higranfvalglyn'a

Leci nest s une fufie.

A

Introduction To
Adversarial Examples

Niv Haim
Weilzmann Institute
DL4CV Course Winter 2023 (20224182)



g

6% p

98.

99.0% airliner

(0.000000000000000
00000000000005% p

)

19




SN S AN
UG,
,ﬁ A X Ol02

99.0% airliner

(0.000000000000000
00000000000005% pig...)




99.0% airliner

(0.000000000000000
00000000000005% pig...)

Biggio et al. 2013, “Eva;én attacks against machine learning at test time”
zegedy et al. 2014, “Intriguing properties of neural networks”
oodfellow et al. 2015, “Explaining and Harnessing Adversarial Examples”
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What is an Adversarial Example?

Perturbation Attack

e Originally coined by Szegedy et al., 2013:

“‘we find that applying an imperceptible non-random perturbation to a test image,
it is possible to arbitrarily change the network’s prediction.
... we term the so perturbed examples ‘adversarial examples”™
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want to fool classifier > maximize L w.r.t X

L(f(x+3),y) — & = +ViL



Follow the gradient w.r.t x (the input image)

L

oy — .

X (original):  89.7% pig






X (original):  89.7% pig

X -~

X + 10xVxL:

44.7% pig



Follow the gradient w.r.t x (the input image)

'l*.}r { % W

X (original): |

9.ig |

X+ 10xVxL: 44.7% pig X+ 100xVxL: 44.8% fireguard




Follow the gradient w.r.t x (the input image)

44.8% fireguard

X + 100xVxL

44.7% pig

X + 10xVxL



Follow the gradient W.r.t X (the input image)

X + 10xVxL: 44.7% pig X + 100xVxL: 44.8% fireguard



X + 10><VxL 44 7% pIg X + 100xVxL: 44.8% fireguard



o

catt I - LN

rigin e ,‘ ‘A 63.6%

. B o 88 S =

44.8% fireguard




IDid we generate an adversarial example?
Need small 0.
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a.k.a FGSM (Goodfellow et al. 2015)
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€

C To=e-sgn(v)
© © " Fast Gradient Sign Method

a.k.a FGSM (Goodfellow et al. 2015)

0

*5= max L(f(x+9),y)~ max L (f(x),y)+VyL$d

16]lc0 <€ 16]le0 <€
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Did we solve the problem?
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Possible AEs
need to be found)
“The Game” of AT:
¢ Defender: defend in box
-SL Attacker: find AE in box

- Adversarial Training as a min-max optimization problem:
Standard Loss |

A |
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Towards Deep Learning Models Resistant to Adversarial Attacks, Madry et al. 2018
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“The Game” of AT:
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- Adversarial Training as a min-max optimization problem:
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Towards Deep Learning Models Resistant to Adversarial Attacks, Madry et al. 2018



Perturbation Attack (optimization)

Possible AEs
need to be found)
“The Game” of AT:
¢ Defender: defend in box
-SL Attacker: find AE in box

- Adversarial Training as a min-max optimization problem:
Adversarial Loss

A |

min B, )~ plmax L( fy(x +0), y)]

Towards Deep Learning Models Resistant to Adversarial Attacks, Madry et al. 2018
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Possible AEs
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?kental image alert! (“experimental” mental images could be horribly misleading)
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source: Atzmon et al. 2019, “Controlling Neural Level Sets”
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Perturbation Attack (better illustrations)

AEs lurking (waiting to be found)
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2D alert!

(Things get complicated in high dimension, e.g. Images...)
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source: Atzmon et al. 2019, “Controlling Neural Level Sets”
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Attack Model:
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Attack Model: xadv 5,
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What can we do to defend?
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Test Accuracy | FGSM Accuracy | PGD Accuracy
Standard Training 98.7% 40.7% 7.3%
Adv. Training (FGSM) 97.2% 94.0% 90.0%
Adv. Training (PGD) 98.0% 96.1% 95.9%



Adversarial Training

Test Accuracy | FGSM Accuracy | PGD Accuracy

98.7% 40.7% 7.3%
97.2% 94.0% 90.0%
98.0% 96.1% 95.9%

Did we solve the problem?




