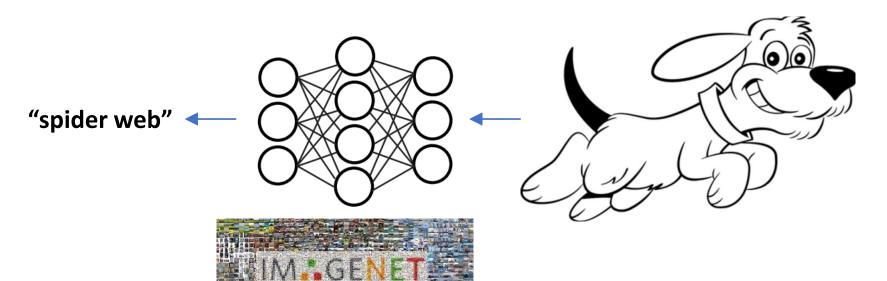
Lecture 9: Self-Supervision

December 20, 2021

Tali Dekel

Supervised Learning

- 1. It's impossible to label everything in the world
- 2. Not enough labeled data
- 3. More intelligent models wouldn't need massive labeled data



Self-Supervised Learning (SSL)

No human labels; supervisory signals are automatically computed from data

Direct self-supervised methods

Train directly for the task in hand:

Examples you've seen:

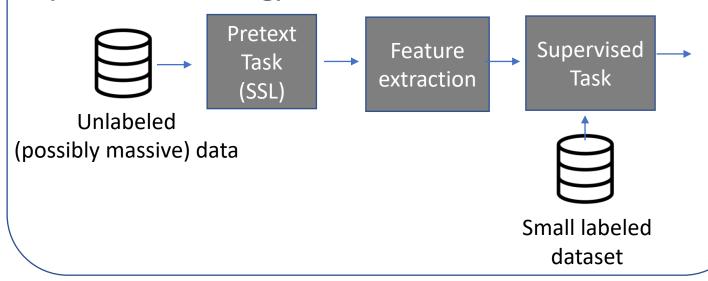
- Generative Advaserial Networks (GANs)
- ZSSR

More advanced signals:

 Apply computer vision methdologies to extract supervion

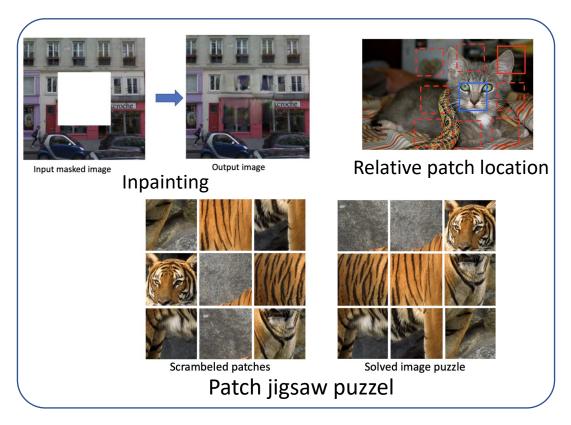
In-direct self-supervised methods

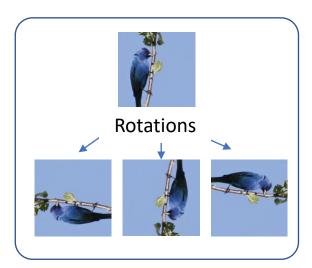
Solve a proxy, pretext task → extract learned features → finetune on a target supervised task (Transfer Learning)



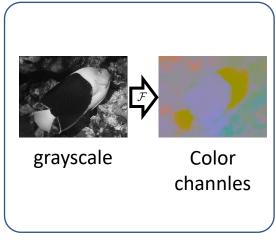
Self-Supervised Learning

Solve a proxy, pretext task (large dataset) \rightarrow extract learned features \rightarrow finetune on a target supervised task (smaller dataset)





Geometric transformations



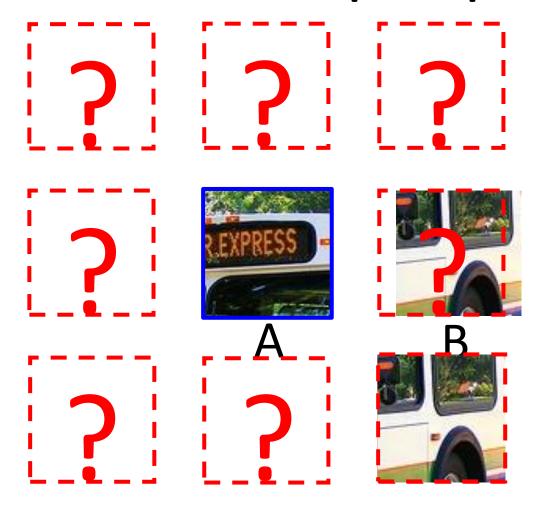
Color transformations

Context as Supervision

[Collobert & Weston 2008; Word2Vec by Mikolov et al. 2013]

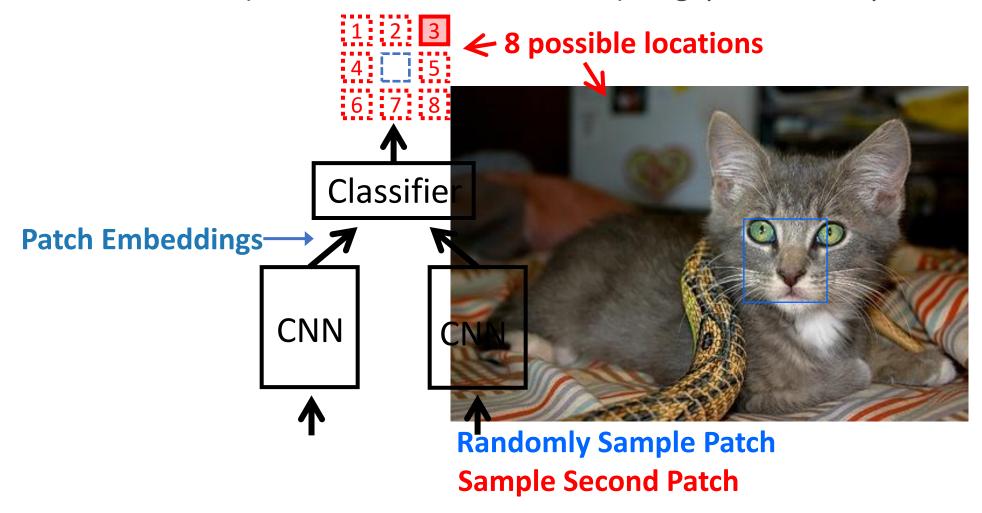
house, where the professor lived without his wife and child; or so he said jokingly sometimes: "Here's where I live. My house." His daughter often added, without resentment, for the visitor's information, "It started out to be for me, but it's really his." And she might reach in to bring forth an inch-high table lamp with fluted shade, or a blue dish the size of her little fingernail, marked "Kitty" and half full of eternal rice but she was sure to replace these, after they had been admired, pretty near exactly where they had been. The little house was very orderly, and just big enough for all it contained, though to some tastes the bric-à-brac in the parlor might seem excessive. The daughter's preference was for the store-bought gimmicks and appliances, the toasters and carpet sweepers of Lilliput, but she knew that most adult visitors would

