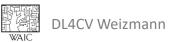
Self-Supervision

Jan 4th, 2023

Tali Dekel

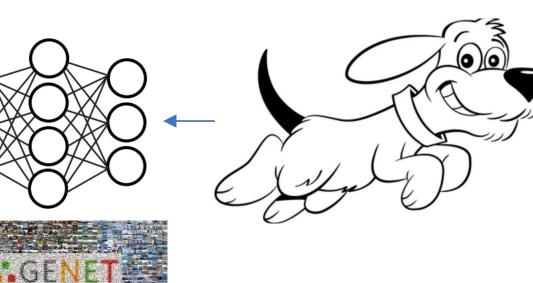


Supervised Learning

1. It's impossible to label everything in the world

- 2. Not enough labeled data
- 3. More intelligent models wouldn't need massive labeled data

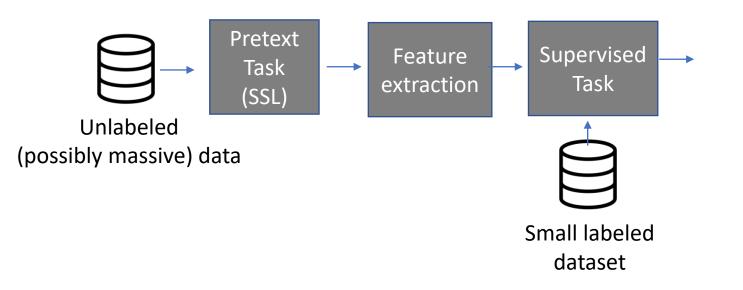
"spider web" 🔶



Self-Supervised Learning (SSL)

No human labels; supervisory signals are automatically computed from data

Solve a proxy, pretext task → extract learned features → finetune on a target supervised task (Transfer Learning)



Task-Specific Models → Foundation Models

Self-Supervised Learning

Solve a proxy, pretext task (large dataset) \rightarrow extract learned features \rightarrow finetune on a target supervised task (smaller dataset)

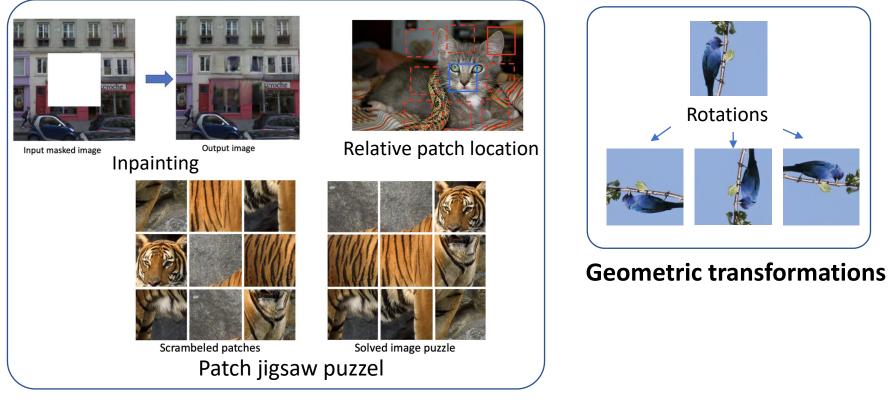
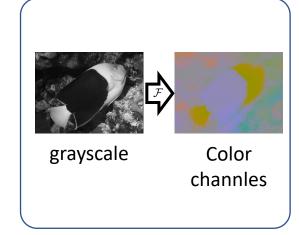


Image context as supervision

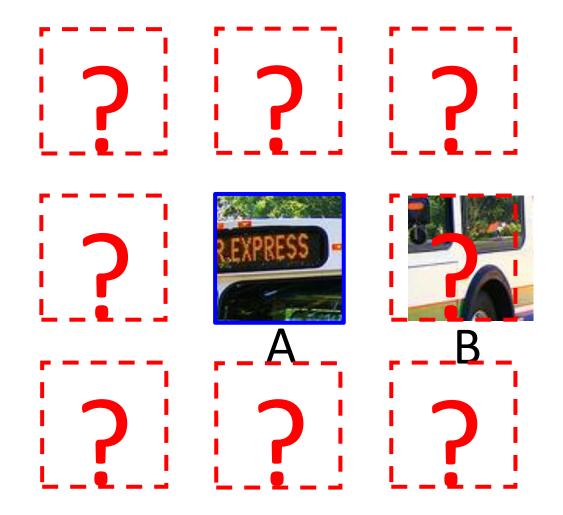


Color transformations

Context as Supervision

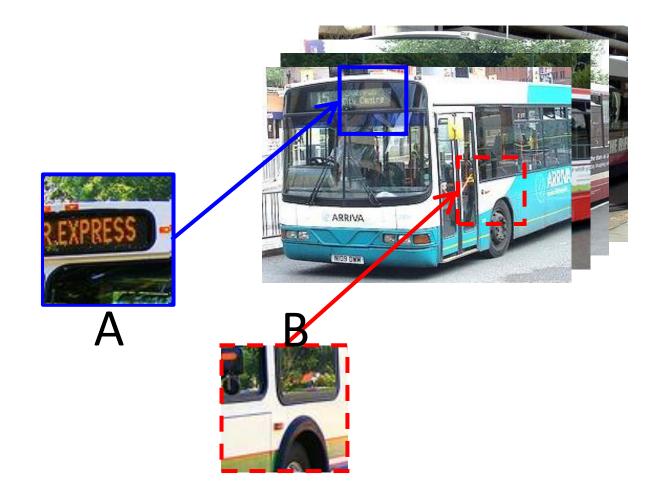
[Collobert & Weston 2008; Word2Vec by Mikolov et al. 2013] house, where the professor lived without his wife and child; or so he said jokingly sometimes: "Here's where I live. My house." His daughter often added, without resentment, for the visitor's information, "It started out to be for me, but it's really his." And she might reach in to bring forth an inch-high table lamp with fluted shade, or a blue dish the size of her little fingernail, marked "Kitty" and half full of eternal raile but she was sure to replace these, after they had been admired, pretty near exactly where they had been. The little house was very orderly, and just big enough for all it contained, though to some tastes the bric-à-brac in the parlor might seem excessive. The daughter's preference was for the store-bought gimmicks and appliances, the toasters and carpet sweepers of Lilliput, but she knew that most adult visitors would

Context as Supervision: relative patch position



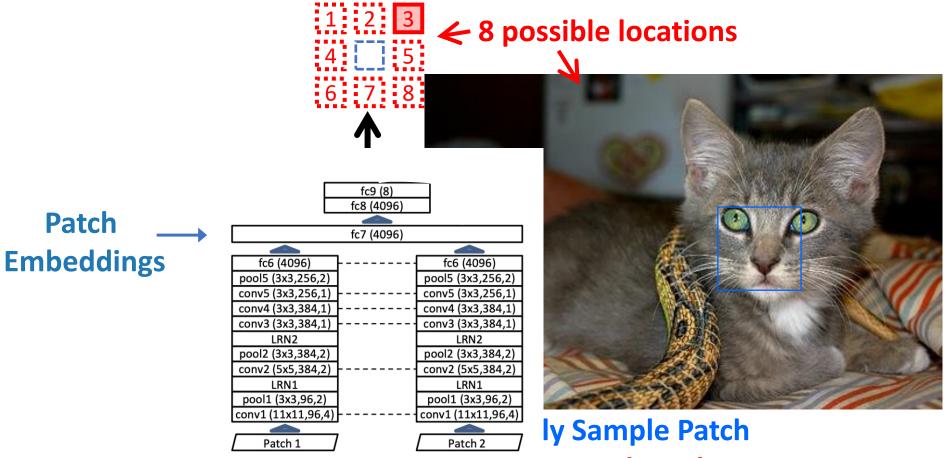
Doersch et. al, Unsupervised Visual Representation Learning by Context Prediction, ICCV 2015

Semantics from a non-semantic task



Context as Supervision: relative patch position

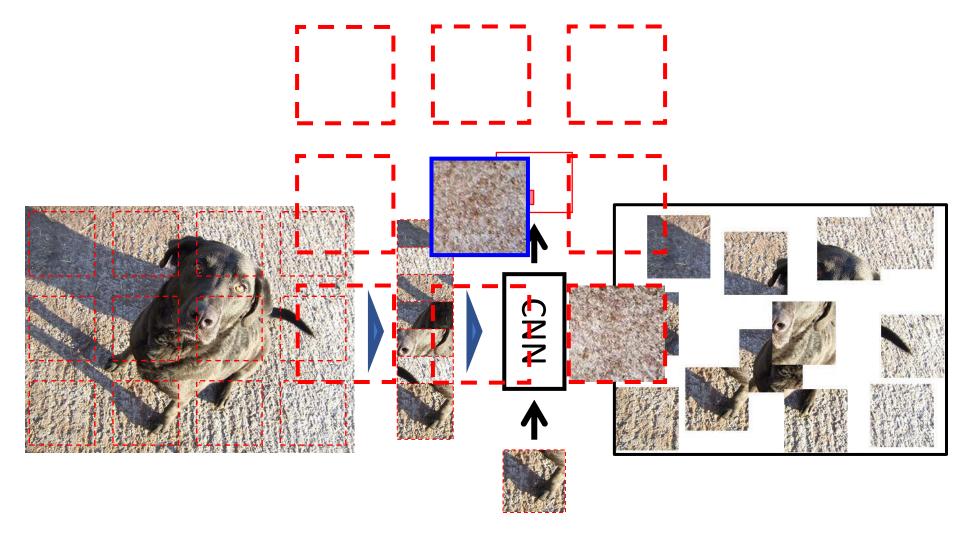
Avoid "cheats" (low-level "trivial solutions") → gaps between patches + random jitter



