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Szegedy et al. 2014, “Intriguing properties of neural networks”
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Perturbation Attack
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f
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L(f(x+δ),y) δ = +∇xL

want to fool classifier → maximize L w.r.t x



Follow the gradient w.r.t x (the input image)

X (original):       89.7% pig



Follow the gradient w.r.t x (the input image)

X (original):       89.7% pig X + ∇xL:         68.6% hay



Follow the gradient w.r.t x (the input image)

X (original):       89.7% pig X + ∇xL:         68.6% hay

X + 10×∇xL:  44.7% pig



Follow the gradient w.r.t x (the input image)

X (original):       89.7% pig X + ∇xL:         68.6% hay

X + 100×∇xL: 44.8% fireguardX + 10×∇xL:  44.7% pig



Follow the gradient w.r.t x (the input image)

X (original):       89.7% pig X + ∇xL:         68.6% hay

X + 100×∇xL: 44.8% fireguard

X + 1000×∇xL

X + 10×∇xL:  44.7% pig



Follow the gradient w.r.t x (the input image)

X (original):       89.7% pig X + ∇xL:         68.6% hay

X + 100×∇xL: 44.8% fireguard

X + 1000×∇xL: 99.9% spotlight

X + 10×∇xL:  44.7% pig



Follow the gradient w.r.t x (the input image)
Did we generate an adversarial example?

X (original):       89.7% pig X + ∇xL:         68.6% hay

X + 100×∇xL: 44.8% fireguardX + 10×∇xL:  44.7% pig



Follow the gradient w.r.t x (the input image)
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Need small δ…
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We want small noise

What is small δ?

small δ &  δ = f(∇xL)  ?

+ =

X δ

‖δ‖∞ < ε

0.1 -0.1

0.1 0.05 -0.02

-0.09

10−5

‖δ‖∞ ≤ 0.1
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δ = ε • sgn(∇xL)

Fast Gradient Sign Method
a.k.a FGSM   (Goodfellow et al. 2015)
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FGSM - MNIST

Simple, Fast and Vicious

Test Error:     98.7%

FGSM (ε=0.1) Error: 40.0% 

What can we do to defend?

source: https://adversarial-ml-tutorial.org/
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Did we solve the problem?

Test Accuracy FGSM Accuracy

Standard Training 98.7% 40.7%

Adv. Training (FGSM) 97.2% 94.0%
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“The Game” of AT:

Defender: defend in box

Attacker: find AE in box

Adversarial Training as a min-max optimization problem:

Adversarial Loss

Towards Deep Learning Models Resistant to Adversarial Attacks, Madry et al. 2018
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Perturbation Attack (better illustrations)

AEs lurking (waiting to be found)

source: Atzmon et al. 2019, “Controlling Neural Level Sets”

2D alert!
(Things get complicated in high dimension, e.g. images…)



FGSM PGD

PGD (Projected Gradient Descent)

ε-ε

ε

-ε
ε-ε

ε

-ε



FGSM PGD

PGD (a.k.a Iterated-GSM)

ε-ε

ε

-ε
ε-ε

ε

-ε



FGSM PGD

PGD (a.k.a Iterated-GSM)

ε-ε

ε

-ε
ε-ε

ε

-ε



FGSM PGD

PGD (a.k.a Iterated-GSM)

ε-ε

ε

-ε
ε-ε

ε

-ε



FGSM PGD

PGD (a.k.a Iterated-GSM)

ε

ε-ε

ε

-ε
ε-ε

ε

-ε



FGSM PGD

PGD (a.k.a Iterated-GSM)

ε

ε-ε

ε

-ε
ε-ε

ε

-ε



FGSM PGD

PGD (a.k.a Iterated-GSM)

ε

ε
ε-ε

ε

-ε
ε-ε

ε

-ε



FGSM PGD

PGD (a.k.a Iterated-GSM)

ε

ε
ε-ε

ε

-ε
ε-ε

ε

-ε



FGSM PGD

PGD (a.k.a Iterated-GSM)

ε

ε
ε-ε

ε

-ε
ε-ε

ε

-ε



PGD (a.k.a Iterated-GSM)

Attack Model:

S = {δ | ‖δ‖∞ < ε}



Attack Model:

S = {δ | ‖δ‖∞ < ε}

FGSM:

