1. Find the next few terms of each of the following sequences. For each, describe the recursive rule for the sequence in words. Then, let $x_{n}$ denote the $n$th term of the sequence, and write an equation describing the recursive rule for the sequence.
a. $3,7,11,15,19,23,27, \ldots$
b. $2,5,11,23,47,95, \ldots$
c. $1,3,4,7,11,18,29, \ldots$
d. $1,3,6,10,15,21, \ldots$
2. Write the first ten terms of each sequence, given the recursive rule for the sequence. (Recall: when describing recursive rules in this way, we write " $x_{n}$ " to stand for the $n t h$ term of the sequence.)
a. $\quad x_{n}=x_{n-1}+2 x_{n-2}$, with $x_{1}=1$ and $x_{2}=1$.
(Hint: this sequence starts with $1,1,3,5,11, \ldots$ )
b. $\quad x_{n}=3 x_{n-1}-1$, with $x_{1}=1$
(Hint: this sequence starts with $1,2,5,14, \ldots$ )
c. $\quad x_{n}=3 x_{n-1}-1$, with $x_{1}=3$
(Hint: this sequence starts with $3,8,23, \ldots$
d. $\quad x_{n}=x_{n-1}+x_{n-2}+x_{n-3}$, with $x_{1}, x_{2}$, and $x_{3}$ all equal to 1 .
(Hint: this sequence starts with $1,1,1,3,5, \ldots$ )

In class, we worked out (or will work out) an example in which we find the number of $n$-beat rhythms that consist entirely of quarter notes and half notes. The following problems are similar to that example.
3. Let $b_{n}$ stand for the number of $n$-beat rhythms we can write under the rule that every note is either a quarter note (one beat) or a dotted half note (3 beats).
a. Write out all possible rhythms for $n=1,2,3,4,5$ and 6 . Use your results to find the values of $b_{1}, b_{2}, b_{3}, b_{4}, b_{5}$ and $b_{6}$. (Hint: none of these should be a very large number.)
b. See if you can figure out, and explain, a recursive rule for the sequence of numbers $b_{n}$. (Hint: the reasoning for this one will be similar to the reasoning for the example from class in which we restricted ourselves to only quarter notes and half notes.)
4. Let $a_{n}$ stand for the number of n-beat melodies we can write with the following rules:

- every note is a quarter note (one beat) or a half note (two beats), and
- every note is a C or a D.
a. Find all possible 1-beat, 2-beat and 3-beat melodies under these rules. (This will give you the values of $a_{1}, a_{2}$, and $a_{3}$.)
b. Based on your results from part (a), figure out the recursive rule for the sequence of terms $a_{n}-$ that is, a rule which will let you predict the values of $a_{4}, a_{5}$, etc. without actually having to find and count all of the possible 4-beat and 5-beat melodies.
c. Once you've found a recursive rule in part (b), explain why it works.