Sample Second Patch

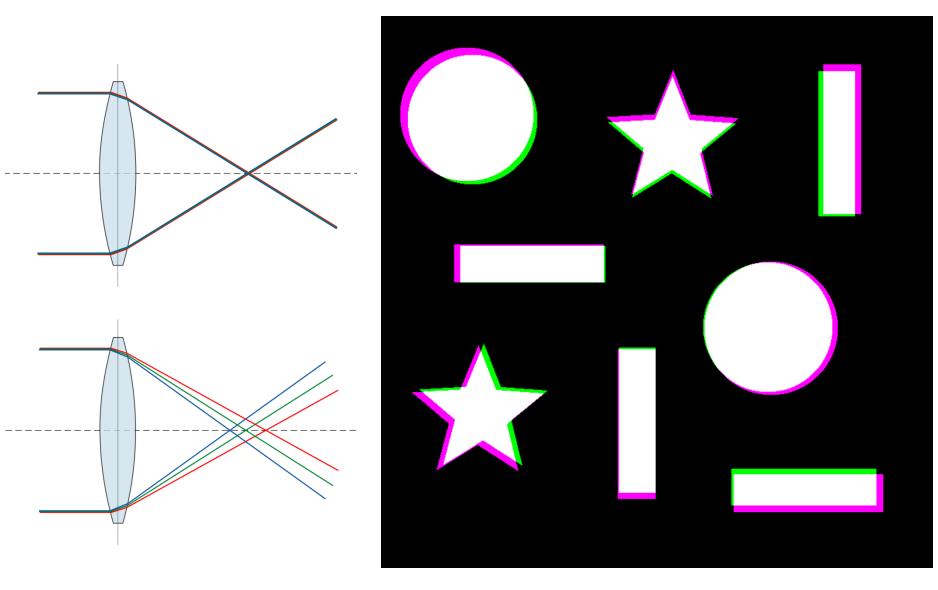
Avoid Network's "cheats"

WAIC



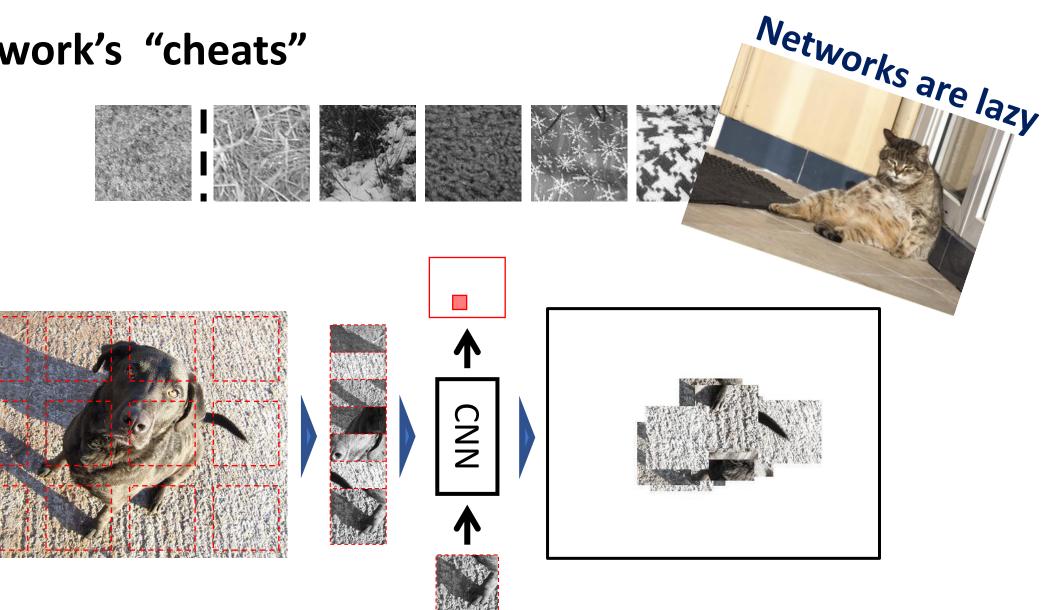
Doersch et. al, Unsupervised Visual Representation Learning by Context Prediction, ICCV 2015

Avoid Network's "cheats" (Chromatic Aberration)



Avoid Network's "cheats"

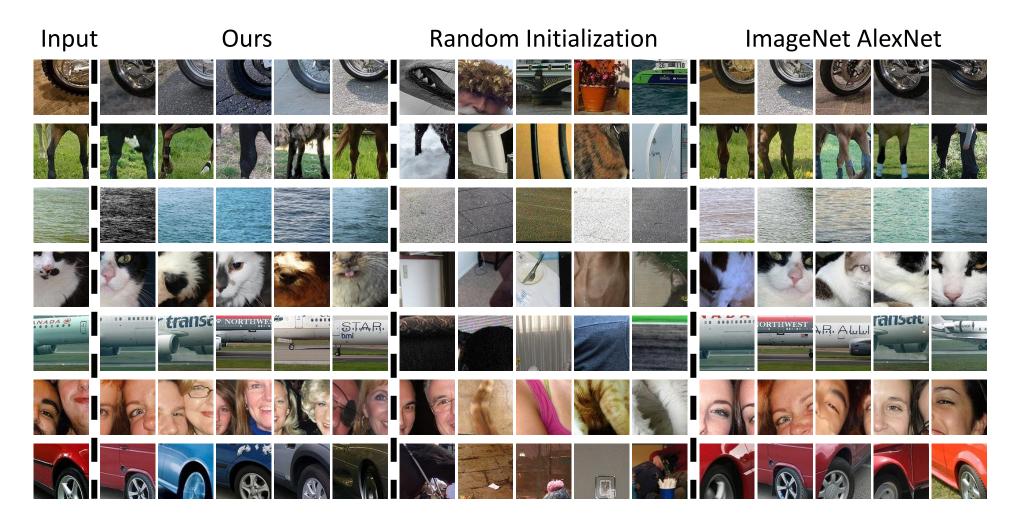
WAIC



Doersch et. al, Unsupervised Visual Representation Learning by Context Prediction, ICCV 2015

Learned Patch Embedding

WAIC

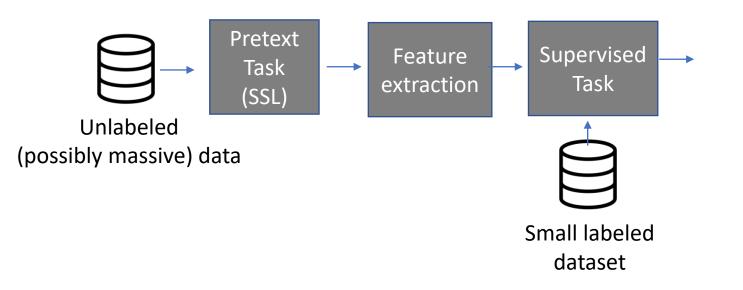


Doersch et. al, Unsupervised Visual Representation Learning by Context Prediction, ICCV 2015

Self-Supervised Learning (SSL)

No human labels; supervisory signals are automatically computed from data

Solve a proxy, pretext task → extract learned features → finetune on a target supervised task (Transfer Learning)

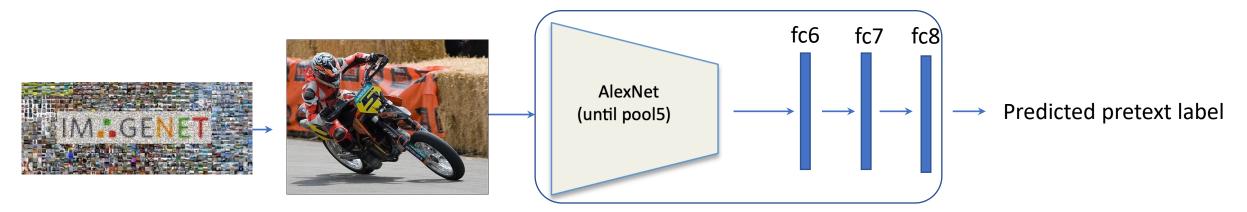


Task-Specific Models → Foundation Models

Self-supervised Transfer Learning

Pre-training on classification and detection tasks for PASCAL VOC 2007 dataset

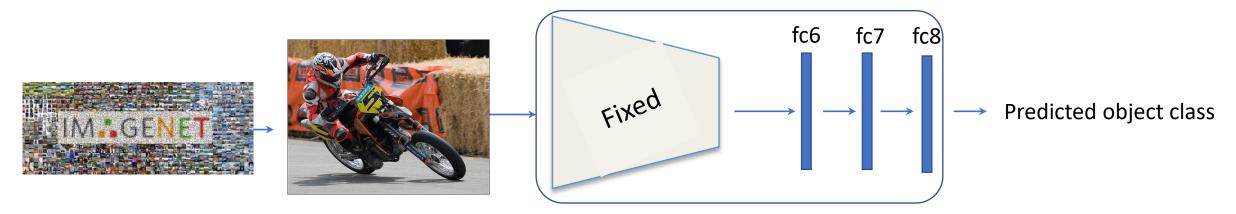
1. Pre-train on pretext task (w/o labels) on ImageNet:



