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Computer vision

We are familiar already with a variety of neural net architectures, dedicated for tasks such 
as  classification, detection, generation, segmentation... 

Slide by Amnon Geifman 
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Inverse problems in computer vision 

• Restoration tasks: denoising, super-resolution and inpainting 
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Inverse problems in computer vision 

• Restoration tasks: denoising, super-resolution and inpainting 

Denoising  

degraded image   clean image
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Super-
resolution

Inpainting

Inverse problems in computer vision 
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Inverse problems in computer vision 

• Supervised approach for solving inverse methods performs well, when utilizing deep 
convolutional networks

• CNNs are trained over a large number of pairs of degraded images and their 
corresponding clean images

• The excellent performance of the CNNs is attributed to their ability to learn
realistic image priors from a large training dataset of images  

• Is the common approach of supervised training of a large dataset indeed the best / 
possible way to learn image priors? 



DL4CV Weizmann

What is a prior?

?
Prior = our knowledge about the visual world

Images from Dahl et al, 2017
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Learned priors

⋮

Images from Dahl et al, 2017

⋮
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Explicit priors
• By introducing constraints 

min
𝑥𝑥

𝑑𝑑 𝑥𝑥 − �𝑥𝑥

s.t. 𝑥𝑥 is a face, natural image, etc.

• 𝑅𝑅(𝑥𝑥) expresses  constraints 
min
𝑥𝑥

𝑑𝑑 𝑥𝑥 − �𝑥𝑥 + 𝜆𝜆𝑅𝑅(𝑥𝑥)

• Example: Total Variation (TV)        𝑅𝑅 𝑥𝑥 = ∑𝑖𝑖,𝑗𝑗 𝑥𝑥𝑖𝑖+1,𝑗𝑗 − 𝑥𝑥𝑖𝑖,𝑗𝑗 + 𝑥𝑥𝑖𝑖,𝑗𝑗+1 − 𝑥𝑥𝑖𝑖,𝑗𝑗
encourages images to contain uniform regions

• In general, it is difficult to express “natural” constraints mathematically

down-sampling

�𝑥𝑥
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Deep image (implicit) prior

• Constructing an implicit prior by neural network 

min
𝑥𝑥

𝑑𝑑 𝑥𝑥 − �𝑥𝑥
s.t. 𝑥𝑥 is an output of CNN

Ulyanov, D., Vedaldi, A., & Lempitsky, V., Deep image prior,  CVPR, 2018

𝑑𝑑 𝑥𝑥 − �𝑥𝑥

�𝑥𝑥𝑥𝑥

𝑧𝑧

The network weights parametrize the 
restored image

Noise
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• Pretrained network or large image datasets are not required 

• Eliminating the data and the learning process still yields good results for image 
restoration

• The structure of the network is sufficient and imposes a strong prior to restore the 
original image while taking into consideration the degraded image only

The structure of the CNN imposes a strong prior 
Why? 

Deep image prior

Ulyanov, D., Vedaldi, A., & Lempitsky, V., Deep image prior,  CVPR, 2018
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• The network captures low-level statistics of natural images

• The structure of the network imposes self-similarity (within the same scale) at multiple scales, making the 
corresponding priors suitable for the restoration of natural images

• The translation equivariance and locality of the convolution operator 

• The hierarchy of such convolutions captures the statistics of pixel neighborhood at multiple scales 

Deep image prior
Why do the structure of the CNN impose a strong prior? 

Ulyanov, D., Vedaldi, A., & Lempitsky, V., Deep image prior,  CVPR, 2018
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Deep image prior 
 Computer vision, Computer Graphics
The structure of the network allows

Parametrizing signals by the net weights
1. 2D images
2. 3D volumes 
3. Continuous functions 

How and why is it useful?

Diving into “deep image prior”
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Deep image prior, super-resolution results 
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Image restoration
Problem setting 

𝑥𝑥 - clean image
�𝑥𝑥 - degraded image (observed)
𝑥𝑥∗ - restored image  

𝑥𝑥  degradation                   �𝑥𝑥  restoration               𝑥𝑥∗
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𝑥𝑥 - clean image
�𝑥𝑥 - degraded image (observed)
𝑥𝑥∗ - restored image  

𝑥𝑥  degradation                   �𝑥𝑥  restoration               𝑥𝑥∗

(maximum a posterior probability) 𝐌𝐌𝐌𝐌𝐌𝐌: 𝑥𝑥∗ = arg max
𝑥𝑥

𝑝𝑝(𝑥𝑥| �𝑥𝑥)

