Lecture 9: Self-Supervision
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Supervised Learning

1. It’s impossible to label everything in the world
2. Not enough labeled data

3. More intelligent models wouldn’t need massive labeled data

DL4CV Weizmann



Self-Supervised Learning (SSL)

No human labels; supervisory signals are automatically computed from data

Grect self-supervised methods\
Train directly for the task in hand:

Examples you’'ve seen:

* Generative Advaserial Networks (GANSs)
e« 7ZSSR

More advanced signals:
* Apply computer vision methdologies to

extract supervion

ﬁ\-direct self-supervised methods

Solve a proxy, pretext task - extract learned
features = finetune on a target supervised task
(Transfer Learning)

Feature

extraction

Unlabeled
(possibly massive) data

.

Small labeled
dataset

Supervised R

~

/




Self-Supervised Learning

Solve a proxy, pretext task (large dataset) = extract learned features = finetune on
a target supervised task (smaller dataset)

4 N

2

grayscale Color
channles

Input masked image

Inpainting

N Y,
Color transformations

\_
Geometric transformations

Scrambeled patches Solved image puzzle

\_ Patch jigsaw puzzel )

Image context as supervision

WAIC



slide credit: http://graphics.cs.cmu.edu/projects/deepContext/

Context as Supervision

[Collobert & Weston 2008; Word2Vec by Mikolov et al. 2013]

store-bought gimmicks and appliances, the toasters and




B ‘%’"g; Doersch et. al, Unsupervised Visual Representation Learning by Context Prediction, ICCV 2015




Context as Supervision: relative patch position

Avoid “cheats” (low-level “trivial solutions”) = gaps between patches + random jitter

Patch Embeddings— 7_]

CNN

A

Randoly Smpl Patch
Sample Second Patch
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ﬁﬁ%’% Doersch et. al, Unsupervised Visual Representation Learning by Context Prediction, ICCV 2015




Avoid Network’s “cheats”

%’%’ﬁ Doersch et. al, Unsupervised Visual Representation Learning by Context Prediction, ICCV 2015




Avoid Network’s “cheats” (Chromatic Aberration)




Avoid Network’s “cheats”

Doersch et. al, Unsupervised Visual Representation Learning by Context Prediction, ICCV 2015



Learned Patch Embedding
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ﬁ%’“% Doersch et. al, Unsupervised Visual Representation Learning by Context Prediction, ICCV 2015
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Self-supervised Transfer Learning
Pre-training on classification and detection tasks for PASCAL VOC 2007 dataset

1. Pre-train on pretext task (w/o labels) on ImageNet:

/
>| >| >| —> Predicted pretext label
/

AlexNet
(until pool5)
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Self-supervised Transfer Learning
Pre-training on classification and detection tasks for PASCAL VOC 2007 dataset

1. Pre-train on pretext task (w/o labels) on ImageNet:

>| >| >| —> Predicted object class
/

2. Train for classification on PASCAL VOC 2007
e Fine-tune the entire model
* Freeze Conv layers, train fully connected layers
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Self-Supervised Transfer Learning
Pre-training on classification and detection tasks for PASCAL VOC 2007 dataset

Classification Detection Segmentation
(%emAP) (%emAP) (%omloU)

Trained layers | fc6-8  all all all . ed P o

-t
ImageNet labels 789 799 568 48.0 HPETVISEd Fre-traiiing

on ImageNet

Random 53.3 434 19.8 \ crain
Random rescaled Krihenbiihl et al. (2015) | 39.2  56.6 45.6 32.6 O pre-training
Egomotion (Agrawal et al., 2015) 31.0 542 43.9
Context Encoders (Pathak et al., 2016b) 34.6 56.5 44.5 29.7
Tracking (Wang & Gupta, 2015) 55.6  63.1 47.4 o . _
Context (Doersch et al., 2015) 55.1  65.3 51.1 Pre-training with relative

patch location
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Context as Supervision: solving Jigsaw puzzles

Input Image Scrambeled pches | Solved image puzzle

9! = 362,880

Sa Noroozi et. al, Unsupervised learning of visual representations by solving jigsaw puzzles, ECCV 2016
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Context as Supervision: solving Jigsaw puzzles

* Training data: 9 tiles, shuffled by a random ordering, sampled from set of
permutations
e Qutput: permutation index (1 hot vector

* Training loss: cross entropy w.r.t. ground truth permutation index
.

p

N

w

S

(6]

> 64

fc7 fcg8 softmax

o~

Permutation Set

index permutation Reorder patches according to
the selected permutation
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Noroozi et. al, Unsupervised learning of visual representations by solving jigsaw puzzles, ECCV 2016
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Context as Supervision: solving Jigsaw puzzles
9! = 362,880

The solution space is too big = select a permutation set
* Permutation set size
* Distance between permutations

Table 4: Ablation study on the impact of the permutation set.

