
Cosc 362, Spring 2017 

Test #2 – Take-Home  

Solutions 

 

1. Use the construction in Theorem 3.1 to find an nfa that accepts the language 𝐿(𝑟), where  

𝑟 = (𝑎𝑏𝑏 + 𝑎𝑏)∗𝑎𝑎𝑏∗. 

 

Solution: An nfa that can be constructed following the guidelines of Theorem 3.1 is as follows: 

 
2. Use the procedure demonstrated in class (or, if you prefer, the “nfa-to-rex” procedure in the text) 

to find a regular expression that generates the language accepted by the following nfa: 

 
 

 

Solution: One possible solution is (𝑎𝑏)∗(𝑎𝑏 + 𝑎)(𝑎𝑏 + (𝑎𝑏 + 𝑎)(𝑎𝑏)∗(𝑎𝑏 + 𝑎))
∗
. Other, equivalent 

solutions are possible, depending on the sequence in which the steps of the conversion algorithm 

are carried out. Click here for a diagram outlining the steps by which we obtained our solution. 

 

 

 

3. Show there exists an algorithm that, given any two regular languages 𝐿1 and 𝐿2, determines 

whether there exists a string, 𝑤, such that 𝑤 ∈ 𝐿1 and 𝑤𝑅 ∈ 𝐿2. Give a thorough explanation, citing 

theorems or examples from the text as needed.  

 

Solution: The set of strings such that 𝑤𝑅 ∈ 𝐿2 is simply 𝐿2
𝑅. So, we’re looking for an algorithm to 

determine whether 𝐿1 ∩ 𝐿2
𝑅 is non-empty. The family of regular languages is closed under 

intersection (Theorem 4.1.1) and reversal (Theorem 4.1.2); therefore, 𝐿1 ∩ 𝐿2
𝑅 is regular if 𝐿1 and 𝐿2 

are both regular. Therefore, by Theorem 4.2.2 (check this), there exists an algorithm to determine 

whether 𝐿1 ∩ 𝐿2
𝑅 is non-empty (namely, construct a dfa for 𝐿1 ∩ 𝐿2

𝑅, and then inspect all paths in the 

transition diagram to determine whether a path exists from the initial state to a final state).  

https://dl.dropbox.com/s/83mn563qqdlhmfi/Untitled.png?dl=0


 

 

4.  a) Find an s-grammar for 𝐿 = {𝑎𝑛𝑏𝑛+2: 𝑛 ≥ 2}.  

b) Based on your grammar from part (a), give the derivation tree for the string 𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏. 

 

Solution: 

a. An s-grammar that generates 𝐿 is as follows: 

𝑆 → 𝑎𝐴𝐶𝐶  

𝐴 → 𝑎𝐵𝐶 

𝐵 → 𝑎𝐵𝐶 | 𝑏 

𝐶 → 𝑏 

 

We can summarize all possible derivations in this grammar as follows: 

𝑆 → 𝑎𝐴𝐶𝐶 → 𝑎𝐴𝐶𝐶 → 𝑎𝑎𝐵𝐶𝐶𝐶   →  ⏟
𝐵→𝑎𝐵𝐶

𝑘 𝑡𝑖𝑚𝑒𝑠,𝑘≥0

𝑎𝑎𝑎𝑘𝐵𝐶𝑘𝐶𝐶𝐶    →  ⏟
𝐵→𝑏
𝐶→𝑏

𝑎𝑘+2𝑏𝑘+4 

 

 

So, 𝑤 ∈ 𝐿(𝐺) iff 𝑤 = 𝑎𝑘+2𝑏𝑘+4 for some 𝑘 ≥ 0, or equivalently iff 𝑤 = 𝑎𝑛𝑏𝑛+2 for some 𝑛 ≥ 2. 

 

b. 

  
 

 

 

 

 

  



5. Let 𝐿 be the language consisting of all strings of even length whose two middle letters are 𝑎𝑎. 

(For example 𝐿 contains 𝑎𝑎; 𝑎𝒂𝒂𝑎, 𝑎𝒂𝒂𝑏, 𝑏𝒂𝒂𝑎, 𝑏𝒂𝒂𝑏; all six-letter strings whose third and fourth 

letters are 𝑎𝑎; and so on.) 

a) Prove that this language is not regular. 

b) Show that this language is context-free.  

 
(Note: For #5, a more formal definition of 𝐿 would be {𝑤1𝑎𝑎𝑤2 ∶ 𝑤1, 𝑤2 ∈ {𝑎, 𝑏}∗, |𝑤1| = |𝑤2|}) 

 

a. Assume (for a contradiction) that 𝐿 is regular. Let 𝑚 be the constant as defined in the Pumping 

Lemma, and let 𝑤 = 𝑏𝑚𝑎𝑎𝑏𝑚. Then, 𝑤 ∈ 𝐿, and, by the Pumping Lemma, 𝑤 must have some 

decomposition 𝑤 = 𝑥𝑦𝑧 such that |𝑥𝑦| ≤ 𝑚, |𝑦| ≥ 1, and 𝑥𝑦𝑖𝑧 ∈ 𝐿 for all 𝑖 ≥ 0. 

 

While we can’t specify what substrings 𝑥, 𝑦, and 𝑧, our choice of 𝑤 guarantees that 𝑥 and 𝑦 both 

consist entirely of 𝑏′𝑠. (Since |𝑥𝑦| ≤ 𝑚, the substring 𝑥𝑦 is entirely contained in the prefix 𝑏𝑚.) This 

means 𝑥 = 𝑏𝑗, 𝑦 = 𝑏𝑘, and 𝑧 = 𝑏𝑚−𝑗−𝑘𝑎𝑎𝑏𝑚, for some 𝑗, 𝑘 where 𝑗 + 𝑘 ≤ 𝑚 and 𝑘 ≥ 1.  

 

The Pumping Lemma now guarantees that 𝑥𝑦𝑖𝑧 ∈ 𝐿 for all non-negative integers 𝑖. In particular, we 

can choose 𝑖 = 0, which means 𝑥𝑧 ∈ 𝐿. This shortens the opening string of 𝑏′𝑠 by at least 1; in 

particular, 𝑥𝑧 = 𝑏𝑗 𝑏(𝑚−𝑗−𝑘)𝑎𝑎𝑏𝑚 = 𝑏𝑚−𝑘𝑎𝑎 𝑏𝑚 ∈ 𝐿. Since this string starts with fewer b’s than it 

ends with, the substring aa is not in the middle of the string; thus, we have a string in 𝐿 whose 

middle two letters are not 𝑎𝑎. But this contradicts the definition of language 𝐿. The contradiction is 

induced by our assumption that 𝐿 is a regular language; therefore, 𝐿 must not be regular. 

 

b. To show a language is context-free, simply find a context-free grammar that generates it. One 

such grammar for 𝐿 is as follows: 

𝑆 → 𝐴𝑆𝐴 | 𝑎𝑎 

𝐴 → 𝑎 | 𝑏 

 

This grammar generates all strings of the form 𝑤1𝑎𝑎𝑤2, where 𝑤1 and 𝑤2 are of the same length. 

(The common length of 𝑤1 and 𝑤2 is equal to the number of times the rule 𝑆 → 𝐴𝑆𝐴 is followed.)  