Context as Supervision: relative patch position

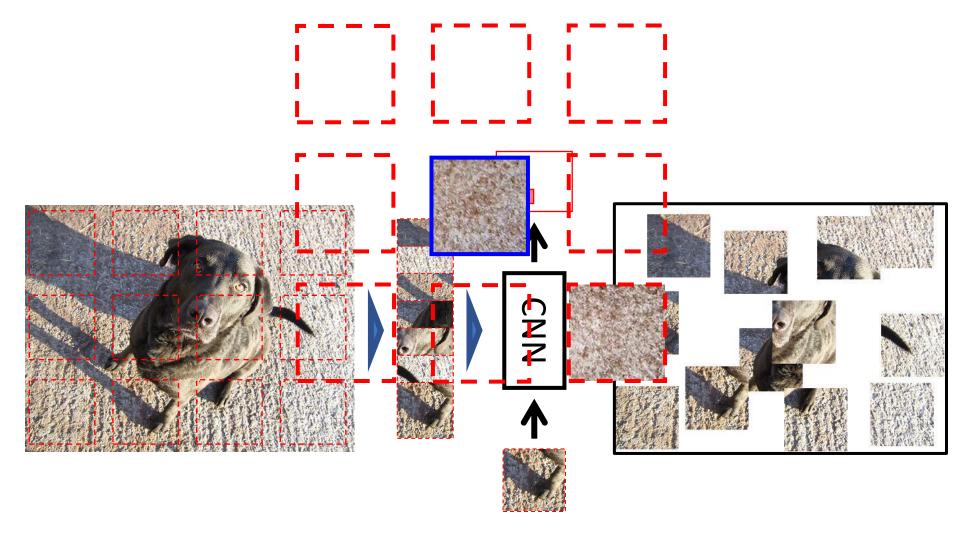


Context as Supervision: relative patch position

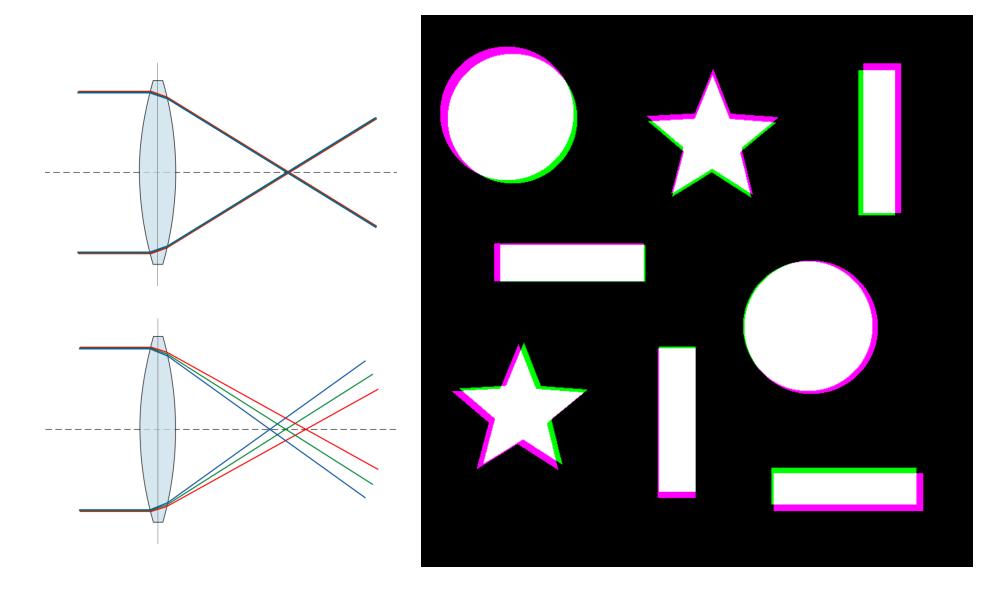
Avoid "cheats" (low-level "trivial solutions") → gaps between patches + random jitter



Avoid Network's "cheats"

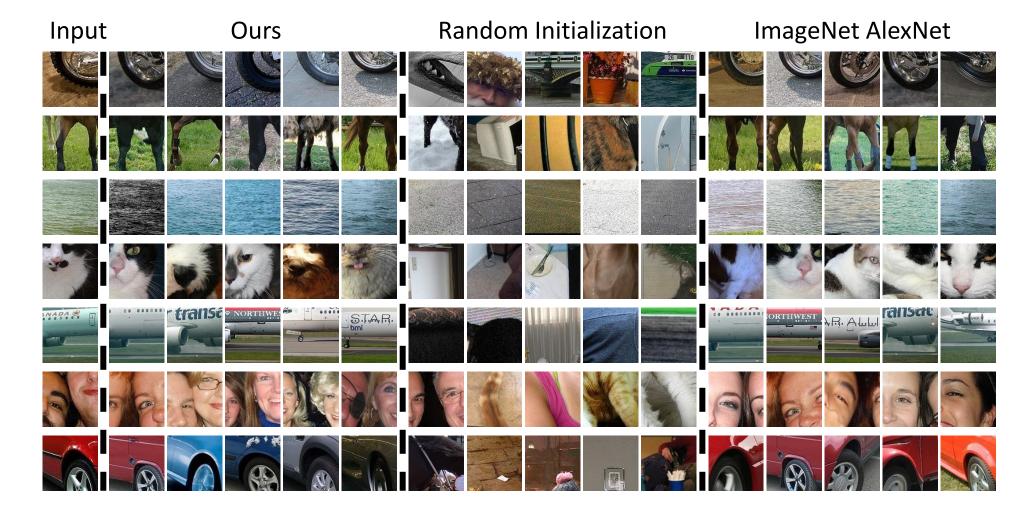


Avoid Network's "cheats" (Chromatic Aberration)



Networks are lazy **Avoid Network's "cheats"** CNN

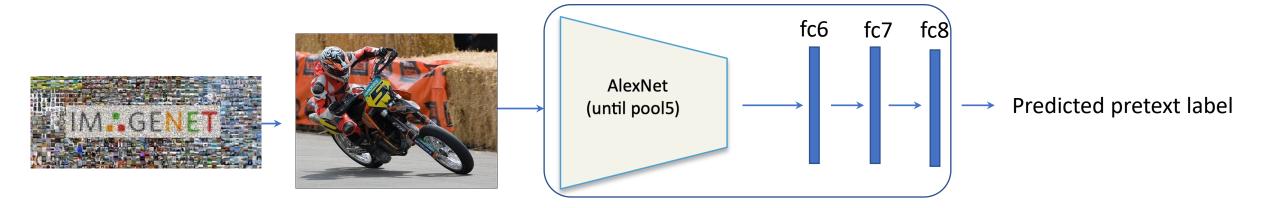
Learned Patch Embedding



Self-supervised Transfer Learning

Pre-training on classification and detection tasks for PASCAL VOC 2007 dataset

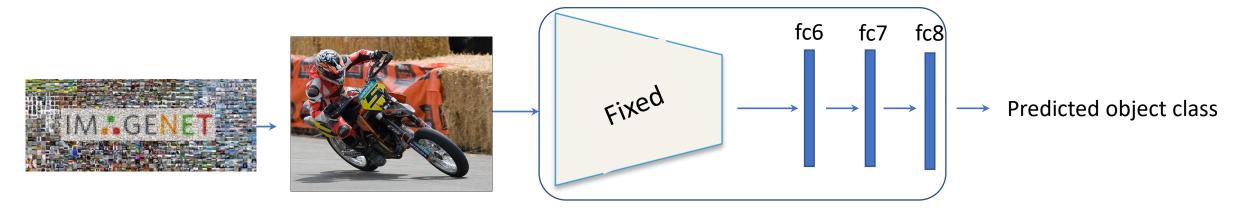
1. Pre-train on pretext task (w/o labels) on ImageNet:



Self-supervised Transfer Learning

Pre-training on classification and detection tasks for PASCAL VOC 2007 dataset

1. Pre-train on pretext task (w/o labels) on ImageNet:



- 2. Train for classification on PASCAL VOC 2007
 - Fine-tune the entire model
 - Freeze Conv layers, train fully connected layers