Number of Average hamming Minimum hamming Jigsaw task Detection
permutations distance distance accuracy performance
1000 8.00 2 71 53.2
1000 6.35 2 62 51.3
1000 3.99 2 54 50.2
100 8.08 2 88 52.6
95 8.08 3 90 52.4
85 8.07 4 91 52.7
71 8.07 5 92 52.8
35 8.13 6 94 52.6
10 8.57 7 97 49.2
7 8.95 3 98 49.6
6 9 9 99 49.7

HILy -
D s . . . . . o
ﬂwj'f Noroozi et. al, Unsupervised learning of visual representations by solving jigsaw puzzles, ECCV 2016




Image Content as Supervision: Image Inpainting

Pretext task: fill in the missing region

Input masked image Output image

IC.': DLACV Weizmann Pathak et al., Context Encoders: Feature Learning by Inpainting, 2016



Pretext Task: Image Inpainting

Encoder Decoder

L = Afrecﬁfrec

Reconstruction L, loss ensures “correctness’

T
ﬁf@% DLACV Weizmann Pathak et al., Context Encoders: Feature Learning by Inpainting, 2016
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Pretext Task: Image Inpainting

L= )\?"ecﬁrec + )\adv[:adv-

Reconstruction L, loss ensures “correctness” Adversarial Loss ensures “realness”

Lree(w) = IM © (2 = F((1 = M) © )5,

L odw = max Ezecx|log(D(x))

+log(1 — D(F((1 — M) @ 2)))],

(c) Context Encoder (d) Context Encoder
(L2 loss) (L2 + Adversarial loss)

Wl

FEE

23 DLACV Weizmann Pathak et al., Context Encoders: Feature Learning by Inpainting, 2016




Again... dealing with network’s “cheats”

| HEH &L HEHZHHE He

| Bl

(a) Center Region  (b) Random Blocks (c) Random Shapes

7l DL4CV Weizmann
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Pretext Task: Image Inpainting

| blcvwenmann  Pathak et al., Context Encoders: Feature Learning by Inpainting, 2016
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Context as Supervision: transfer learning

Table 1: Results on PASCAL VOC 2007 Detection and Classification. The results
of the other methods are taken from Pathak et al. [30].

Supervision Classification Detection Segmentation

Method Pretraining time

Krizhevskyet al. [25] 3 days 1000 class labels 78.2% 56.8% 48.0%
Relative Patch location 4 weeks context 55.3% 46.6% -
Context encoders 14 hours context 56.5% 44.5% 29.7%
Jigsaw puzzles 2.5 days context 67.6% 53.2% 37.6%

A good self-supervised task is neither simple nor ambiguous.

Noroozi et. al, Unsupervised learning of visual representations by solving jigsaw puzzles, ECCV 2016




Self-Supervised Learning

Solve a proxy, pretext task (large dataset) = extract learned features = finetune on
a target supervised task (smaller dataset)

4 N

2

grayscale Color
channles

Input masked image Output image

Inpainting

N Y,
Color transformations

\_
Geometric transformations

Scrambeled patches Solved image puzzle

\_ Patch jigsaw puzzel )

Image context as supervision

WAIC



Pretext task: predicting image rotations

To recognize rotations, the model has to learn concepts of the objects

270° rotation 180° rotation

Gidaris et. al, Unsupervised Representation Learning by Predicting Image Rotations, 2018



Pretext task: predicting image rotations

* Training data: images rotated by: 0°, 90°, 180°, and 270° (via flip and transpose operations)
* Task: predict which rotation is applied; 4-way classification task
* Training loss: assign a “label” to each rotation; apply cross entropy loss w.r.t. ground truth

Same model

m Objectives:
: ConvNet Maximize prob.
- gl X, y=0) - ﬁ P> model F(.) > 2 x0)
Rotate 0 degrees . . Predict 0 degrees rotation (y=0)
Rotated image: X
P ConvNet Maximize prob.
» 2l X, v=1) > > z
0 e PR o R
Rotate 90 degrees : Predict 90 degrees rotation (y=1)
& Rotated image: X~ I
> ol X.y=2) i > C ()n\‘?\g.'l > Ma.\:n??xzc"prob.
It model F(.) F(X°)
Image X Rotate 180 degrees " Predict 180 degrees rotation (y=2)
Rotated image: X~
@ & ‘Net aximize
>l ol X, y=3) > “‘s > onvNe p Maximize prob.

