

12/12/2021

Introduction To Adversarial Examples

Niv Haim

Weizmann Institute DL4CV Course Winter 2023 (20224182)

x 0.02

98.6% pig

99.0% airliner

98.6% pig

99.0% airliner

98.6% pig

99.0% airliner

Biggio et al. 2013, "Evasion attacks against machine learning at test time" Szegedy et al. 2014, "Intriguing properties of neural networks" Goodfellow et al. 2015, "Explaining and Harnessing Adversarial Examples"

• Originally coined by Szegedy et al., 2013:

"we find that applying an imperceptible non-random perturbation to a test image, it is possible to arbitrarily change the network's prediction.

• Originally coined by Szegedy et al., 2013:

"we find that applying an imperceptible non-random perturbation to a test image, it is possible to arbitrarily change the network's prediction.

• Originally coined by Szegedy et al., 2013:

"we find that applying an <i>imperceptible non-random perturbation to a test image, it is possible to arbitrarily change the network's prediction.

Perturbation Attack

• Originally coined by Szegedy et al., 2013:

"we find that applying an <i>imperceptible non-random perturbation to a test image, it is possible to arbitrarily change the network's prediction.

Today we will:

• See Adversarial Example

Today we will:

- See Adversarial Example
- Discuss what they are
- Learn how to generate them
- Learn how to defend against them

Today we will:

- See Adversarial Example
- Discuss what they are
- Learn how to generate them
- Learn how to (maybe) defend against them
- Learn about properties and advantages

Today we will:

- See Adversarial Example
- Discuss what they are
- Learn how to generate them
- Learn how to (maybe) defend against them
- Learn about properties and advantages

Image by Simon from Pixabay

purpose of loss: How "well" we classify

Image by Simon from Pixabay

most common loss – CrossEntropy:

$$L(f_{\theta}(x), y) = -\log\left(\frac{e^{f_{\theta}(x)y}}{\sum_{j} e^{f_{\theta}(x)j}}\right)$$

 $L(f_{\theta}(x),y)$

Image by Simon from Pixabay

most common loss – CrossEntropy:

$$L\left[f_{\theta}(x) | y\right] = -\log\left(\frac{f_{\theta}(x)_{y}}{\sum_{j} f_{\theta}(x)_{j}}\right)$$

Image by Simon from Pixabay

most common loss – CrossEntropy:

$$L(f_{\theta}(x), y) = -\log\left(\frac{e^{f_{\theta}(x y)}}{\sum_{j} e^{f_{\theta}(x)_{j}}}\right)$$

Image by Simon from Pixabay

minimize loss:

Image by Simon from Pixabay

minimize loss:

$L(f_{\theta}(x),y) \longrightarrow - \nabla_{\theta}L$

89.7% pig

C

89.7% pig

want to fool classifier

89.7% pig

want to fool classifier by changing $\boldsymbol{\delta}$

89.7% pig

want to fool classifier \rightarrow d measures "badness" by changing δ

$d(f(x+\delta),y)$

89.7% pig

want to fool classifier \rightarrow used L to maximize "wellness"

 $L(f(x+\delta),y)$

89.7% pig

want to fool classifier \rightarrow used L to maximize "wellness"

$L(f(x+\delta),y)$

89.7% pig

want to fool classifier → used L to maximize "wellness" maximize "badness"?

$L(f(x+\delta),y)$

89.7% pig

want to fool classifier \rightarrow maximize L

$L(f(x+\delta),y)$

89.7% pig

want to fool classifier \rightarrow maximize L w.r.t δ

$L(f(x+\delta),y)$

89.7% pig

want to fool classifier \rightarrow maximize L w.r.t δ

$$L(f(x+\delta),y) \rightarrow \nabla_{\delta}L$$

89.7% pig

want to fool classifier \rightarrow maximize L w.r.t δ

$$L(f(x+\delta),y) \rightarrow +\nabla_{\delta}L$$

89.7% pig

want to fool classifier \rightarrow maximize L w.r.t x

$$L(f(x+\delta),y) \rightarrow +\nabla_x L$$

(just a technicality..)

