Lecture 19 Computer Vision and Inverse problems Computer Graphics and Rendering

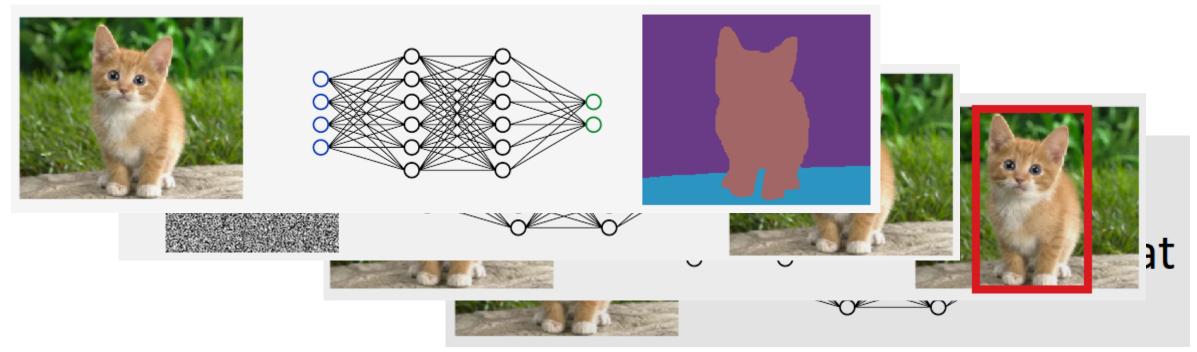
January 11st 2023

Meirav Galun

Computer vision

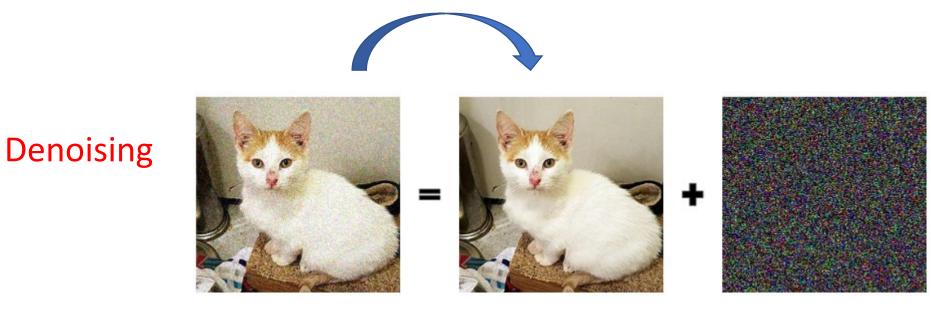
DL4CV Weizmann

We are familiar already with a variety of neural net architectures, dedicated for tasks such as classification, detection, generation, segmentation...



• Restoration tasks: denoising, super-resolution and inpainting

• Restoration tasks: denoising, super-resolution and inpainting



degraded image

clean image

Superresolution

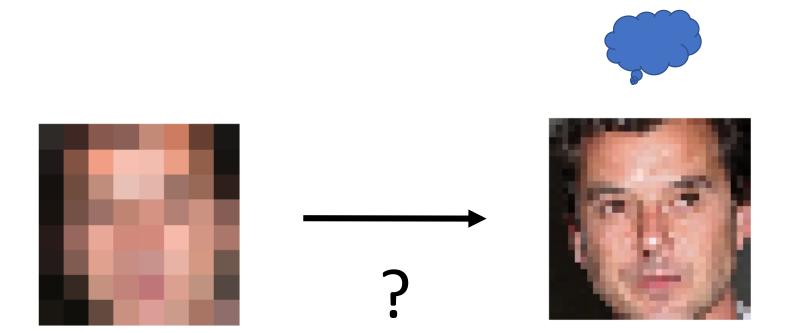
Inpainting

记忆 DL4CV Weizmann

- <u>Supervised</u> approach for solving inverse methods performs well, when utilizing deep convolutional networks
- CNNs are trained over a large number of pairs of degraded images and their corresponding clean images

- The excellent performance of the CNNs is attributed to their ability to learn realistic image priors from a large training dataset of images
- Is the common approach of supervised training of a large dataset indeed the best / possible way to learn image priors?

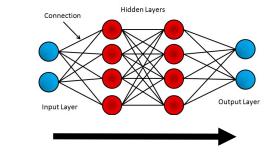
What is a prior?



Prior = our knowledge about the visual world

Images from Dahl et al, 2017

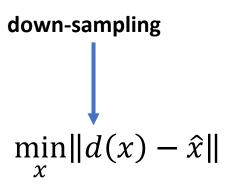
Learned priors

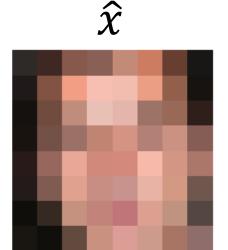


Images from Dahl et al, 2017

Explicit priors

• By introducing constraints





s.t. x is a face, natural image, etc.

• R(x) expresses constraints

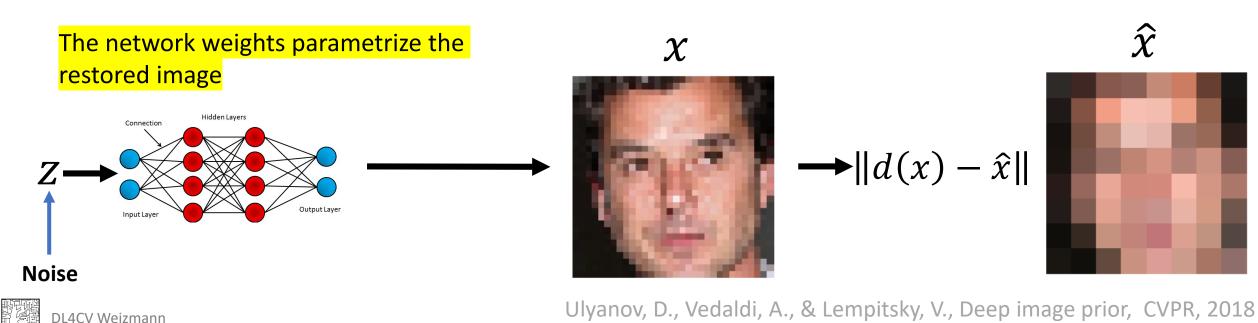
 $\min_{x} \|d(x) - \hat{x}\| + \lambda R(x)$

- <u>Example:</u> Total Variation (TV) $R(x) = \sum_{i,j} |x_{i+1,j} x_{i,j}| + |x_{i,j+1} x_{i,j}|$ encourages images to contain uniform regions
- In general, it is difficult to express "natural" constraints mathematically

Deep image (implicit) prior

• Constructing an <u>implicit prior</u> by neural network

 $\min_{x} \|d(x) - \hat{x}\|$
s.t. x is an output of CNN



- Pretrained network or large image datasets are not required
- Eliminating the data and the learning process still yields good results for image restoration
- The structure of the network is sufficient and imposes a strong prior to restore the original image while taking into consideration the degraded image only

The structure of the CNN imposes a strong prior Why?

Ulyanov, D., Vedaldi, A., & Lempitsky, V., Deep image prior, CVPR, 2018

Why do the structure of the CNN impose a strong prior?

- The network captures low-level statistics of natural images
- The structure of the network imposes self-similarity (within the same scale) at multiple scales, making the corresponding priors suitable for the restoration of natural images
 - The translation equivariance and locality of the convolution operator
 - The hierarchy of such convolutions captures the statistics of pixel neighborhood at <u>multiple scales</u>

Ulyanov, D., Vedaldi, A., & Lempitsky, V., Deep image prior, CVPR, 2018

Deep image prior → Computer vision, Computer Graphics

The structure of the network allows

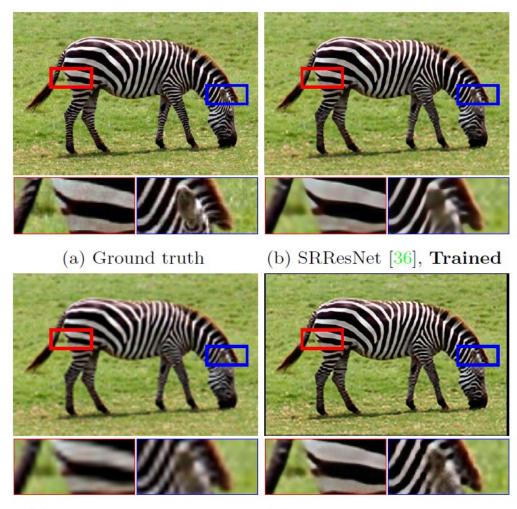
Parametrizing signals by the net weights

- 1. 2D images
- 2. 3D volumes
- 3. Continuous functions

How and why is it useful?

Diving into "deep image prior"

Deep image prior, super-resolution results



(c) Bicubic, Not trained (d) Deep prior, Not trained

Problem setting

- x clean image
- \hat{x} degraded image (observed)
- x^* restored image

$$x \rightarrow degradation \rightarrow \hat{x} \rightarrow restoration \rightarrow x^*$$



Problem setting

- x clean image
- \hat{x} degraded image (observed)
- x^* restored image

$$x \rightarrow$$
 degradation $\rightarrow \hat{x} \rightarrow$ restoration $\rightarrow x^*$

(maximum a posterior probability) MAP: $x^* = \arg \max_{x} p(x|\hat{x})$

$$p(x|\hat{x}) = \frac{p(\hat{x}|x)p(x)}{p(\hat{x})} \propto p(\hat{x}|x)p(x)$$

Example: Likelihood for denoising

clean image x

corrupted image \hat{x}

restored image x^*

restoration degradation $\hat{x} = x + \epsilon, \epsilon \sim \mathcal{N}(0, \sigma^2)$ $x^* = \arg \max p(x|\hat{x})$ X $= \arg \max p(\hat{x}|x)p(x)$ $p(\hat{x}|x) = \mathcal{N}(\hat{x}; x, \sigma^2)$ х

The significant role of the prior

$$x^{*} = \arg \max_{x} p(x|\hat{x}) = \arg \max_{x} p(\hat{x}|x) p(x) = \arg \max_{x} p(\hat{x}|x) = \arg \max_{x} \mathcal{N}(\hat{x}; x, \sigma^{2}) = \hat{x}$$

clean image x corrupted image \hat{x} restored image $x^{*} = \hat{x}$
$$\overbrace{$$

DL4CV Weizmann

Alternative notation

clean image xcorrupted image \hat{x} restored image x^*

data term $E(x; \hat{x})$

$$x^{*} = \arg \max_{x} p(x|\hat{x})$$

= $\arg \max_{x} p(\hat{x}|x)p(x)$
= $\arg \min_{x} -\log p(\hat{x}|x) - \log p(x)$
= $\arg \min_{x} E(x; \hat{x}) + R(x)$

image prior term (regularization) R(x)

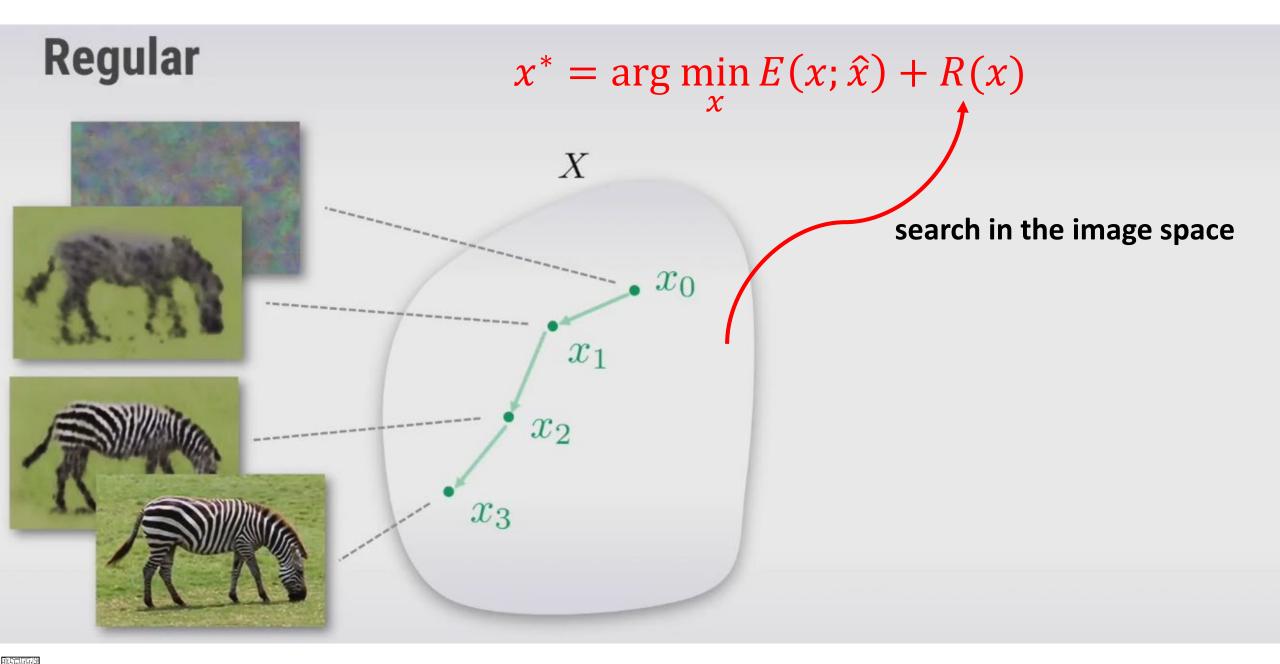
Example:

 $p(\hat{x}|x) = \mathcal{N}(\hat{x}; x, \sigma^2) \Rightarrow E(x; \hat{x}) = ||x - \hat{x}||^2$

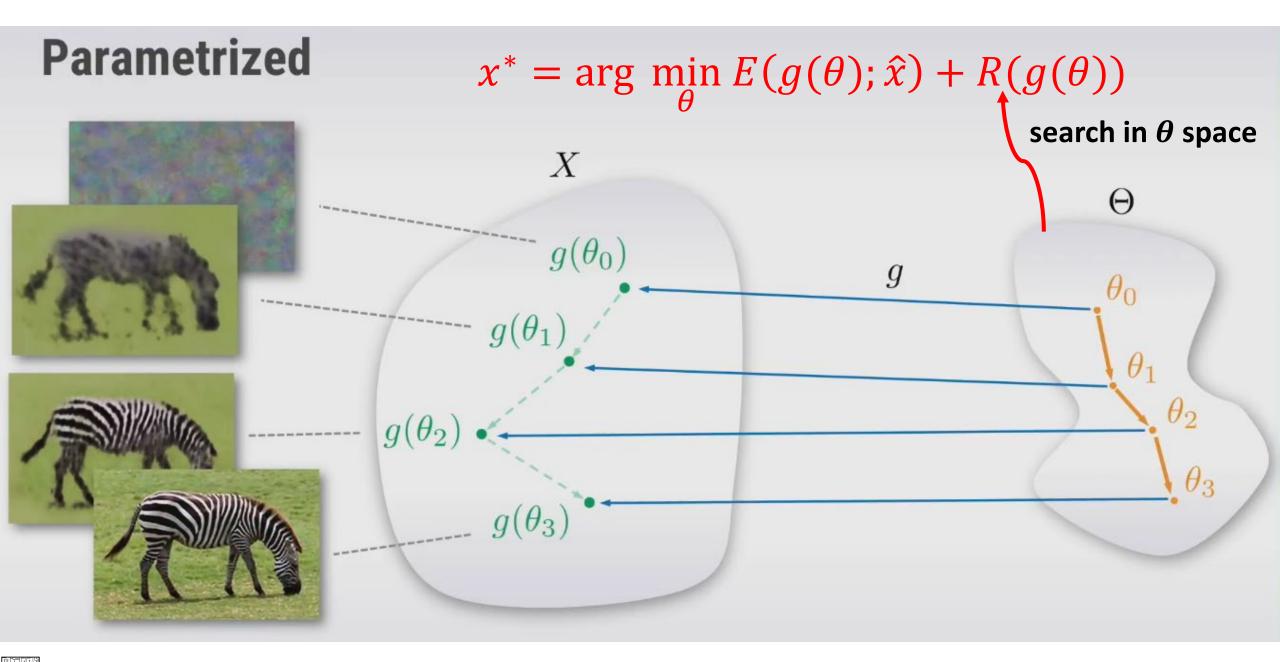
Optimization task

clean image xcorrupted image \hat{x} restored image x^*

$$x^* = \arg\min_x E(x; \hat{x}) + R(x)$$



DL4CV Weizmann



DL4CV Weizmann

Optimization by parametrization

clean image xcorrupted image \hat{x}

Regular optimization:

By parametrization:

$$\arg\min_{x} E(x; \hat{x}) + R(x)$$

$$\arg\min_{\theta} E(g(\theta); \hat{x}) + R(g(\theta))$$

If g is surjective (i.e., for each $x \exists \theta$ s.t. $g(\theta) = x$) then the two problems shares the same minima (i.e., equivalent)

So, why to switch between the problems?

- In practice, as we cannot guarantee global minima, the solutions will be different (we search over different spaces)
- While it is not easy to express mathematically the explicit prior R(x), we can gain from the expressivity of $g(\theta)$

Optimization by parametrization

clean image xcorrupted image \hat{x}

$\arg\min_{\theta} E(g(\theta); \hat{x}) + R(g(\theta))$

- We can consider g as a prior by itself, e.g. g expresses the world of natural images
- $g(\theta)$ acts as a prior, helps in selecting a good mapping which gives a desired output image, and prevents getting the wrong images
- It is sufficient to optimize over the data term only

 $\arg\min_{\theta} E(g(\theta); \hat{x})$

 \hat{x} corrupted image

 $\arg\min_{\theta} E(g(\theta); \hat{x})$

 $g(\theta) \equiv f_{\theta}(z)$

- f_{θ} is a convolutional neural network with parameters θ
- Drop the explicit regularization R(x) and use instead the implicit prior captured by the neural network parametrization
- How do we map the parameters of the neural network to the image?
- Fix the input *z* (e.g. noisy image)
- Unlike the common practice, i.e., fixing the weights and varying the input
- Here, we fix the input and vary the weights θ , to get different outputs
- The convolutional neural network learns a generator $x = f_{\theta}(z)$ which maps random code z to an image x

 \hat{x} corrupted image

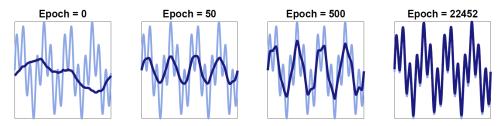
- **1.** Initialize *z*: Fill the input *z* by uniform noise, or any other random image.
- 2. Solve by gradient descent

$$\arg \min_{\theta} E(f_{\theta}(z); \hat{x})$$
$$\theta^{k+1} = \theta^k - \alpha \frac{\partial E(f_{\theta}(z); \hat{x})}{\partial \theta}$$

3. Get the reconstructed image by forward passing

 $x^* = f_{\theta^*}(z)$

Deep image prior Inductive bias



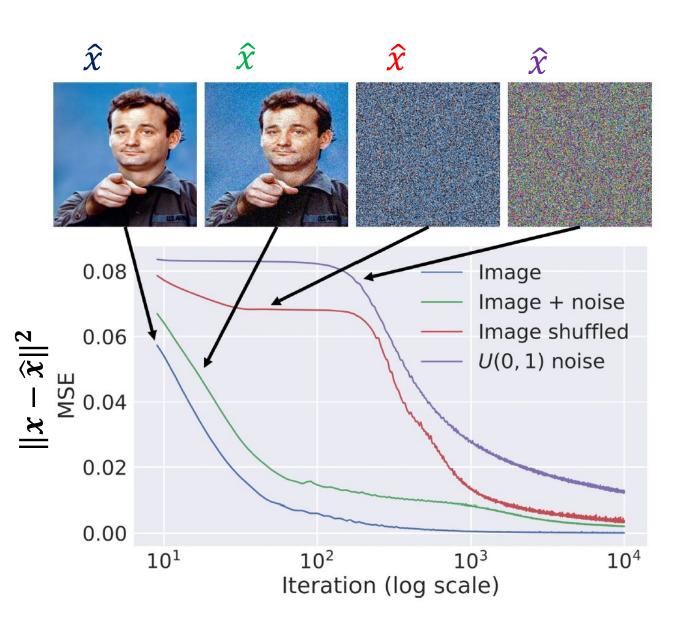
Ronen Basri, David Jacobs, Yoni Kasten, Shira Kritchman, NeurIPS 2019

Spectral Bias

FC network fits the lower frequency component of the target function faster than the higher frequencies

Denoising $E(x, \hat{x}) = ||x - \hat{x}||^2$

 $\arg\min_{\theta} E(f_{\theta}(z); \hat{x})$



Recap

DL4CV Weizmann

$$x \rightarrow \text{degradation} \rightarrow \hat{x} \rightarrow \text{restoration} \rightarrow x^*$$

$$x^* = \arg\max_x p(x|\hat{x}) = \arg\max_x p(\hat{x}|x)p(x) = \arg\min_x E(x;\hat{x}) + R(x)$$

$$\arg\min_\theta E(f_\theta(z);\hat{x})$$

Implicit regularization by parametrizing the restored image using CNN with parameters heta

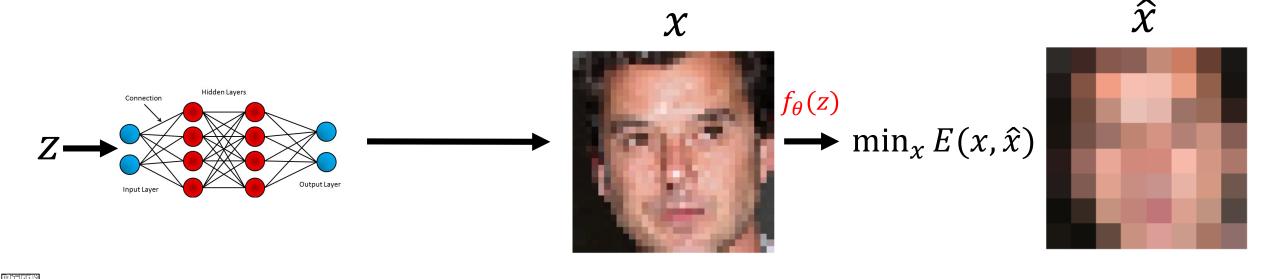


Image restoration objectives

 $\arg\min_{\theta} E(f_{\theta}(z); \hat{x})$

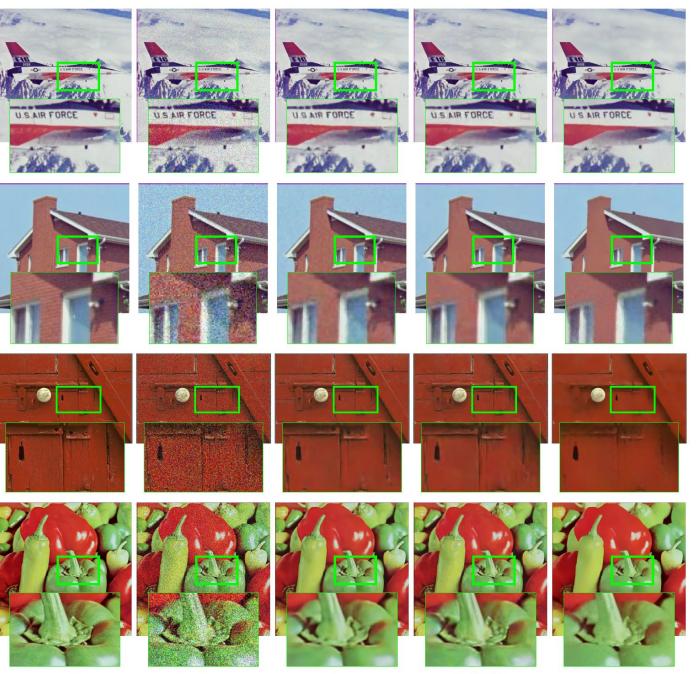
Denoising $E(x, \hat{x}) = ||x - \hat{x}||^2$