Self-supervised Transfer Learning

Pre-training on classification and detection tasks for PASCAL VOC 2007 dataset

1. Pre-train on pretext task (w/o labels) on ImageNet:

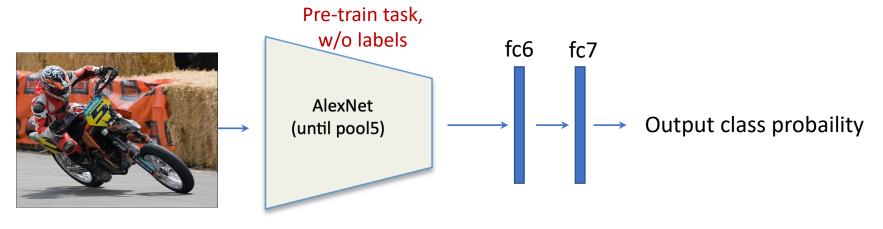


- 2. Train for classification on PASCAL VOC 2007
 - Fine-tune the entire model, train fully connected layers
 - Freeze Conv layers, train fully connected layers

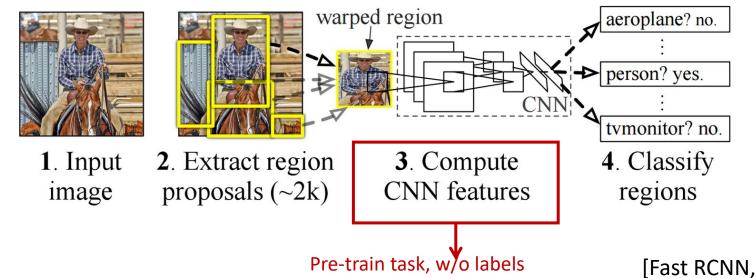
Context as Supervision: transfer learning

Pre-training on classification and detection tasks for PASCAL VOC 2007 dataset

Classification:



Detection:



[Fast RCNN, Girshick et al. 2014]

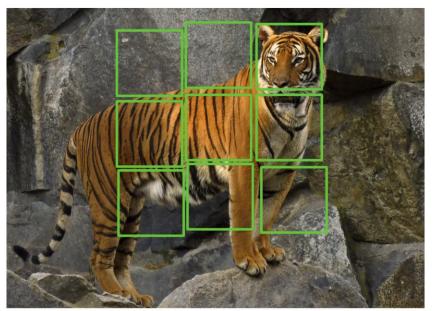
Self-Supervised Transfer Learning

Pre-training on classification and detection tasks for PASCAL VOC 2007 dataset

		ication AP)	Detection (%mAP)	Segmentation (%mIoU)	-
Trained layers	fc6-8	all	all	all	- Comencie d Due torisie -
ImageNet labels	78.9	79.9	56.8	48.0	Supervised Pre-training on ImageNet No pre-training
Random Random rescaled Krähenbühl et al. (2015)	39.2	53.3 56.6	43.4 45.6	19.8 32.6	
Egomotion (Agrawal et al., 2015) Context Encoders (Pathak et al., 2016b) Tracking (Wang & Gupta, 2015)	31.0 34.6 55.6	54.2 56.5 63.1	43.9 44.5 47.4	29.7	-
Context (Doersch et al., 2015)	55.1	65.3	51.1		Pre-training with relative

patch location

Context as Supervision: solving Jigsaw puzzles



Input Image

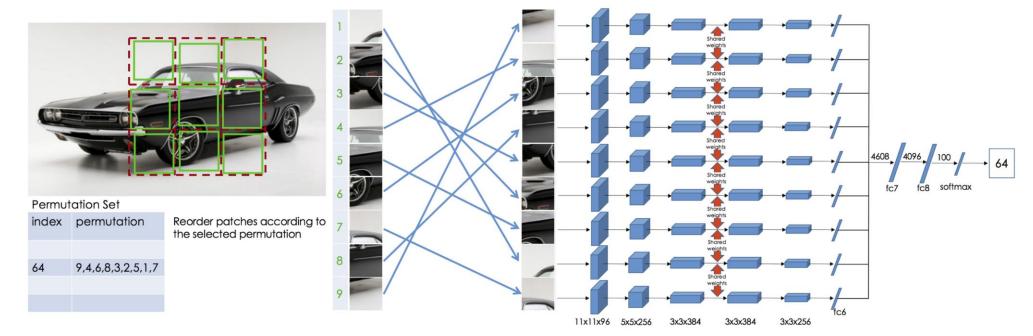
Scrambeled patches

Solved image puzzle

Noroozi et. al, Unsupervised learning of visual representations by solving jigsaw puzzles, ECCV 2016

Context as Supervision: solving Jigsaw puzzles

- **Training data:** 9 tiles, shuffled by a random ordering, sampled from set of permutations
- **Output:** permutation index (1 hot vector)
- **Training loss:** cross entropy w.r.t. ground truth permutation index



Context as Supervision: solving Jigsaw puzzles

A good self-supervised task is neither simple nor ambiguous.

The solution space is too big \rightarrow select a permutation set

- Permutation set size
- Distance between permutations

Number of permutations	Average hamming distance	Minimum hamming distance	Jigsaw task accuracy	Detection performance
1000	8.00	2	71	53.2
1000	6.35	2	62	51.3
1000	3.99	2	54	50.2
100	8.08	2	88	52.6
95	8.08	3	90	52.4
85	8.07	4	91	52.7
71	8.07	5	92	52.8
35	8.13	6	94	52.6
10	8.57	7	97	49.2
7	8.95	8	98	49.6
6	9	9	99	49.7

Table 4: Ablation study on the impact of the permutation	on set.
--	---------

- Smaller permutation set → higher accuracy
- Smaller permutation set → Lower detection performance
- Larger distance between permutations → higher accuracy
- Larger distance between permutations → higher detection performance

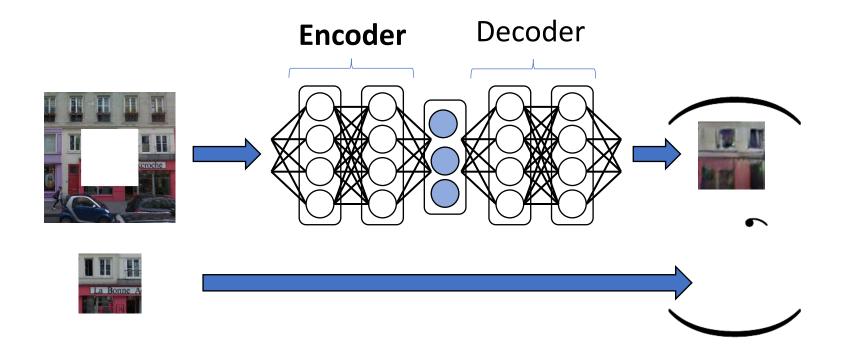
Image Content as Supervision: Image Inpainting

Pretext task: fill in the missing region

Input masked image

Output image

Pretext Task: Image Inpainting



$$\mathcal{L} = \lambda_{rec} \mathcal{L}_{rec}$$

Reconstruction L₂ loss ensures "correctness'

Pretext Task: Image Inpainting

$$\mathcal{L} = \lambda_{rec} \mathcal{L}_{rec} + \lambda_{adv} \mathcal{L}_{adv}.$$

Reconstruction L₂ loss ensures "correctness"

$$\mathcal{L}_{rec}(x) = \|\hat{M} \odot (x - F((1 - \hat{M}) \odot x))\|_{2}^{2},$$

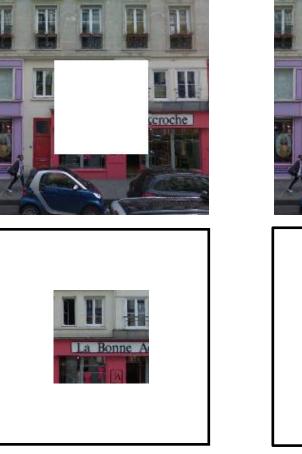
$$\mathcal{L}_{adv} = \max_{D} \quad \mathbb{E}_{x \in \mathcal{X}} [\log(D(x)) + \log(1 - D(F((1 - \hat{M}) \odot x)))]$$

Adversarial Loss ensures "realness"

(c) Context Encoder (L2 loss)

(d) Context Encoder (L2 + Adversarial loss)

Again... dealing with network's "cheats"

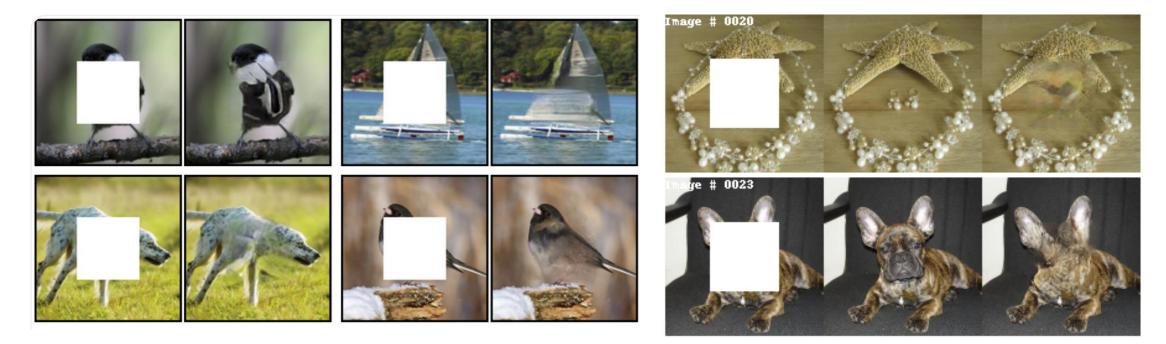


(a) Center Region

(b) Random Blocks

(c) Random Shapes

Pretext Task: Image Inpainting



DL4CV Weizmann

Context as Supervision: transfer learning

Table 1: Results on PASCAL VOC 2007 Detection and Classification. The results of the other methods are taken from Pathak *et al.* [30].