Adversarial Training — Other Datasets

CIFAR10 (ResNet50) Test PGD (¢ = %)

Standard Training 95.25% 0.00%

source: https://github.com/MadryLab/robustness



Adversarial Training — Other Datasets

CIFAR10 (ResNet50) Test PGD (¢ = )
Standard Training 95.25% 0.00%
Adv. Training (PGD 8/255) 87.03% 53.29%

source: https://github.com/MadryLab/robustness



Adversarial Training — Other Datasets

CIFAR10 (ResNet50) Test

Standard Training 95.25%
Adv. Training (PGD 8/255) 87.03%

ImageNet (ResNet50) Test

Standard Training 76.13%

source: https://github.com/MadryLab/robustness
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Adversarial Training — Other Datasets

CIFAR10 (ResNet50) Test

Standard Training 95.25%
Adv. Training (PGD 8/255) 87.03%

ImageNet (ResNet50) Test

Standard Training 76.13%
Adv. Training (PGD 8/255) 47.91%

source: https://github.com/MadryLab/robustness

8
PGD (E = E)

0.00%
53.29%
8
PGD (E = 2—55)

0.01%
19.52%
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See Adversarial Example

Discuss what they are

How to attack: FGSM, PGD

How to defend: Adversarial training (AT)
Optimization view of AT

Next: Black-Box attacks
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Black-Box Attacks - Transferability

Liu et al. 2016, “Delving into Transferable Adversarial Examples and Black-box Attacks”
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e Test set Accuracy

ResNet-50 | ResNet-101 | ResNet-152 | GooglLeNet | VGG-16
Top-5 accuracy 91.0% 91.7% 92.1% 89.0% 88.3%

Liu et al. 2016, “Delving into Transferable Adversarial Examples and Black-box Attacks”
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Black-Box Attacks - Transferability

e Test set Accuracy

ResNet-50 | ResNet-101 | ResNet-152 | GooglLeNet | VGG-16
Top-5 accuracy 91.0% 91.7% 92.1% 89.0% 88.3%

e Accuracy under FGSM attack

| ResNet-152 | ResNet-101 | ResNet-50 | VGG-16 | GoogleNet |
ResNet-152 32% .
ResNet-101 33% White-Box
ResNet-50 29%
VGG-16 5% FGSM
GooglLeNet | 11%

Liu et al. 2016, “Delving into Transferable Adversarial Examples and Black-box Attacks” (Tab.20)



Black-Box Attacks - Transferability

e Test set Accuracy

ResNet-50 | ResNet-101 | ResNet-152 | GooglLeNet | VGG-16
Top-5 accuracy 91.0% 91.7% 92.1% 89.0% 88.3%

e Accuracy under FGSM attack

| ResNet-152 | ResNet-101 | ResNet-50 | VGG-16 | GoogLeNet
ResNet-152 55% 53% 47% 36%
ResNet-101 56% 50% 46% 40% BIack-Box
ResNet-50 59% 53% 47% 38%
VGG-16 42 % 39% 41% 21%
GoogLeNet T1% 74% 62% | 53%

Liu et al. 2016, “Delving into Transferable Adversarial Examples and Black-box Attacks” (Tab.20)
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e Possible reason: 2333 %3335
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e Possible reason: 2333 %3335
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Black-Box Attacks - Transferability

e Possible reason:

207772274
Adversarial Examples comes from the data:

[lyas et al. 2019, “Adversarial Examples Are Not Bugs, They Are Features”

source: lan Goodfellow on "Adversarial Examples and Adversarial Training," 2017-05-30, CS231n, Stanford University

ellow 201



Outline

See Adversarial Example

Discuss what they are

How to attack: FGSM, PGD

How to defend: Adversarial training (AT)
Optimization view of AT

Black-Box attacks (transferability)

Next: Summary
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The Bigger Picture: Failure modes in machine learning

source: https://docs.microsoft.com/en-us/security/engineering/failure-modes-in-machine-learning
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The Bigger Picture: Failure modes in machine learning

Intentionally-motivated failures

Attack

Perturbation attack

Poisoning attack

Medel Inversion

Membership
Inference

Model Stealing

Reprogramming ML
system

Adversarial Example
in Physical Domain

source: https://docs.microsoft.com/en-us/security/engineering/failure-modes-in-machine-learning

Overview

Attacker modifies the query to get appropriate response

Attacker contaminates the training phase of ML systems to get
intended result

Attacker recovers the secret features used in the model by through
careful queries

Attacker can infer if a given data record was part of the model's
training dataset or not

Attacker is able to recover the model through carefully-crafted
queries

Repurpose the ML system to perform an activity it was not
programmed for

Attacker brings adversarial examples into physical domain to
subvertML system e.g: 3d printing special eyewear to fool facial