Inpainting $E(x, \hat{x}) = ||(x - \hat{x}) \odot m||^2$

clean image xcorrupted image \hat{x} binary mask m

Super-resolution $E(x, \hat{x}) = ||d(x) - \hat{x}||^2$

Denoising



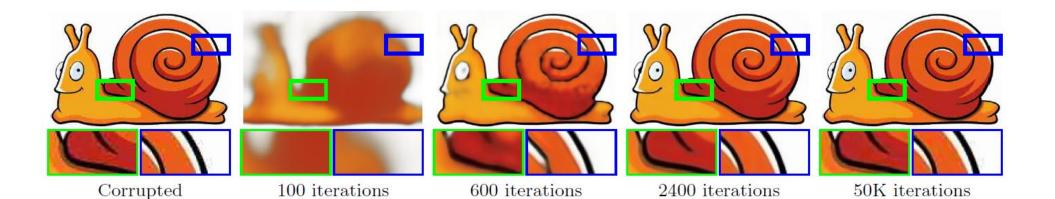
(a) GT

(b) Input

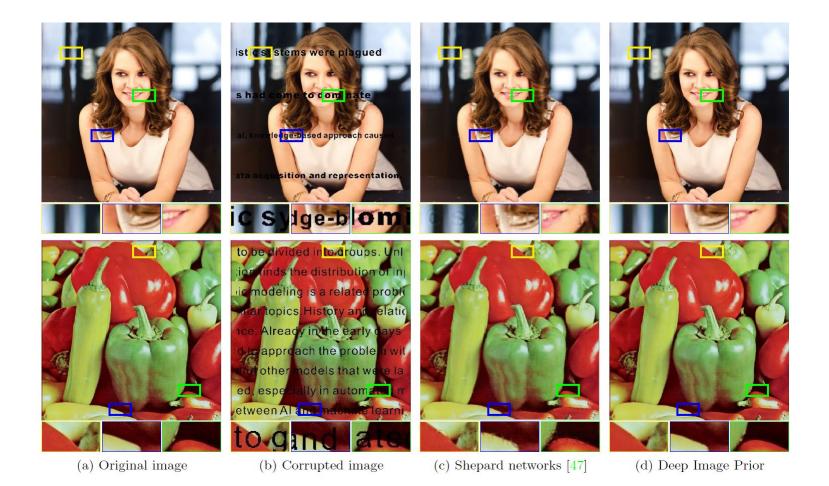
(c) Ours

(e) NLM

Jpeg artifact removal

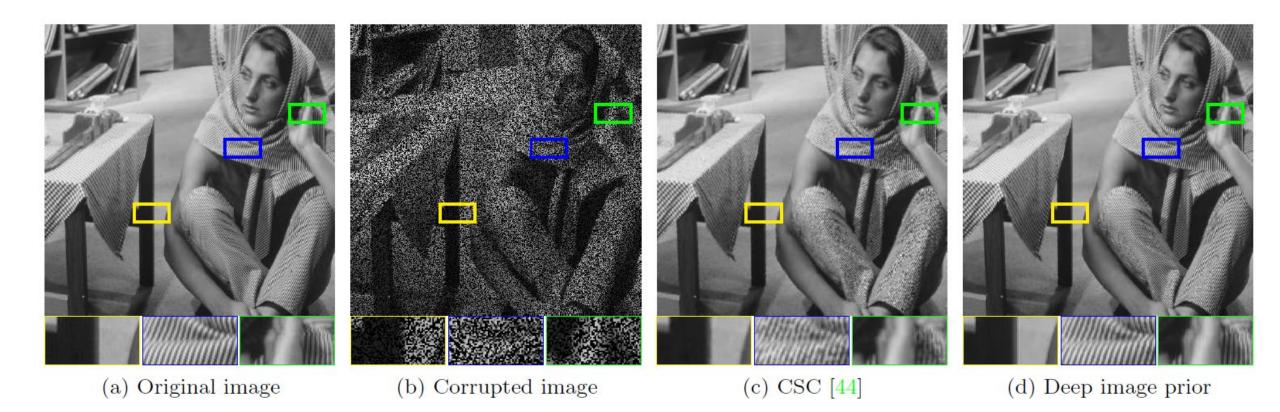


Inpainting



时间 了一个的ALACV Weizmann WAIC

Inpainting



DL4CV Weizmann

Super-resolution

Deep Image Prior

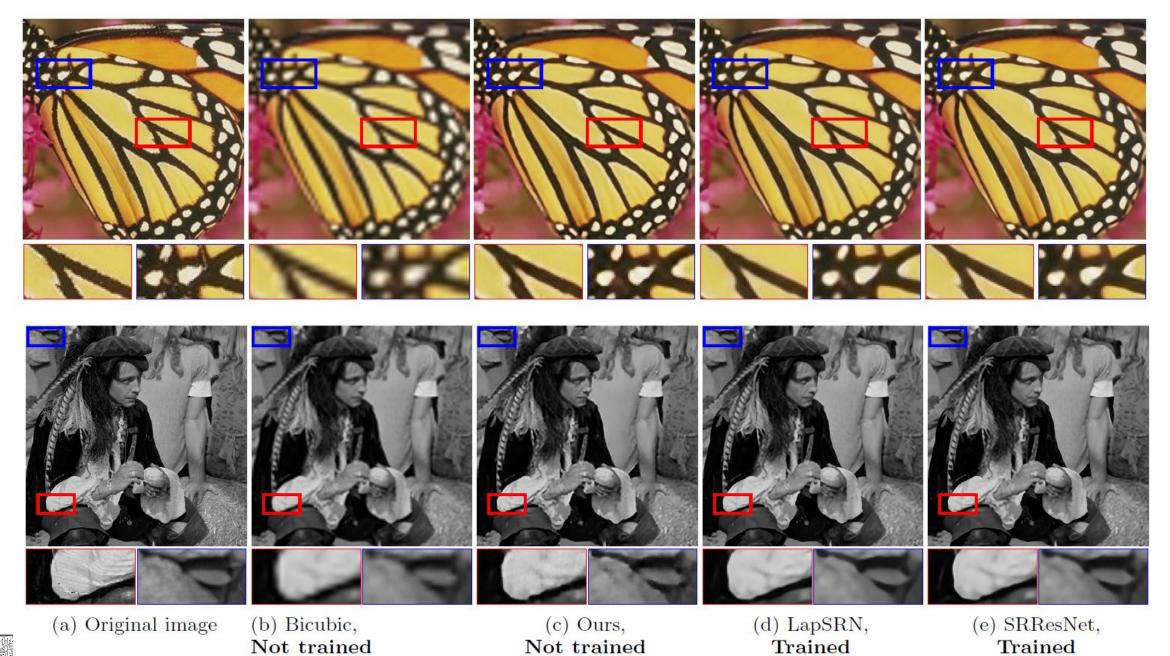
9

(a) HR image

- (b) Bicubic upsampling
- (c) No prior

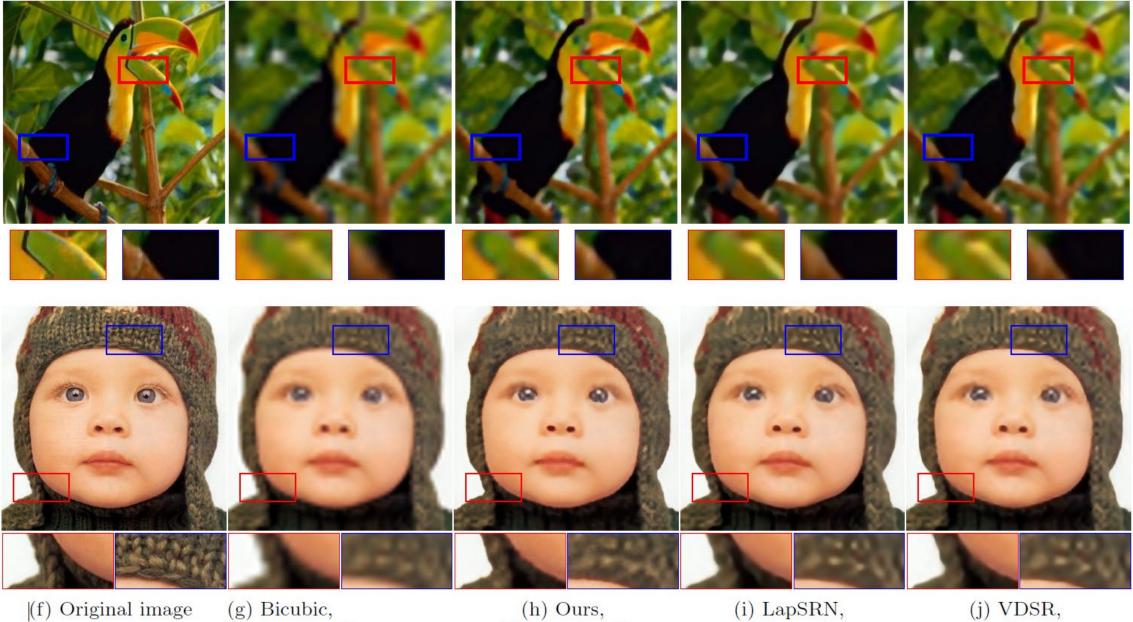
- (d) TV prior
- (e) Deep image prior

$4 \times$ super-resolution



WAIC

$8 \times$ super-resolution



WAIC

(g) Bicubic, Not trained

(h) Ours, Not trained (i) LapSRN, Trained

(j) VDSR, Trained

Super-resolution

	Baboon	Barbara	Bridge	Coastguard	Comic	Face	Flowers	Foreman	Lenna	Man	Monarch	Pepper	Ppt3	\mathbf{Zebra}	Avg.
No prior	22.24	24.89	23.94	24.62	21.06	29.99	23.75	29.01	28.23	24.84	25.76	28.74	20.26	21.69	24.93
Bicubic	22.44	25.15	24.47	25.53	21.59	31.34	25.33	29.45	29.84	25.7	27.45	30.63	21.78	24.01	26.05
TV prior	22.34	24.78	24.46	25.78	21.95	31.34	25.91	30.63	29.76	25.94	28.46	31.32	22.75	24.52	26.42
Glasner et al.	22.44	25.38	24.73	25.38	21.98	31.09	25.54	30.40	30.48	26.33	28.22	32.02	22.16	24.34	26.46
Ours	22.29	25.53	24.38	25.81	22.18	31.02	26.14	31.66	30.83	26.09	29.98	32.08	24.38	25.71	27.00
SRResNet-MSE	23.0	26.08	25.52	26.31	23.44	32.71	28.13	33.8	32.42	27.43	32.85	34.28	26.56	26.95	28.53
LapSRN	22.83	25.69	25.36	26.21	22.9	32.62	27.54	33.59	31.98	27.27	31.62	33.88	25.36	26.98	28.13

$4 \times$ super-resolution

$8 \times$ super-resolution

	Baboon	Barbara	Bridge	Coastguard	Comic	Face	Flowers	Foreman	Lenna	Man	Monarch	Pepper	Ppt3	\mathbf{Zebra}	Avg.
No prior	21.09	23.04	21.78	23.63	18.65	27.84	21.05	25.62	25.42	22.54	22.91	25.34	18.15	18.85	22.56
Bicubic	21.28	23.44	22.24	23.65	19.25	28.79	22.06	25.37	26.27	23.06	23.18	26.55	18.62	19.59	23.09
TV prior	21.30	23.72	22.30	23.82	19.50	28.84	22.50	26.07	26.74	23.53	23.71	27.56	19.34	19.89	23.48
SelfExSR	21.37	23.90	22.28	24.17	19.79	29.48	22.93	27.01	27.72	23.83	24.02	28.63	20.09	20.25	23.96
Ours	21.38	23.94	22.20	24.21	19.86	29.52	22.86	27.87	27.93	23.57	24.86	29.18	20.12	20.62	24.15
LapSRN	21.51	24.21	22.77	24.10	20.06	29.85	23.31	28.13	28.22	24.20	24.97	29.22	20.13	20.28	24.35

Table 1: Detailed super-resolution PSNR comparison on the Set14 dataset with different scaling factors.