𝑝𝑝 𝑥𝑥 �𝑥𝑥 =
𝑝𝑝 �𝑥𝑥 𝑥𝑥 𝑝𝑝(𝑥𝑥)

𝑝𝑝( �𝑥𝑥)
∝ 𝑝𝑝 �𝑥𝑥 𝑥𝑥 𝑝𝑝(𝑥𝑥)

Likelihood Prior

Image restoration
Problem setting 
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Image restoration
Example: Likelihood for denoising 

clean image 𝑥𝑥 corrupted image �𝑥𝑥 restored image 𝑥𝑥∗

restorationdegradation

�𝑥𝑥 = 𝑥𝑥 + 𝜖𝜖, 𝜖𝜖~𝒩𝒩(0,𝜎𝜎2)

𝑝𝑝 �𝑥𝑥 𝑥𝑥 = 𝒩𝒩( �𝑥𝑥; 𝑥𝑥,𝜎𝜎2)

𝑥𝑥∗ = arg max
𝑥𝑥

𝑝𝑝(𝑥𝑥| �𝑥𝑥)

= arg max
𝑥𝑥

𝑝𝑝 �𝑥𝑥 𝑥𝑥 𝑝𝑝(𝑥𝑥)



DL4CV Weizmann

Image restoration
The significant role of the prior

clean image 𝑥𝑥 corrupted image �𝑥𝑥

𝑥𝑥∗ = arg max
𝑥𝑥

𝑝𝑝(𝑥𝑥| �𝑥𝑥) = arg max
𝑥𝑥

𝑝𝑝 �𝑥𝑥 𝑥𝑥 𝑝𝑝 𝑥𝑥 = arg max
𝑥𝑥

𝑝𝑝 �𝑥𝑥 𝑥𝑥 = arg max
𝑥𝑥

𝒩𝒩( �𝑥𝑥; 𝑥𝑥,𝜎𝜎2) = �𝑥𝑥

restored image 𝑥𝑥∗ = �𝑥𝑥
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Image restoration
Alternative notation 

data term 𝐸𝐸 𝑥𝑥; �𝑥𝑥

image prior term 
(regularization) 𝑅𝑅(𝑥𝑥) Example:

𝑝𝑝 �𝑥𝑥 𝑥𝑥 = 𝒩𝒩 �𝑥𝑥; 𝑥𝑥,𝜎𝜎2 ⇒ 𝐸𝐸 𝑥𝑥; �𝑥𝑥 = 𝑥𝑥 − �𝑥𝑥 2

clean image 𝑥𝑥
corrupted image �𝑥𝑥
restored image 𝑥𝑥∗

𝑥𝑥∗ = arg max
𝑥𝑥

𝑝𝑝(𝑥𝑥|�𝑥𝑥)

= arg max
𝑥𝑥

𝑝𝑝 �𝑥𝑥 𝑥𝑥 𝑝𝑝 𝑥𝑥

= arg min
𝑥𝑥

−log𝑝𝑝 �𝑥𝑥 𝑥𝑥 − log𝑝𝑝 𝑥𝑥

= arg min
𝑥𝑥
𝐸𝐸 𝑥𝑥; �𝑥𝑥 + 𝑅𝑅(𝑥𝑥)
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Image restoration
Optimization task 

clean image 𝑥𝑥
corrupted image �𝑥𝑥
restored image 𝑥𝑥∗

𝑥𝑥∗ = arg min
𝑥𝑥
𝐸𝐸 𝑥𝑥; �𝑥𝑥 + 𝑅𝑅(𝑥𝑥)



DL4CV Weizmann

𝑥𝑥∗ = arg min
𝑥𝑥
𝐸𝐸 𝑥𝑥; �𝑥𝑥 + 𝑅𝑅(𝑥𝑥)

search in the image space
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𝑥𝑥∗ = arg min
𝜃𝜃

𝐸𝐸 𝑔𝑔(𝜃𝜃); �𝑥𝑥 + 𝑅𝑅(𝑔𝑔(𝜃𝜃))
search in 𝜽𝜽 space
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Image restoration
Optimization by parametrization  

clean image 𝑥𝑥
corrupted image �𝑥𝑥

Regular optimization: arg min
𝑥𝑥
𝐸𝐸 𝑥𝑥; �𝑥𝑥 + 𝑅𝑅(𝑥𝑥)