Self-Supervised Transfer Learning

Pre-training on classification and detection tasks for PASCAL VOC 2007 dataset

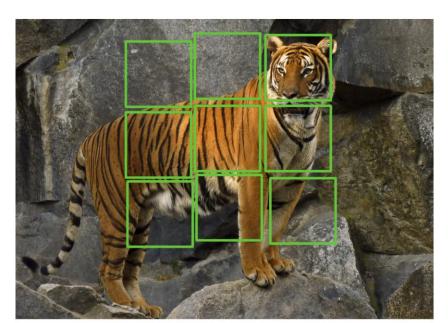
		fication nAP)	Detection (%mAP)	Segmentation (%mIoU)	
Trained layers	fc6-8	all	all	all	- 6
ImageNet labels	78.9	79.9	56.8	48.0	Supervised Pro on Image
Random Random rescaled Krähenbühl et al. (2015)	39.2	53.3 56.6	43.4 45.6	19.8 32.6	No pre-traini
Egomotion (Agrawal et al., 2015) Context Encoders (Pathak et al., 2016b) Tracking (Wang & Gupta, 2015)	31.0 34.6 55.6	54.2 56.5 63.1	43.9 44.5 47.4	29.7	_
Context (Doersch et al., 2015)	55.1	65.3	51.1		Pre-training wi

re-training geNet

ning

vith relative patch location

Context as Supervision: solving Jigsaw puzzles



Input Image

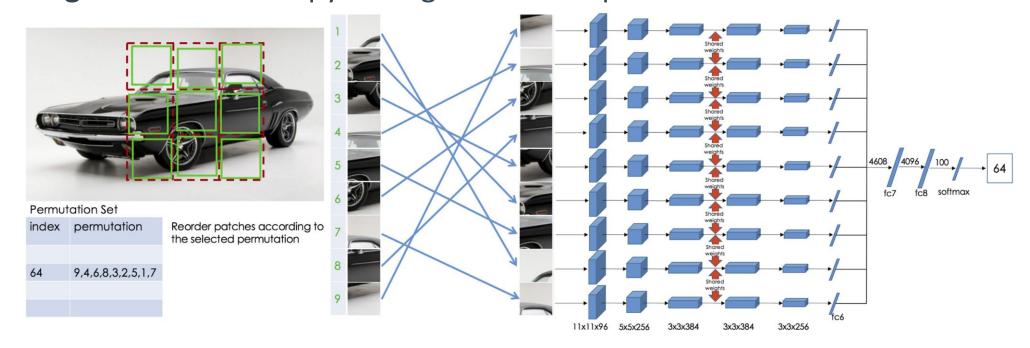
Scrambeled patches

Solved image puzzle

9! = 362,880

Context as Supervision: solving Jigsaw puzzles

- Training data: 9 tiles, shuffled by a random ordering, sampled from set of permutations
- Output: permutation index (1 hot vector)
- Training loss: cross entropy w.r.t. ground truth permutation index



Context as Supervision: solving Jigsaw puzzles

$$9! = 362,880$$

The solution space is too big \rightarrow select a permutation set

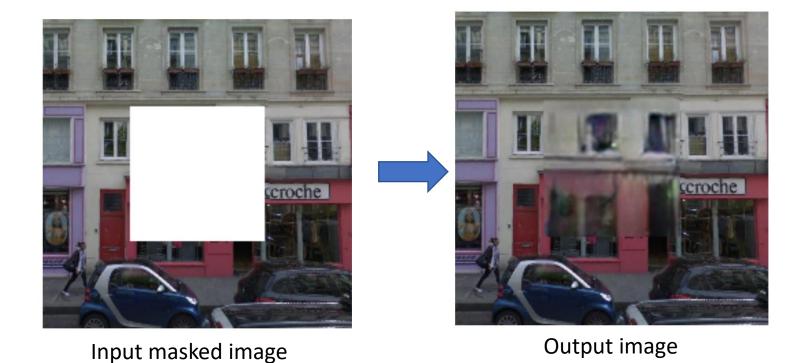
- Permutation set size
- Distance between permutations

Table 4: Ablation study on the impact of the permutation set.

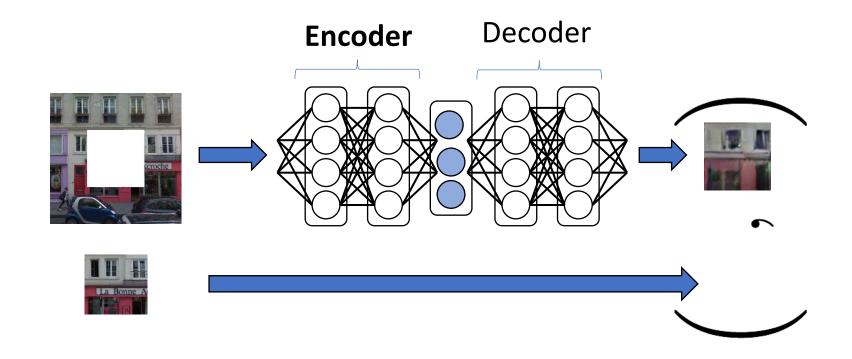
Number of permutations	${f Average\ hamming}\ {f distance}$	Minimum hamming distance	Jigsaw task accuracy	Detection performance	
1000	8.00	2	71	53.2	
1000	6.35	2	62	51.3	
1000	3.99	2	54	50.2	
100	8.08	2	88	52.6	
95	8.08	3	90	52.4	
85	8.07	4	91	52.7	
71	8.07	5	92	52.8	
35	8.13	6	94	52.6	
10	8.57	7	97	49.2	
7	8.95	8	98	49.6	
6	9	9	99	49.7	

Image Content as Supervision: Image Inpainting

Pretext task: fill in the missing region



Pretext Task: Image Inpainting



$$\mathcal{L} = \lambda_{rec} \mathcal{L}_{rec}$$

Reconstruction L₂ loss ensures "correctness'

Pretext Task: Image Inpainting

$$\mathcal{L} = \lambda_{rec} \mathcal{L}_{rec} + \lambda_{adv} \mathcal{L}_{adv}.$$

Reconstruction L₂ loss ensures "correctness"

Adversarial Loss ensures "realness"

$$\mathcal{L}_{rec}(x) = \|\hat{M} \odot (x - F((1 - \hat{M}) \odot x))\|_{2}^{2},$$

$$\mathcal{L}_{adv} = \max_{D} \quad \mathbb{E}_{x \in \mathcal{X}}[\log(D(x)) + \log(1 - D(F((1 - \hat{M}) \odot x)))],$$

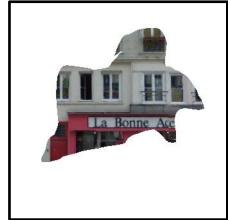
(c) Context Encoder (L2 loss)

(d) Context Encoder (L2 + Adversarial loss)

Again... dealing with network's "cheats"

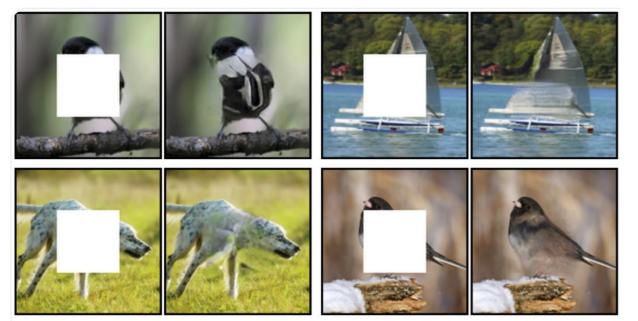


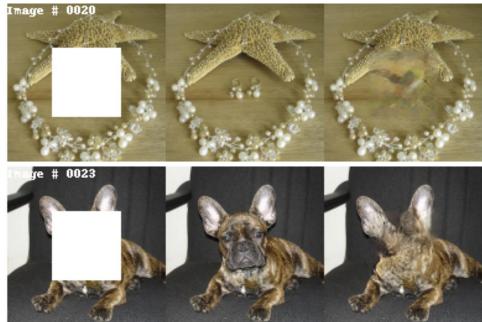
(b) Random Blocks



(c) Random Shapes

Pretext Task: Image Inpainting





Context as Supervision: transfer learning

Table 1: Results on PASCAL VOC 2007 Detection and Classification. The results of the other methods are taken from Pathak et al. [30].