Super-resolution

$4 \times$ super-resolution

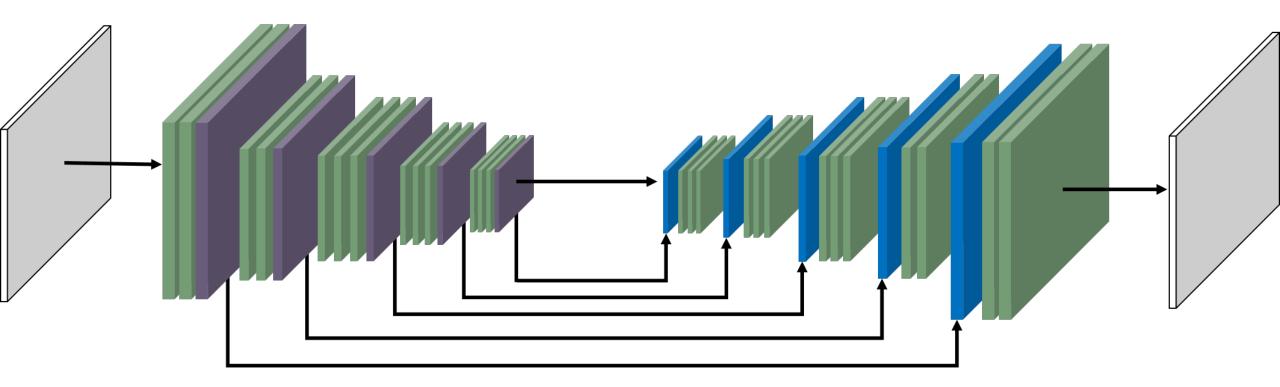
	Baby	Bird	Butterfly	Head	Woman	Avg.
No prior	30.16	27.67	19.82	29.98	25.18	26.56
Bicubic	31.78	30.2	22.13	31.34	26.75	28.44
TV prior	31.21	30.43	24.38	31.34	26.93	28.85
Glasner et al.	32.24	31.10	22.36	31.69	26.85	28.84
Ours	31.49	31.80	26.23	31.04	28.93	29.89
LapSRN SRResNet-MSE	$33.55 \\ 33.66$	$33.76 \\ 35.10$	$27.28 \\ 28.41$	$32.62 \\ 32.73$	$30.72 \\ 30.6$	$31.58 \\ 32.10$

 $8 \times$ super-resolution

	Baby	Bird	Butterfly	Head	Woman	Avg.
No prior	26.28	24.03	17.64	27.94	21.37	23.45
Bicubic	27.28	25.28	17.74	28.82	22.74	24.37
TV prior	27.93	25.82	18.40	28.87	23.36	24.87
SelfExSR	28.45	26.48	18.80	29.36	24.05	25.42
Ours	28.28	27.09	20.02	29.55	24.50	25.88
LapSRN	28.88	27.10	19.97	29.76	24.79	26.10

Table 2: Detailed super-resolution PSNR comparison on the Set5 dataset with different scaling factors.

Encode-decoder architecture



Depths and architectures

(a) Input (white=masked)

(b) Encoder-decoder, depth=6

(c) Encoder-decoder, depth=4

(d) Encoder-decoder, depth=2

(e) ResNet, depth=8

(f) U-net, depth=5

Conclusions

- The success of deep neural networks is often attributed to ability to learn image prior using large databases
- In "Deep image prior" it is shown that the structure of the generator network is sufficient to capture low-level image statistics prior, for image restoration tasks, without any learning
- The structure of the network imposes a strong prior
- Limitations: slowness, generalization (not necessarily SOTA)

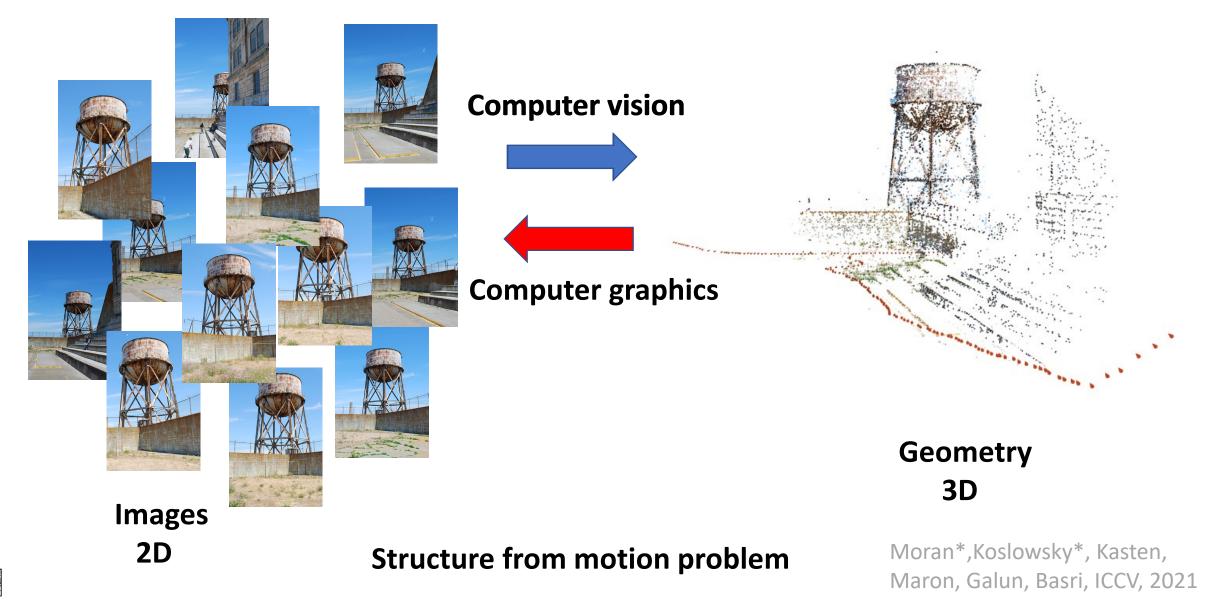
Deep image prior → Computer vision, Computer Graphics

The structure of the network allows

Parametrizing signals by the net weights

- 1. 2D images
- 2. 3D volumes
- 3. Continuous functions

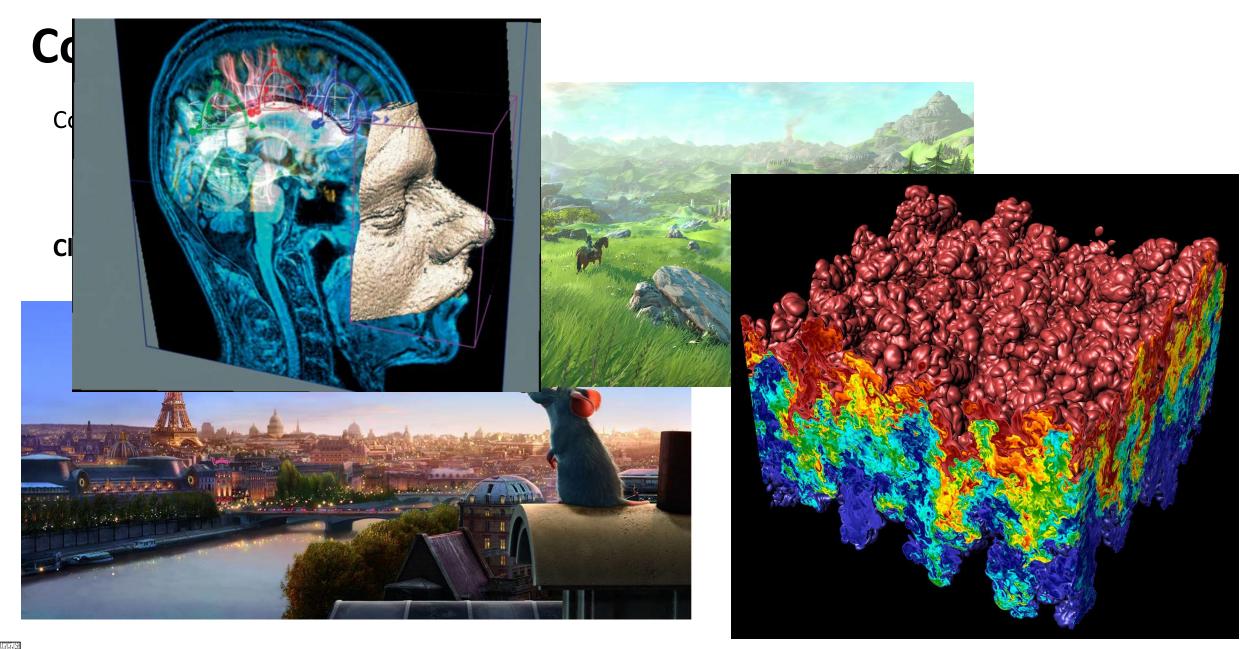
Geometry in computer vision



Computer graphics and Rendering

Based on

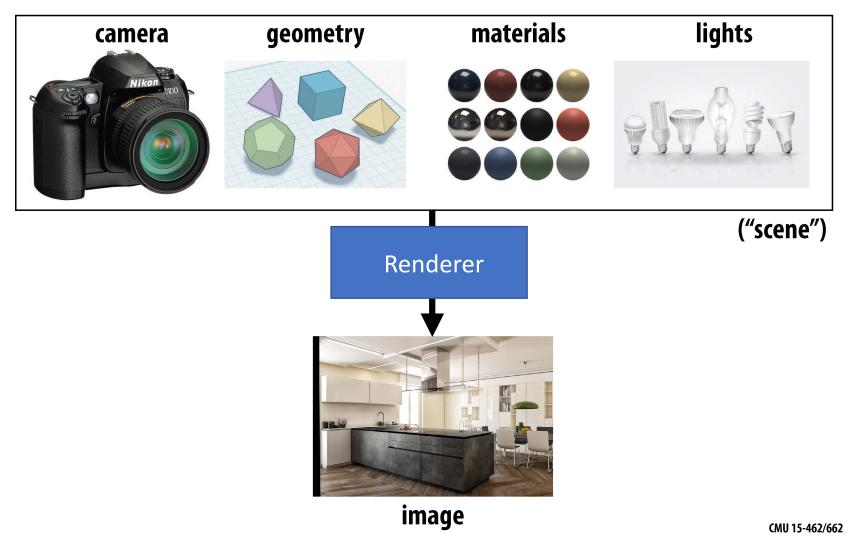
- 1. Keenan Crane's course on Computer Graphics, CMU 15-462/662
- 2. The book Computer Graphics: principles and practice by Foley
- 3. The ECCV 2022 Tutorial Neural Volumetric Rendering for Computer Vision

