13.7

Notes: Columns (1)–(6) of this table replicate the regressions in Columns (2), (3) and (5) of Table 2 with alternate specifications.
Crop choice regressed on the mean of log yields, the variance of log yields, and both terms interacted with within-state market
access (i.e. access to districts in the same state). All columns include crop-decade, district-decade, and crop-district fixed
effects. Columns (1)–(3) use φ= 1 to calculate market access. Columns (4)–(6) use off highway speed of travel to be 1/4 of
the highway speed (instead of 1/3) while calculating market access. Columns (7) adds additional interactions with market
access and banks. All columns instrument for mean log yields and the variance of log yields with the mean and variance of log
predicted yields from a regression of log yield on local rainfall shocks for each month interacted with state-crop fixed effects
and controlling for crop-decade, district-decade, and crop-district fixed effects. Interaction with market access instrumented
with the predicted yield instruments interacted with market access. Market access variables multiplied by 100,000 and banks
per capita multiplied by 1000. Each observation is a crop-district-decade. Observations are weighted by the number of years
observed within decade. Standard errors clustered at the district-decade level reported in parentheses. Stars indicate statistical
significance: * p<.10 ** p<.05 *** p<.01.
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Table A.4: Crop Choice and Openness: Robustness Part 3

Dependent variable: IHS fraction of land planted by crop
Interaction variable: HYV proportion Years elapsed in decade

(1) (2) (3) (4) (5) (6)

Mean(log Yield) -0.025*** -0.029*** 0.001 0.003 0.003 0.002
(0.006) (0.007) (0.003) (0.003) (0.002) (0.002)

Var(log Yield) 0.058* 0.058* 0.043** 0.038** 0.029*** 0.044***
(0.031) (0.032) (0.017) (0.016) (0.011) (0.012)

Mean × MAinstate 0.030*** 0.038* 0.015*** 0.001 0.011*** 0.011***
(0.010) (0.020) (0.005) (0.005) (0.003) (0.003)

Var × MAinstate -0.222** -0.188* -0.124*** -0.112*** -0.116*** -0.119***
(0.106) (0.107) (0.038) (0.036) (0.027) (0.028)

Main Effect of Variable -0.014*** -0.019** -0.007** -0.100 0.000*** -0.001***
(0.005) (0.009) (0.003) (0.069) (0.000) (0.000)

Mean × Variable 0.002** 0.012 0.000***
(0.001) (0.009) (0.000)

Var × Variable -0.059 0.078 -0.003***
(0.073) (0.071) (0.001)

Mean × MAinstate × Variable -0.002 0.006*** -0.000***
(0.004) (0.002) (0.000)

Var × MAinstate × Variable -0.113 -0.444 0.001
(0.425) (0.392) (0.002)

Crop-decade FE Yes Yes Yes Yes Yes Yes
District-decade FE Yes Yes Yes Yes Yes Yes
District-crop FE Yes Yes Yes Yes Yes Yes
R-squared 0.003 -0.002 -0.001 0.006 -0.000 0.001
Observations 6,119 6,119 14,334 14,334 183,896 183,896
First-Stage F Stat 32.6 8.2 78.4 16.1 150.4 75.2

Notes: Crop choice regressed on the mean of log yields, the variance of log yields, both terms interacted with within-state market access
(i.e. access to districts in the same state), plus an additional interaction with variable detailed in column header. All columns include
crop-decade, district-decade, and district-crop fixed effects. All columns instrument for mean log yields and the variance of log yields
with the mean and variance of log predicted yields from a regression of log yield on local rainfall shocks for each month interacted with
state-crop fixed effects and controlling for crop-decade, district-decade, and district-crop fixed effects. Interactions with market access
and further interaction terms instrumented with the predicted yield instruments interacted with market access and interaction term.
Columns (2) and (4) include main effects and interactions of the proportion of area cropped planted with HYV varieties where columns
(3) and (4) replace missing HYV information with zeroes. Columns (5) and (6) include additional interactions with years elapsed within
a decade, and crop choice is at the annual rather than decadal level. Odd columns use the same sample as proceeding column but without
the additional interactions. Market access variables multiplied by 100,000. Each observation is a district-crop-decade except for columns
(5) and (6) that are at district-crop-year level. Observations are weighted by district-decade total cropped area divided by the number of
observations in a district decade. Standard errors clustered at the district-decade level reported in parentheses. Stars indicate statistical
significance: * p<.10 ** p<.05 *** p<.01.
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Table A.7: More volatility can attenuate the gains from trade (Prop. 3, Part 3)