By parametrization: arg min
𝜃𝜃

𝐸𝐸 𝑔𝑔(𝜃𝜃); �𝑥𝑥 + 𝑅𝑅(𝑔𝑔(𝜃𝜃))

If 𝒈𝒈 is surjective (i.e., for each 𝑥𝑥 ∃𝜃𝜃 s.t. 𝑔𝑔 𝜃𝜃 = 𝑥𝑥) then the two problems shares the same
minima (i.e., equivalent)
So, why to switch between the problems?
• In practice, as we cannot guarantee global minima, the solutions will be different

(we search over different spaces)
• While it is not easy to express mathematically the explicit prior 𝑅𝑅(𝑥𝑥),

we can gain from the expressivity of 𝑔𝑔 𝜃𝜃
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Image restoration
Optimization by parametrization  

clean image 𝑥𝑥
corrupted image �𝑥𝑥

arg min
𝜃𝜃

𝐸𝐸 𝑔𝑔(𝜃𝜃); �𝑥𝑥 + 𝑅𝑅(𝑔𝑔(𝜃𝜃))
• We can consider 𝑔𝑔 as a prior by itself, e.g. 𝑔𝑔 expresses the world of natural images

• 𝑔𝑔(𝜃𝜃) acts as a prior, helps in selecting a good mapping which gives a desired output image,
and prevents getting the wrong images

• It is sufficient to optimize over the data term only

arg min
𝜃𝜃

𝐸𝐸 𝑔𝑔(𝜃𝜃); �𝑥𝑥
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Deep image prior
arg min

𝜃𝜃
𝐸𝐸 𝑔𝑔(𝜃𝜃); �𝑥𝑥

𝒈𝒈 𝜽𝜽 ≡ 𝒇𝒇𝜽𝜽(𝒛𝒛)

• 𝒇𝒇𝜽𝜽 is a convolutional neural network with parameters 𝜽𝜽
• Drop the explicit regularization 𝑅𝑅 𝑥𝑥 and use instead the implicit prior captured by the

neural network parametrization

• How do we map the parameters of the neural network to the image?
• Fix the input 𝑧𝑧 (e.g. noisy image)
• Unlike the common practice, i.e., fixing the weights and varying the input
• Here, we fix the input and vary the weights 𝜃𝜃, to get different outputs
• The convolutional neural network learns a generator 𝑥𝑥 = 𝑓𝑓𝜃𝜃(𝑧𝑧) which maps random code
𝑧𝑧 to an image 𝑥𝑥

�𝑥𝑥 corrupted image
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Deep image prior
�𝑥𝑥 corrupted image

1. Initialize 𝑧𝑧: Fill the input 𝑧𝑧 by uniform noise, or any other random image.
2. Solve by gradient descent

arg min
𝜃𝜃

𝐸𝐸 𝑓𝑓𝜃𝜃(𝑧𝑧); �𝑥𝑥

𝜃𝜃𝑘𝑘+1 = 𝜃𝜃𝑘𝑘 − 𝛼𝛼
𝜕𝜕𝐸𝐸(𝑓𝑓𝜃𝜃 𝑧𝑧 ; �𝑥𝑥)

𝜕𝜕𝜃𝜃

3. Get the reconstructed image by forward passing
𝑥𝑥∗ = 𝑓𝑓𝜃𝜃∗(𝑧𝑧)
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Deep image prior
Inductive bias

𝒙𝒙
−
� 𝒙𝒙

𝟐𝟐

Ronen Basri, David Jacobs, Yoni Kasten, Shira Kritchman, NeurIPS 2019

�𝑥𝑥 �𝑥𝑥 �𝑥𝑥 �𝑥𝑥

Denoising   𝐸𝐸 𝑥𝑥, �𝑥𝑥 = 𝑥𝑥 − �𝑥𝑥 2

arg min
𝜃𝜃

𝐸𝐸 𝑓𝑓𝜃𝜃(𝑧𝑧); �𝑥𝑥

Spectral Bias
FC network fits the lower frequency component of the 

target function faster than the higher frequencies 
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Deep image prior
Recap

arg min
𝜃𝜃

𝐸𝐸 𝑓𝑓𝜃𝜃(𝑧𝑧); �𝑥𝑥
Implicit regularization by parametrizing the restored image using CNN with parameters 𝜃𝜃