model F(.) Flix

ate 27() ST .
Rotate 270 degrees : Predict 270 degrees rotation (y=3)
Rotated image: X :

ST
:ﬁ}{@’% Gidaris et. al, Unsupervised Representation Learning by Predicting Image Rotations, 2018
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Predicting image rotations vs. supervised classification

(a) Supervised (b) Self-supervised to recognize rotations

Convl 27 x 27 Conv3 13 x13 Conv56 X 6 Convl 27 x 27 Conv3 13 x13 Conv56 x 6

(a) Attention maps of supervised model (b) Attention maps of our self-supervised model

Gidaris et. al, Unsupervised Representation Learning by Predicting Image Rotations, 2018




Self-Supervised Learning

Solve a proxy, pretext task (large dataset) = extract learned features = finetune on
a target supervised task (smaller dataset)

4 N

2

grayscale Color
channles

Input masked image

Inpainting

N Y,
Color transformations

\_
Geometric transformations

Scrambeled patches Solved image puzzle

\_ Patch jigsaw puzzel )

Image context as supervision

WAIC



Pretext task: colorization

* Training data: grayscale images (and their ground truth color images)
* Task: generate a plausible color image

Zhang et. al, Colorful Image Colorization, 2016
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Pretext task: colorization

Grayscale image: L channel
X € RHXWXl

L

e
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Color information: ab channels

RH><W><2

ab




Loss Function

. Regression with L2 loss inadequate
Ly(Y,Y) ZHth Yi,wl
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.| Colors in ab space

(continuous)

Colors in ab space
(discrete)



Transfer Learning
Pre-training on classification and detection tasks for PASCAL VOC 2007 dataset

Classification Detection Segmentation
(%mAP) (%emAP) (%mloU)

Trained layers | fc6-8  all all all _ o
ImageNet labels | 789 799 568 48.0 Supervised Pre-training
on ImageNet
Random 53.3 434 19.8 N -
Random rescaled Krihenbiihl et al. (2015) | 39.2 566  45.6 32.6 O pre-training
Egomotion (Agrawal et al., 2015) 31.0 542 43.9
Context Encoders (Pathak et al., 2016b) 34.6 56.5 44.5 29.7
Tracking (Wang & Gupta, 2015) 55.6  63.1 47.4
Caontext (Doersch et al _2015) 551 65 3 511
Colorization (Zhang et al., 2016a) 61.5 65.6 46.9 35.6 Colorization
BIGAN (Donahue et al., Z016) 2.3 oU.1 40.9Y 4.9
Jigsaw Puzzles (Noroozi & Favaro, 2016) - 67.6 53.2 37.6
—NAT (Bojanowski & Joulin, 2017) 36,7 6353 40 4
Split-Brain (Zhang et al., 2016b) 63.0 67.1 46.7 36.0 Colorization
ColorProxy (Larsson et al., 2017/) 6>.9Y 38.4
Counting (Noroozi et al., 2017) - 67.7 514 36.6
(Ours) RotNet 1 70.87 7297 544 39.1 Pre-training with rotation

prediction

2 Gidaris et. al, Unsupervised Representation Learning by Predicting Image Rotations, 2018




Self-Supervised Learning via Specific Pretext Task

Learned representations are task specific!
Can we define a more general pretext task?

Relative patch location

Input masked image Output image

Inpainting
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Scrambeled patches | Solved image puzzl |

Patch jigsaw puzzel
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SimCLR

a Simple framework for Contrastive Learning of Representations

%Supervised - *SimCLR (4x)
e ~_*SimCLR (2x) o ;
~ °
= . Train eature.encc.) er on
S 70F %simCLR womc  ¢MoCo (4 ImageNet using SImCLR
§ ePIRL-c2x AMDIM
- 65 Q eMoCo (2x)
& qCPCv2 PIRL-ens. * Freeze feature encoder
= o *EA'E%O oBigBIGAN
< LA * Train a linear classifier on top
(@) .
s . with labeled data
£ 55 eRotation

e|nstDisc

25 50 100 200 400 626
Number of Parameters (Millions)

.| pucvwezmann  Chen et. al., A Simple Framework for Contrastive Learning of Visual Representations, 2020, 2950 citations




SImCLR

set of augmentation applied on the original image
X

Positive example

(a) Original

° i
x o bj e ct (f) Rotate {90°, 180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering

Random set of other images

Negative example

% DL4CV Weizmann Chen et. al., A Simple Framework for Contrastive Learning of Visual Representations, 2020
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SImCLR
ﬁ Z

Learned feature
for reference X

Learn an encoder function f such that:
. + . _
sim(z,z; ) >> sim(z, 2;)
f(x+) — Z+ Learned feature
(/

1 for positive example

- — Learned feature
f(z;) =z |
¥ 7 for negative example

DLACV Weizmann Chen et. al., A Simple Framework for Contrastive Learning of Visual Representations, 2020
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SimCLR: working with mini-batches

For each example X, we take 1 positive example and 2(N-1) negative examples:

Random set
of images

Source: https://sthalles.github.io/simple-self-supervised-learning/




Training Loss: Contrastive Learning formulation

For each example X, we take 1 positive example and 2(N-1) negative examples:

z 3 B
) Negative
o examples

exp (sim(z, z+))
exp (sim(z,2;)) + 3;—; exp (sim(z, 2;))

log

Learned feature
f(él?) = < for the refernce

+\ __ _-+ Learned feature
f('rz ) — % for positive example

f(ZC_) — ~ Learned feature
J  for negative example

Nﬁ% DLACV Weizmann Chen et. al., A Simple Framework for Contrastive Learning of Visual Representations, 2020




Training Loss: Contrastive Learning formulation

For each example X, we take 1 positive example and 2(N-1) negative examples:

Negative
Y
& examples

exp (sim(z, 2;"))

L =—FEx |log

\

f(il?) _ Learned feature
for the refernce

+\ __ _-+ Learned feature
f(xz ) T Zi for positive example

exp (sim(z,2;)) +

Score for positive pair Scores for all negative pairs

Cross entropy loss for N-way softmax classifier

(“classes” are the positive and negative examples)

f(.fl?_) — ~ Learned feature
J  for negative example

F 21 bLacy Weizmann Chen et. al., A Simple Framework for Contrastive Learning of Visual Representations, 2020




Training Loss: Contrastive Learning formulation

For each example X, we take 1 positive example and 2(N-1) negative examples:

L =—Fx |log

exp (stm(z, z+))
exp (sim(z, z;")) +Z "~ exp (sim(z, z;))

Score for positive pair Scores for all negative pairs
Commonly used loss in Contrastive Learning, also known as: sz
* Noise-Contrastive Estimation (NCE) loss Slm(Zl, ) = | ” ” ”
» InfoNCE loss ZilllZ;
e Contrastive cross-entropy loss Cosine similarity between the features

ﬁ( DL4CV Weizmann Sohn, Improved Deep Metric Learning with Multi-class N-pair Loss Objective, 2016




SimCLR Framework

Maximize agreement

Repeat: Zi . 2
Randomly sample a N size mini batch I
for each sample x do: g() Project represenation g(.)
(1) Apply two augmentations ¢, t’ on x: hj +—— Representation ———» hj
X; = t(x) and X; = t'(x) ! !
(2) Compute latent representation: () Encode the two images )
h; = f(%;) and hj = f(%;)

(3) Project using projection head g:

Z; = g(hl) Gnde = g(h]) %

end for
Positive example: z; and z; (augmentations of the same source) -~

Negative examples: all other 2(N-1) augmented images in the batch
Compute the NCE loss for all positive pairs

Update g and f to minimize the total loss (sum over all NCE terms)
return encoder network f(-), and throw away g(*)

Ve

'i‘.“\“v‘;: ]
255 DL4CV Weizmann




SimCLR Design Choices

Maximize agreement

Z] < > ZJ
* Projection head improves the learned representation | 1
for downstream tasks: &) Project represenation &(.)
70 hj «— Representation ——— hj
ol 1l W “ “
§50 | Projection f(.) Encode the two images f(.)
= BN Linear
40 | === Non-linear
- None \
" o (x
o b
A0F o - -
Projectlon Output dimensionality } Apply two different augmentations -

* Large training batch size is crucial
Large memory; requires distributed training on TPUs

He et. al, Momentum Contrast for Unsupervised Visual
Representation Learning (MoCo), CVPR 2020
* Decouples batch size and number of negative samples
* Running queue of negative examples

MoCo-V2, MoCo-V3...

