
Irrationality of ζ(2) and ζ(3): Part 1

Introduction

In 1978, R. Apery gave a mathematical talk which stunned the audience (consisting of other

fellow mathematicians). Apery presented a very short proof of the irrationality of  which

created utter confusion and many believed his proof to be wrong. However some months later

a few other mathematicians (primarily Henri Cohen) verified Apery's proof and concluded that

it was correct.

Shortly after all this drama regarding Apery's proof, F. Beukers published another proof of

irrationality of  which is much simpler and comprehensible compared to the proof given by

Apery. In this series of posts we will provide an exposition of Beukers' Proof. The content of

this series is based on Beukers' paper "A Note on the Irrationality of  and ."

The technique used in the proof applies also to  and the case of  serves to illustrate

the technique without getting too complicated. Hence we will start with the case of irrationality

of .

Irrationality of 

To begin with we provide a definition of the  function. Let  be a real number such that

 then we define the  function by

It is known that for even values of ,  is a rational multiple of  and hence is

transcendental. Therefore the irrationality (and transcendentality) of  is settled for the case

when  is an even positive integer. In particular case of  we have  and there

are many well known proofs of irrationality of .

However when  is odd there is no known simple relation between  and  and hence the

above approach based on nature of  fails. Apery's (and Beukers' too) achievement was

therefore considered to be big as he settled the case for first odd value of  and proved

that  is irrational.

Preliminary Results

To understand the proof technique of Beukers we first need to establish some preliminary

results on some improper integrals.

Let  be non-negative integers with . Then we have
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In the above formulas we have to interpret the integrals as being improper because the

integrand is not defined for . However note that integrals are convergent and all the

manipulations regarding them can be justified by taking upper limit as  and letting

.

To establish the first result we observe that

The above result shows that

and for integer  we have
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As is evident from their proofs, the formulas  and  hold even when  are positive real

numbers, but these integrals can be related to  function only when  are integers.

Let us define  to be the LCM of all numbers  and . Then it is clear from

the above results that

where  are non-negative integers with  and  are integers. It therefore follows that

if  are polynomials of degree  with integer coefficients then

where  are integers.

Strategy of the Proof

We now choose a specific polynomial  defined by

It is easy to observe that the polynomial  has integer coefficients and is of degree  (the

reason for integer coefficients is that the coefficients are of the form  where  turns out to

be a product of  consecutive positive integers). Hence we get

where  are integers dependent on .

dx dy∫ 1

0
∫ 1

0

xrys

1 − xy
= ( ) dx dy∫ 1

0
∫ 1

0
xrys ∑

n=0

∞

xnyn

= dx dy∑
n=0

∞

∫ 1

0
∫ 1

0
xn+ryn+s

= dx dy∑
n=0

∞

∫ 1

0
xn+r ∫ 1

0
yn+s

=∑
n=0

∞ 1

n+ r+ 1

1

n+ s+ 1

=∑
n=0

∞ 1

r − s

(n+ r− 1) − (n+ s+ 1)

(n+ r + 1)(n+ s+ 1)

= ( − )∑
n=0

∞ 1

r − s

1

(n+ s+ 1)

1

(n+ r + 1)

= { + +⋯+ }1

r− s

1

s+ 1

1

s+ 2

1

r

(2) (3) r, s

ζ r, s

dn 1, 2,… ,n = 1d0

dx dy∫ 1

0
∫ 1

0

xryr

1 − xy

dx dy∫ 1

0
∫ 1

0

xrys

1 − xy

= ζ(2) −
a

d2r

=
b

d2r

r, s r > s a, b

P(x),Q(x) n

dx dy =∫ 1

0
∫ 1

0

P(x)Q(y)

1 − xy

aζ(2) + b

d2n

a, b

(x)Pn

(x) = { (1 − x }Pn

1

n!

dn

dxn
xn )n

P(x) n

a/n! a

n

= dx dy =In ∫ 1

0
∫ 1

0

(1 − y (x))nPn

1 − xy

ζ(2) +an bn

d2n
(4)

,an bn n

Irrationality of ζ(2) and ζ(3): Part 1 | Paramanand's Math Notes

3



Now our plan is to estimate the integral in the above equation and show that it is non-zero but

tends to zero as . In fact we need to demonstrate that the integral  tends to zero

much faster than  so much so that the whole product  also tends to zero as .

In such a situation the expression  tends to zero without being equal to zero ever.

If  were rational say  then we would always have  and hence it

would not tend to zero. This contradiction establishes that  is irrational.

We thus need to establish the following results for the integral  defined in equation :

 for all positive integers 1. 

 as 2. 

Establishing these results will require the use of integration by parts to transform the integral

 into a convenient form amenable to reasonable estimation. First we note that if

 then we have  for  and

therefore

and thus

Clearly  because the integrand is positive for all .

Estimation of 

Now we need to estimate the above integral by estimating the maximum value of the function

for .

Clearly this requires us to solve the equations
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Since  the relation between  and  induced by  is same as the

relation between  and  induced by  and hence for stationary value of  we

must have  and therefore we need to maximize the function

We have

as .

And then we can check (with some labor) that for this value of  we have  so that the

maximum value of  is attained at . The maximum value thus

obtained is seen to be

Thus from equation  we get

Estimation of 

Next we have to estimate . This is achieved by observing that  is a multiple of all primes

 with these primes  raised to maximum power  such that . Clearly such

maximum value of  is the integer part of . Therefore we have
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where  is prime counting function representing numbers of primes less than or equal to .

From prime number theorem we know that

so that if  is any fixed number with  then we have

for all sufficiently large values of . Then we get

where . Thus if  then for all sufficiently large values of  we have

 so that 

Conclusion

Combining the above relation with equation  we note that

Choosing  we can see that the expression inside curly brackets is less than  and hence

the expression on the right of the above equation (and therefore the expression on the left too)

tends to  as . We have thus established all the results needed to obtain a contradiction

(which is arrived by assuming  to be rational). The proof of irrationality of  is thus

complete. Note that since  the above argument also constitutes another proof of

irrationality of  (and therefore of  too).

In the next post we shall deal with the slightly more complicated case of irrationality of .
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