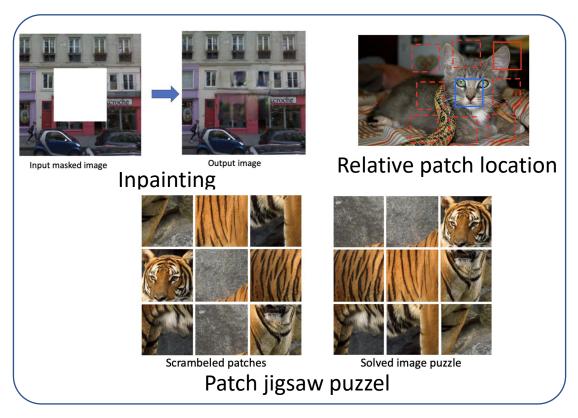
Method	Pretraining time	Supervision	Classification	Detection	Segmentation
Krizhevsky et al. [25]	$3 \mathrm{\ days}$	1000 class labels	78.2%	$\boldsymbol{56.8\%}$	48.0%
Relative Patch location	4 weeks	context	55.3%	46.6%	-
Context encoders	14 hours	$\operatorname{context}$	56.5%	44.5%	29.7%
Jigsaw puzzles	$2.5 \mathrm{\ days}$	context	67.6 %	$\boldsymbol{53.2\%}$	$\boldsymbol{37.6\%}$

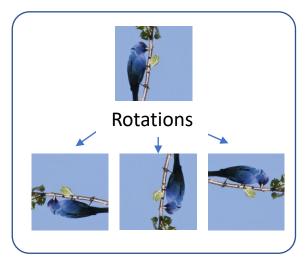
A good self-supervised task is neither simple nor ambiguous.

Noroozi et. al, Unsupervised learning of visual representations by solving jigsaw puzzles, ECCV 2016

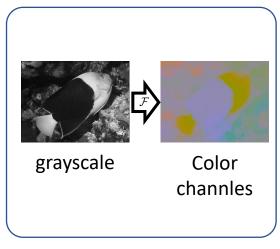
Self-Supervised Learning

Solve a proxy, pretext task (large dataset) \rightarrow extract learned features \rightarrow finetune on a target supervised task (smaller dataset)





Geometric transformations



Color transformations

Pretext task: predicting image rotations

To recognize rotations, the model has to learn concepts of the objects

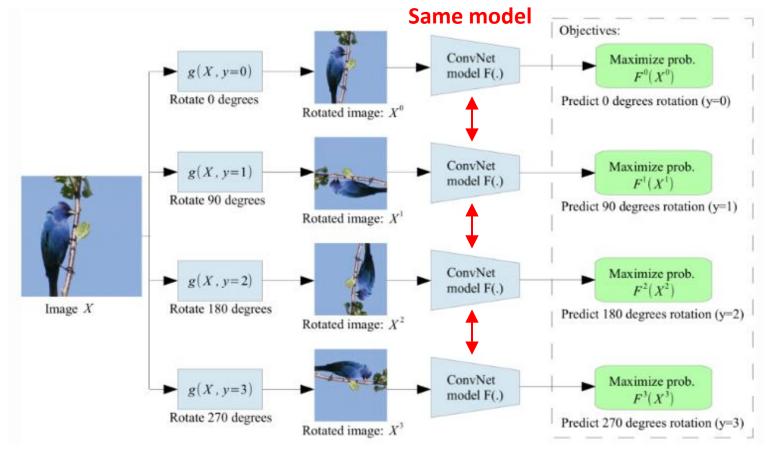
 180° rotation

 0° rotation

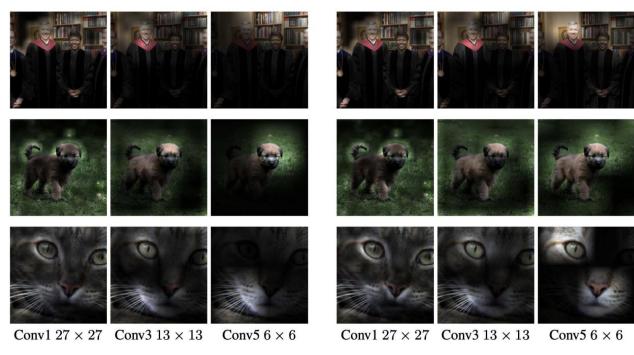
 270° rotation

Pretext task: predicting image rotations

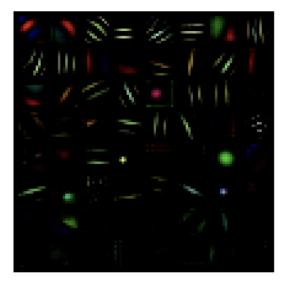
- Training data: images rotated by: 0°, 90°, 180°, and 270° (via flip and transpose operations)
- Task: predict which rotation is applied; 4-way classification task
- Training loss: assign a "label" to each rotation; apply cross entropy loss w.r.t. ground truth



Predicting image rotations vs. supervised classification



(a) Attention maps of supervised model

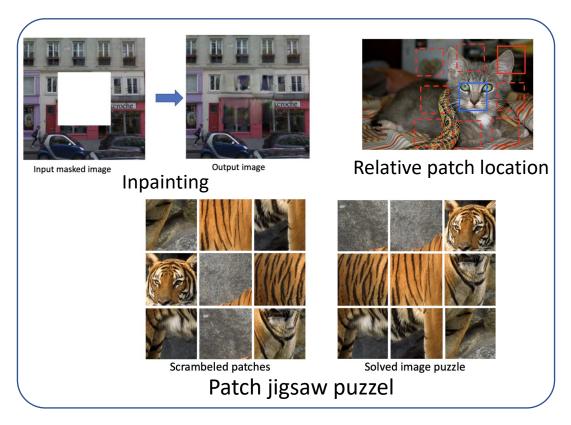


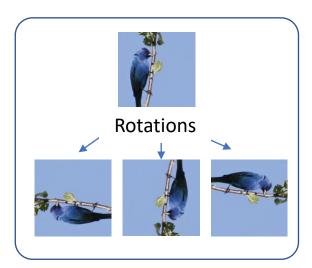
(a) Supervised

(b) Self-supervised to recognize rotations

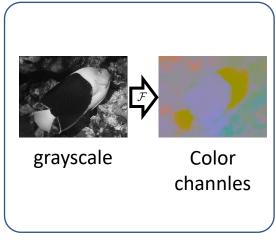
Self-Supervised Learning

Solve a proxy, pretext task (large dataset) \rightarrow extract learned features \rightarrow finetune on a target supervised task (smaller dataset)





Geometric transformations

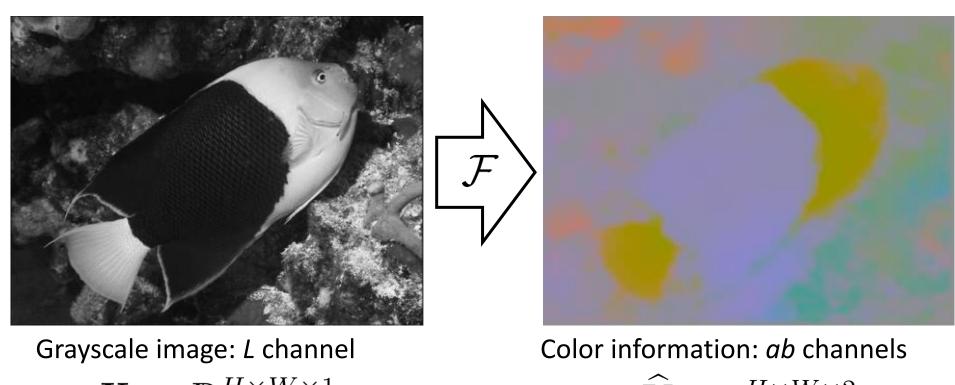


Color transformations

Pretext task: colorization

- Training data: grayscale images (and their ground truth color images)
- Task: generate a plausible color image

