Solutions

1. Use the construction in Theorem 3.1 to find an nfa that accepts the language $L(r)$, where

$$
r=(a b b+a b)^{*} a a b^{*} .
$$

Solution: An nfa that can be constructed following the guidelines of Theorem 3.1 is as follows:

2. Use the procedure demonstrated in class (or, if you prefer, the "nfa-to-rex" procedure in the text) to find a regular expression that generates the language accepted by the following nfa:

Solution: One possible solution is $(a b)^{*}(a b+a)\left(a b+(a b+a)(a b)^{*}(a b+a)\right)^{*}$. Other, equivalent solutions are possible, depending on the sequence in which the steps of the conversion algorithm are carried out. Click here for a diagram outlining the steps by which we obtained our solution.
3. Show there exists an algorithm that, given any two regular languages L_{1} and L_{2}, determines whether there exists a string, w, such that $w \in L_{1}$ and $w^{R} \in L_{2}$. Give a thorough explanation, citing theorems or examples from the text as needed.

Solution: The set of strings such that $w^{R} \in L_{2}$ is simply L_{2}^{R}. So, we're looking for an algorithm to determine whether $L_{1} \cap L_{2}^{R}$ is non-empty. The family of regular languages is closed under intersection (Theorem 4.1.1) and reversal (Theorem 4.1.2); therefore, $L_{1} \cap L_{2}^{R}$ is regular if L_{1} and L_{2} are both regular. Therefore, by Theorem 4.2 .2 (check this), there exists an algorithm to determine whether $L_{1} \cap L_{2}^{R}$ is non-empty (namely, construct a dfa for $L_{1} \cap L_{2}^{R}$, and then inspect all paths in the transition diagram to determine whether a path exists from the initial state to a final state).
4. a) Find an s-grammar for $L=\left\{a^{n} b^{n+2}: n \geq 2\right\}$.
b) Based on your grammar from part (a), give the derivation tree for the string aaaabbbbbb.

Solution:
a. An s-grammar that generates L is as follows:

$$
\begin{aligned}
& S \rightarrow a A C C \\
& A \rightarrow a B C \\
& B \rightarrow a B C \mid b \\
& C \rightarrow b
\end{aligned}
$$

We can summarize all possible derivations in this grammar as follows:

$$
S \rightarrow a A C C \rightarrow a A C C \rightarrow a a B C C C \quad \underbrace{\rightarrow}_{\substack{B \rightarrow a B C \\ k \text { times }, k \geq 0}} a a a^{k} B C^{k} C C C \underbrace{\rightarrow}_{\substack{B \rightarrow b \\ C \rightarrow b}} a^{k+2} b^{k+4}
$$

So, $w \in L(G)$ iff $w=a^{k+2} b^{k+4}$ for some $k \geq 0$, or equivalently iff $w=a^{n} b^{n+2}$ for some $n \geq 2$.
b.

5. Let L be the language consisting of all strings of even length whose two middle letters are $a a$. (For example L contains $a a$; aaa a a aab, baaa, baab; all six-letter strings whose third and fourth letters are $a a$; and so on.)
a) Prove that this language is not regular.
b) Show that this language is context-free.
(Note: For \#5, a more formal definition of L would be $\left\{w_{1} a a w_{2}: w_{1}, w_{2} \in\{a, b\}^{*},\left|w_{1}\right|=\left|w_{2}\right|\right\}$)
a. Assume (for a contradiction) that L is regular. Let m be the constant as defined in the Pumping Lemma, and let $w=b^{m} a a b^{m}$. Then, $w \in L$, and, by the Pumping Lemma, w must have some decomposition $w=x y z$ such that $|x y| \leq m,|y| \geq 1$, and $x y^{i} z \in L$ for all $i \geq 0$.

While we can't specify what substrings x, y, and z, our choice of w guarantees that x and y both consist entirely of $b^{\prime} s$. (Since $|x y| \leq m$, the substring $x y$ is entirely contained in the prefix b^{m}.) This means $x=b^{j}, y=b^{k}$, and $z=b^{m-j-k} a a b^{m}$, for some j, k where $j+k \leq m$ and $k \geq 1$.

The Pumping Lemma now guarantees that $x y^{i} z \in L$ for all non-negative integers i. In particular, we can choose $i=0$, which means $x z \in L$. This shortens the opening string of $b^{\prime} s$ by at least 1 ; in particular, $x z=b^{j} b^{(m-j-k)} a a b^{m}=b^{m-k} a a b^{m} \in L$. Since this string starts with fewer b's than it ends with, the substring aa is not in the middle of the string; thus, we have a string in L whose middle two letters are not $a a$. But this contradicts the definition of language L. The contradiction is induced by our assumption that L is a regular language; therefore, L must not be regular.
b. To show a language is context-free, simply find a context-free grammar that generates it. One such grammar for L is as follows:

$$
\begin{aligned}
& S \rightarrow A S A \mid a a \\
& A \rightarrow a \mid b
\end{aligned}
$$

This grammar generates all strings of the form $w_{1} a a w_{2}$, where w_{1} and w_{2} are of the same length. (The common length of w_{1} and w_{2} is equal to the number of times the rule $S \rightarrow A S A$ is followed.)

