
Math 105: Music & Mathematics 
Test #1 Solutions & Comments 

 

1. For each of the following, the correct choice is highlighted in bold font.  
 
a. This interval has a width of four semitones. 
 

Major Third  Perfect Fourth Perfect Fifth  Major Sixth 
 
 
 
b. This is the ideal (just intonation) frequency ratio of a perfect fifth. 
 

2/1   3/2   5/3   5/4 

 
 
 
c. This interval’s ideal (just intonation) frequency ratio is 4/3.  
 

 Major third  Perfect Fourth  Perfect Fifth  Major Sixth 
 
 
 
d. This tuning system has consistent semitones. 
 

Pythagorean Just Intonation Equal Temperament ALL of these 

 
 
 
e. In this tuning system, the frequency ratio of an octave is always exactly 2/1. 
 

Pythagorean Just Intonation Equal Temperament ALL of these 
 
 
 
f. This describes a standard, modern piano keyboard. 
 

i) A total of 36 keys, including three octaves and five perfect fifths 
 

ii) A total of 64 keys, including five octaves and nine perfect fifths 
 

iii) A total of 88 keys, including seven octaves and twelve 
perfect fifths 

 
iv) A total of 373 keys, including thirty-one octaves and fifth-three perfect fifths 

 
  



2. Suppose an instrument is tuned using Pythagorean tuning, with a base note D:540 Hz. 
(Hint: you may wish to make use of the Circle of Fifths diagram at the bottom of this page.) 
 
a. Find the correct frequency for the next higher E. (Your answer should be between 540 Hz 
and 1080 Hz.)  
 
Solution: To move from D to E by perfect fifths, we need to raise by fifths two times. (See 
the circle diagram below – E is two places around the circle clockwise from D.) To raise by 

fifths twice, we need to multiply by 3/2 twice: 540 ×
3

2
×

3

2
= 1215. But, since 1215 is higher 

than 1080, we need to lower this result by an octave: 1215 ÷ 2 = 607.5.  
 
So, our answer is that the next higher E would be tuned to a frequency of 607.5 Hz.  
 
 
b. What note would be “L3” in this Pythagorean tuning system?  Give the name of the note 
(A, B, C, etc.) and its frequency in Hertz (a number between 540 and 1080). 
 
Solution: On the circle diagram, count three places counter-clockwise from D to lower D by 
fifths three times; the resulting note is an F. To lower by fifths three times, we need to 
divide by 3/2 three times, which is equivalent to multiplying by 2/3 three times: 

540 × (
2

3
)

3

=
540 × 8

27
= 20 × 8 = 160. 

 
So, an F is tuned to 160 Hz. To find the frequency of the F in the 540-1080 Hz range, we 
need to raise 160 Hz by octaves twice: 160 × 22 = 160 × 4 = 640.  
 
So, our answer is that the next higher F would be tuned to a frequency of 640 Hz.  
  



3. In a just intonation tuning system with base note C:300 Hz, find each of the following. 
 
a. The correct frequency for the next higher E (between 300 Hz and 600 Hz). 
 
Solution: The C-E interval is a major third (four semitones), so under just intonation it 
should have its ideal frequency ratio of 5/4. So, if the lower (base) note has frequency 300 

Hz, the higher note’s frequency must be 300 ×
5

4
= 375 Hz. 

 
 
 
b. The correct frequency for the next lower A (between 150 Hz and 300 Hz). 
 
Solution: The C-A interval is a major sixth (nine semitones), so the frequency ratio should 

be 5/3. From a base note of C:150 Hz, the higher note’s frequency must be 150 ×
5

3
= 250 

Hz. 
 
(Alternately, you could first multiply 300 by 5/3 to get 500 Hz for the higher A, then lower 
by an octave to get 500 ÷ 2 = 250 Hz.) 
 
 
 
 
c. The note name (A, B, C, etc.) of the note whose frequency is 1000 Hz.  
 