Method	Pretraining time	Supervision	Classification	Detection	Segmentation
Krizhevsky <i>et al.</i> [25]	$3 \mathrm{~days}$	1000 class labels	$\mathbf{78.2\%}$	$\mathbf{56.8\%}$	48.0%
Relative Patch location Context encoders	4 weeks 14 hours	$\operatorname{context}$	55.3% 56.5%	$46.6\%\ 44.5\%$	-29.7%
Jigsaw puzzles	$2.5 ext{ days}$	context	67.6%	53.2%	37.6%

Self-Supervised Learning

Solve a proxy, pretext task (large dataset) \rightarrow extract learned features \rightarrow finetune on a target supervised task (smaller dataset)

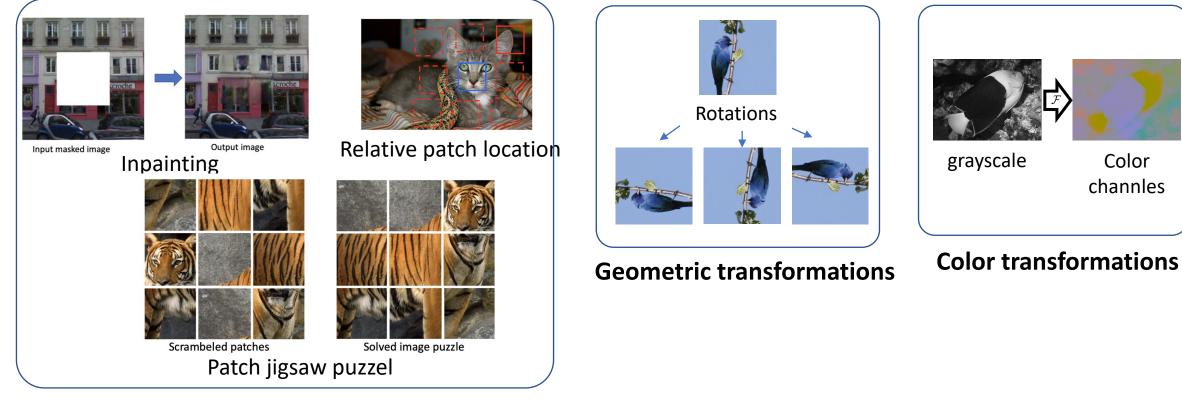
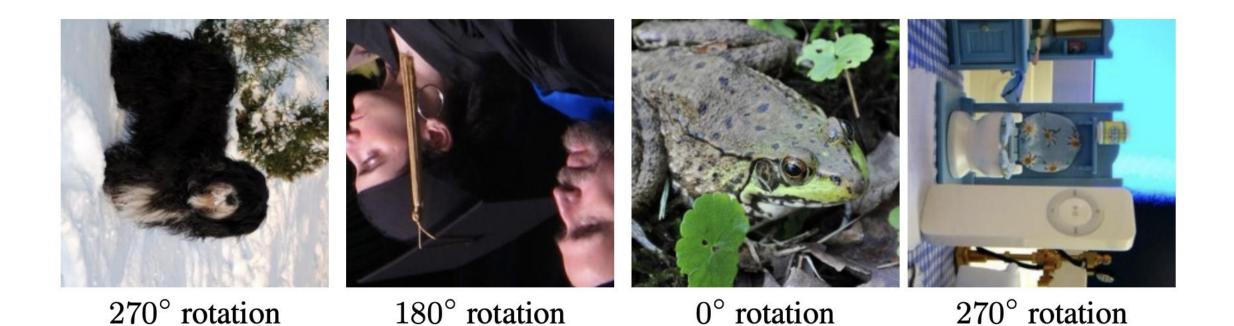


Image context as supervision

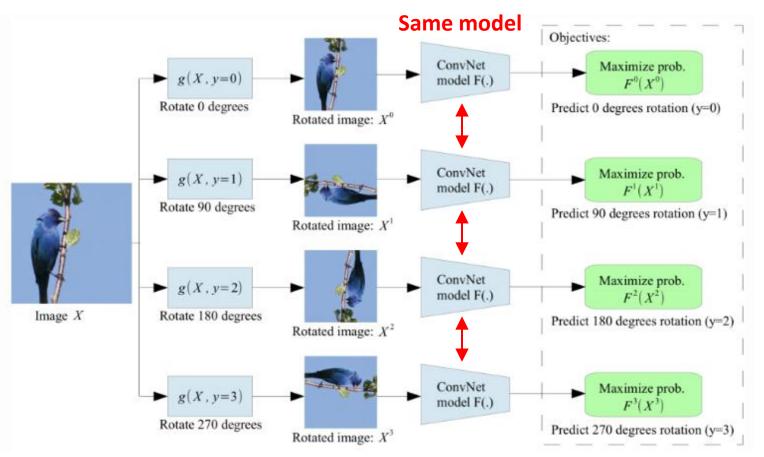
Pretext task: predicting image rotations

To recognize rotations, the model has to learn concepts of the objects



Pretext task: predicting image rotations

- Training data: images rotated by: 0°, 90°, 180°, and 270° (via flip and transpose operations)
- Task: predict which rotation is applied; 4-way classification task
- Training loss: assign a "label" to each rotation; apply cross entropy loss w.r.t. ground truth



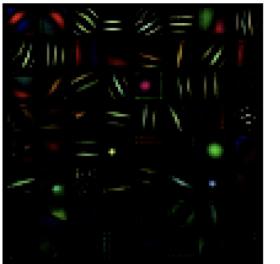
Gidaris et. al, Unsupervised Representation Learning by Predicting Image Rotations, 2018

Predicting image rotations vs. supervised classification

 $Conv1 \ 27 \times 27 \quad Conv3 \ 13 \times 13 \quad Conv5 \ 6 \times 6$

(a) Attention maps of supervised model

Conv1 27 × 27 Conv3 13 × 13 Conv5 6 × 6 (b) Attention maps of our self-supervised model



(a) Supervised

(b) Self-supervised to recognize rotations

Pretext task: colorization

- **Training data:** grayscale images (and their ground truth color images)
- **Task:** generate a plausible color image

Pretext task: colorization

Grayscale image: L channel $\mathbf{X} \in \mathbb{R}^{H imes W imes 1}$

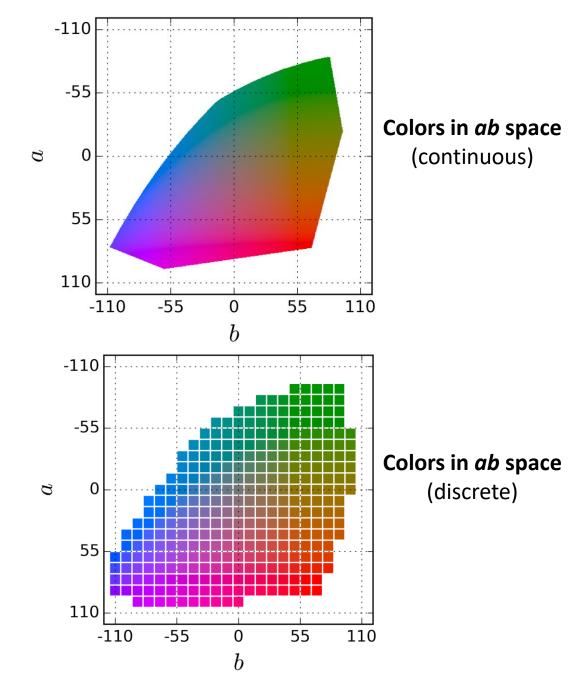
Color information: *ab* channels

 $\widehat{\mathbf{Y}} \in \mathbb{R}^{H \times W \times 2}$

 \mathcal{F}

Loss Function

• Regression with L2 loss inadequate $L_2(\widehat{\mathbf{Y}}, \mathbf{Y}) = \frac{1}{2} \sum_{h,w} \|\mathbf{Y}_{h,w} - \widehat{\mathbf{Y}}_{h,w}\|_2^2$