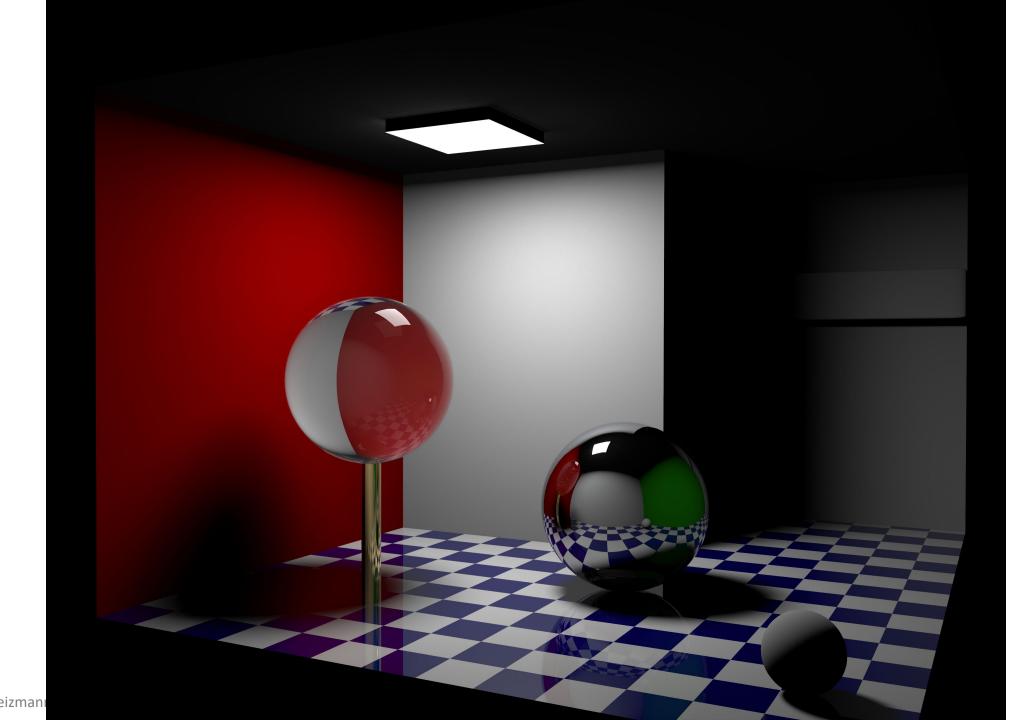


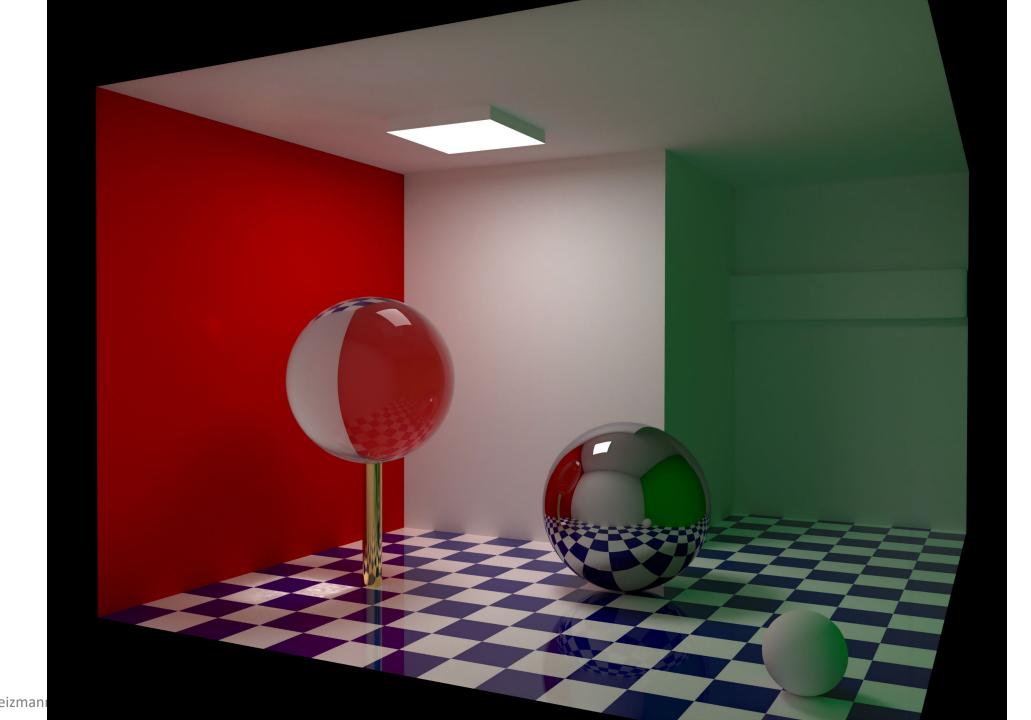
影响 DL4CV Weizmann waic

Rendering

The process of generating a photorealistic image from a 3D model

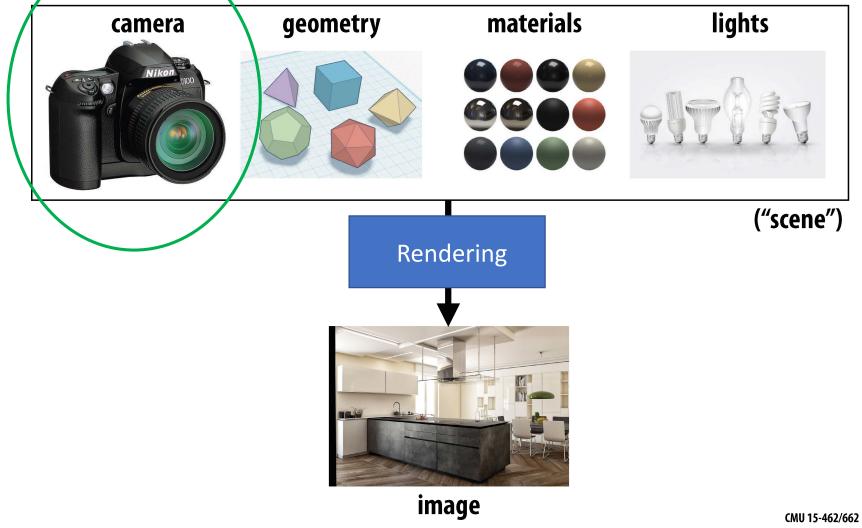






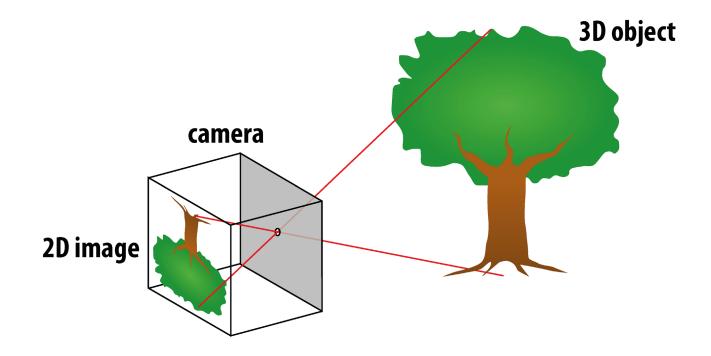
Photorealistic Rendering—Basic Goal

What are the INPUTS and OUTPUTS?

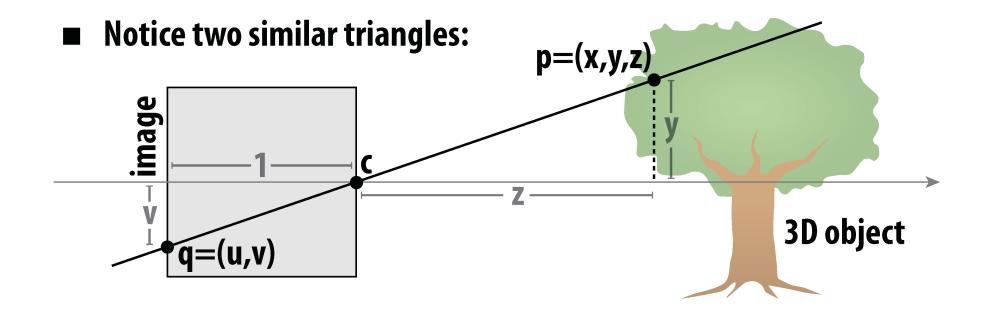


Perspective projection Pinhole camera model

- Objects look smaller as they get further away
- Parallel lines "meet" at infinity



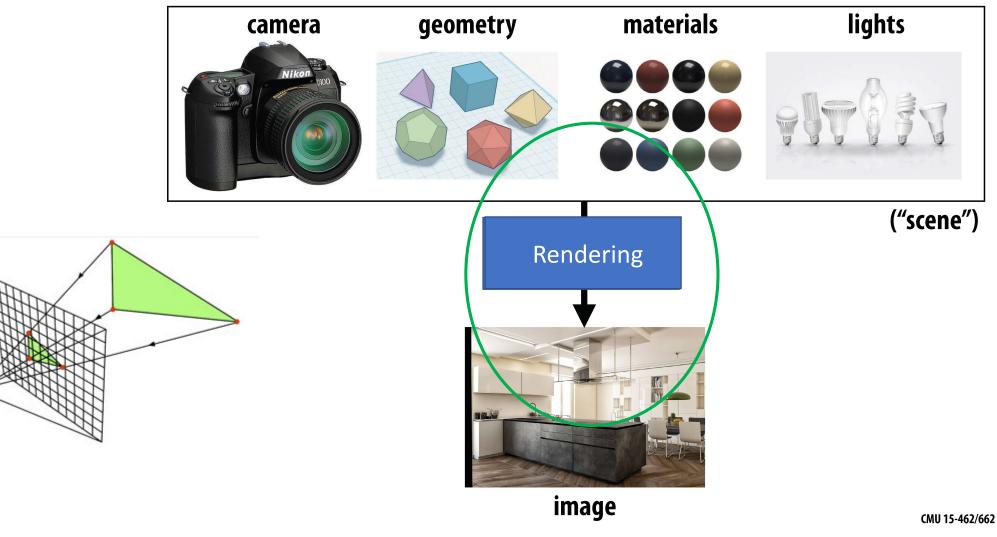
Perspective projection Pinhole camera model



- Camera pinhole at c = (0,0,0)
- The image plane located z = -1
- Using similar triangles $v = \frac{y}{z}$ and $u = \frac{x}{z}$

Photorealistic Rendering—Basic Goal

What are the INPUTS and OUTPUTS?



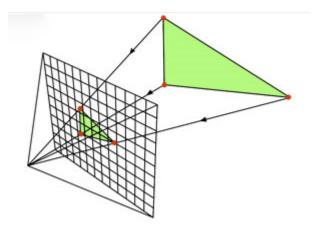
Rendering Drawing on the screen $(3D \rightarrow 2D)$

Two ways of turning triangles into image

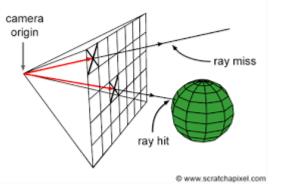
- Rasterization
- Ray tracing

Rasterization

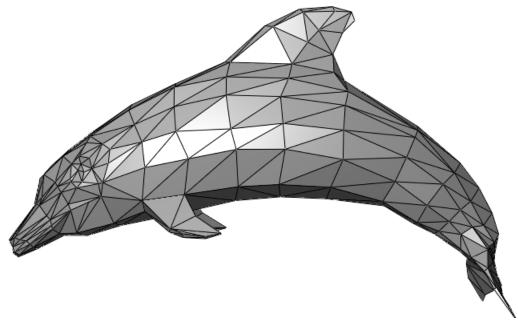
for each primitive (triangle), which pixels are covered?



Ray tracing for each pixel, which primitives (triangles) are seen?



Everything is a Triangle



呼号码 了 / / / / DL4CV Weizmann waic

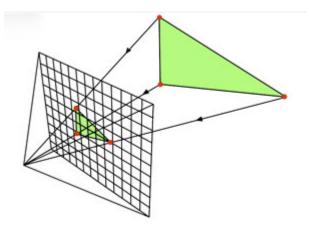
Rendering Drawing on the screen $(3D \rightarrow 2D)$

Rasterization

- for each primitive (triangle), which pixels are covered?
- extremely fast (Billions of triangles per second on GPU)
- harder (but possible) to achieve photorealism
- games and real-time applications

Ray tracing

- for each pixel, which primitives (triangles) are seen?
- generally slower
- easier to get photorealism
- movies and video clips



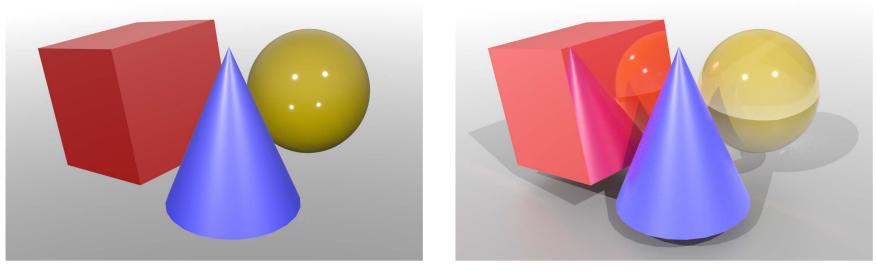


Ray Tracing vs. Rasterization—Illumination

- More major difference: sophistication of illumination model
 - [LOCAL] rasterizer processes one *primitive* at a time; hard* to determine things like "A is in the shadow of B"
 - [GLOBAL] ray tracer processes on *ray* at a time; ray knows about everything it intersects, easy to talk about shadows & other "global" illumination effects

RASTERIZATION

RAY TRACING



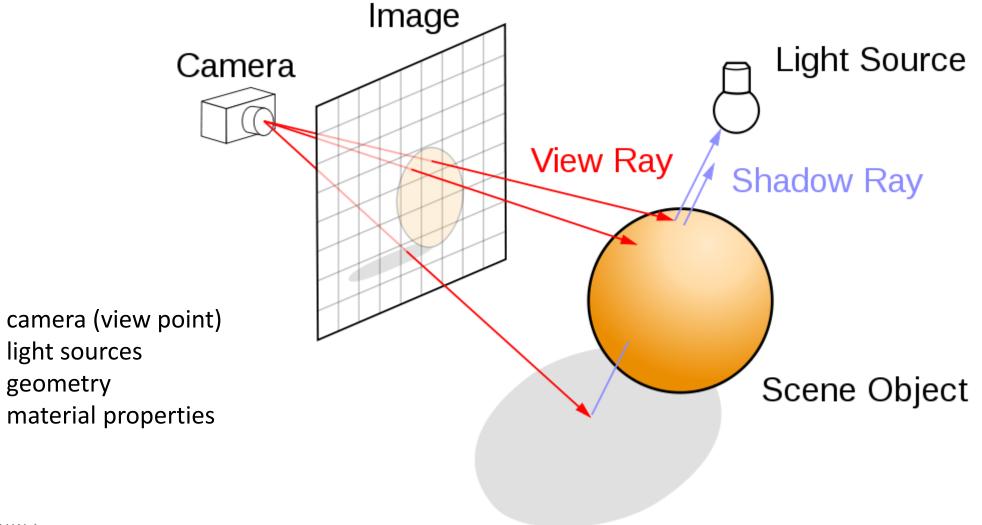
Q: What illumination effects are missing from the image on the left?

