Cosc 362, Spring 2017 Test #2 – Take-Home Solutions

1. Use the construction in Theorem 3.1 to find an nfa that accepts the language L(r), where $r = (abb + ab)^* aab^*$.

Solution: An nfa that can be constructed following the guidelines of Theorem 3.1 is as follows:

2. Use the procedure demonstrated in class (or, if you prefer, the "nfa-to-rex" procedure in the text) to find a regular expression that generates the language accepted by the following nfa:

Solution: One possible solution is $(ab)^*(ab + a)(ab + (ab + a)(ab)^*(ab + a))^*$. Other, equivalent solutions are possible, depending on the sequence in which the steps of the conversion algorithm are carried out. <u>Click here</u> for a diagram outlining the steps by which we obtained our solution.

3. Show there exists an algorithm that, given any two regular languages L_1 and L_2 , determines whether there exists a string, w, such that $w \in L_1$ and $w^R \in L_2$. Give a thorough explanation, citing theorems or examples from the text as needed.

Solution: The set of strings such that $w^R \in L_2$ is simply L_2^R . So, we're looking for an algorithm to determine whether $L_1 \cap L_2^R$ is non-empty. The family of regular languages is closed under intersection (Theorem 4.1.1) and reversal (Theorem 4.1.2); therefore, $L_1 \cap L_2^R$ is regular if L_1 and L_2 are both regular. Therefore, by Theorem 4.2.2 (check this), there exists an algorithm to determine whether $L_1 \cap L_2^R$ is non-empty (namely, construct a dfa for $L_1 \cap L_2^R$, and then inspect all paths in the transition diagram to determine whether a path exists from the initial state to a final state).

4. a) Find an s-grammar for $L = \{a^n b^{n+2} : n \ge 2\}$.

b) Based on your grammar from part (a), give the derivation tree for the string *aaaabbbbbb*.

Solution:

a. An s-grammar that generates *L* is as follows:

$$S \rightarrow aACC$$

$$A \rightarrow aBC$$

$$B \rightarrow aBC \mid b$$

$$C \rightarrow b$$

We can summarize all possible derivations in this grammar as follows:

$$S \to aACC \to aACC \to aaBCCC \underbrace{\rightarrow}_{\substack{B \to aBC\\k \ times, k \ge 0}} aaa^k BC^k CCC \underbrace{\rightarrow}_{\substack{B \to b\\C \to b}} a^{k+2} b^{k+4}$$

So, $w \in L(G)$ iff $w = a^{k+2}b^{k+4}$ for some $k \ge 0$, or equivalently iff $w = a^n b^{n+2}$ for some $n \ge 2$.

b.

5. Let *L* be the language consisting of all strings of even length whose two <u>middle</u> letters are *aa*. (For example *L* contains *aa*; *aaaa*, *aaab*, *baaa*, *baaab*; all six-letter strings whose third and fourth letters are *aa*; and so on.)

- a) Prove that this language is *not* regular.
- b) Show that this language *is* context-free.

(Note: For #5, a more formal definition of *L* would be $\{w_1 aaw_2 : w_1, w_2 \in \{a, b\}^*, |w_1| = |w_2|\}$)

a. Assume (for a contradiction) that *L* is regular. Let *m* be the constant as defined in the Pumping Lemma, and let $w = b^m aab^m$. Then, $w \in L$, and, by the Pumping Lemma, *w* must have some decomposition w = xyz such that $|xy| \le m$, $|y| \ge 1$, and $xy^i z \in L$ for all $i \ge 0$.

While we can't specify what substrings x, y, and z, our choice of w guarantees that x and y both consist entirely of b's. (Since $|xy| \le m$, the substring xy is entirely contained in the prefix b^m .) This means $x = b^j$, $y = b^k$, and $z = b^{m-j-k}aab^m$, for some j, k where $j + k \le m$ and $k \ge 1$.

The Pumping Lemma now guarantees that $xy^i z \in L$ for all non-negative integers *i*. In particular, we can choose i = 0, which means $xz \in L$. This shortens the opening string of b's by at least 1; in particular, $xz = b^j b^{(m-j-k)}aab^m = b^{m-k}aa b^m \in L$. Since this string starts with fewer b's than it ends with, the substring aa is not in the middle of the string; thus, we have a string in L whose middle two letters are not aa. But this contradicts the definition of language L. The contradiction is induced by our assumption that L is a regular language; therefore, L must not be regular.

b. To show a language is context-free, simply find a context-free grammar that generates it. One such grammar for *L* is as follows:

$$S \to ASA \mid aa$$
$$A \to a \mid b$$

This grammar generates all strings of the form $w_1 aaw_2$, where w_1 and w_2 are of the same length. (The common length of w_1 and w_2 is equal to the number of times the rule $S \rightarrow ASA$ is followed.)