Unintended failures



The Bigger Picture: Failure modes in machine learning

Intentionally-motivated failures Unintended failures

Attack Overview . .
Failure Overview
" i i i ) i i ; i i ]
Perturbation attack Attacker modifies the query to get appropriate response Reward Hacking Reinforcement Learning (RL) systems act in unintended ways because of mismatch between stat
reward and true reward
Poisoning attack Attacker contaminates the training phase of ML systems to get
intended result Side Effects RL system disrupts the environment as it tries to attain its goal
Model Inversion Attacker recovers the secret features used in the model by through Distributional shifts The system is tested in one kind of environment, but is unable to adapt to changes in other kinds
careful queries environment
Membership Attacker can infer if a given data record was part of the model's Natural Adversarial Without attacker perturbations, the ML system fails owing to hard negative mining
Inference training dataset or not
Examples
Model Stealing Attacker is able to recover the model through carefully-crafted ) ) ) . . .
queries Common Corruption The system is not able to handle common corruptions and perturbations such as tilting, zooming
noisy images.
Reprogramming ML Repurpose the ML system to perform an activity it was not
system programmed for Incomplete Testing The ML system is not tested in the realistic conditions that it is meant to operate in.
Adversarial Example Attacker brings adversarial examples into physical domain to
in Physical Domain subvertML system e.g: 3d printing special eyewear to fool facial

source: https://docs.microsoft.com/en-us/security/engineering/failure-modes-in-machine-learning
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Intentionally-motivated failures Unintended failures

Attack Overview . .
Failure Overview
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Perturbation attack Attacker modifies the query to get appropriate response Reward Hacking Reinforcement Learning (RL) systems act in unintended ways because of mismatch between stat
reward and true reward
Poisoning attack Attacker contaminates the training phase of ML systems to get
intended result Side Effects RL system disrupts the environment as it tries to attain its goal
Model Inversion Attacker recovers the secret features used in the model by through Distributional shifts The system is tested in one kind of environment, but is unable to adapt to changes in other kinds
careful queries environment
Membership Attacker can infer if a given data record was part of the model's Natural Adversarial Without attacker perturbations, the ML system fails owing to hard negative mining
Inference training dataset or not
Examples
Model Stealing Attacker is able to recover the model through carefully-crafted ) ) ) . . .
queries Common Corruption The system is not able to handle common corruptions and perturbations such as tilting, zooming
noisy images.
Reprogramming ML Repurpose the ML system to perform an activity it was not
system programmed for Incomplete Testing The ML system is not tested in the realistic conditions that it is meant to operate in.
Adversarial Example Attacker brings adversarial examples into physical domain to
in Physical Domain subvertML system e.g: 3d printing special eyewear to fool facial

source: https://docs.microsoft.com/en-us/security/engineering/failure-modes-in-machine-learning
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Adversarial Examples - Summary

e Remember the bigger picture (many failures)

e Hard to attack (need to find AE in box) \E

e Harder to defend (need to Eval U ate very hard to find AE in box)




US-Mexico Border

lures)

e Harder to defend (need to Eval U a.te very hard to find AE in box)

source: The Fence Documentary



Adversarial Examples - Summary

e Remember the bigger picture (many failures)

e Hard to attack (need to find AE in box) \E

e Harder to defend (need to Eval U ate very hard to find AE in box)

e Coming next: Robustness beyond security



Outline

See Adversarial Example

Discuss what they are

How to attack: FGSM, PGD

How to defend: Adversarial training (AT)
Optimization view of AT

Black-Box attacks (transferability)

Summary (“security”)

Surprising “advantages” of AE (beyond security)
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Follow V.L(f(x) ) of the Model
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Follow V.L(f(x),y) of Robust Model
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“‘Robustness May Be at Odds with Accuracy” (Tsipras et al. 2018)
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“‘Robustness May Be at Odds with Accuracy” (Tsipras et al. 2018)



Image synthesis with Robust Classifer

cliff anemone fish

mashed potato coffee pot

==

Santurkar et al. 2019, “Image Synthesis with a Single (Robust) Classifier”



Image synthesis with Robust Classifer

Santurkar et al. 2019, “Image Synthesis with a Single (Robust) Classifier”



Image synthesis with Robust Classifer

sketch — turtle

Santurkar et al. 2019, “Image Synthesis with a Single (Robust) Classifier”



Style Transfer with Robust Model
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Nakano, "A Discussion of 'Adversarial Examples Are Not Bugs, They Are Features': Adversarially Robust
Neural Style Transfer"”, Distill, 2019.
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What have we learnt today?

Saw a few Adversarial Examples
Discussed what they are

How to attack: FGSM, PGD

How to “defend”: Adversarial training (AT)
Optimization view of AT

Black-Box attacks (transferability)
Security-wise summary

Now!

Projects

Surprising Visual properties of robust models (beyond security)
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