DL4CV Weizmanı

*But not *impossible* to do <u>some</u> things with rasterization (e.g., shadow maps)... just results in more complexity

CMU 15-462/662

Rendering Drawing on the screen

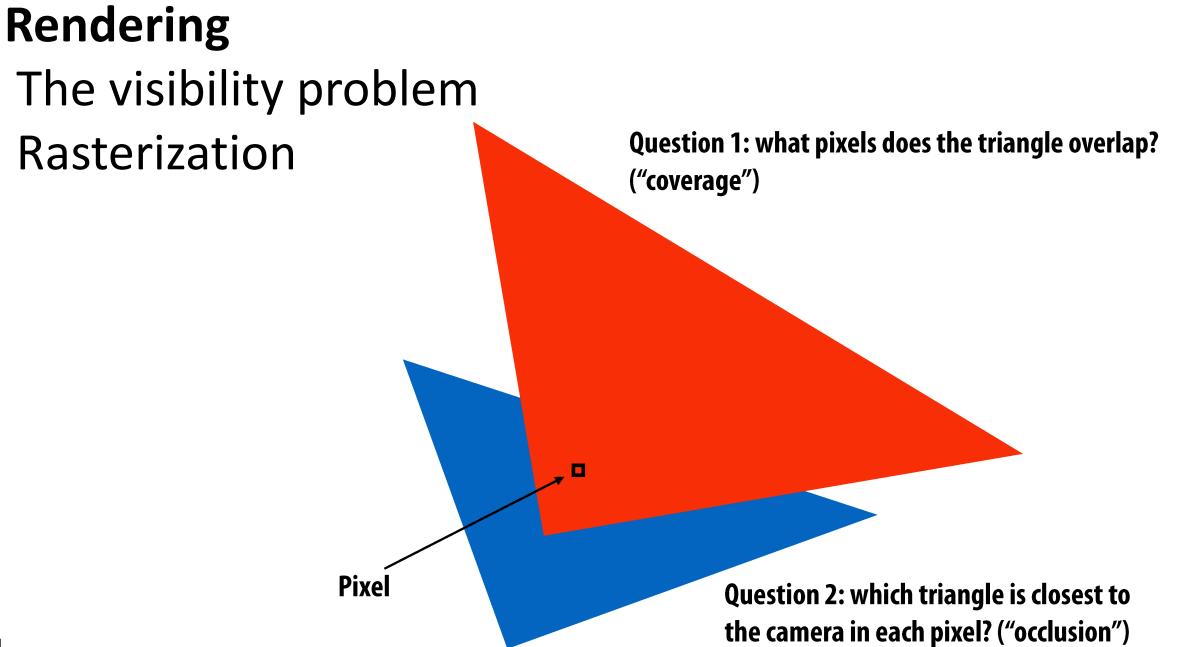


DL4CV Weizmann

•

۲

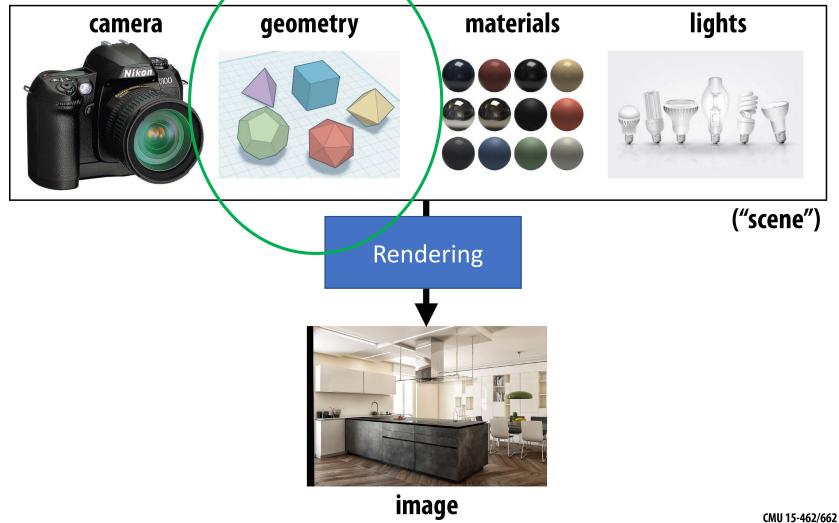
۲



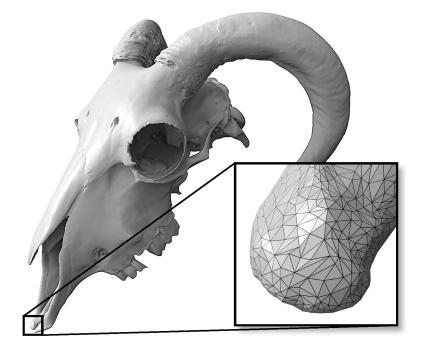
DL4CV Weizmann

Photorealistic Rendering—Basic Goal

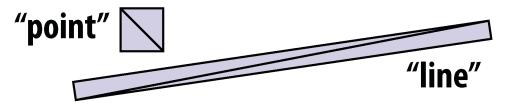
What are the INPUTS and OUTPUTS?

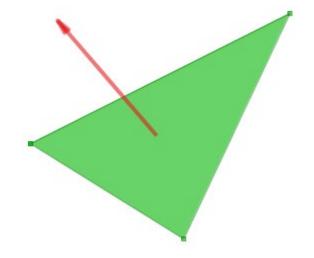


Geometry Why triangles?



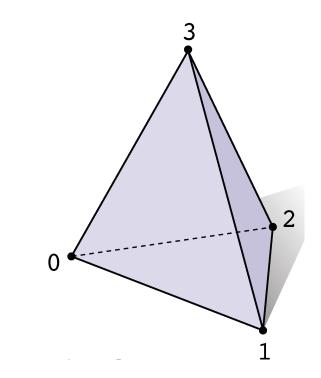
- can approximate any shape
- always planar, well-defined normal
- easy to interpolate data, using "barycentric coordinates"
- optimized and uniform drawing pipeline





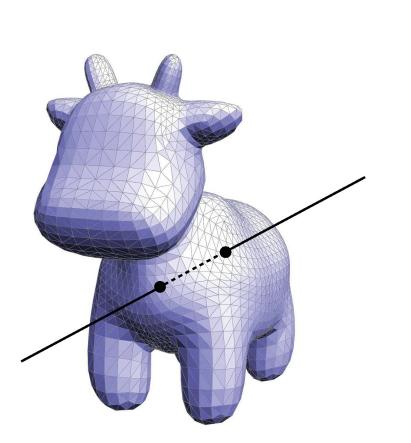
Geometry Triangle mesh (explicit)

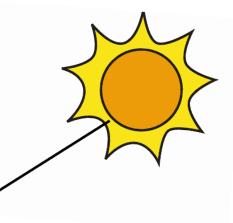
- store vertices as triplets of coordinates (x, y, z)
- store triangles as triplets of indices (*i*, *j*, *k*)



E.g., tetrahedron:	VERTICES				TRI	TRIANGLES			
		x	У	Z	i	j	k		
	0:	-1	-1	-1	0	2	1		
	1:	1	-1	1	0	3	2		
	2:	1	1	-1	3	0	1		
	3:	-1	1	1	3	1	2		

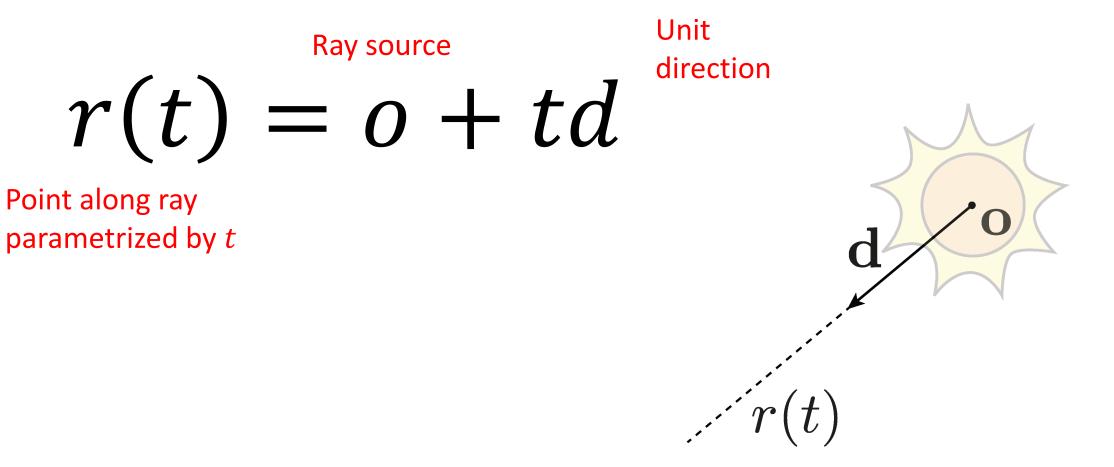
Geometry Ray-mesh intersection





- Think about a ray of light traveling from the sun
- Want to know where a ray pierces a surface
- Might pierce surface in many places
- A significant step towards visibility and ray tracing

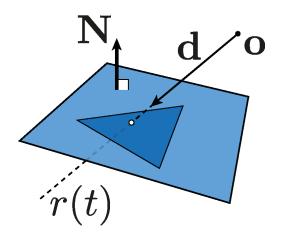
Geometry Ray equation

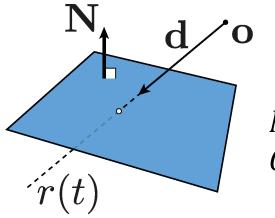


Geometry Ray-plane intersection

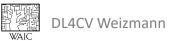
Intersection between plane $N^T x = c$ and ray r(t) = o + td

$$N^{T}r(t) = c$$
$$N^{T}(o + td) = c \Rightarrow t = \frac{c - N^{T}o}{N^{T}d}$$
$$r(t) = o + \frac{c - N^{T}o}{N^{T}d}d$$



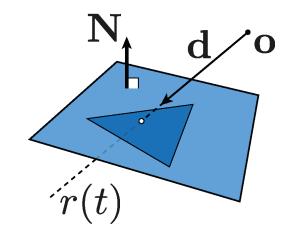


N unit normal C offset

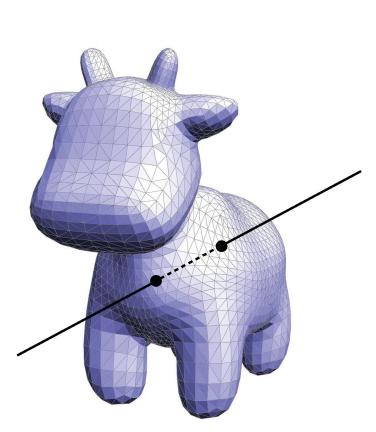


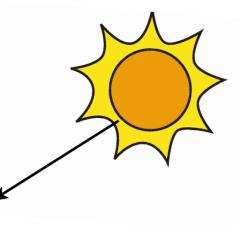
Geometry Ray-triangle intersection

- need to determine if point of intersection is within the triangle
- compute ray-plane intersection
- compute barycentric coordinates of hit point
- if all barycentric coordinates are positive, point in triangle



Geometry Ray-mesh intersection





Challenges in performance

- How to accelerate the naïve algorithm, given a ray, scan all triangles
- There are a lot of triangles and a lot of rays
- By hierarchical approach and dedicated hardware

时间 了一一一 WAIC

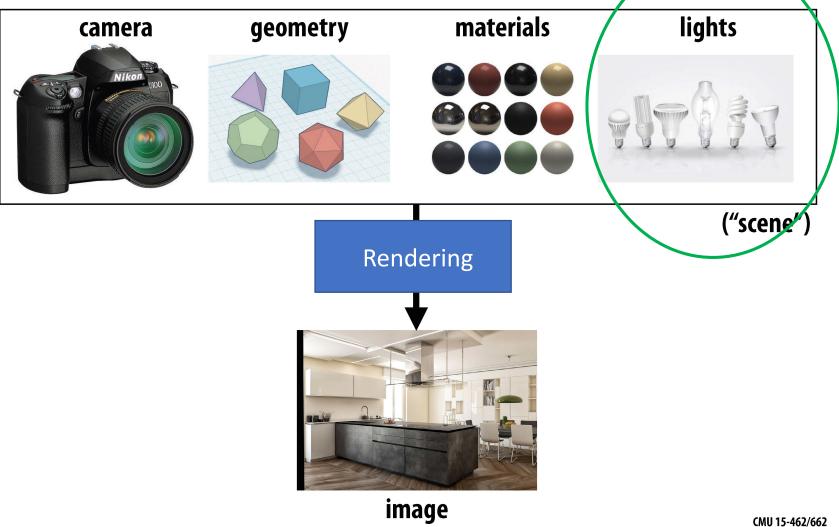
Why care about performance?