Pretext task: colorization



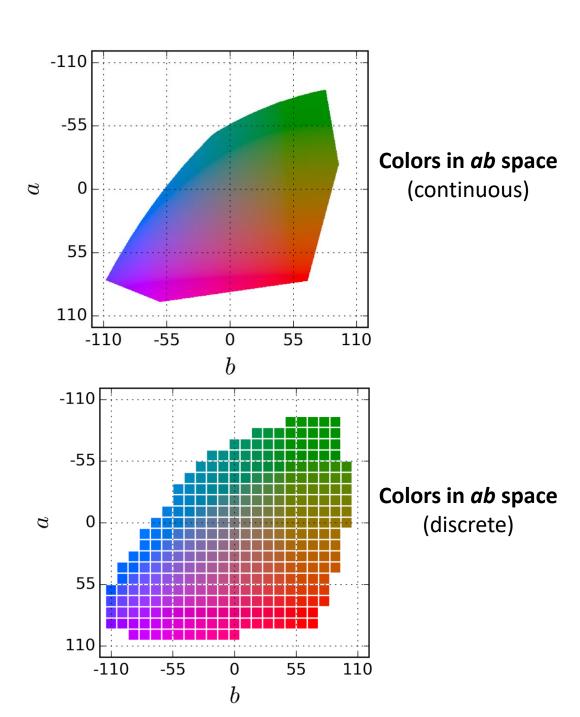
$$\mathbf{X} \in \mathbb{R}^{H \times W \times 1}$$

$$\widehat{\mathbf{Y}} \in \mathbb{R}^{H \times W \times 2}$$

Loss Function

Regression with L2 loss inadequate

$$L_2(\widehat{\mathbf{Y}}, \mathbf{Y}) = \frac{1}{2} \sum_{h,w} ||\mathbf{Y}_{h,w} - \widehat{\mathbf{Y}}_{h,w}||_2^2$$



Transfer Learning

Pre-training on classification and detection tasks for PASCAL VOC 2007 dataset

		fication nAP)	Detection (%mAP)	Segmentation (%mIoU)	
Trained layers	fc6-8	all	all	all	- C
ImageNet labels	78.9	79.9	56.8	48.0	Supervised Pre-training on ImageNet
Random Random rescaled Krähenbühl et al. (2015)	39.2	53.3 56.6	43.4 45.6	19.8 32.6	No pre-training
Egomotion (Agrawal et al., 2015) Context Encoders (Pathak et al., 2016b) Tracking (Wang & Gupta, 2015) Context (Doersch et al., 2015)	31.0 34.6 55.6 55.1	54.2 56.5 63.1 65.3	43.9 44.5 47.4 51.1	29.7	
Colorization (Zhang et al., 2016a)	61.5	65.6	46.9	35.6	Colorization
BIGAN (Donahue et al., 2016) Jigsaw Puzzles (Noroozi & Favaro, 2016) NAT (Bojanowski & Joulin, 2017)	52.3 - 56.7	60.1 67.6 65.3	46.9 53.2 49.4	34.9 37.6	
Split-Brain (Zhang et al., 2016b) ColorProxy (Larsson et al., 2017)	63.0	67.1 65.9	46.7	36.0 38.4	Colorization
Counting (Noroozi et al., 2017)	-	67.7	51.4	36.6	
(Ours) RotNet	70.87	72.97	54.4	39.1	Pre-training with rotation prediction

Self-Supervised Learning via Specific Pretext Task

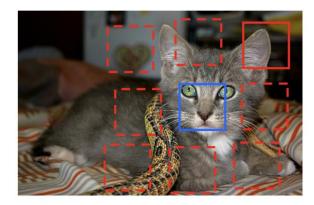
Learned representations are task specific!

Can we define a more general pretext task?



Input masked image

Inpainting Output image



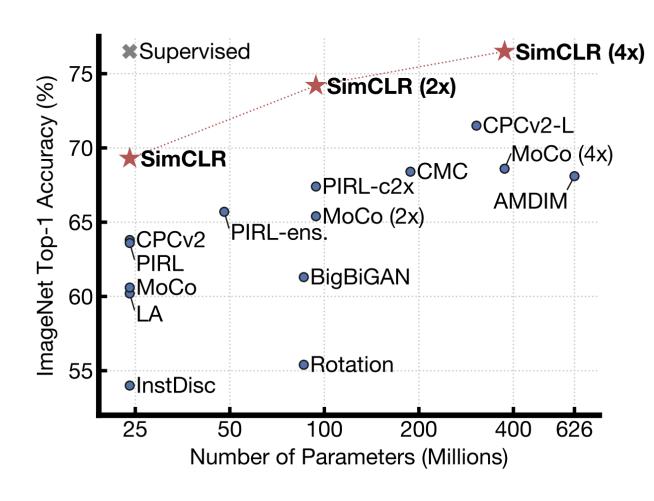
Relative patch location

Solved image puzzle

Patch jigsaw puzzel

SimCLR

a Simple framework for Contrastive Learning of Representations



- Train feature encoder on ImageNet using SimCLR
- Freeze feature encoder
- Train a linear classifier on top with labeled data

SimCLR

Same object

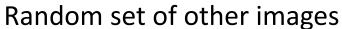
(a) Original Not same object

(f) Rotate {90°, 180°, 270°}

(g) Cutout

(h) Gaussian noise

(c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

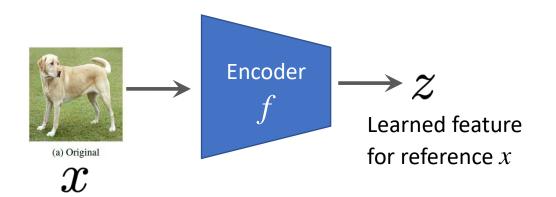


set of augmentation applied on the original image

Positive example

Negative example

SimCLR



Learn an encoder function f such that:

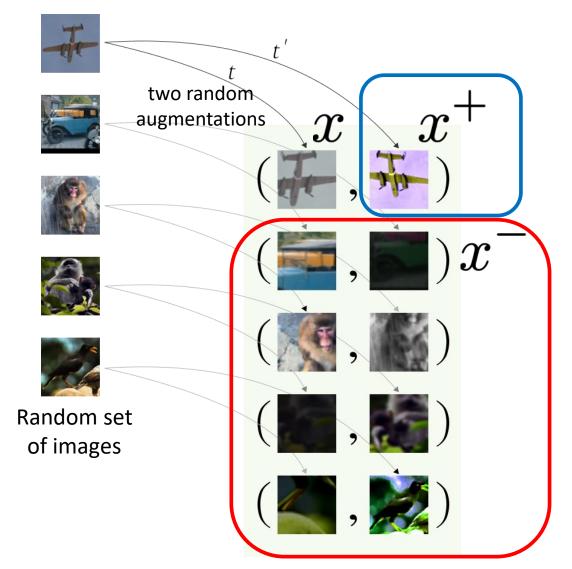
$$sim(z, z_i^+) >> sim(z, z_j^-)$$

$$f(x_i^+) = z_i^+$$
 Learned feature for positive example

$$f(x_j^-) = z_j^-$$
 Learned feature for negative example

SimCLR: working with mini-batches

For each example x, we take 1 positive example and 2(N-1) negative examples:



Training Loss: Contrastive Learning formulation

For each example x, we take 1 positive example and 2(N-1) negative examples:

$$\mathcal{L} = -E_X \left[\log \frac{\exp(sim(z, z_i^+))}{\exp(sim(z, z_i^+)) + \sum_{j=1}^{N-1} \exp(sim(z, z_j^-))} \right]$$

$$f(x) = z$$

Learned feature for the refernce

$$f(x_i^+) = z_i^+$$

 $f(x_i^+) = z_i^+$ Learned feature for positive example

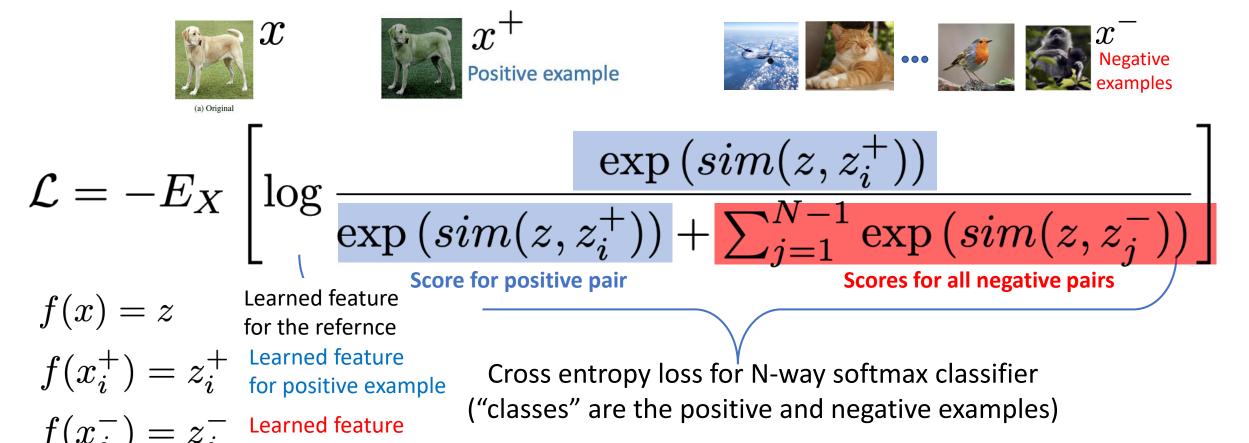
$$f(x_j^-) = z_j^-$$
 Learned feature for negative example.