89.7% pig

want to fool classifier \rightarrow maximize L w.r.t x

89.7% pig

89.7% pig

want to fool classifier \rightarrow maximize L w.r.t x

(just a technicality..)

89.7% pig

want to fool classifier \rightarrow maximize L w.r.t x

$L(f(x+\delta),y) \rightarrow +\nabla_{x}L$

89.7% pig

want to fool classifier \rightarrow maximize L w.r.t x

$L(f(x+\delta),y) \rightarrow \delta = +\nabla_x L$

X (original): 89.7% pig

X (original): 89.7% pig

X + ∇xL: 68.6% hay

X (original): 89.7% pig

X + 10×∇xL: 44.7% pig

X + ∇xL: 68.6% hay

X (original): 89.7% pig

68.6% hay $X + \nabla_x L$:

X + 100×∇xL: 44.8% fireguard

X + 10×∇xL: 44.7% pig

X + 10×∇xL: 44.7% pig

X + 100×∇xL: 44.8% fireguard

X + 10×∇xL: 44.7% pig

X + 100×∇xL: 44.8% fireguard

Did we generate an adversarial example?

X (original): 89.7% pig

X + ∇xL: 68.6% hay

X + 10×∇xL: 44.7% pig

Did we generate an adversarial example?

X + 10× ∇_x L: 44.7% pig X + 100× ∇_x L: 44.8% fireguard

Did we generate an adversarial example? Need small $\delta...$

X + 10× ∇_x L: 44.7% pig X + 100× ∇_x L: 44.8% fireguard

Χ

What is small δ ?

What is small δ ?

$\|\delta\| < \epsilon$

What is small δ ?

$\|\delta\|_{\infty} < \epsilon$

"Enforcing $\|\nabla_{\mathbf{x}} L\|_{\infty} < \epsilon$ ":

"Enforcing $\|\nabla_x L\|_{\infty} < \epsilon$ ":

 $\delta =$

 $\nabla_{\mathbf{x}} L$

"Enforcing $\|\nabla_x L\|_{\infty} < \epsilon$ ":

12	-0.1	432	
	10^{-5}		
		-555	
		0	

 $\delta =$

 $\nabla_{\mathbf{x}} \mathbf{L}$

"Enforcing $\|\nabla_x L\|_{\infty} < \varepsilon$ ":

 $\delta =$

"Enforcing $\|\nabla_x L\|_{\infty} < \varepsilon$ ":

3	-8	3	
	3		
		-8	
		0	

$\delta = \varepsilon \cdot \operatorname{sgn}(\nabla_{x}L)$

"Enforcing $\|\nabla_{\mathbf{x}} L\|_{\infty} < \varepsilon$ ":

$\delta = \varepsilon \cdot \operatorname{sgn}(\nabla_{x}L)$

"Enforcing $\|\nabla_{\mathbf{x}} L\|_{\infty} < \varepsilon$ ":

 $\delta = \varepsilon \cdot \operatorname{sgn}(\nabla_{x}L)$

Fast Gradient Sign Method a.k.a FGSM (Goodfellow et al. 2015)
"Enforcing $\|\nabla_{\mathbf{x}} L\|_{\infty} < \varepsilon$ ":

$$\delta = \varepsilon \cdot \operatorname{sgn}(\nabla_{x}L)$$

Fast Gradient Sign Method a.k.a FGSM (Goodfellow et al. 2015)

 $\bigstar \delta = \max_{\|\delta\|_{\infty} \le \epsilon} L\left(f(x+\delta), y\right) \approx \max_{\|\delta\|_{\infty} \le \epsilon} L\left(f(x), y\right) + \nabla_{x} L \delta$

FGSM – example on MNIST

FGSM – example on MNIST

Classifier

model = nn.Sequential(
nn.Conv2d(1, 16, 4, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(16, 32, 4, stride=2, padding=1),
nn.ReLU(),
Flatten(),
nn.Linear(32 * 7 * 7, 100),
nn.ReLU(),
nn.Linear(100, 10)

Test Samples

$$\mathbf{X}^{\mathrm{adv}} = \mathbf{X} + \epsilon \operatorname{sgn}(\nabla_X L(\mathbf{X}, y_{\mathrm{true}}))$$

Test Samples

$$\mathbf{X}^{\text{adv}} = \mathbf{X} + \epsilon \, \operatorname{sgn}(\nabla_X L(\mathbf{X}, y_{\text{true}}))$$

Test Samples

 $\mathbf{X}^{\mathrm{adv}} = \mathbf{X} + \epsilon \, \mathrm{sgn}(\nabla_X L(\mathbf{X}, y_{\mathrm{true}}))$

Test Error: 98.7% **FGSM** Error: ?