Pixar's "Coco" — about 50 <u>hours</u> per frame (@24 frames/sec)

DL4CV Weizmanı

Photorealistic Rendering—Basic Goal

What are the INPUTS and OUTPUTS?



Radiometry = measuring light

Aim: Photo realistic images

- Which color at each pixel?
- How much light (illumination) at each pixel?
- Why some parts of the surface look lighter or darker?
- Final image = at every point, what color and how intense or bright it is

Rendering is more than just color!

Also need to know <u>how much</u> light hits each pixel:

color

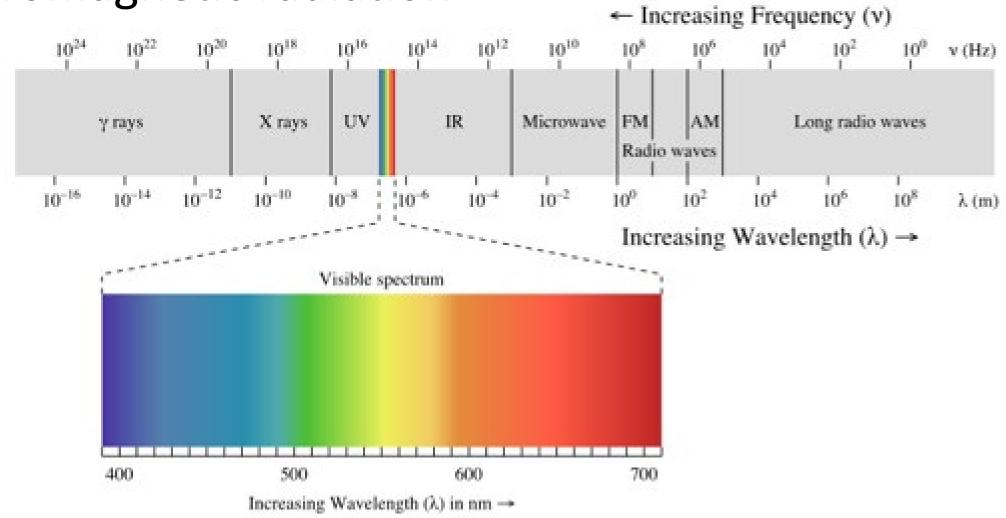
intensity

image

CMU 15-462/662

Radiometry

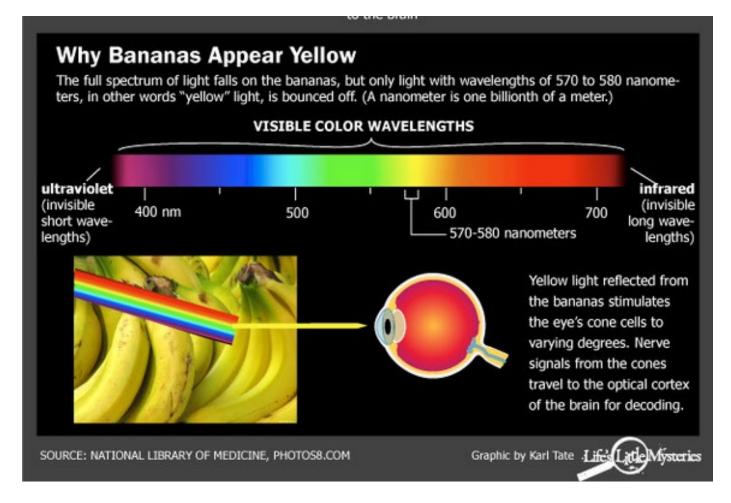
Electromagnetic radiation



Light is electromagnetic radiation that is visible to eye

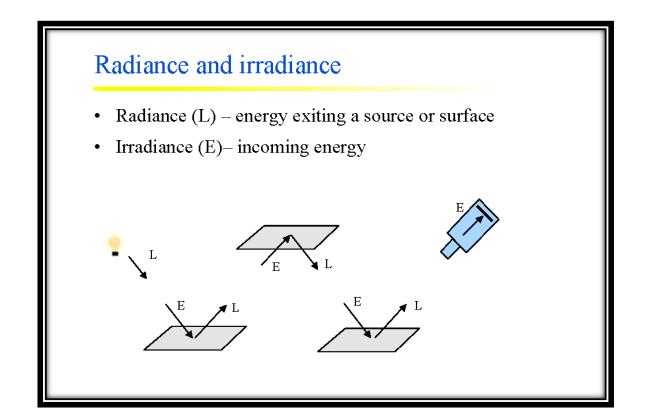
Radiometry

Electromagnetic radiation



DL4CV Weizmann

Radiometry Radiance and irradiance

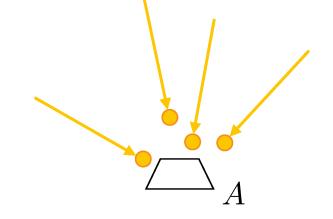


Slide by Matthew Turk

Radiometry Irradiance

Irradiance: area density of radiant flux

Given a sensor with area A, we consider the average flux over the entire sensor area $\frac{\Phi}{\overline{A}}$ Irradiance (E) = flux density, i.e., the incident flux per unit surface area



$$\frac{\text{Watts}}{\text{m}^2}$$

Given what we now know about radiant energy...

Why do some parts of a surface look lighter or darker?

CMU 15-462/662

Radiometry Lambert's cosine law

Consider beam with flux Φ incident on surface with area A

Radiometry Lambert's cosine law

- Consider beam with flux Φ incident on tilted surface with area A'
- Irradiance at surface is proportional to cosine of the angle between light direction and surface normal

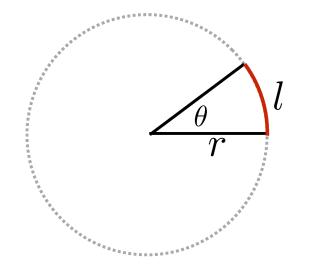
 $A = A' \cos \theta$

$$E = \frac{\Phi}{A'} = \frac{\Phi\cos\theta}{A}$$

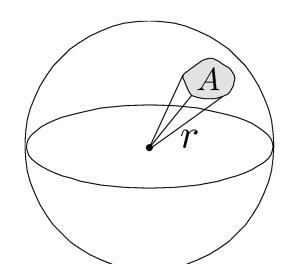
Radiometry Solid angle

We need to break the energy over direction (angles), not just over space

- Angle: ratio of subtended arc length on circle to radius
 - $\theta = \frac{l}{r}$ - Circle has 2π radians

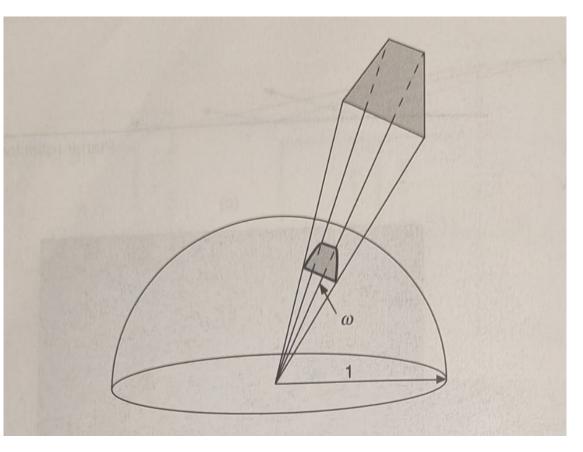


- Solid angle: ratio of subtended area on sphere to radius squared
 - $\Omega = \frac{A}{r^2}$
 - Sphere has 4π steradians



Radiometry Solid angle

The solid angle subtended by an object from a point on a surface = The area covered by the object's projection onto a unit hemisphere above the point



Radiometry Radiance

Radiance is the solid angle density of irradiance

 $L(\boldsymbol{p}, w)$

Radiance is energy along a ray defined by origin point p and direction w

Radiant energy per unit time per unit area per unit solid angle

 $\left[\frac{W}{m^2 sr}\right]$

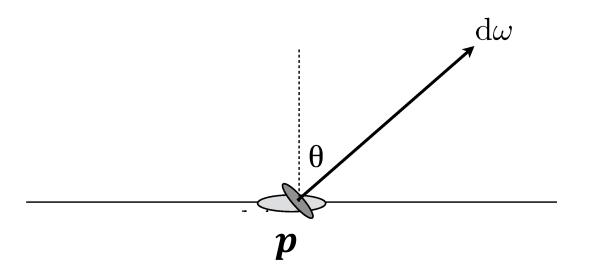
Radiometry

Radiance

A surface experiencing radiance L(p, w), coming in from solid angle dw, experiences irradiance

$$dE(\mathbf{p}) = L(\mathbf{p}, w) \cos(\theta) dw$$

Radiance Lambert's Solid angle
law



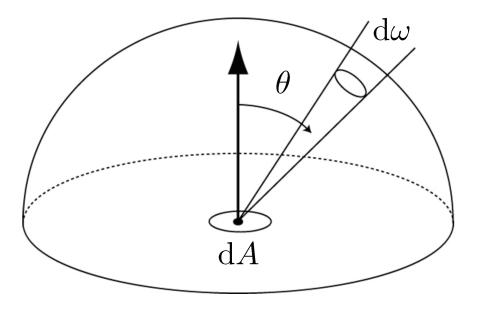
Radiometry Radiance (Fields) properties

- Radiance is a fundamental quantity that characterizes the distribution of light an environment
- Radiance is the quantity associated with a ray (constant a long a ray)
- Rendering is all about computing radiance
- A pinhole camera measures radiance

Radiometry Irradiance from the environment

Computing flux per unit area on surface, due to incoming light from all directions

$$E(\mathbf{p}) = \int_{H^2} L_i(\mathbf{p}, \omega) \cos \theta d\omega$$



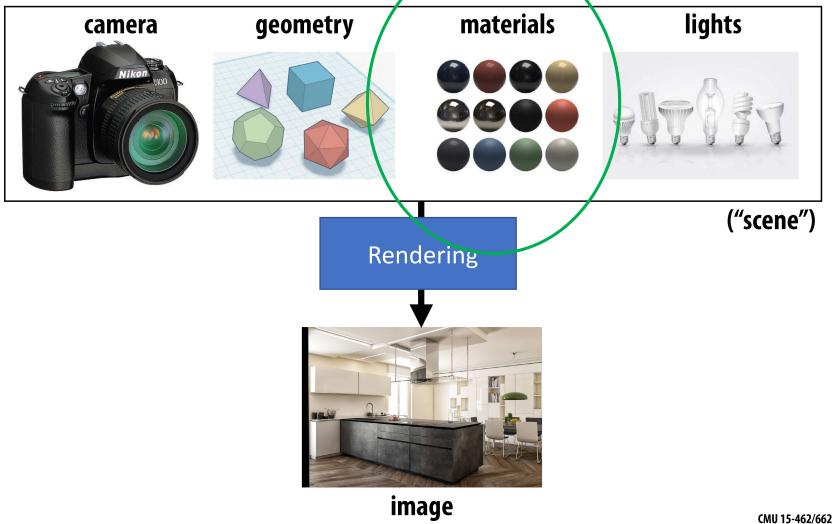


Recap: Radiance and Irradiance

angle between ω and normal

Photorealistic Rendering—Basic Goal

What are the INPUTS and OUTPUTS?



Radiometry

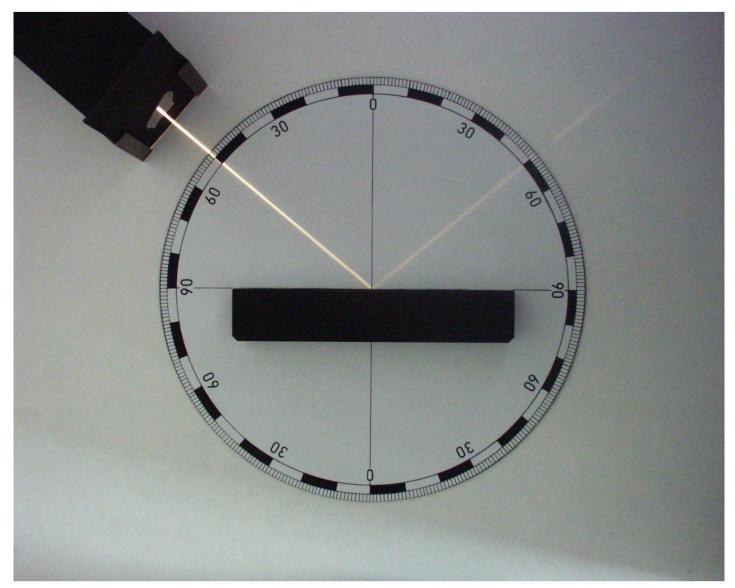
Bidirectional reflectance distribution function

- When light hits a surface, the way it is reflected (scattered off the surface), depends on the surface material properties
- This is encoded by the "Bidirectional reflectance distribution function" (BRDF)

Given incoming direction w_i, how much light gets scattered in any given outgoing direction w_o?