PGD (a.k.a Iterated-GSM)



Attack Model:

S = {δ | ‖δ‖∞ < ε}

FGSM:

PGD (a.k.a Iterated-GSM)

+=



Attack Model:

S = {δ | ‖δ‖∞ < ε}

PGD (a.k.a. Iterative-GSM):

PGD (a.k.a Iterated-GSM)



Attack Model:

S = {δ | ‖δ‖∞ < ε}

PGD:

PGD (a.k.a Iterated-GSM)



Attack Model:

S = {δ | ‖δ‖∞ < ε}

PGD:

PGD (a.k.a Iterated-GSM)



Attack Model:

S = {δ | ‖δ‖∞ < ε}

PGD:

PGD (a.k.a Iterated-GSM)

+=



Attack Model:

S = {δ | ‖δ‖∞ < ε}

PGD:

PGD (a.k.a Iterated-GSM)

+=



Attack Model:

S = {δ | ‖δ‖∞ < ε}

PGD:

PGD (a.k.a Iterated-GSM)

n = 2

n = 5

n = 4

n = 3

𝑋𝑛
𝑎𝑑𝑣 𝛿𝑛

n = 1



Attack Model:

S = {δ | ‖δ‖∞ < ε}

PGD:

PGD (a.k.a Iterated-GSM)

n = 5

n = 4

n = 3

𝑋𝑛
𝑎𝑑𝑣 𝛿𝑛

n = 1

n = 2

n = 4

n = 3



Attack Model:

S = {δ | ‖δ‖∞ < ε}

PGD:

PGD (a.k.a Iterated-GSM)

n = 5

n = 4

n = 3

𝑋𝑛
𝑎𝑑𝑣 𝛿𝑛

n = 1

n = 2

n = 4

n = 3



Attack Model:

S = {δ | ‖δ‖∞ < ε}

PGD:

PGD (a.k.a Iterated-GSM)

𝑋𝑛
𝑎𝑑𝑣 𝛿𝑛

n = 1

n = 2

n = 4

n = 3



Attack Model:

S = {δ | ‖δ‖∞ < ε}

PGD:

PGD (a.k.a Iterated-GSM)

𝑋𝑛
𝑎𝑑𝑣 𝛿𝑛

n = 1

n = 2

n = 4

n = 3



Attack Model:

S = {δ | ‖δ‖∞ < ε}

PGD:

PGD (a.k.a Iterated-GSM)

𝑋𝑛
𝑎𝑑𝑣 𝛿𝑛

n = 1

n = 2

n = 4

n = 3



Adversarial Training

Test Accuracy FGSM Accuracy

Standard Training 98.7% 40.7%

Adv. Training (FGSM) 97.2% 94.0%



Adversarial Training

Test Accuracy FGSM Accuracy PGD Accuracy

Standard Training 98.7% 40.7% 7.3%

Adv. Training (FGSM) 97.2% 94.0% 90.0%



Adversarial Training

Test Accuracy FGSM Accuracy PGD Accuracy

Standard Training 98.7% 40.7% 7.3%

Adv. Training (FGSM) 97.2% 94.0% 90.0%

What can we do to defend?



Adversarial Training

Test Accuracy FGSM Accuracy PGD Accuracy

Standard Training 98.7% 40.7% 7.3%

Adv. Training (FGSM) 97.2% 94.0% 90.0%

Adv. Training (PGD) 98.0% 96.1% 95.9%



Adversarial Training

Test Accuracy FGSM Accuracy PGD Accuracy

Standard Training 98.7% 40.7% 7.3%

Adv. Training (FGSM) 97.2% 94.0% 90.0%

Adv. Training (PGD) 98.0% 96.1% 95.9%

Did we solve the problem?
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Adversarial Training – Other Datasets

CIFAR10 (ResNet50) Test PGD (𝜖 =
8

255
)

Standard Training 95.25% 0.00%

Adv. Training (PGD 8/255) 87.03% 53.29%

ImageNet (ResNet50) Test PGD (𝜖 =
8

255
)

Standard Training 76.13% 0.01%

source: https://github.com/MadryLab/robustness



Adversarial Training – Other Datasets

CIFAR10 (ResNet50) Test PGD (𝜖 =
8

255
)