The trick here is to raise/lower by octaves until we find a familiar frequency ratio. If we 
lower 1000 Hz by an octave, we get 500 Hz. Since 500/300=5/3, which is the frequency 
ratio of a major sixth, we know that 500 Hz (and therefore 1000 Hz) corresponds to a note 
a major sixth above C:300 Hz. So, our answer is A.  
 
(Note: Another way to get this result is based on the answer to part (b). Since there is an A 
with frequency 250 Hz, we can raise by octaves by doubling: 250 × 2 = 500, and 
500 × 2 = 1000. This also shows us that the note with frequency 1000 Hz must be an A.) 
 
 
 
 
 
 
 
  



4. The standard piano tuning uses 12-TET, with base note A:440 Hz. Based on this, find 
each of the following: 
 

Note: recall that under 12-TET, all frequency ratios are 2𝑛 12⁄ , where 𝑛 is the number of 
semitones separating the notes in the interval.  
 
a. The correct frequency for the next higher D (between 440 Hz and 880 Hz). 
 

Solution: A-D is a 5-semitone interval, so its frequency ratio is 25 12⁄ . Thus, the frequency 
ratio of the next higher D is 440 × 25 12⁄ ≈ 587.33 Hz.  
 
 
b. The correct frequency for the next lower G (between 220 Hz and 440 Hz). 
 
Solution: A-G is a 10-semitone inteval. So, if we start from A:220 and raise by 10 semitones 

to tune the next higher G, the correct frequency would be 220 × 210 12⁄ ≈ 392.00 Hz. 
 
Alternate solution: Starting from A:440, we would lower by 2 semitones to tune the next 
lower G. So, we can use the 2𝑛 12⁄  with 𝑛 = −2 (negative to indicate lowering rather than 

raising). This would give us 440 × 2−2 12⁄ ≈ 392.00 Hz. 
 
 
c. The note name (A, B, C, etc.) for the note whose frequency is (approximately) 2489 Hz.  
 

Solution: The trick here is to figure out the value of 𝑛 for which 440 × 2𝑛 12⁄ = 2489. There 
are a few ways to do this; one is just trial and error (or “guess and check”) until you find the 
whole number that works. Another approach would be to first jump up by a couple of 

octaves, from A:440 to A:880 to A:1760, and then solve 1760 × 2𝑛 12⁄ = 2489. (This is 
easier since, if you start in the correct octave,  you just have to try whole numbers between 
1 and 11.) 
 
An alternative to trial and error would be to use logarithms:  

1760 × 2𝑛 12⁄ = 2489 

2𝑛 12⁄ =
2489

1760
≈ 1.4142 

log(2𝑛 12⁄ ) ≈ log(1.4142) 
𝑛

12
log(2) ≈ log(1.4142) 

𝑛 ≈
log(1.4142)

log(2)
× 12 ≈ 6 

 
So, the note we want is 6 semitones above A:1760, which makes it a D#.  
  



 
5. In just intonation, a “minor sixth” interval has a frequency ratio of 8/5.  
 
a. Find the width of a minor sixth in cents measurement. Round your answer to the nearest 
whole number of cents.  
 
Solution: The formula to convert a frequency ratio, r, to cents, c, is 

𝑐 = 1200 ×
log(𝑟)

log(2)
. 

 

Since 𝑟 =
8

5
, this formula gives us 

𝑐 = 1200 ×
log(8/5)

log(2)
≈ 1200 × 0.678072 ≈ 814 cents. 

 
 
 
b. Based on your result for (a), what is the width of a “minor sixth” in semitones? (Round 
your answer to the nearest whole number of semitones.) Briefly explain your answer.  
 
Solution: Recall that, by definition, 100 cents equals one (12-TET) semitone. Therefore, 814 
semitones is 8.14 semitones;, so the closest whole number equivalent would be eight 
semitones.  
 
6. An “augmented fourth*” interval has a width of 427 cents.  
 
a. Find the frequency ratio for an “augmented fourth.” 
 
