
Math 210, Fall 2015

Collected Homework #8 Solutions

1. Find the greatest integer which cannot be written in the form 11a+4b,
where a and b are non-negative integers. (This may take some trial-
and-error on your part.) Once you’ve come up with your answer, prove
it using induction.

Solution: The greatest such integer turns out to be 29. Since 29, 29-
11=18, and 29-2(11)=7 are not integer multiples of 4, we cannot write
29 in the form 11a + 4b where a, b are non-negative integers.

So, our theorem is as follows: for all n ≥ 30, there exist non-negative
integers such that 11a + 4b = n.

Proof: To help with notation, we’ll let pn denote the proposition that
there exist non-negative integers a, b such that n = 11a + 4b.

For our initial step, we will verify that p30, p31, p32, and p33 are true:

• p30 is true, since 11(2) + 4(2) = 22 + 8 = 30

• p31 is true, since 11(1) + 4(5) = 11 + 20 = 31

• p32 is true, since 11(0) + 4(8) = 0 + 32 = 32

• p33 is true, since 11(3) + 4(0) = 33 + 0 = 33

At this point, we can see that pn will be true for any number greater
than 33 as well, since any such number can be obtained from 30, 31,
32, or 33 by adding some multiple of 4. Formally, the inductive step
of the proof goes as follows:

Inductive step: Assume pn is true for all values of n from n = 30 up
to n = k, where k ≥ 33. Then, in particular, this implies pk−3 is true;
that is, there exist non-negative integers a, b such that 11a+4b = k−3.
Thus, we have:

11a + 4b = k − 3
11a + 4b + 4 = k − 3 + 4

11a + 4(b + 1) = k + 1

Thus, there exist non-negative integers – specifically, a and b + 1 –
such that 11a + 4(b + 1) = k + 1. Thus, pk+1 is true.
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We’ve shown that pk+1 follows from the assumption that pn is true for
all values of n from 30 up to k. This completes the inductive step of
the proof.

We’ve verified the initial step and the inductive step of the proof.
Therefore, we can conclude that, for all integers n ≥ 30, there exist
non-negative integers a, b such that n = 11a + 4b.

Comment: Since 29 = 11(−1) + 4(10) and 29 = 11(3) + 4(−1), it
follows that any integer solution a, b for 11a + 4b = 29 requires either
a ≤ −1 or b ≤ −1. In particular, it turns out that the general solution
to the equation 29 = 11a+4b is a = 3+4t, b = −1+11t, t ∈ Z. This is
an example of a “Diophantine equation” (an equation for which only
integer-valued solutions are considered), which is an important topic
in number theory.

2. Define the sequence {an} = {a1, a2, a3, a4, ...} as follows:

a1 = 1
a2 = 1
an = an−1 + 2an−2, when n ≥ 3

That is, after the first two terms, each new term is equal to the pre-
ceding term plus twice the term before that one.

The first few terms of this sequence are 1, 1, 3, 5, 11, 21, 43, . . .

Prove (using induction): For all n ≥ 1,

an =
2n − (−1)n

3
.

Proof: Let pn denote the proposition an =
2n − (−1)n

3
. For our initial

step, we must verify (at least) p1 and p2:

• n = 1: a1 = 1 by definition, and 21−(−1)1

3 = 3/3 = 1. So, p1 is
true

• n = 2 : a2 = 1 by definition, and 22−(−1)2

3 = 3/3 = 1. So, p2 is
true

Inductive step: Assume pn is true for all values of n from n = 1 up to
n = k, where k ≥ 3. (We want to show: ak+1 = 2k+1−(−1)k+1

3 .)
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Then, in particular, pk and pk−1 are true; that is,

ak =
2k − (−1)k

3
,

and ak−1 =
2k−1 − (−1)k−1

3

By the two-term recursion for {an}, it follows that

ak+1 = ak + 2ak−1

=
2k − (−1)k

3
+ 2 · 2k−1 − (−1)k−1

3

=
1
3

(
(2k − (−1)k + 2(2k−1 − (−1)k−1)

)
=

1
3

(
2k − (−1)k + 2k − 2(−1)k−1

)
=

1
3

(
2k + 2k − (−1)k − 2(−1)k−1

)
=

1
3

(
2k+1 − (−1)k − 2(−1)k−1

)
Since (−1)n alternates between -1 and 1 every time n is increased by
1, we can rewrite (−1)k as −(−1)k+1, and (−1)k−1 as (−1)k+1. So,
the above equation can be rewritten as:

ak+1 =
1
3

(
2k+1 − (−1)k − 2(−1)k−1

)
=

1
3

(
2k+1 + (−1) · (−1)k − 2 · (−1)2 · (−1)k−1

)
=

1
3

(
2k+1 + (−1)k+1 − 2(−1)k+1

)
=

1
3

(
2k+1 − (−1)k+1

)
ak+1 =

2k+1 − (−1)k+1

3

This is exactly the statement of proposition pk+1, which was to be
shown.

We’ve verified the initial step and the inductive step of the proof;

therefore, we can conclude, that, for all n ∈ N, an =
2n − (−1)n

3
.

3