Transfer Learning

Pre-training on classification and detection tasks for PASCAL VOC 2007 dataset

		fication nAP)	Detection (%mAP)	Segmentation (%mIoU)	
Trained layers	fc6-8	all	all	all	
ImageNet labels	78.9	79.9	56.8	48.0	Supervised Pre-training on ImageNet
Random Random rescaled Krähenbühl et al. (2015)	39.2	53.3 56.6	43.4 45.6	19.8 32.6	No pre-training
Egomotion (Agrawal et al., 2015) Context Encoders (Pathak et al., 2016b) Tracking (Wang & Gupta, 2015) Context (Doersch et al., 2015)	31.0 34.6 55.6 55.1	54.2 56.5 63.1 65.3	43.9 44.5 47.4 51.1	29.7	
Colorization (Zhang et al., 2016a)	61.5	65.6	46.9	35.6	Colorization
BIGAN (Donahue et al., 2016) Jigsaw Puzzles (Noroozi & Favaro, 2016) NAT (Bojanowski & Joulin, 2017)	52.3 - 56.7	60.1 67.6 65.3	46.9 53.2 49.4	34.9 37.6	
Split-Brain (Zhang et al., 2016b)	63.0	67.1	46.7	36.0	Colorization
ColorProxy (Larsson et al., 2017) Counting (Noroozi et al., 2017)	-	65.9 67.7	51.4	38.4 36.6	
RotNet	70.87	72.97	54.4	39.1	Pre-training with rotation prediction

Gidaris et. al, Unsupervised Representation Learning by Predicting Image Rotations, 2018

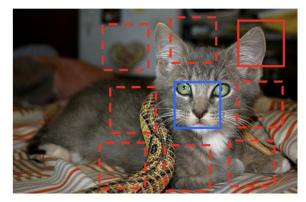
Self-Supervised Learning via Specific Pretext Task

Learned representations are task specific! Can we define a more general pretext task?

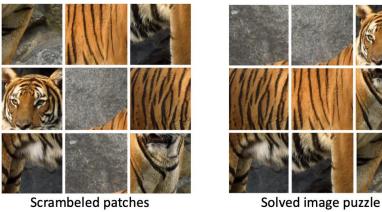
Input masked image

Output image

Inpainting



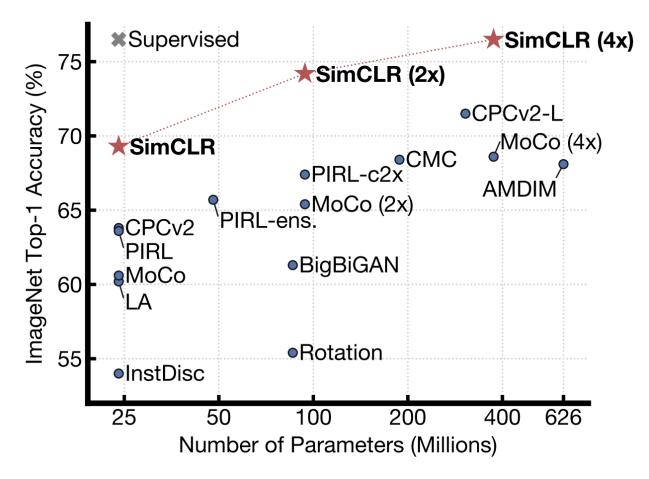
Relative patch location



Patch jigsaw puzzel

SimCLR

a Simple framework for Contrastive Learning of Representations

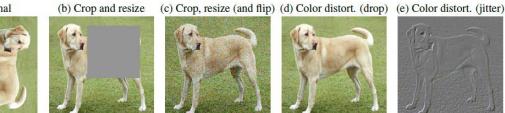


- Train feature encoder on ImageNet using SimCLR
- Freeze feature encoder
- Train a linear classifier on top with labeled data

SimCLR

(a) Original

 \mathcal{X}



(f) Rotate {90°, 180°, 270°} (g) Cutout (h) Gaussian noise

set of augmentation applied on the original image

(i) Gaussian blur

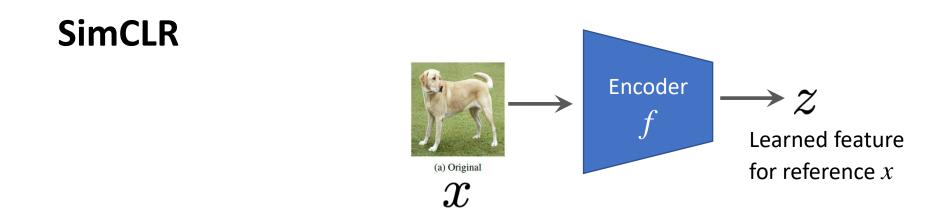
(j) Sobel filtering

 ${\mathcal X}$

Positive example

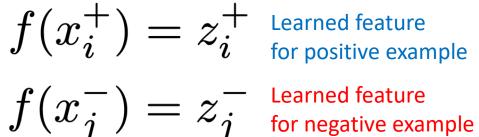
Random set of other images

Chen et. al., A Simple Framework for Contrastive Learning of Visual Representations, 2020



Learn an encoder function f such that:

$$sim(z, z_i^+) >> sim(z, z_j^-)$$



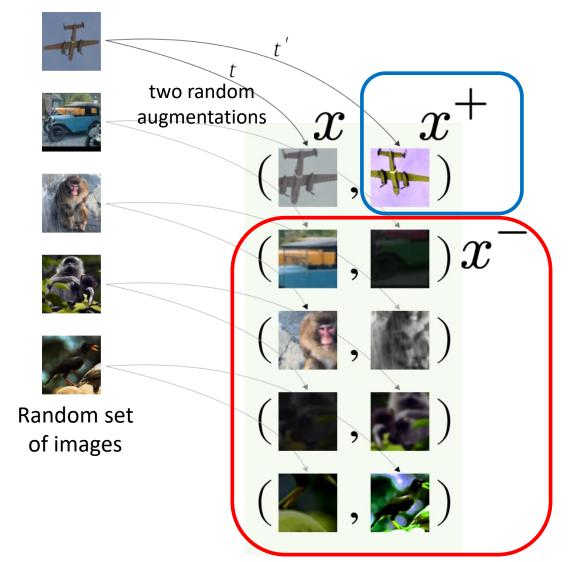
DL4CV Weizmann

Chen et. al., A Simple Framework for Contrastive Learning of Visual Representations, 2020

SimCLR: working with mini-batches

WAIC

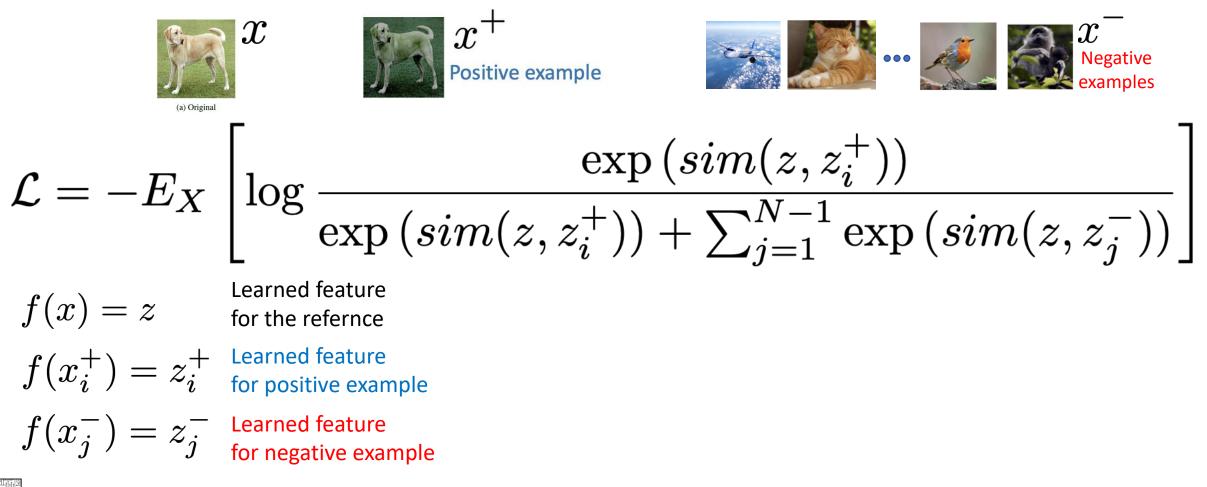
For each example *x*, we take 1 positive example and 2(N-1) negative examples:



Training Loss: Contrastive Learning formulation

DL4CV Weizmann

For each example *x*, we take 1 positive example and 2(N-1) negative examples:

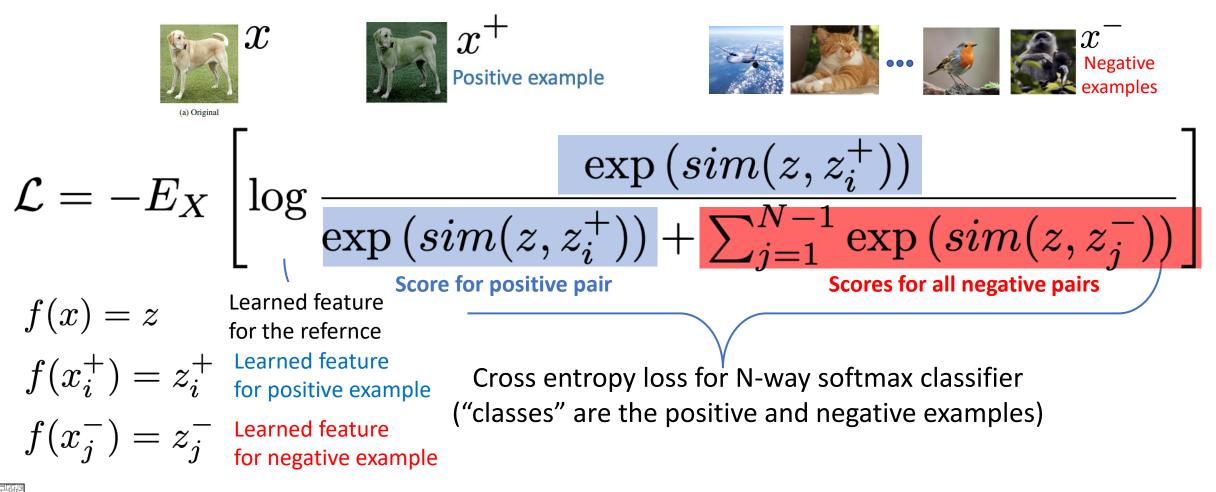


Chen et. al., A Simple Framework for Contrastive Learning of Visual Representations, 2020