• The BRDF tells us how bright a surface appears when viewed from one direction while light falls from another one

Example: perfect specular reflection



[Zátonyi Sándor]

Radiometry

Reflected radiance and incident irradiance

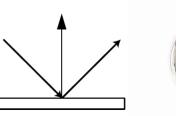
The incident radiance L_i The incident irradiance $E_i = L_i \cos \theta_i dw_i$ The reflected radiance L_r

$$BRDF = f(p, w_i, w_r) = \frac{reflected energy}{incident energy} = \frac{L_r}{E_i} \qquad L_i$$
$$E_i = L_i \cos \theta_i dw_i$$
$$\begin{bmatrix} \frac{1}{sr} \end{bmatrix}$$

Some basic reflection functions

Ideal specular

Perfect mirror



Ideal diffuse

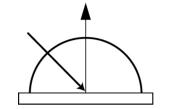
Uniform reflection in all directions

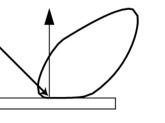
Glossy specular

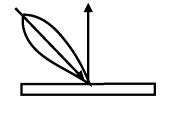
Majority of light distributed in reflection direction

Retro-reflective

Reflects light back toward source







Diagrams illustrate how incoming light energy from given direction is reflected in various directions.

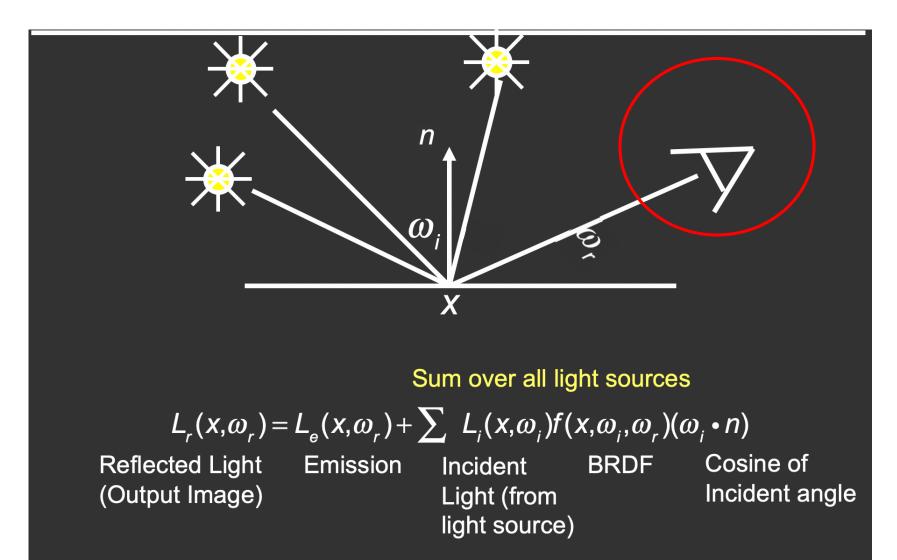
DL4CV Weizmanı

CMU 15-462/662

W/AI(

Reflection equation Multiple light sources

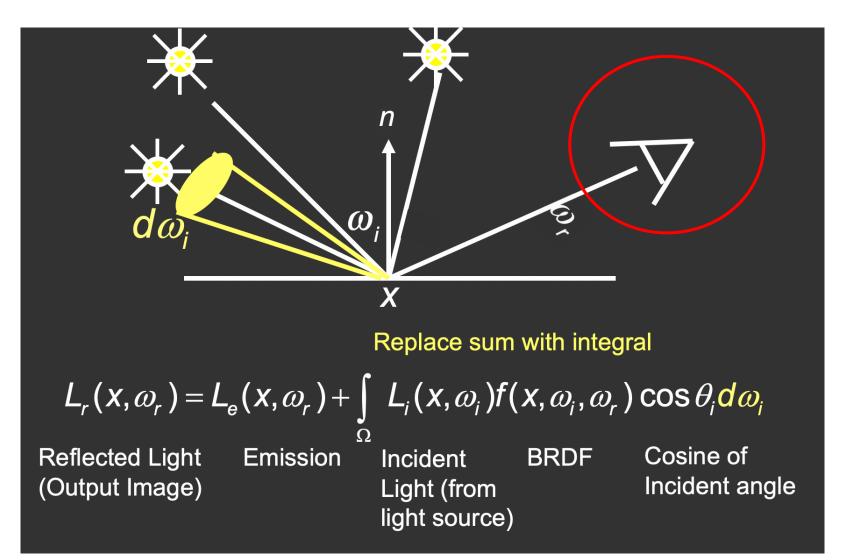
DL4CV Weizmann



Slide by Lior Yariv

Reflection equation Environment of light sources

DL4CV Weizmann



Slide by Lior Yariv

Reflection equation (local illumination) Recap

- The image of a three dimensional object depends on its shape, its reflectance properties, and the distribution of the light sources
- The interactions of light with scene surfaces depend on the material properties of the surfaces. Materials may be represented as bidirectional reflectance distribution functions (BRDF)
- The BRDF leads to the reflection equation
- The reflection equation considers only local illumination (direct light), i.e., light directly
 from light sources to surfaces

DL4CV Weizmann

Rendering equation (global illumination)

• Core functionality of photorealistic renderer is to estimate radiance at a given point, in a given direction

 To get photorealism we need to consider global illumination, multiple bounces (indirect light), called interreflections.

• In real scenarios, light reflected from an object strikes other objects in the surrounding area, illuminating them

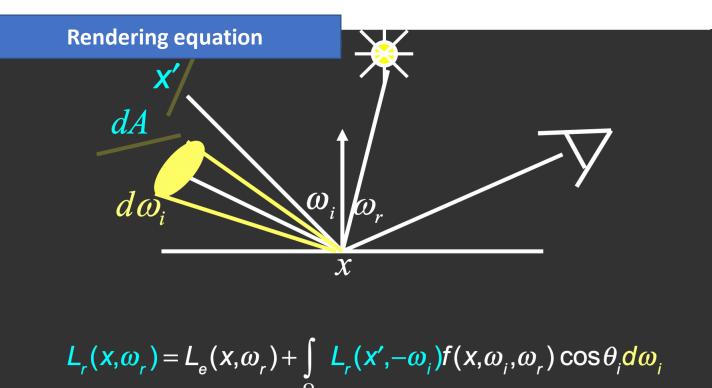
Rendering equation (global illumination) James Kajiya, 1986 Reflection equation

- Computing reflection equation requires knowing the incoming radiance from surfaces
- But determining incoming radiance requires knowing reflected radiance from surfaces
- So we have to compute another integral, we have exactly the same equation
- Rendering equation is recursive

DL4CV Weizmann

Slide by Lior Yariv

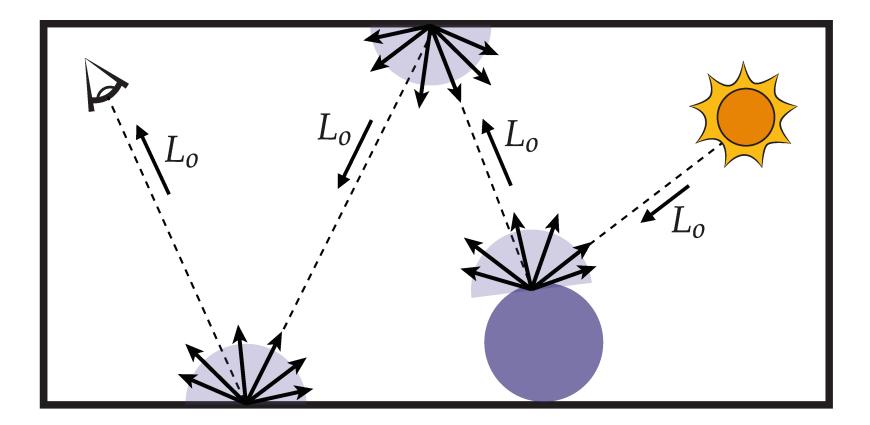
$$L_r(\mathbf{x}, \omega_r) = L_e(\mathbf{x}, \omega_r) + \int_{\Omega} L_i(\mathbf{x}, \omega_i) f(\mathbf{x}, \omega_i, \omega_r) \cos \theta_i d\omega_i$$



Reflected Light
(Output Image)EmissionReflectedBRDFCosine of
Incident angleUNKNOWNKNOWNUNKNOWNKNOWNKNOWN

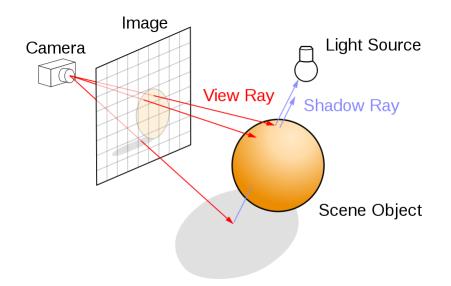
Recursive Raytracing

Basic strategy: recursively evaluate rendering equation!



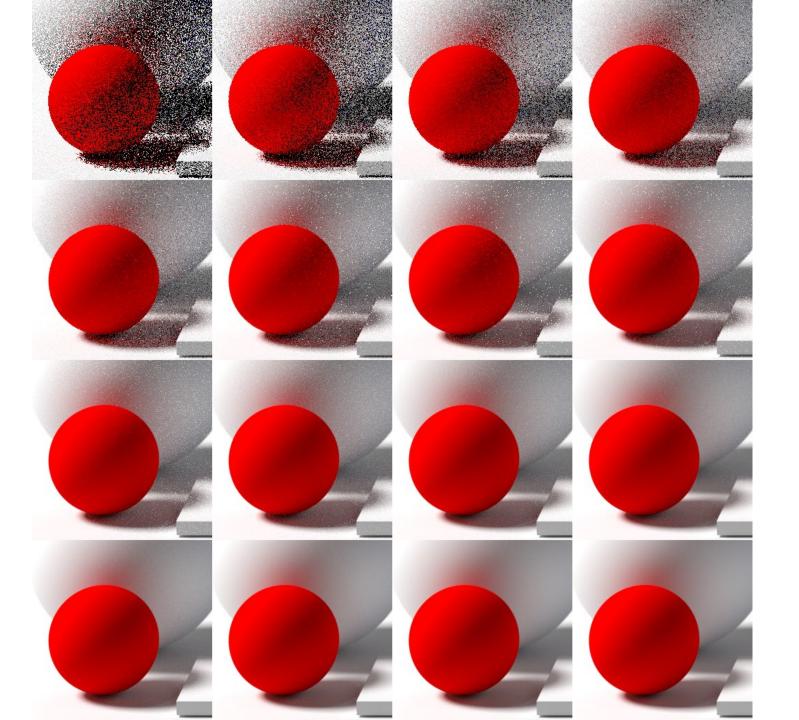
Rendering equation How to solve?

- Too hard for analytic solution
- Very challenging to apply directly recursive ray tracing
- Monte-Carlo rendering
- Ray tracing is crucial here
- Little control in rasterization, which rays we evaluate?



Noise decreases as the number of samples per pixel increases.

The top left shows 1 sample per pixel, and doubles from left to right each square.



Direct illumination

anterest an exception

1 4 71

•p

時已候 日本語 DL4CV Weizmanı WAIC

One-bounce global illumination

に早

LALLER RELATES

的 DL4CV Weizmanı

W/AI(

Two-bounce global illumination

「四四

LAASSA AND AND A DAY

的问题 DL4CV Weizmanı

WAI

Four-bounce global illumination

「四四

LALITERERAL

DL4CV Weizmanı

Eight-bounce global illumination

Comp

LAALER FRANKS

的 DL4CV Weizmanı WAIC

Sixteen-bounce global illumination

同期

LAXE FORADO

Summary

- Computer graphics, in particular classical rendering: ray tracing and rasterization
- Geometry representation, specifically explicit representation by triangular mesh
- **Radiometry**, including radiance and irradiance
- Materials properties are encoded by BRDF (Bidirectional reflectance distribution function)
- Illumination models
 - **local model** -> reflection equation
 - global model -> rendering equation
- Very challenging to solve the **rendering equation**
- Simplifications by Monte-Carlo sampling
- Neural rendering and implicit representation (next time)