Solution: Since 100 cents = 1 12-TET semitone, it follows that 427 cents corresponds to 
4.27 12-TET semitones. So, we can use the 12-TET frequency ratio formula (also used in 

#4) to find the frequency ratio: 24.27 12⁄ ≈ 1.28 
 

(Equivalently, use the 𝑟 = 2𝑐 1200⁄  version of this formula: 𝑟 = 2427 1200⁄ ≈ 1.28. 
 
b. If the lower note of an “augmented fourth” has frequency 640 Hz, find the frequency of 
the higher note.   
 
Answer: If the lower note has frequency 640 Hz, we must multiply by the frequency ratio 
1.75 to find the higher note’s frequency: 640 × : 24.27 12⁄ ≈ 819.02 Hz. 
 

Comment:  Though it doesn’t affect any of the work or answers for this problem, I should 
mention that my use of the term “augmented fourth” here was erroneous. (Sorry!) The actual 
music-theoretic name for the interval with width 427 cents (or with frequency ratio 1.28) is 
“diminished fourth,” rather than “augmented fourth.”  
 
There is also an interval called “augmented fourth,” but its frequency ratio is 25/18 (about 
1.389) rather than 1.28, and its width is 563 cents rather than 427 cents.   
 
For more information than you ever wanted about various interval names and width, Wikipedia 
has you covered: https://en.wikipedia.org/wiki/List_of_pitch_intervals  

  

https://en.wikipedia.org/wiki/List_of_pitch_intervals


7. Use continued fractions to find a rational approximation for √7 (approx. 2.645751311). 
Use a list of five whole numbers to find your answer. After you’ve found your answer, check 

to make sure that it is a good approximation for √7. 
 
Solution: Start by building the list of five whole numbers. 

First we have √7 ≈ 2 + 0.64575 …  
The reciprocal of 0.64575… = 1+0.54858… (Integer list: 2, 1) 
The reciprocal of 0.54858… = 1+0.82287… (Integer list: 2, 1, 1) 
The reciprocal of 0.82287… = 1+ 0.21525… (Integer list: 2, 1, 1, 1) 
The reciprocal of 0.21525… = 4.64575…   
 
The instructions asked for a list of five whole numbers, so we’ll stop here. At this step, you 
can replace 4.64575 with 4 (its integer part) or with 5 (since 4.645… is closer to 5 than 4). 
Either way is fine; both give you a very good approximation (though using 5 is slightly 
better). 
 
Using 2, 1, 1, 1, 4: 

4 → 1 +
1

4
=

5

4
→ 1 +

4

5
=

9

5
→ 1 +

5

9
=

14

9
→ 2 +

9

14
=

37

14
≈ 2.642857 

 
Using 2, 1, 1, 1, 5: 

5 → 1 +
1

5
=

6

5
→ 1 +

5

6
=

11

6
→ 1 +

6

11
=

17

11
→ 2 +

11

17
=

45

17
≈ 2.647059 

 

Both of these are very close approximations to √7, based on the decimal expansions. 
 
Comments: 

 Since we’re trying to approximate the square root of 7, another good way to check our 
results would be to square them… 

 

(
37

14
)

2

=
372

142
=

1369

196
≈ 6.9847 

(
45

17
)

2

=
452

172
=

2025

289
≈ 7.0069 

 

Note that (
45

17
)

2
 is slightly closer to 7 than (

37

14
)

2
, which indicates 45/17 is a slightly 

better approximation to √7. 
 

 The “continued fraction” version of the work for the list 2, 1, 1, 1, 5, above would look 
like this: 

2 +
1

1 +
1

1+
1

1+
1
5

= 2 +
1

1 +
1

1+
1

6/5

= 2 +
1

1 +
1

11/6

= 2 +
1

17/11 
= 2 +

11

17
=

45

17
 

 
 If we had continued the whole number list, a pattern was about to start. Notice that the 

last “fractional part” we found, 0.64575…, is the same as the original fractional part of 

√7. This means we’d have started over from the second 1 in the list. The pattern of 
whole number parts goes: 2; 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4…   

  