Pred: 3

Pred: 4

Pred: 3

Pred: 7

Pred: 8

Pred: 6

Pred: 7

Pred: 3 Pred: 4

Pred: 6

Test Error: 98.7% FGSM Error: 40.0%

Pred: 7

Pred: 3

Pred: 4

Pred: 3

Pred: 9

Pred: 8

17

Pred: 3

Pred: 3

Pred: 4

Pred: 4

Pred: 3

Pred: 9

Pred: 8

17

Pred: 3 Pred

Pred: 4

Pred: 3

Pred: 9

Pred: 8

イク

Pred: 0

Pred: 4

source: https://adversarial-ml-tutorial.org/

- Simple, Fast and Vicious
- Test Error:98.7%
- FGSM (ε=0.1) Error: 40.0%

source: https://adversarial-ml-tutorial.org/

Pred: 2

Pred: 7

Pred: 7

Pred: 4

Pred: 9 Pred: 2

Pred: 4

Pred: 8 Pred: 3

Pred: 4

Pred: 6

Pred: 9

Pred: 4

Pred: 7

Pred: 2

Pred: 7

Pred: 0

Pred: 6

Pred: 6

Pred: 9

Pred: 4

Pred: 2

Pred: 7

Pred: 7

Pred: 2

Pred: 6

Pred: 0

Pred: 4

Pred: 8 Pred: 3

I want you to be 4!

Pred: 7

Pred: 7

Pred: 6

Pred: 9

Pred: 2

Pred: 0

I want you to be 3!

Pred: 4

1 7

Pred: 8

Pred: 3 Pred: 4

Pred: 7

Pred: 4

Pred: 2

Pred: 0

I want you to be 7!

Pred: 4

Pred: 3

Pred: 9

Pred: 3

Pred: 4

Pred: 8

0)

0 $\operatorname{FGSM}(x, f_{\theta_1})$

7496

4969FGSM (x, f_{θ_2})

Adversarial Training - MNIST

	Test Accuracy
Standard Training	98.7%

Adversarial Training - MNIST

	Test Accuracy	FGSM Accuracy
Standard Training	98.7%	40.7%

Adversarial Training - MNIST

	Test Accuracy	FGSM Accuracy
Standard Training	98.7%	40.7%
Adv. Training (FGSM)	97.2%	94.0%
Adversarial Training - MNIST

	Test Accuracy	FGSM Accuracy
Standard Training	98.7%	40.7%
Adv. Training (FGSM)	97.2%	94.0%

Adversarial Training - MNIST

	Test Accuracy	FGSM Accuracy
Standard Training	98.7%	40.7%
Adv. Training (FGSM)	97.2%	94.0%

Did we solve the problem?

Outline

- See Adversarial Example
- Discuss what they are
- How to attack: FGSM
- How to defend: Adversarial training (AT)
 - Next: a better picture of AT (pictorially/optimization)
- Learn about properties and advantages

Outline

- See Adversarial Example
- Discuss what they are
- How to attack: FGSM
- How to defend: Adversarial training (AT)
 - Next: a better picture of AT (pictorially/optimization)
- Learn about properties and advantages

$\mathbf{X}^{\mathrm{adv}} = \mathbf{X} + \epsilon \operatorname{sgn}(\nabla_X L(\mathbf{X}, y_{\mathrm{true}}))$

$\mathbf{X}^{\mathrm{adv}} = \mathbf{X} + \epsilon \operatorname{sgn}(\nabla_X L(\mathbf{X}, y_{\mathrm{true}}))$

dot should have been lying on one of the corners..