𝑥𝑥  degradation                   �𝑥𝑥  restoration               𝑥𝑥∗

𝑥𝑥∗ = arg max
𝑥𝑥

𝑝𝑝(𝑥𝑥| �𝑥𝑥) = arg max
𝑥𝑥

𝑝𝑝 �𝑥𝑥 𝑥𝑥 𝑝𝑝 𝑥𝑥 = arg min
𝑥𝑥

𝐸𝐸 𝑥𝑥; �𝑥𝑥 + 𝑅𝑅(𝑥𝑥)

min𝑥𝑥 𝐸𝐸(𝑥𝑥, �𝑥𝑥)

�𝑥𝑥𝑥𝑥

𝑧𝑧
𝑓𝑓𝜃𝜃(𝑧𝑧)
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Deep image prior
Image restoration objectives 

arg min
𝜃𝜃

𝐸𝐸 𝑓𝑓𝜃𝜃(𝑧𝑧); �𝑥𝑥

Denoising 𝐸𝐸 𝑥𝑥, �𝑥𝑥 = 𝑥𝑥 − �𝑥𝑥 2

Inpainting 𝐸𝐸 𝑥𝑥, �𝑥𝑥 = (𝑥𝑥 − �𝑥𝑥) ⊙𝑚𝑚 2

Super-resolution 𝐸𝐸 𝑥𝑥, �𝑥𝑥 = 𝑑𝑑 𝑥𝑥 − �𝑥𝑥 2

clean image 𝑥𝑥
corrupted image �𝑥𝑥
binary mask 𝑚𝑚
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Deep image prior
Denoising
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Deep image prior
Jpeg artifact removal
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Deep image prior
Inpainting 
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Deep image prior
Inpainting 
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Deep image prior
Super-resolution
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Deep image prior
Super-resolution
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Deep image prior
Super-resolution
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Deep image prior
Super-resolution
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Deep image prior
Super-resolution
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Deep image prior
Encode-decoder architecture
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Deep image prior
Depths and architectures
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Conclusions 

• The success of deep neural networks is often attributed to ability to learn image 
prior using large databases

• In “Deep image prior”   it is shown that the structure of the generator network is 
sufficient to capture low-level image statistics prior, for image restoration tasks, 
without any learning

• The structure of the network imposes a strong prior 

• Limitations: slowness, generalization (not necessarily SOTA)
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Deep image prior 
 Computer vision, Computer Graphics
The structure of the network allows

Parametrizing signals by the net weights
1. 2D images
2. 3D volumes 
3. Continuous functions 



Geometry in computer vision

Computer vision

Computer graphics

Images
2D

Geometry
3D

Structure from motion problem Moran*,Koslowsky*, Kasten, 
Maron, Galun, Basri, ICCV, 2021 

Computer vision
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Computer graphics
and 

Rendering



Based on 
1. Keenan Crane’s course on Computer Graphics, CMU 15-462/662 
2. The book Computer Graphics: principles and practice by Foley
3. The ECCV 2022 Tutorial Neural Volumetric Rendering for Computer Vision
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Computer graphics
Computer graphics

photorealistic image formation = rendering 
photorealistic = simulating the physical behavior of light

Classical rendering

The process of transforming a scene definition including cameras, lights, surface geometry and 
material into a simulated camera image

Computer graphics is everywhere 
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Renderer

Rendering
The process of generating a photorealistic image from a 3D model
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Rendering
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Perspective projection
Pinhole camera model 
• Objects look smaller as they get further away
• Parallel lines “meet”  at infinity



DL4CV Weizmann

Perspective projection
Pinhole camera model 

• Camera pinhole at 𝑐𝑐 = 0,0,0
• The image plane located 𝑧𝑧 = −1
• Using similar triangles 𝑣𝑣 = 𝑦𝑦

𝑧𝑧
and 𝑢𝑢 = 𝑥𝑥

𝑧𝑧
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RenderingRendering



DL4CV Weizmann

Two ways of turning triangles into image 
• Rasterization
• Ray tracing 

Rendering
Drawing on the screen  (3D2D)

Rasterization
for each primitive (triangle),
which pixels are covered?

Ray tracing
for each pixel, 
which primitives (triangles) 
are seen?
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Rendering
Drawing on the screen (3D2D)

Rasterization
• for each primitive (triangle), which pixels are covered?
• extremely fast (Billions of triangles per second on GPU)
• harder (but possible) to achieve photorealism
• games and real-time applications 

Ray tracing 
• for each pixel, which primitives (triangles) are seen?
• generally slower
• easier to get photorealism
• movies and video clips 
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Rendering
Drawing on the screen  

• camera (view point)
• light sources
• geometry
• material properties
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Rendering
The visibility problem
Rasterization
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Rendering
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Geometry
Why triangles?  