Training Loss: Contrastive Learning formulation

DL4CV Weizmann

For each example *x*, we take 1 positive example and 2(N-1) negative examples:



Chen et. al., A Simple Framework for Contrastive Learning of Visual Representations, 2020

Training Loss: Contrastive Learning formulation

For each example *x*, we take 1 positive example and 2(N-1) negative examples:

$$\mathcal{L} = -E_X \left[\log \frac{\exp\left(sim(z, z_i^+)\right)}{\exp\left(sim(z, z_i^+)\right) + \sum_{j=1}^{N-1} \exp\left(sim(z, z_j^-)\right)} \right]_{\text{Score for positive pair}} \left[\sum_{j=1}^{N-1} \exp\left(sim(z, z_j^-)\right) + \sum_{j=1}^{N-1} \exp\left(sim(z, z_j^-)\right)} \right]_{\text{Scores for all negative pairs}} \left[\sum_{j=1}^{N-1} \exp\left(sim(z, z_j^-)\right) + \sum_{j=1}^{N-1} \exp\left(sim(z, z_j^-)\right)} \right]_{\text{Score for positive pair}} \left[\sum_{j=1}^{N-1} \exp\left(sim(z, z_j^-)\right) + \sum_{j=1}^{N-1} \exp\left(sim(z, z_j^-)\right)} \right]_{\text{Score for positive pair}} \left[\sum_{j=1}^{N-1} \exp\left(sim(z, z_j^-)\right) + \sum_{j=1}^{N-1} \exp\left(sim(z, z_j^-)\right)} \right]_{\text{Score for positive pair}} \left[\sum_{j=1}^{N-1} \exp\left(sim(z, z_j^-)\right) + \sum_{j=1}^{N-1} \exp\left(sim(z, z_j^-)\right)} \right]_{\text{Score for positive pair}} \left[\sum_{j=1}^{N-1} \exp\left(sim(z, z_j^-)\right) + \sum_{j=1}^{N-1} \exp\left(sim(z, z_j^-)\right)} \right]_{\text{Score for positive pair}} \left[\sum_{j=1}^{N-1} \exp\left(sim(z, z_j^-)\right) + \sum_{j=1}^{N-1} \exp\left(sim(z, z_j^-)\right)} \right]_{\text{Score for positive pair}} \left[\sum_{j=1}^{N-1} \exp\left(sim(z, z_j^-)\right) + \sum_{j=1}^{N-1} \exp\left(sim(z, z_j^-)\right)} \right]_{\text{Score for positive pair}} \left[\sum_{j=1}^{N-1} \exp\left(sim(z, z_j^-)\right) + \sum_{j=1}^{N-1} \exp\left(sim(z, z_j^-)\right)} \right]_{\text{Score for positive pair}} \left[\sum_{j=1}^{N-1} \exp\left(sim(z, z_j^-)\right) + \sum_{j=1}^{N-1} \exp\left(sim(z, z_j^-)\right)} \right]_{\text{Score for positive pair}} \left[\sum_{j=1}^{N-1} \exp\left(sim(z, z_j^-)\right) + \sum_{j=1}^{N-1} \exp\left(sim(z, z_j^-)\right)} \right]_{\text{Score for positive pair}} \left[\sum_{j=1}^{N-1} \exp\left(sim(z, z_j^-)\right) + \sum_{j=1}^{N-1} \exp\left(sim(z, z_j^-)\right)} \right]_{\text{Score for positive pair}} \left[\sum_{j=1}^{N-1} \exp\left(sim(z, z_j^-)\right) + \sum_{j=1}^{N-1} \exp\left(sim(z, z_j^-)\right)} \right]_{\text{Score for positive pair}} \left[\sum_{j=1}^{N-1} \exp\left(sim(z, z_j^-)\right) + \sum_{j=1}^{N-1} \exp\left(sim(z, z_j^-)\right)} \right]_{\text{Score for positive pair}} \left[\sum_{j=1}^{N-1} \exp\left(sim(z, z_j^-)\right) + \sum_{j=1}^{N-1} \exp\left(sim(z, z_j^-)\right)} \right]_{\text{Score for positive pair}} \left[\sum_{j=1}^{N-1} \exp\left(sim(z, z_j^-)\right) + \sum_{j=1}^{N-1} \exp\left(sim(z, z_j^-)\right)} \right]_{\text{Score for positive pair}} \left[\sum_{j=1}^{N-1} \exp\left(sim(z, z_j^-)\right) + \sum_{j=1}^{N-1} \exp\left(sim(z, z_j^-)\right)} \right]_{\text{Score for positive pair}} \left[\sum_{j=1}^{N-1} \exp\left(sim(z, z_j^-)\right) + \sum_{j=1}^{N-1} \exp\left(sim(z, z_j^-)\right)} \right]_{\text{Score for positive pair}} \left[\sum_{j=1}^{N-1} \exp\left(sim(z, z_j^-)\right) + \sum_$$

Commonly used loss in **Contrastive Learning**, also known as:

- Noise-Contrastive Estimation (NCE) loss
- InfoNCE loss
- Contrastive cross-entropy loss

$$\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_j) = \frac{\boldsymbol{z}_i^T \boldsymbol{z}_j}{\|\boldsymbol{z}_i\| \|\boldsymbol{z}_i\|}$$

Cosine similarity between the features

SimCLR Framework

Repeat:

Randomly sample a N size mini batch **for each** sample **x do:**

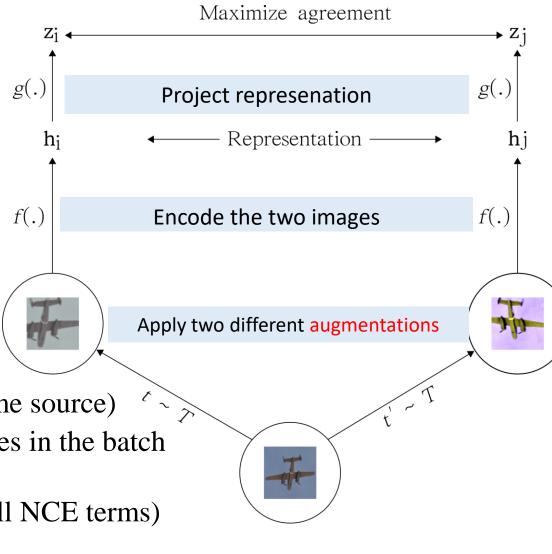
- (1) Apply two augmentations t, t' on x: $\widetilde{x}_i = t(x)$ and $\widetilde{x}_j = t'(x)$
- (2) Compute latent representation: $h_i = f(\tilde{x}_i)$ and $h_j = f(\tilde{x}_j)$
- (3) Project using projection head g:

$$\boldsymbol{z}_i = g(\boldsymbol{h}_i)$$
 and $\boldsymbol{z}_j = g(\boldsymbol{h}_j)$

end for

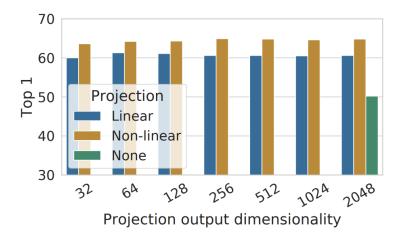
Positive example: z_i and z_j (augmentations of the same source) \sim **Negative examples:** all other 2(N-1) augmented images in the batch **Compute the NCE loss for all positive pairs**

Update g and f to minimize the total loss (sum over all NCE terms) return encoder network $f(\cdot)$, and throw away $g(\cdot)$



SimCLR Design Choices

• Projection head improves the learned representation for downstream tasks:

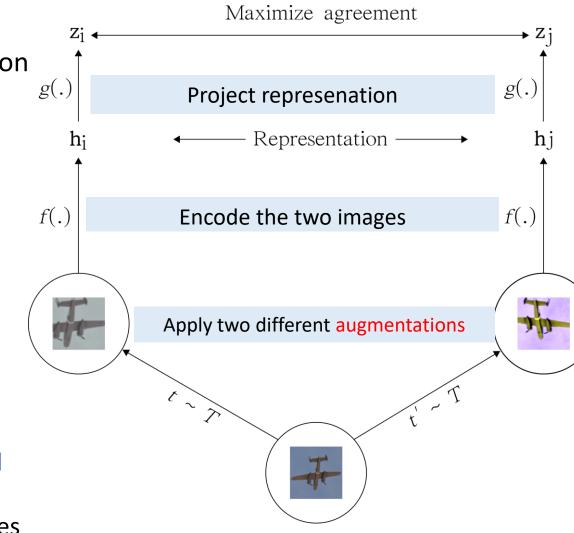


• Large training batch size is crucial Large memory; requires distributed training on TPUs