Mental image alert! ("experimental" mental images could be horribly misleading)

Mental image alert! ("experimental" mental images could be horribly misleading)

Mental image alert! ("experimental" mental images could be horribly misleading)

source: Atzmon et al. 2019, "Controlling Neural Level Sets"

source: Atzmon et al. 2019, "Controlling Neural Level Sets"
Perturbation Attack (better illustrations)

source: Atzmon et al. 2019, "Controlling Neural Level Sets"

Perturbation Attack (better illustrations)

source: Atzmon et al. 2019, "Controlling Neural Level Sets"

PGD (Projected Gradient Descent)

PGD (a.k.a Iterated-GSM)

PGD (a.k.a Iterated-GSM)

 $\min_{\theta} \mathbb{E}_{(x,y)\sim D}[\max_{\delta\in S} L(f_{\theta}(x+\delta), y)]$

Attack Model:

 $S = \{\delta \mid \|\delta\|_{\infty} < \epsilon\}$

Attack Model:

$$S = \left\{ \delta \mid \|\delta\|_{\infty} < \epsilon \right\}$$

FGSM:

$$\boldsymbol{X}^{adv} = \boldsymbol{X} + \epsilon \operatorname{sign} (\nabla_X L(\boldsymbol{X}, y_{true}))$$

Attack Model:

$$S = \{\delta \mid \|\delta\|_{\infty} < \epsilon\}$$

FGSM:

Attack Model:

 $S = \{\delta \mid \|\delta\|_{\infty} < \varepsilon\}$ <u>PGD (a.k.a. Iterative-GSM):</u>

Attack Model:

$$S = \left\{ \delta \mid \|\delta\|_{\infty} < \epsilon \right\}$$

PGD:

$$\boldsymbol{X}_{0}^{adv}=\boldsymbol{X},$$

Attack Model:

$$S = \left\{ \delta \mid \|\delta\|_{\infty} < \epsilon \right\}$$

- PGD:
 - $\boldsymbol{X}_{0}^{adv}=\boldsymbol{X},$
- $\boldsymbol{X}_{N+1}^{adv} = \boldsymbol{X}_{N}^{adv} + \alpha \operatorname{sign} \left(\nabla_{X} L(\boldsymbol{X}_{N}^{adv}, y_{true}) \right)$

Attack Model:

$$S = \left\{ \delta \mid \|\delta\|_{\infty} < \epsilon \right\}$$

PGD:

$$X_0^{adv} = X$$

Attack Model:

$$S = \left\{ \delta \mid \|\delta\|_{\infty} < \epsilon \right\}$$

PGD:

$$X_0^{adv} = X$$

$$X_{N+1}^{adv} = X_N^{adv} + \alpha \operatorname{sign}(\nabla_X L(X_N^{adv}, y_{true}))$$
$$= +$$

PGD (a.k.a Iterated-GSM)

$\frac{\text{Attack Model:}}{S = \{\delta \mid \|\delta\|_{\infty} < \epsilon\}}$

$$\boldsymbol{X}_{0}^{adv}=\boldsymbol{X},$$

 $\boldsymbol{X}_{N+1}^{adv} = \boldsymbol{X}_{N}^{adv} + \alpha \operatorname{sign} \left(\nabla_{X} L(\boldsymbol{X}_{N}^{adv}, y_{true}) \right)$

$$\begin{array}{c} X_n^{adv} \quad \delta_n \\ n = 1 \quad \mathbf{4} \end{array}$$

PGD (a.k.a Iterated-GSM)

Attack Model: $S = \{ \delta \mid \|\delta\|_{\infty} < \varepsilon \}$ PGD: $\boldsymbol{X}_{0}^{adv}=\boldsymbol{X},$ $oldsymbol{X}_{N+1}^{adv} =$ $\boldsymbol{X}_{N}^{adv} + \alpha \operatorname{sign} \left(\nabla_{X} L(\boldsymbol{X}_{N}^{adv}, y_{true}) \right)$

$$X_n^{adv} \delta_n$$
$$n = 1 \mathbf{\Psi}$$

PGD (a.k.a Iterated-GSM)