DL4CV Weizmann
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Unpaired Image-to-Image Translation

Training Set Test-time behavior

?ﬁ%% Park et. al., Contrastive Learning for Unpaired Image-to-Image Translation, ECCV 2020
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Unpaired Image-to-Image Translation via Contrastive Learning

Input (horse) Output (zebra)

Discriminator

interchangeable

]
|

differentiated

L
I

=5 )Y

?ﬁ%@% Park et. al., Contrastive Learning for Unpaired Image-to-Image Translation, ECCV 2020




Unpaired Image-to-Image Translation via Contrastive Learning

Input (horse) Output (zebra)

W
WAL
4 . ‘:

A

R

Corresponding patches should have high similarity

Park et. al., Contrastive Learning for Unpaired Image-to-Image Translation, ECCV 2020



Patch-based Contrastive Loss

Input (horse) Output (zebra)

[TZ°Z+/T\\

Z'Zl:/T
Z*Zy [T

softmax

Kz-Zﬁ/TJ

softmax (cosine similarities /1 )

7=0.07

To produce positive pairs:

images

e Use the same InfoNCE loss as in MoCo and SimCLR

 Handcrafted data augmentation (MoCo, SimCLR, etc.) vs. Input and synthesized

MoCo: He et al., CVPRZ20, SICLR: Chen et al., [CML20




Patch-based Contrastive Loss

(a) Translated § (b) Input (c) Learned similarity from
& query points image x query points to input image x

?‘%’% Park et. al., Contrastive Learning for Unpaired Image-to-Image Translation, ECCV 2020




CLIP — Connecting Images and Text (Open-Al)

oliverpbeagle “Beagle
doesn’t love going to the
vet for annual checkup.
But am very brave boy,
and human will give...”

Radford et. al, Learning Transferable Visual Models From Natural Language Supervision, ArXiv'21

slide credit: Shir Amir

ViT / ResNet
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GPT-2
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Embedding
Space
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CLIP — Connecting Images and Text (Open-Al)

® SEeE _ encode images
| 1..N
f
| |
f
oliverpbeagle “Beagle

doesn’t love going to the —

vet for annual checkup.

But am very brave boy, a enCOde teXtS

and human will give...”

Tl...N

joint embedding space

Radford et. al, Learning Transferable Visual Models From Natural Language Supervision, ArXiv'21
slide credit: Shir Amir



Self-Supervised Learning (SSL)

No human labels; supervisory signals are automatically computed from data

Grect self-supervised methods\
Train directly for the task in hand:

Examples you’'ve seen:

* Generative Advaserial Networks (GANSs)
e« 7ZSSR

More advanced signals:
* Apply computer vision methdologies to

extract supervion

ﬁ\-direct self-supervised methods

Solve a proxy, pretext task - extract learned
features = finetune on a target supervised task
(Transfer Learning)

Feature

extraction

Unlabeled
(possibly massive) data

.

Small labeled
dataset

Supervised R
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Goal: Predict depth when both camera and people are moving

Input Our depth predictions*

o Joint work with: Zhengqi Li, Forrester Cole, Richard Tucker, Noah Snavely, Ce Liu, Bill Freeman
W “Learning the Depths of Moving People by Watching Frozen People”, CVPR’19 , Best Paper Honorable Mention

WAIL




Challenge: geometric constraints do not hold

Traditional Stereo Our use case




MannequinChallenge Dataset:

i@‘aﬁ” &
WAIC

Approach:
Learn the depths of moving people by watching frozen people

e 2000 YouTube Videos
* People frozen while camera is moving
* Diverse scenes, natural human poses







TREme
WAIC

MannequinChallenge Training Data

“Ground truth” depth from SfM + Multi View Stereo (MVS)



Training Setup

Predicted Depth MVS Depth

Regression
Network

Loss at
valid MVS pixels




Results and Comparison for Moving People

DORN (monocular) Chen et al. (monocular)

Input sequence

* DeMoN (stereo) Ours

- Comparison to recent SOTA learning based depth prediction methods

WAIC



Self-Supervised w/ Vison Transformers (ViTs)

* Chen et. al, “An Empirical Study of Training Self-Supervised Vision Transformers”, ArXiv’'21
e Caron et. al, ”"Emerging Properties in Self-Supervised Vision Transformers”, ICCV’'21

Co-segmentation and part co-segmentation Point correspondence

- (c) Image pair I
(a) Input images (b) Co-segmented objects and parts ; (d) Image pair 11

“Deep ViT Features as Dense Visual Descriptors”, Shir Amir, Yossi Gandelsman, Shai Bagon, Tali Dekel
https://dino-vit-features.github.io

WAIC


https://dino-vit-features.github.io/

Next tutorial:
“Variational auto encoders”

S
—
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Next class:
“Learning from videos” (me)