He et. al, Momentum Contrast for Unsupervised Visual Representation Learning (MoCo), CVPR 2020

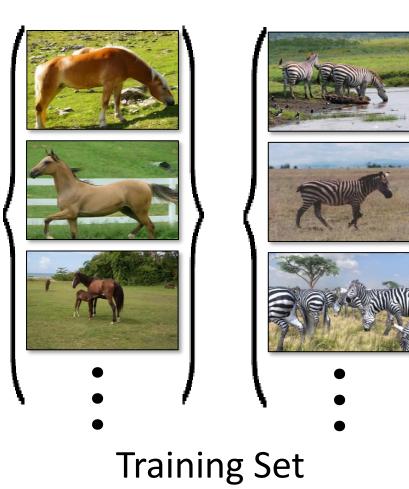
- Decouples batch size and number of negative samples
- Running queue of negative examples

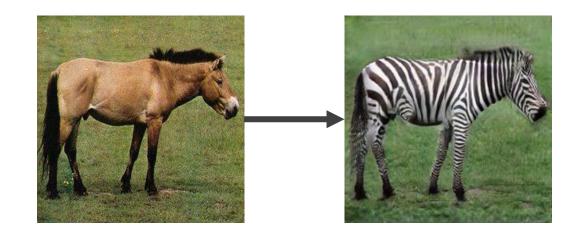
MoCo-V2, MoCo-V3...



DL4CV Weizmann

Unpaired Image-to-Image Translation

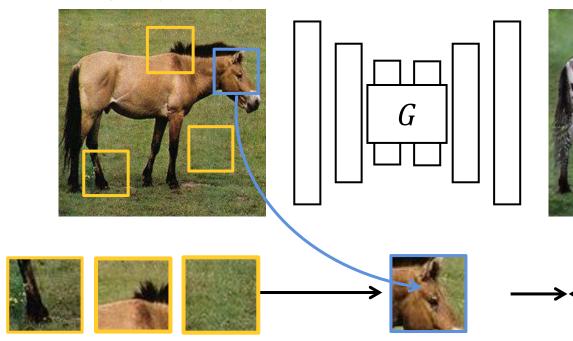




Test-time behavior

Unpaired Image-to-Image Translation via Contrastive Learning

Input (horse)

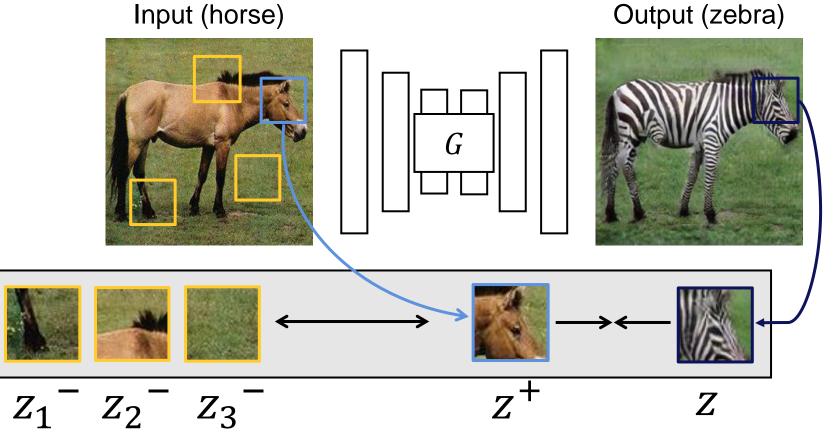


Output (zebra)

interchangeable

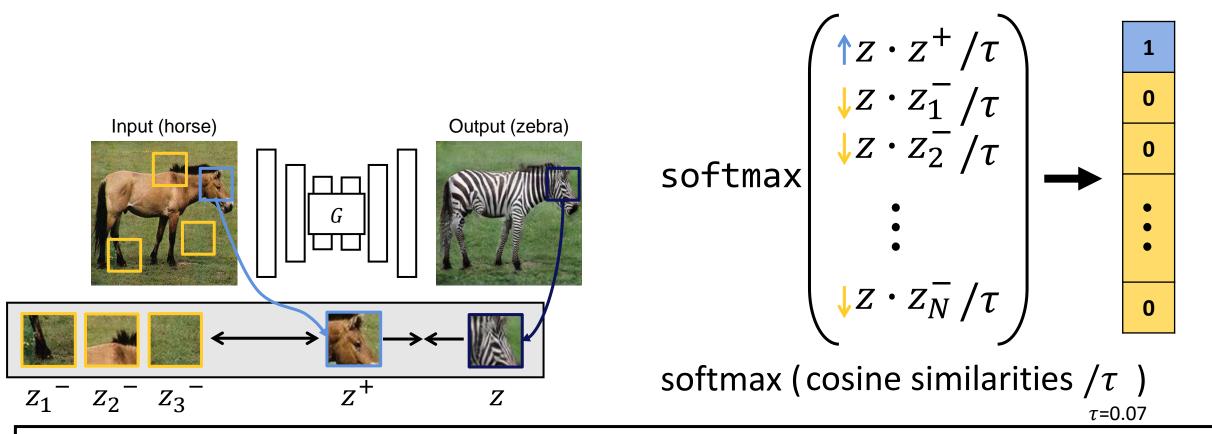
Discriminator

Unpaired Image-to-Image Translation via Contrastive Learning



Corresponding patches should have high similarity

Patch-based Contrastive Loss



• Use the same InfoNCE loss as in MoCo and SimCLR

To produce positive pairs:

Handcrafted data augmentation (MoCo, SimCLR, etc.) vs. Input and synthesized images

Patch-based Contrastive Loss



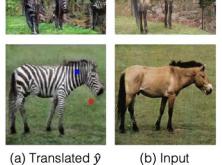
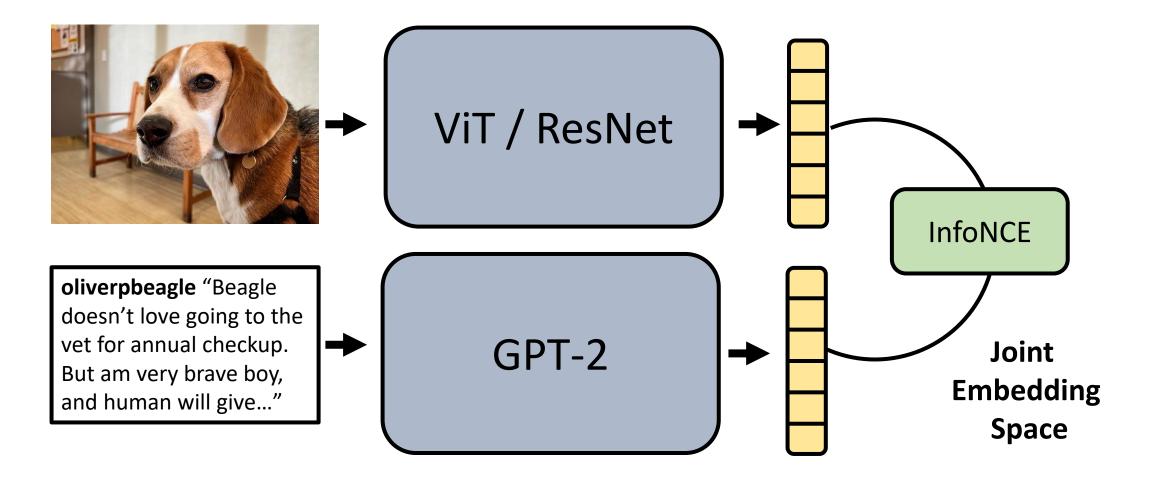


image x

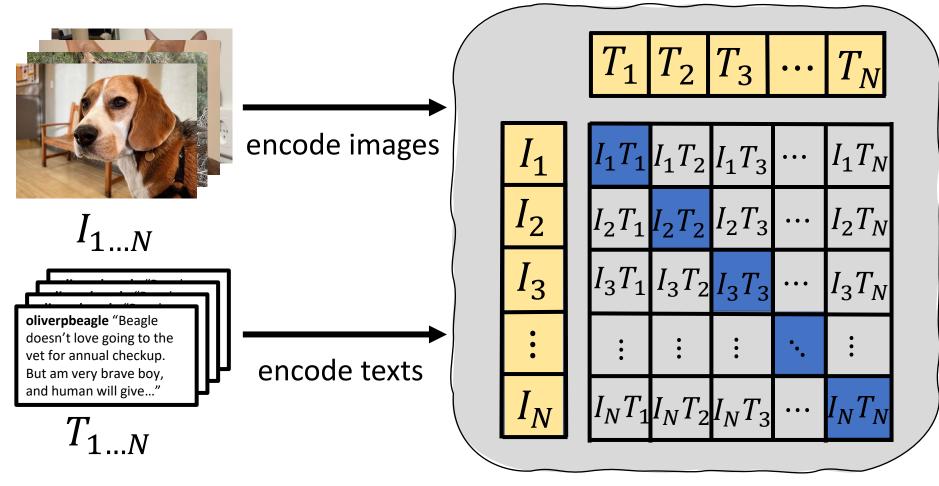
(a) Translated \hat{y} & query points (c) Learned similarity from query points to input image x