• can approximate any shape
• always planar, well-defined normal
• easy to interpolate data, using “barycentric coordinates”
• optimized and uniform drawing pipeline  
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Geometry 
Triangle mesh (explicit) 
• store vertices as triplets of coordinates 𝑥𝑥,𝑦𝑦, 𝑧𝑧
• store triangles as triplets of indices (𝑖𝑖, 𝑗𝑗,𝑘𝑘)
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Geometry 
Ray-mesh intersection

• Think about a ray of light traveling from the sun

• Want to know where a ray pierces a surface

• Might pierce surface in many places 

• A significant step towards visibility and ray tracing  
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Geometry 
Ray equation

𝑟𝑟 𝑡𝑡 = 𝑜𝑜 + 𝑡𝑡𝑑𝑑
Point along ray
parametrized by 𝑡𝑡

Ray source Unit 
direction
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Geometry 
Ray-plane intersection

Intersection between 
plane 𝑁𝑁𝑇𝑇𝑥𝑥 = 𝑐𝑐
and
ray 𝑟𝑟 𝑡𝑡 = 𝑜𝑜 + 𝑡𝑡𝑑𝑑

𝑁𝑁𝑇𝑇𝑟𝑟 𝑡𝑡 = 𝑐𝑐

𝑁𝑁𝑇𝑇 𝑜𝑜 + 𝑡𝑡𝑑𝑑 = 𝑐𝑐 ⇒ 𝑡𝑡 =
𝑐𝑐 − 𝑁𝑁𝑇𝑇𝑜𝑜
𝑁𝑁𝑇𝑇𝑑𝑑

𝑟𝑟 𝑡𝑡 = 𝑜𝑜 +
𝑐𝑐 − 𝑁𝑁𝑇𝑇𝑜𝑜
𝑁𝑁𝑇𝑇𝑑𝑑

𝑑𝑑

𝑁𝑁 unit normal
𝐶𝐶 offset 
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Geometry 
Ray-triangle intersection

• need to determine if  point of intersection is within the triangle

• compute ray-plane intersection

• compute barycentric coordinates of hit point

• if all barycentric coordinates are positive, point in triangle 
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Geometry 
Ray-mesh intersection

Challenges in performance  
• How to accelerate the naïve algorithm, given a ray, scan 

all triangles 
• There are a lot of triangles and a lot of rays 
• By hierarchical approach and dedicated hardware 
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Rendering
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Radiometry = measuring light

Aim: Photo realistic images

• Which color at each pixel?

• How much light (illumination) at each pixel?

• Why some parts of the surface look lighter 
or darker?

• Final image = at every point, what color and 
how intense or bright it is
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Radiometry 
Electromagnetic radiation  

Light is electromagnetic radiation that is visible to eye
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Radiometry 
Electromagnetic radiation  
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Radiometry
Radiance and irradiance 

Slide by Matthew Turk
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Radiometry 
Irradiance 

Irradiance: area density of radiant flux

Given a sensor with area 𝐴𝐴, we 
consider the average flux over the 
entire sensor area

Φ
𝐴𝐴

Irradiance (𝐸𝐸) =  flux density, i.e., the 
incident flux per unit surface area 

[
Watts

m2 ]
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Radiometry 
Lambert’s cosine law 

Consider beam with flux Φ incident on surface with area 𝐴𝐴
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Radiometry 
Lambert’s cosine law 

• Consider beam with flux Φ incident on tilted surface with area 𝐴𝐴′
• Irradiance at surface is proportional to cosine of the angle between 

light direction and surface normal 

𝜃𝜃
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Radiometry 
Solid angle

We need to break the 
energy over direction 
(angles), not just over space 
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Radiometry 
Solid angle  

The solid angle subtended by an object from a point on a surface =
The area covered by the object’s projection onto a unit hemisphere above the point
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Radiometry 
Radiance

Radiance is the solid angle density of irradiance 

𝐿𝐿(𝒑𝒑,𝑤𝑤)

Radiance is energy along a ray defined by origin point 𝒑𝒑 and direction 𝑤𝑤

Radiant energy per unit time per unit area per unit solid angle 

[
W

m2 sr
]
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Radiometry 
Radiance 

A surface experiencing radiance 𝐿𝐿 𝑝𝑝,𝑤𝑤 , coming in from solid angle 𝑑𝑑𝑤𝑤, 
experiences irradiance 