Attack Model: $\mathbf{S} = \{ \boldsymbol{\delta} \mid \| \boldsymbol{\delta} \|_{\infty} < \boldsymbol{\varepsilon} \}$ PGD: $\boldsymbol{X}_{0}^{adv}=\boldsymbol{X},$ $oldsymbol{X}_{N+1}^{adv} =$ $\boldsymbol{X}_{N}^{adv} + \alpha \operatorname{sign} \left(\nabla_{X} L(\boldsymbol{X}_{N}^{adv}, y_{true}) \right)$

$$X_n^{adv} \delta_n$$

n = 1 **4**
n = 2 **4**

PGD (a.k.a Iterated-GSM)

Attack Model: $\mathbf{S} = \{ \boldsymbol{\delta} \mid \| \boldsymbol{\delta} \|_{\infty} < \boldsymbol{\varepsilon} \}$ PGD: $\boldsymbol{X}_{0}^{adv}=\boldsymbol{X},$ $oldsymbol{X}_{N+1}^{adv} =$ $\boldsymbol{X}_{N}^{adv} + \alpha \operatorname{sign} \left(\nabla_{X} L(\boldsymbol{X}_{N}^{adv}, y_{true}) \right)$

$$X_n^{adv} \delta_n$$

$$n = 1 \mathbf{4}$$

$$n = 2 \mathbf{4}$$

$$n = 3 \mathbf{4}$$

n = 4

PGD (a.k.a Iterated-GSM)

Attack Model: $\mathbf{S} = \{ \boldsymbol{\delta} \mid \| \boldsymbol{\delta} \|_{\infty} < \boldsymbol{\varepsilon} \}$ PGD: $\boldsymbol{X}_{0}^{adv}=\boldsymbol{X},$ $oldsymbol{X}_{N+1}^{adv} =$ $\boldsymbol{X}_{N}^{adv} + \alpha \operatorname{sign} \left(\nabla_{X} L(\boldsymbol{X}_{N}^{adv}, y_{true}) \right)$

$$X_n^{adv} \delta_n$$

$$n = 1 \mathbf{4}$$

$$n = 2 \mathbf{4}$$

$$n = 3 \mathbf{4}$$

 $\Pi = 4$

.

PGD (a.k.a Iterated-GSM)

Attack Model:
$$X_n^{adv}$$
 δ_n $S = \{\delta \mid \|\delta\|_{\infty} < \epsilon\}$ $n = 1$ H PGD: $n = 2$ H $X_0^{adv} = X,$ $n = 2$ H $X_{n+1}^{adv} = Clip_{X,\epsilon}\{X_n^{adv} + \alpha \operatorname{sign}(\nabla_{X}(X_n^{adv}, y_{true}))\})$ $n = 3$ H $n = 4$ H

	Test Accuracy	FGSM Accuracy
Standard Training	98.7%	40.7%
Adv. Training (FGSM)	97.2%	94.0%

	Test Accuracy	FGSM Accuracy	PGD Accuracy
Standard Training	98.7%	40.7%	7.3%
Adv. Training (FGSM)	97.2%	94.0%	90.0%

	Test Accuracy	FGSM Accuracy	PGD Accuracy
Standard Training	98.7%	40.7%	7.3%
Adv. Training (FGSM)	97.2%	94.0%	90.0%

What can we do to defend?

	Test Accuracy	FGSM Accuracy	PGD Accuracy
Standard Training	98.7%	40.7%	7.3%
Adv. Training (FGSM)	97.2%	94.0%	90.0%
Adv. Training (PGD)	98.0%	96.1%	95.9%

6

		Test Accuracy	FGSM Accuracy	PGD Accuracy
Standard Trainir	ng	98.7%	40.7%	7.3%
	GSM)	97.2%	94.0%	90.0%
Star Bar	GD)	98.0%	96.1%	95.9%

Did we solve the problem?