for negative example

Training Loss: Contrastive Learning formulation

for negative example

For each example x, we take 1 positive example and 2(N-1) negative examples:



Training Loss: Contrastive Learning formulation

For each example x, we take 1 positive example and 2(N-1) negative examples:

$$\mathcal{L} = -E_X \left[\log \frac{\exp\left(sim(z, z_i^+)\right)}{\exp\left(sim(z, z_i^+)\right) + \sum_{j=1}^{N-1} \exp\left(sim(z, z_j^-)\right)} \right]$$
Score for positive pair

Commonly used loss in **Contrastive Learning**, also known as:

- Noise-Contrastive Estimation (NCE) loss
- InfoNCE loss
- Contrastive cross-entropy loss

$$\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_j) = \frac{\boldsymbol{z}_i^T \boldsymbol{z}_j}{\|\boldsymbol{z}_i\| \|\boldsymbol{z}_i\|}$$

Cosine similarity between the features

SimCLR Framework

Repeat:

Randomly sample a N size mini batch for each sample x do:

- (1) Apply two augmentations t, t' on x: $\tilde{x}_i = t(x)$ and $\tilde{x}_j = t'(x)$
- (2) Compute latent representation: $h_i = f(\widetilde{x}_i)$ and $h_i = f(\widetilde{x}_i)$
- (3) Project using projection head g: $z_i = g(h_i)$ and $z_i = g(h_i)$

end for

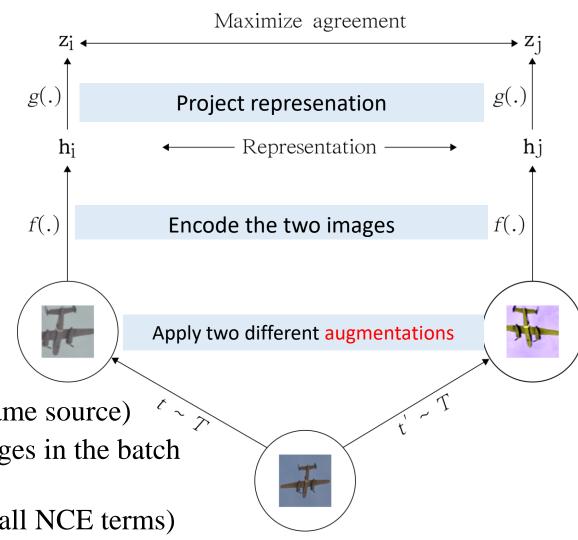
Positive example: z_i and z_i (augmentations of the same source)

Negative examples: all other 2(N-1) augmented images in the batch

Compute the NCE loss for all positive pairs

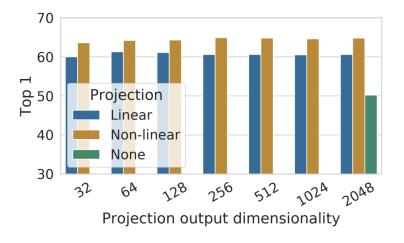
Update g and f to minimize the total loss (sum over all NCE terms)

return encoder network $f(\cdot)$, and throw away $g(\cdot)$



SimCLR Design Choices

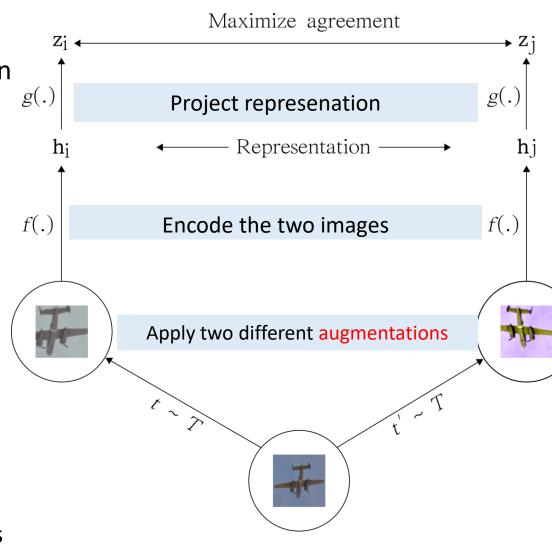
 Projection head improves the learned representation for downstream tasks:



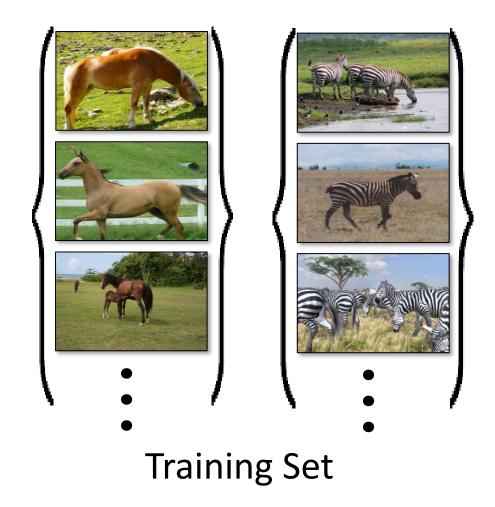
Large training batch size is crucial
 Large memory; requires distributed training on TPUs

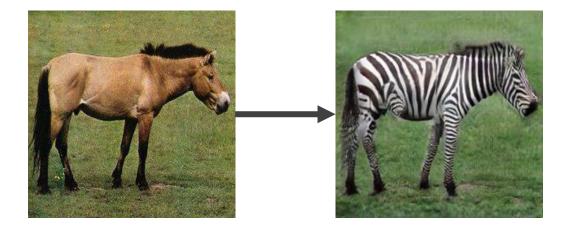
He et. al, Momentum Contrast for Unsupervised Visual Representation Learning (MoCo), CVPR 2020

- Decouples batch size and number of negative samples
- Running queue of negative examples
 MoCo-V2, MoCo-V3...