𝑑𝑑𝐸𝐸 𝒑𝒑 = 𝐿𝐿 𝒑𝒑,𝑤𝑤 cos 𝜃𝜃 𝑑𝑑𝑤𝑤
Radiance Lambert’s 

law
Solid angle

𝒑𝒑
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Radiometry 
Radiance (Fields) properties

• Radiance is a fundamental quantity that characterizes the distribution of 
light an environment 

• Radiance is the quantity associated with a ray (constant a long a ray)

• Rendering is all about computing radiance 

• A pinhole camera measures radiance 
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Radiometry 
Irradiance from the environment 

Computing flux per unit area on surface, due to incoming light from all directions 
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Rendering
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Radiometry 
Bidirectional reflectance distribution function
• When light hits a surface, the way it is reflected (scattered off the surface), depends on 

the surface material properties

• This is encoded by the  “Bidirectional reflectance distribution function” (BRDF)

• Given incoming direction 𝑤𝑤𝑖𝑖 , how much light gets scattered in any given outgoing 
direction 𝑤𝑤𝑜𝑜?

• The BRDF tells us how bright a surface appears when viewed from one direction while 
light falls from another one 
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Radiometry 
Reflected radiance and incident irradiance
The incident radiance     𝐿𝐿𝑖𝑖
The incident irradiance  𝐸𝐸𝑖𝑖 = 𝐿𝐿𝑖𝑖cos𝜃𝜃𝑖𝑖𝑑𝑑𝑤𝑤𝑖𝑖
The reflected radiance   𝐿𝐿𝑟𝑟

BRDF = 𝑓𝑓 𝑝𝑝,𝑤𝑤𝑖𝑖 ,𝑤𝑤𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑦𝑦
𝑖𝑖𝑒𝑒𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟 𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑦𝑦

= 𝐿𝐿𝑟𝑟
𝐸𝐸𝑖𝑖

[
1
sr

]

𝑳𝑳𝒊𝒊
𝑬𝑬𝒊𝒊 = 𝑳𝑳𝒊𝒊 𝐜𝐜𝐜𝐜𝐜𝐜𝜽𝜽𝒊𝒊𝒅𝒅𝒘𝒘𝒊𝒊

𝑳𝑳𝒓𝒓 𝜽𝜽𝒊𝒊𝜽𝜽𝒓𝒓

𝒑𝒑
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Reflection equation
Multiple light sources

Slide by Lior Yariv
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Reflection equation
Environment of light sources

Slide by Lior Yariv
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Reflection equation (local illumination)
Recap 

• The image of a three dimensional object depends on its shape, its reflectance properties, 
and the distribution of the light sources

• The interactions of light with scene surfaces depend on the material properties of the 
surfaces. Materials may be represented as bidirectional reflectance distribution functions 
(BRDF)

• The BRDF leads to the reflection equation

• The reflection equation considers only local illumination (direct light), i.e., light directly 
from light sources to surfaces 
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Rendering equation (global illumination)
• Core functionality of photorealistic renderer is to estimate radiance at a given point, in a 

given direction

• To get photorealism we need to consider global illumination, multiple bounces (indirect 
light), called  interreflections. 

• In real scenarios, light reflected from an object strikes other objects in the surrounding 
area, illuminating them 
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Rendering equation (global illumination)
James Kajiya,  1986

• Computing reflection equation 
requires knowing the incoming 
radiance from surfaces

• But determining incoming 
radiance requires knowing 
reflected radiance from surfaces  

• So we have to compute another 
integral, we have exactly the 
same equation 

• Rendering equation is recursive 

Rendering equation

Reflection equation

Slide by Lior Yariv
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Rendering equation
How to solve? 

• Too hard for analytic solution 

• Very challenging to apply directly recursive ray tracing

• Monte-Carlo rendering 

• Ray tracing is crucial here

• Little control in rasterization, which rays we evaluate?
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Noise decreases as 
the number of 
samples per pixel 
increases. 

The top left shows 1 
sample per pixel, 
and doubles from 
left to right each 
square.
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Summary
• Computer graphics, in particular classical rendering: ray tracing and rasterization

• Geometry representation, specifically explicit representation by triangular mesh

• Radiometry, including radiance and irradiance 

• Materials properties are encoded by BRDF (Bidirectional reflectance distribution function)

• Illumination models
• local model -> reflection equation 
• global model -> rendering equation 

• Very challenging to solve the rendering equation

• Simplifications by Monte-Carlo sampling

• Neural rendering and implicit representation (next time)
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