CIFAR10 (ResNet50)	Test	PGD ($\epsilon = \frac{8}{255}$)
Standard Training	95.25%	0.00%

CIFAR10 (ResNet50)	Test	PGD ($\epsilon = \frac{8}{255}$)
Standard Training	95.25%	0.00%
Adv. Training (PGD 8/255)	87.03%	53.29%

CIFAR10 (ResNet50)	Test	PGD ($\epsilon = \frac{8}{255}$)
Standard Training	95.25%	0.00%
Adv. Training (PGD 8/255)	87.03%	53.29%

ImageNet (ResNet50)	Test	PGD ($\epsilon = \frac{8}{255}$)
Standard Training	76.13%	0.01%

CIFAR10 (ResNet50)	Test	PGD ($\epsilon = \frac{8}{255}$)
Standard Training	95.25%	0.00%
Adv. Training (PGD 8/255)	87.03%	53.29%

ImageNet (ResNet50)	Test	PGD ($\epsilon = \frac{8}{255}$)
Standard Training	76.13%	0.01%
Adv. Training (PGD 8/255)	47.91%	19.52%

Outline

- See Adversarial Example
- Discuss what they are
- How to attack: FGSM, PGD
- How to defend: Adversarial training (AT)
- Optimization view of AT

Outline

- See Adversarial Example
- Discuss what they are
- How to attack: FGSM, PGD
- How to defend: Adversarial training (AT)
- Optimization view of AT

White Box Attacks
Outline

- See Adversarial Example
- Discuss what they are
- How to attack: FGSM, PGD
- How to defend: Adversarial training (AT)
- Optimization view of AT
- Next: Black-Box attacks
- Learn about properties and advantages

Black-Box Attacks

source: https://twitter.com/will_it_breakyt

• Test set Accuracy

	ResNet-50	ResNet-101	ResNet-152	GoogLeNet	VGG-16
Top-5 accuracy	91.0%	91.7%	92.1%	89.0%	88.3%

• Test set Accuracy

	ResNet-50	ResNet-101	ResNet-152	GoogLeNet	VGG-16
Top-5 accuracy	91.0%	91.7%	92.1%	89.0%	88.3%

• Accuracy under FGSM attack

	ResNet-152
ResNet-152	32%

• Test set Accuracy

	ResNet-50	ResNet-101	ResNet-152	GoogLeNet	VGG-16
Top-5 accuracy	91.0%	91.7%	92.1%	89.0%	88.3%

• Accuracy under FGSM attack

	ResNet-152	ResNet-101	ResNet-50	VGG-16	GoogLeNet
ResNet-152	32%	55%	53%	47%	36%

• Test set Accuracy

	ResNet-50	ResNet-101	ResNet-152	GoogLeNet	VGG-16
Top-5 accuracy	91.0%	91.7%	92.1%	89.0%	88.3%

• Accuracy under FGSM attack

	ResNet-152	ResNet-101	ResNet-50	VGG-16	GoogLeNet	
ResNet-152	32%					
ResNet-101		33%				White-Box
ResNet-50			29%			FGSM
VGG-16				5%		
GoogLeNet					11%	

• Test set Accuracy

	ResNet-50	ResNet-101	ResNet-152	GoogLeNet	VGG-16
Top-5 accuracy	91.0%	91.7%	92.1%	89.0%	88.3%

• Accuracy under FGSM attack

	ResNet-152	ResNet-101	ResNet-50	VGG-16	GoogLeNet
ResNet-152		55%	53%	47%	36%
ResNet-101	56%		50%	46%	40%
ResNet-50	59%	53%		47%	38%
VGG-16	42%	39%	41%		21%
GoogLeNet	71%	74%	62%	53%	

Black-Box

• Possible reason:

• Possible reason:

source: Ian Goodfellow on "Adversarial Examples and Adversarial Training," 2017-05-30, CS231n, Stanford University

• Possible reason:

Ilyas et al. 2019, "Adversarial Examples Are Not Bugs, They Are Features"

source: Ian Goodfellow on "Adversarial Examples and Adversarial Training," 2017-05-30, CS231n, Stanford University

fellow 201

• Possible reason:

fellow 201

Adversarial Examples comes from the data:

Ilyas et al. 2019, "Adversarial Examples Are Not Bugs, They Are Features"

source: Ian Goodfellow on "Adversarial Examples and Adversarial Training," 2017-05-30, CS231n, Stanford University