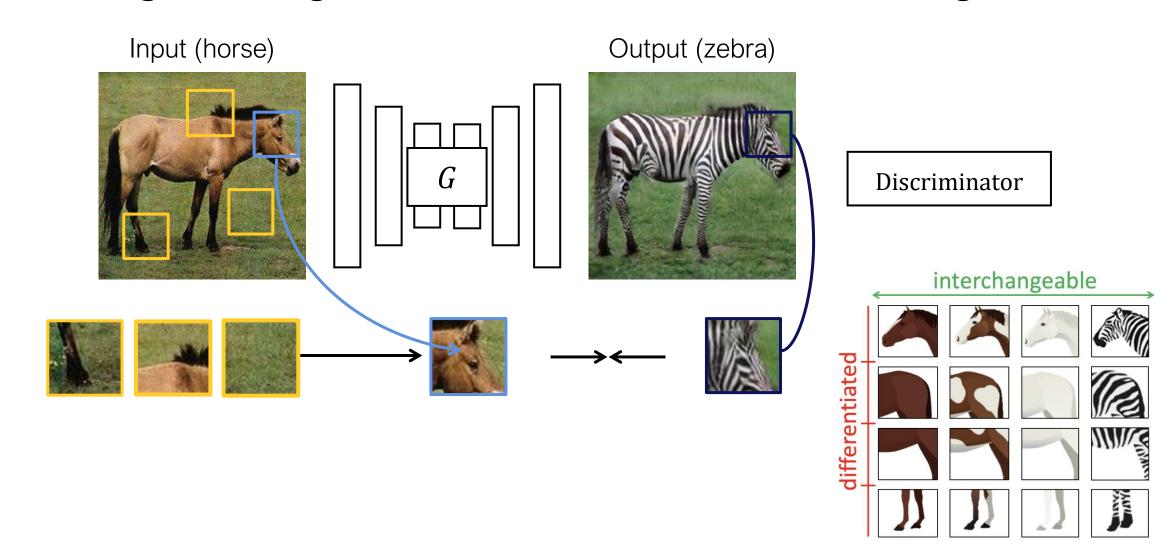
Unpaired Image-to-Image Translation



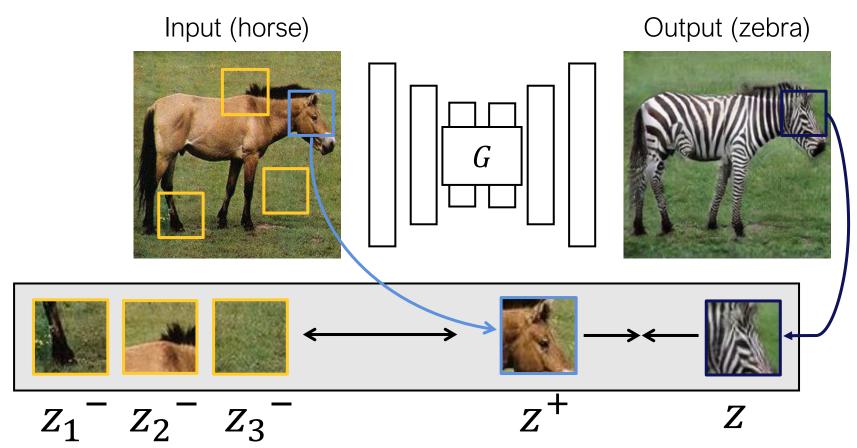


Test-time behavior

Unpaired Image-to-Image Translation via Contrastive Learning

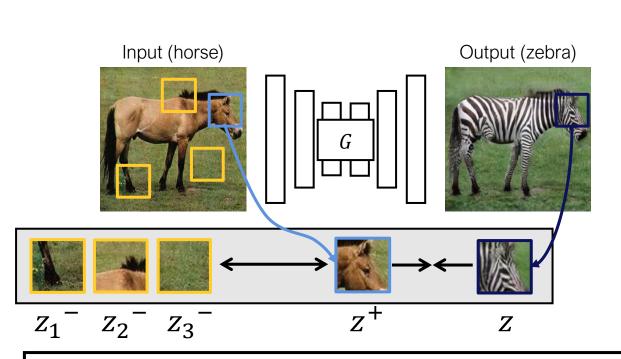


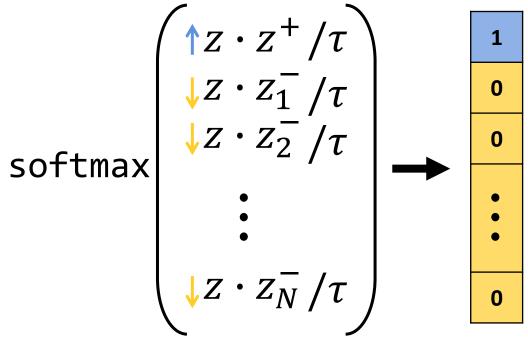
Unpaired Image-to-Image Translation via Contrastive Learning



Corresponding patches should have high similarity

Patch-based Contrastive Loss



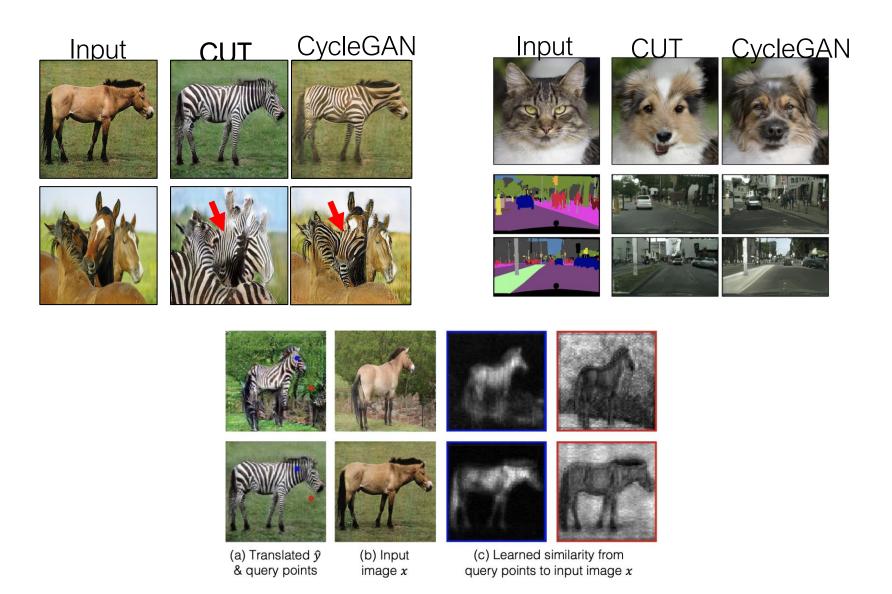


softmax (cosine similarities $/\tau$)

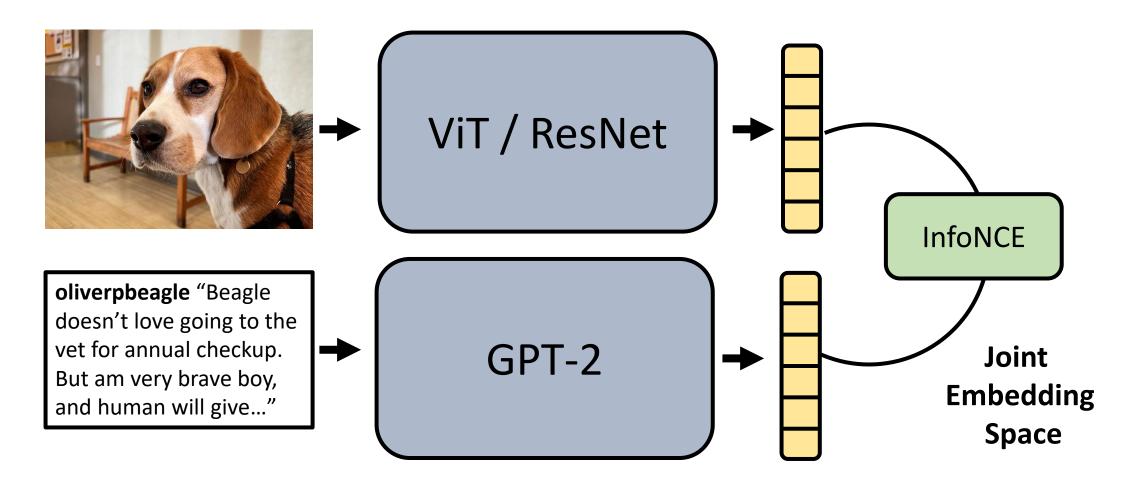
- Use the same InfoNCE loss as in MoCo and SimCLR
- To produce positive pairs:
 - Handcrafted data augmentation (MoCo, SimCLR, etc.) vs. Input and synthesized images