Standard Training 95.25% 0.00%

Adv. Training (PGD 8/255) 87.03% 53.29%

ImageNet (ResNet50) Test PGD (𝜖 =
8

255
)

Standard Training 76.13% 0.01%

Adv. Training (PGD 8/255) 47.91% 19.52%

source: https://github.com/MadryLab/robustness
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Outline

● See Adversarial Example

● Discuss what they are

● How to attack: FGSM, PGD

● How to defend: Adversarial training (AT)

● Optimization view of AT

● Next: Black-Box attacks

● Learn about properties and advantages
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fθ2
L“Black-Box”

Black-Box Attacks

gθ L
∇xL

source: https://twitter.com/will_it_breakyt
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Black-Box Attacks - Transferability

● Test set Accuracy

● Accuracy under FGSM attack

Liu et al. 2016, “Delving into Transferable Adversarial Examples and Black-box Attacks” (Tab.20)

Black-Box
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Black-Box Attacks - Transferability

● Possible reason:

source: Ian Goodfellow on "Adversarial Examples and Adversarial Training," 2017-05-30, CS231n, Stanford University

Adversarial Examples comes from the data:

Ilyas et al. 2019, “Adversarial Examples Are Not Bugs, They Are Features”



Outline

● See Adversarial Example

● Discuss what they are

● How to attack: FGSM, PGD

● How to defend: Adversarial training (AT)

● Optimization view of AT

● Black-Box attacks (transferability)

● Next: Summary

● Surprising “advantages” of AE
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Adversarial Examples – The Bigger Picture

cat ?

airliner

spotlight (26.7%)

???

fireguard

Inputs that fool a computer, but not a human

test+noise

“noisy” image noise

model

failure

out-of-distribution

True Classification

Human

Perception

Machine

“Perception”



The Bigger Picture: Failure modes in machine learning

source: https://docs.microsoft.com/en-us/security/engineering/failure-modes-in-machine-learning
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Intentionally-motivated failures Unintended failures

source: https://docs.microsoft.com/en-us/security/engineering/failure-modes-in-machine-learning
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Adversarial Examples - Summary

● Remember the bigger picture (many failures)

● Hard to attack (need to find AE in box)

● Harder to defend (need to Evaluate: very hard to find AE in box)

source: The Fence Documentary

US-Mexico Border



Adversarial Examples - Summary

● Remember the bigger picture (many failures)

● Hard to attack (need to find AE in box)

● Harder to defend (need to Evaluate: very hard to find AE in box)

● Coming next: Robustness beyond security



Outline

● See Adversarial Example

● Discuss what they are

● How to attack: FGSM, PGD

● How to defend: Adversarial training (AT)

● Optimization view of AT

● Black-Box attacks (transferability)

● Summary (“security”)

● Surprising “advantages” of AE (beyond security)
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Follow the gradient w.r.t x (the input image)

X (original):       89.7% pig X + ∇xL:         68.6% hay

X + 100×∇xL: 44.8% fireguardX + 10×∇xL:  44.7% pig

Follow ∇xL(f(x),y) of the Model
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“Robustness May Be at Odds with Accuracy” (Tsipras et al. 2018)

Follow ∇xL(f(x),y) of Robust Model
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Santurkar et al. 2019, “Image Synthesis with a Single (Robust) Classifier”
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Image synthesis with Robust Classifer

Santurkar et al. 2019, “Image Synthesis with a Single (Robust) Classifier”



Style Transfer with Robust Model

Content

Style

Nakano, "A Discussion of 'Adversarial Examples Are Not Bugs, They Are Features': Adversarially Robust 

Neural Style Transfer", Distill, 2019.



What have we learnt today?

● Saw a few Adversarial Examples

● Discussed what they are

● How to attack: FGSM, PGD

● How to “defend”: Adversarial training (AT)

● Optimization view of AT

● Black-Box attacks (transferability)

● Security-wise summary

● Surprising Visual properties of robust models (beyond security)
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What have we learnt today?

● Saw a few Adversarial Examples

● Discussed what they are

● How to attack: FGSM, PGD

● How to “defend”: Adversarial training (AT)

● Optimization view of AT

● Black-Box attacks (transferability)

● Security-wise summary

● Surprising Visual properties of robust models (beyond security)

Now!

Projects
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