CLIP – Connecting Images and Text (Open-AI)



Radford et. al, Learning Transferable Visual Models From Natural Language Supervision, ArXiv'21 slide credit: Shir Amir

CLIP – Connecting Images and Text (Open-AI)



joint embedding space

Radford et. al, Learning Transferable Visual Models From Natural Language Supervision, ArXiv'21 slide credit: Shir Amir

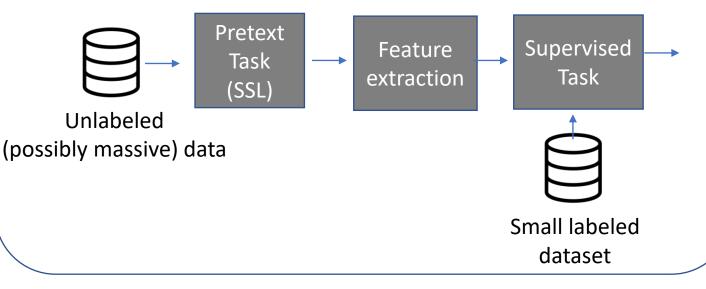
WAIC

Self-Supervised Learning (SSL)

No human labels; supervisory signals are automatically computed from data

In-direct self-supervised methods

Solve a proxy, pretext task → extract learned features → finetune on a target supervised task (Transfer Learning)



Direct self-supervised methods

Train directly for the task in hand:

Examples you've seen:

- Generative models
- ZSSR
- Cocourrance of signals (e.g., captions and images)

More advanced signals:

• Apply computer vision methologies to extract supervion

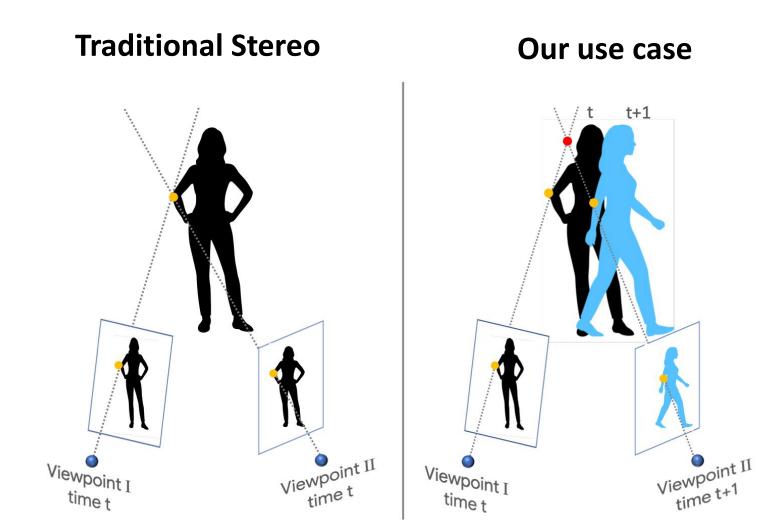
Goal: Predict depth when both camera and people are moving

Input

Our depth predictions*

Joint work with: Zhengqi Li, Forrester Cole, Richard Tucker, Noah Snavely, Ce Liu, Bill Freeman "Learning the Depths of Moving People by Watching Frozen People", CVPR'19, **Best Paper Honorable Mention**

Challenge: geometric constraints do not hold

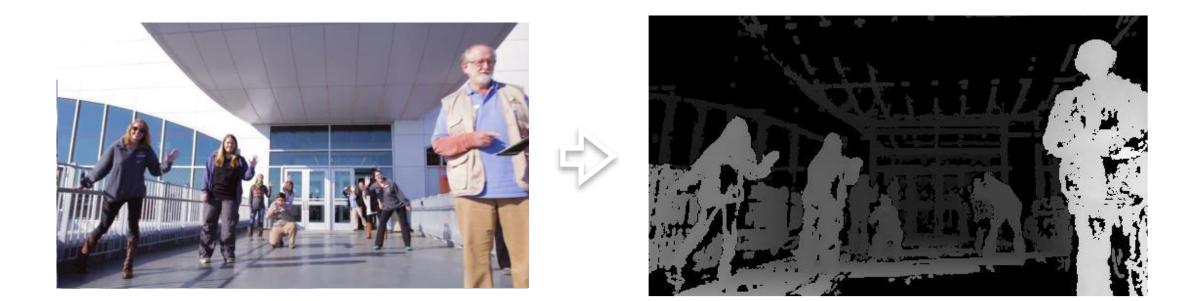


Approach: Learn the depths of moving people by watching frozen people

MannequinChallenge Dataset:

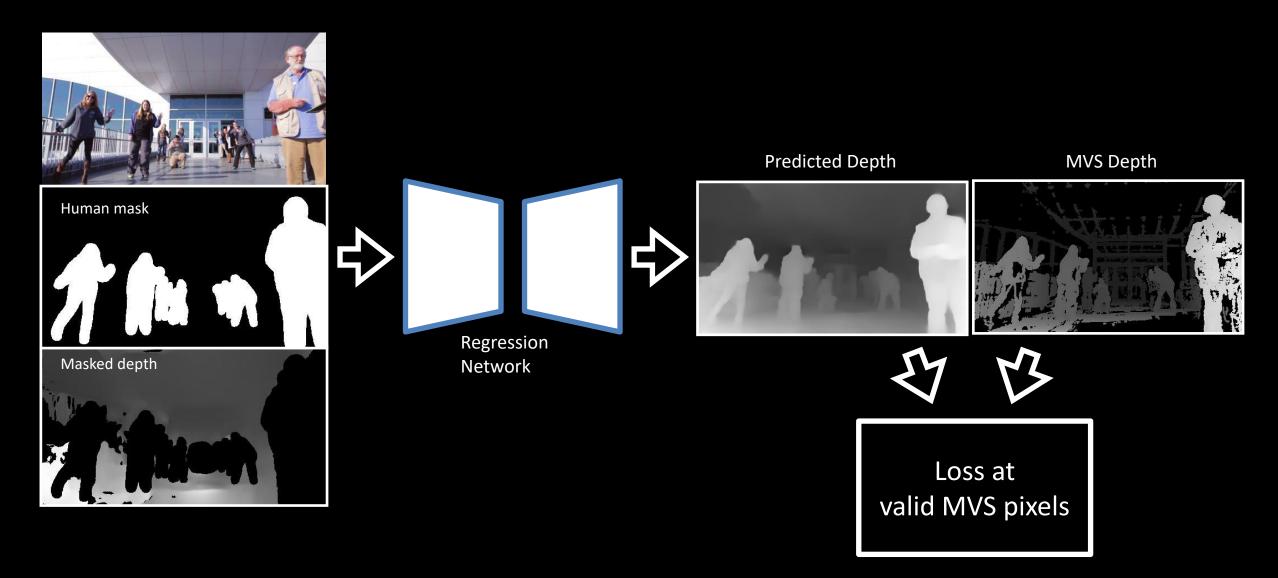
- 2000 YouTube Videos
- People frozen while camera is moving
- Diverse scenes, natural human poses

MannequinChallenge Training Data



"Ground truth" depth from SfM + Multi View Stereo (MVS)

Training Setup



Results and Comparison for Moving People

Input sequence

DORN (monocular)

Chen et al. (monocular)

DeMoN (stereo)

Ours

Comparison to recent SOTA learning based depth prediction methods

Self-Supervised Learning

Solve a proxy, pretext task (large dataset) \rightarrow extract learned features \rightarrow finetune on a target supervised task (smaller dataset)

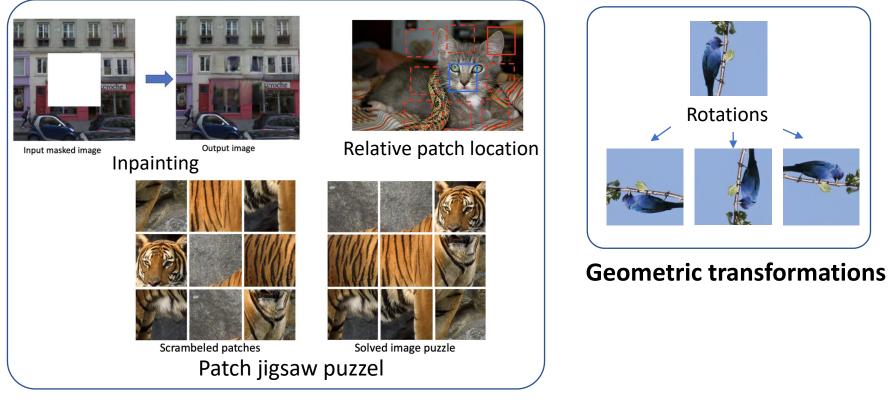
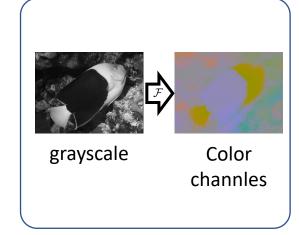


Image context as supervision



Color transformations

"More self-supervision"

Yaniv Nikankin