MoCo: He et al., CVPR20, SimCLR: Chen et al., ICML20

Patch-based Contrastive Loss

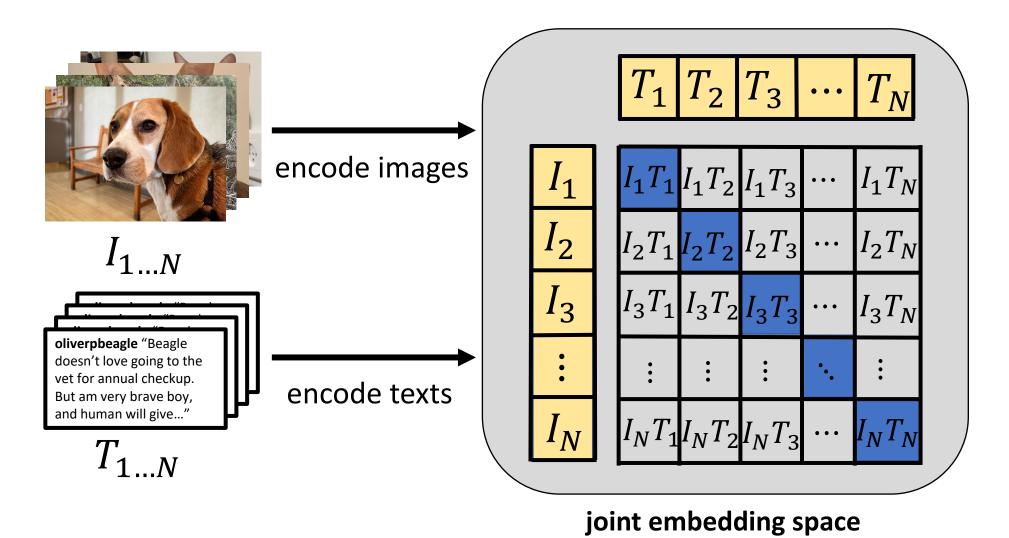


CLIP – Connecting Images and Text (Open-AI)



Radford et. al, Learning Transferable Visual Models From Natural Language Supervision, ArXiv'21 slide credit: Shir Amir

CLIP – Connecting Images and Text (Open-AI)



Radford et. al, Learning Transferable Visual Models From Natural Language Supervision, ArXiv'21 slide credit: Shir Amir

Self-Supervised Learning (SSL)

No human labels; supervisory signals are automatically computed from data

Direct self-supervised methods

Train directly for the task in hand:

Examples you've seen:

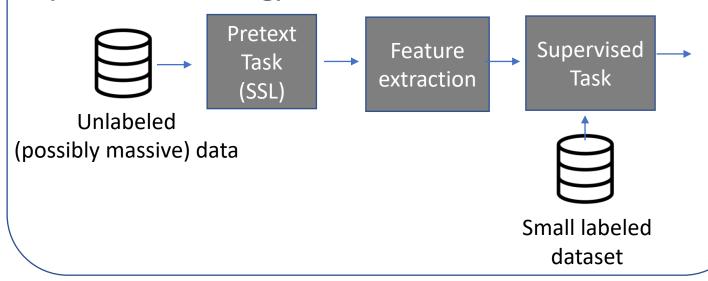
- Generative Advaserial Networks (GANs)
- ZSSR

More advanced signals:

 Apply computer vision methdologies to extract supervion

In-direct self-supervised methods

Solve a proxy, pretext task → extract learned features → finetune on a target supervised task (Transfer Learning)

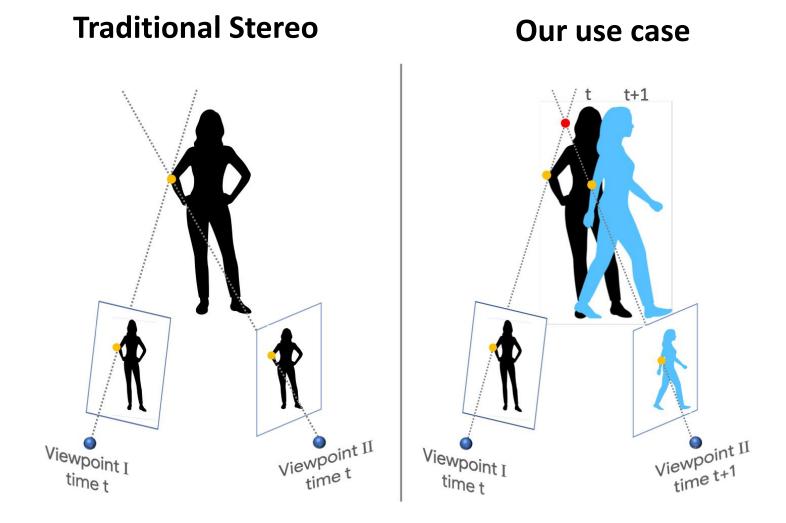


Goal: Predict depth when both camera and people are moving

Input

Our depth predictions*

Challenge: geometric constraints do not hold



Approach: Learn the depths of moving people by watching frozen people

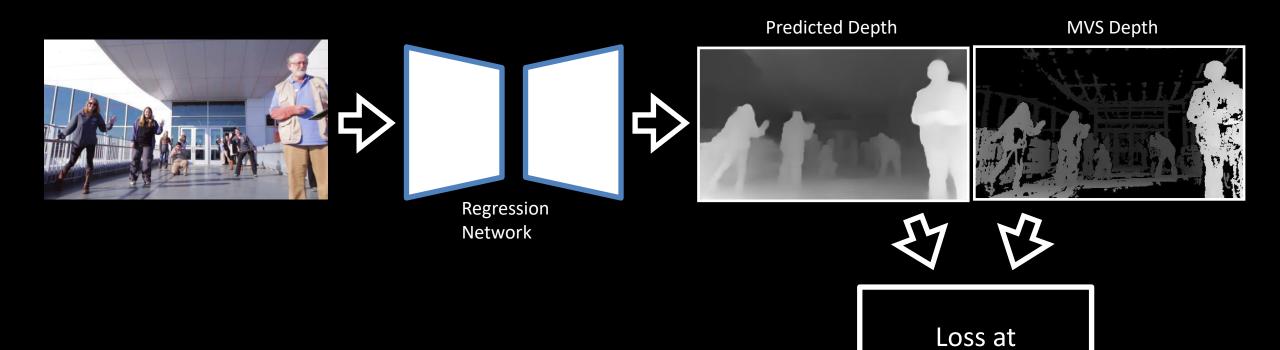
MannequinChallenge Dataset:

- 2000 YouTube Videos
- People frozen while camera is moving
- Diverse scenes, natural human poses

MannequinChallenge Training Data

"Ground truth" depth from SfM + Multi View Stereo (MVS)

Training Setup



valid MVS pixels

Results and Comparison for Moving People

Input sequence

DORN (monocular)

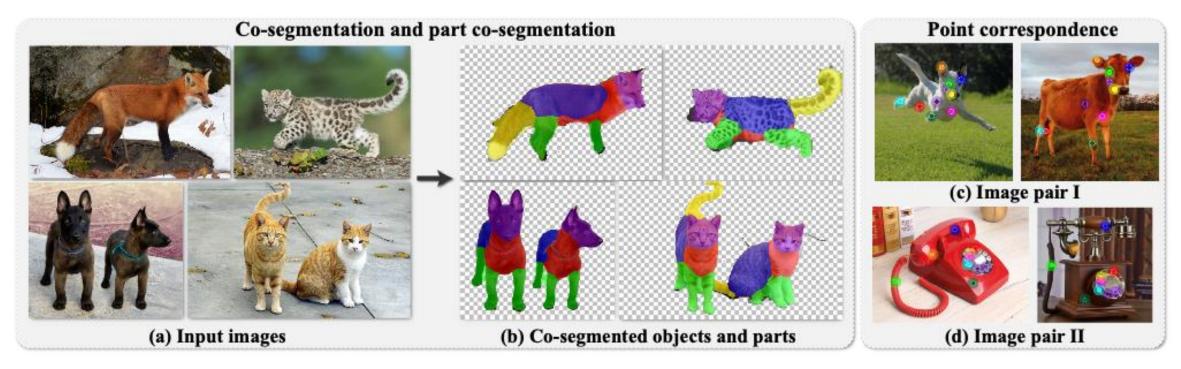
DeMoN (stereo)

Chen et al. (monocular)

Ours

Self-Supervised w/ Vison Transformers (ViTs)

- Chen et. al, "An Empirical Study of Training Self-Supervised Vision Transformers", ArXiv'21
- Caron et. al, "Emerging Properties in Self-Supervised Vision Transformers", ICCV'21



"Deep ViT Features as Dense Visual Descriptors", Shir Amir, Yossi Gandelsman, Shai Bagon, Tali Dekel https://dino-vit-features.github.io

Next tutorial:

"Variational auto encoders"

Next class:

"Learning from videos" (me)