Case 1: Some volatility

Village 1 Village 2
Crop A Crop B Crop A Crop B

Mean yield 1 1 1 1
Variance of log yield 1 0 0 1
Autarkic crop allocation 0.5 0.5 0.5 0.5
Trade crop allocation 0.31 0.69 0.69 0.31
Gains from trade 0.124 0.124

Case 2: More volatility

Village 1 Village 2
Crop A Crop B Crop A Crop B

Mean yield 1 1 1 1
Variance of log yield 1 1 1 1
Autarkic crop allocation 0.5 0.5 0.5 0.5
Trade crop allocation 0.5 0.5 0.5 0.5
Gains from trade 0 0

Notes: This table provides an example of how increasing the volatility of yields
may attenuate the gains from trade (Case 1 vs. Case 2). In Case 2, yield real-
izations are perfectly correlated between crops within village but uncorrelated
across villages. In each example, both village types are the same size and have
equal budget shares across the two crops. The numbers reported assume a
risk aversion parameter ρ=2 and gains from trade are calculated moving from
autarky (εi=0) to costly trade (εi=1).
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Table A.8: Agricultural expenditure shares

Panel (a): Crop-specific demand shifters (αig)

Crop 25% percentile Mean 75% percentile

Barley 0.000 0.003 0.000
Chickpea 0.008 0.022 0.035
Cotton 0.000 0.000 0.000
Finger Millet 0.000 0.012 0.000
Groundnut 0.001 0.047 0.091
Linseed 0.000 0.014 0.022
Maize 0.000 0.019 0.009
Pearl Millet 0.000 0.022 0.012
Pigeon pea 0.006 0.044 0.071
Rice 0.068 0.352 0.656
Rape and mustard seed 0.000 0.049 0.100
Sesame 0.000 0.014 0.022
Sorghum 0.000 0.054 0.051
Sugarcane (gur) 0.049 0.092 0.116
Wheat 0.046 0.256 0.433

Panel (b): Agricultural expenditure share (βi)

25% percentile Mean 75% percentile

Ag. exp. share 0.330 0.381 0.444

Notes: This table provides summary statistics on the agricultural preferece
shifters (αig) and total agricultural expenditure shares (βi) used in the struc-
tural estimation. The preference shifters are normalized so that they sum to
one across all crops. For each district, the parameters are calculated to match
the observed district average expenditure shares from the Indian National Sam-
ple Survey Round 43.
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Table A.9: Estimated crop costs and actual crop costs

Dependent variable: Estimated Crop Costs (Log)
(1) (2)

Observed Crop Costs (Log) 0.386** 0.386
(0.188) (0.344)

Decade FE Yes Yes
Crop FE Yes Yes
State-Decade-Crop Clustered SEs No Yes
R-squared 0.415 0.415
Observations 3288 3288

Notes: Regression of the estimated crop costs on the log of actual state-level crop costs,
decade fixed effects and crop fixed effects. Each observation is a crop-district-decade
triplet. Estimated crop costs come from a combination of fixed effects and residuals from
regression (23) which are the unobserved crop costs that ensure that observed crop choices
in the data are optimal crop choices in the model. As the crop costs are only identified
up to scale within a district-decade, we normalize the cost of one crop (Barley) to zero
in all district-decade pairs. Raw data on actual crop costs in Rupees/Hectare come from
the Government publication Cost of Cultivation of Principal Crops in India. Data are
annual at the state-crop level and cover 13 of our 15 crops between 1983-2008. To match
with the crop-decade level estimated crop costs, actual costs are deflated by the all-India
CPI and averaged over decades for each crop and state. Standard errors are reported
in parentheses. As the actual crop costs are only at the State level, Column 2 clusters
standard errors at the state-decade-crop level. Stars indicate statistical significance: *
p<.10 ** p<.05 *** p<.01.
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Table A.10: Correlation between actual and counterfactual crop choice

Dependent variable: Observed (log) crop share
(1) (2) (3) (4)

Predicted (log) crop 0.897*** 0.883*** 0.676*** 0.859***
share (0.008) (0.265) (0.198) (0.208)

Crop-district FE No Yes Yes Yes
District-decade FE No No Yes Yes
Crop-decade FE No No No Yes
R-squared (within) 0.811 0.005 0.002 0.004
Observations 18660 18660 18660 18660

Notes: Each observation is a district-decade-crop triplet; there are 4 decades, 311 dis-
tricts, and 15 crops. The dependent variable is the observed (log) crop share. The
independent variable is the predicted equilibrium (log) crop share from the Indian high-
way expansion, holding all other parameter constant at their 1970s level. Standard errors
clustered at the district level are reported in parentheses. Stars indicate statistical sig-
nificance: * p<.10 ** p<.05 *** p<.01.