Outline

- See Adversarial Example
- Discuss what they are
- How to attack: FGSM, PGD
- How to defend: Adversarial training (AT)
- Optimization view of AT
- Black-Box attacks (transferability)
- Next: Summary
- Surprising "advantages" of AE

Adversarial Examples – The Bigger Picture

airliner

airliner

airliner

airliner

The Bigger Picture: Failure modes in machine learning

source: https://docs.microsoft.com/en-us/security/engineering/failure-modes-in-machine-learning

The Bigger Picture: Failure modes in machine learning

Intentionally-motivated failures

source: https://docs.microsoft.com/en-us/security/engineering/failure-modes-in-machine-learning

The Bigger Picture: Failure modes in machine learning

Intentionally-motivated failures

Unintended failures

source: https://docs.microsoft.com/en-us/security/engineering/failure-modes-in-machine-learning
The Bigger Picture: Failure modes in machine learning

Intentionally-motivated failures

Attack Overview Perturbation attack Attacker modifies the query to get appropriate response Attacker contaminates the training phase of ML systems to get Poisoning attack intended result Model Inversion Attacker recovers the secret features used in the model by through careful queries Membership Attacker can infer if a given data record was part of the model's Inference training dataset or not Attacker is able to recover the model through carefully-crafted Model Stealing aueries Reprogramming ML Repurpose the ML system to perform an activity it was not system programmed for Adversarial Example Attacker brings adversarial examples into physical domain to subvertML system e.g: 3d printing special eyewear to fool facial

in Physical Domain

Unintended failures

source: https://docs.microsoft.com/en-us/security/engineering/failure-modes-in-machine-learning

The Bigger Picture: Failure modes in machine learning

Intentionally-motivated failures

Unintended failures

Attack	Overview	Failure	Overview
Perturbation attack	Attacker modifies the query to get appropriate response	Reward Hacking	Reinforcement Learning (RL) systems act in unintended ways because of mismatch between stat- reward and true reward
Poisoning attack	Attacker contaminates the training phase of ML systems to get intended result	Side Effects	RL system disrupts the environment as it tries to attain its goal
Model Inversion	Attacker recovers the secret features used in the model by through careful queries	Distributional shifts	The system is tested in one kind of environment, but is unable to adapt to changes in other kinds environment
Membership Inference	Attacker can infer if a given data record was part of the model's training dataset or not	Natural Adversarial Examples	Without attacker perturbations, the ML system fails owing to hard negative mining
Model Stealing	Attacker is able to recover the model through carefully-crafted queries	Common Corruption	The system is not able to handle common corruptions and perturbations such as tilting, zooming noisy images.
Reprogramming ML system	Repurpose the ML system to perform an activity it was not programmed for	Incomplete Testing	The ML system is not tested in the realistic conditions that it is meant to operate in.
Adversarial Example	Attacker brings adversarial examples into physical domain to		

in Physical Domain subvertML system e.g: 3d printing special eyewear to fool facial

source: https://docs.microsoft.com/en-us/security/engineering/failure-modes-in-machine-learning

The Bigger Picture: Failure modes in machine learning

Intentionally-motivated failures

Unintended failures

Attack	Overview	Failure	Overview
Perturbation attack	Attacker modifies the query to get appropriate response	Reward Hacking	Reinforcement Learning (RL) systems act in unintended ways because of mismatch between state reward and true reward
Poisoning attack	Attacker contaminates the training phase of ML systems to get intended result	Side Effects	RL system disrupts the environment as it tries to attain its goal
Model Inversion	Attacker recovers the secret features used in the model by through careful queries	Distributional shifts	The system is tested in one kind of environment, but is unable to adapt to changes in other kinds environment
Membership Inference	Attacker can infer if a given data record was part of the model's training dataset or not	Natural Adversarial Examples	Without attacker perturbations, the ML system fails owing to hard negative mining
Model Stealing	Attacker is able to recover the model through carefully-crafted queries	Common Corruption	The system is not able to handle common corruptions and perturbations such as tilting, zooming noisy images.
Reprogramming ML system	Repurpose the ML system to perform an activity it was not programmed for	Incomplete Testing	The ML system is not tested in the realistic conditions that it is meant to operate in.
Adversarial Example	Attacker brings adversarial examples into physical domain to		

in Physical Domain subvertML system e.g: 3d printing special eyewear to fool facial

source: https://docs.microsoft.com/en-us/security/engineering/failure-modes-in-machine-learning