56



F
ig

u
re

A
.1

:
T
h
e
1
9
7
0
s
c
r
o
p
a
l
l
o
c
a
t
io
n
s
b
y
d
is
t
r
ic
t

(a
)

B
a
rl

ey
(b

)
C

h
ic

k
p

ea
(c

)
C

o
tt

o
n

(d
)

F
in

g
er

M
il
le

t
(e

)
G

n
u
t

(f
)

L
in

se
ed

(g
)

M
a
iz

e
(h

)
P

ea
rl

M
il
le

t
(i

)
P

ig
eo

n
p

ea
(j

)
R

ic
e

(k
)

R
m

se
ed

(l
)

S
es

a
m

u
m

(m
)

S
o
rg

h
u
m

(n
)

S
u
g
a
rc

a
n
e

(g
u
r)

(o
)

W
h
ea

t

N
o
te

s:
T

h
is

fi
gu

re
d
ep

ic
ts

th
e

ar
ea

of
la

n
d

al
lo

ca
te

d
to

ea
ch

of
th

e
15

cr
op

s
ac

ro
ss

th
e

31
1

d
is

tr
ic

ts
of

In
d
ia

in
o
u
r

d
a
ta

b
a
se

fo
r

th
e

1
9
7
0
s

d
ec

ad
e.

T
h
e

sh
ar

es
ar

e
ca

lc
u

la
te

d
b
y

en
su

ri
n
g

th
at

th
e

av
er

ag
e

an
n
u

al
al

lo
ca

ti
on

w
it

h
in

th
e

d
ec

ad
e

su
m

s
to

o
n
e.

57



F
ig

u
re

A
.2

:
T
h
e
1
9
7
0
s
r
e
l
a
t
iv
e
m
e
a
n
l
o
g

y
ie
l
d
s
b
y
d
is
t
r
ic
t

(a
)

B
a
rl

ey
(b

)
C

h
ic

k
p

ea
(c

)
C

o
tt

o
n

(d
)

F
in

g
er

M
il
le

t
(e

)
G

n
u
t

(f
)

L
in

se
ed

(g
)

M
a
iz

e
(h

)
P

ea
rl

M
il
le

t
(i

)
P

ig
eo

n
p

ea
(j

)
R

ic
e

(k
)

R
m

se
ed

(l
)

S
es

a
m

u
m

(m
)

S
o
rg

h
u
m

(n
)

S
u
g
a
rc

a
n
e

(g
u
r)

(o
)

W
h
ea

t

N
o
te

s:
T

h
is

fi
gu

re
d
ep

ic
ts

th
e

m
ea

n
(l

og
)

y
ie

ld
s

of
cr

op
s

in
ea

ch
of

th
e

31
1

d
is

tr
ic

ts
of

In
d
ia

re
la

ti
ve

to
th

e
m

ea
n

(l
o
g
)

y
ie

ld
fo

r
a
ll

o
f

In
d

ia
fo

r
ea

ch
of

th
e

15
cr

op
s

in
ou

r
d
at

ab
as

e
an

d
fo

r
th

e
19

70
s

d
ec

ad
e.

T
h

e
m

ea
n

is
ta

ke
n

ac
ro

ss
al

l
ye

a
rs

w
it

h
in

th
e

d
ec

a
d
e.

58



Figure A.3: The 1970s variance-covariance matrix of log yields

Notes: This figure depicts the variance-covariance matrix of (log) yields between all 311 districts
across all 15 crops calculated across all ten years of the 1970s. The covariance is only calculated
for crop-district pairs for which yields are observed for both crop-districts all ten years, otherwise
it is treated as a zero (and appears in white). In total, there are 8,573,184 covariances calculated.
For readability, approximately 5% of the the pixel colors are bottom/top coded at -0.1 and 0.1,
respectively.
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Figure A.4: Distribution of Prices and MSPs in 1970-71
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Notes: This figure plots the distribution of log prices across districts for our sample crops in the
1970-71 crop year. Vertical lines show minimum support prices (MSPs) for crops with MSPs in
1970-71.
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Figure A.5: Distribution of Prices and MSPs in 1980-81
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Notes: This figure plots the distribution of log prices across districts for our sample crops in the
1980-81 crop year. Vertical lines show minimum support prices (MSPs) for crops with MSPs in
1980-81.
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Figure A.6: Distribution of Prices and MSPs in 1990-91
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Notes: This figure plots the distribution of log prices across districts for our sample crops in the
1990-91 crop year. Vertical lines show minimum support prices (MSPs) for crops with MSPs in
1990-91.
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Figure A.7: Distribution of Prices and MSPs in 2000-01
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Notes: This figure plots the distribution of log prices across districts for our sample crops in the
2000-01 crop year. Vertical lines show minimum support prices (MSPs) for crops with MSPs in
2000-01.
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