- Remember the bigger picture (many failures)
- Hard to attack (need to find AE in box)

- Remember the bigger picture (many failures)
- Hard to attack (need to find AE in box)

• Harder to defend

- Remember the bigger picture (many failures)
- Hard to attack (need to find AE in box)

Harder to defend (need to prove: no AEs in <u>all</u> box)

- Remember the bigger picture (many failures)
- Hard to attack (need to find AE in box)

• Harder to defend (need to **Prove**: no AEs in <u>all</u> box)

- Remember the bigger picture (many failures)
- Hard to attack (need to find AE in box)

• Harder to defend (need to **Prove**: very hard to find AE in box)

- Remember the bigger picture (many failures)
- Hard to attack (need to find AE in box)

• Harder to defend (need to Evaluate: very hard to find AE in box)

• Harder to defend (need to Evaluate: very hard to find AE in box)

source: The Fence Documentary

- Remember the bigger picture (many failures)
- Hard to attack (need to find AE in box)

• Harder to defend (need to Evaluate: very hard to find AE in box)

• Coming next: Robustness beyond security

Outline

- See Adversarial Example
- Discuss what they are
- How to attack: FGSM, PGD
- How to defend: Adversarial training (AT)
- Optimization view of AT
- Black-Box attacks (transferability)
- Summary ("security")
- Surprising "advantages" of AE (beyond security)

Follow the gradient w.r.t x (the input image)

X (original): 89.7% pig

X + 10×∇xL: 44.7% pig

68.6% hay $X + \nabla_x L$:

X + 100×∇xL: 44.8% fireguard

Follow the gradient w.r.t x (the input image)

X (original): 89.7% pig

X + 10×∇xL: 44.7% pig

X + 100×∇xL: 44.8% fireguard

X (original): 89.7% pig

X + ∇xL: 68.6% hay

X + 10×∇xL: 44.7% pig

X + 100×∇xL: 44.8% fireguard

Follow ∇_xL(f(x),y) of Robust Model

Original

primate

bird

Original

primate

Standard

dog

bird

Original

primate

bird

Standard

dog

"Robustness May Be at Odds with Accuracy" (Tsipras et al. 2018)

 ℓ_{∞} -trained

Standard

dog

 ℓ_{∞} -trained

bird

Standard

 ℓ_{∞} -trained

dog

dog

Standard

 ℓ_{∞} -trained

dog

dog

 l_2 -trained

dog

cat

Image synthesis with Robust Classifer

Santurkar et al. 2019, "Image Synthesis with a Single (Robust) Classifier"

Image synthesis with Robust Classifer

Santurkar et al. 2019, "Image Synthesis with a Single (Robust) Classifier"

Image synthesis with Robust Classifer

Santurkar et al. 2019, "Image Synthesis with a Single (Robust) Classifier"

Style Transfer with Robust Model

Nakano, "A Discussion of 'Adversarial Examples Are Not Bugs, They Are Features': Adversarially Robust Neural Style Transfer", Distill, 2019.

What have we learnt today?

- Saw a few Adversarial Examples
- Discussed what they are
- How to attack: FGSM, PGD
- How to "defend": Adversarial training (AT)
- Optimization view of AT
- Black-Box attacks (transferability)
- Security-wise summary
- Surprising Visual properties of robust models (beyond security)

What have we learnt today?

- Saw a few Adversarial Examples
- Discussed what they are
- How to attack: FGSM, PGD
- How to "defend": Adversarial training (AT)
- Optimization view of AT
- Black-Box attacks (transferability)
- Security-wise summary
- Surprising Visual properties of robust models (beyond security)

Monday: **Detection and**

Segmentation

What have we learnt today?

- Saw a few Adversarial Examples
- Discussed what they are
- How to attack: FGSM, PGD
- How to "defend": Adversarial training (AT)
- Optimization view of AT
- Black-Box attacks (transferability)
- Security-wise summary
- Surprising Visual properties of robust models (beyond security)

