Learning from Videos

Feb 6st, 2023

Tali Dekel

Videos

Videos are all around us

Span an enormous space of spatial and temporal signals

Challenges in Videos: size of video

DL4CV Weizmann

Size of video >> size of image

Computational constrains \rightarrow short, low-res clips

 $3 \times H \times W$

~30 frames per second (fps)

Uncompressed size (3 bytes per pixel): SD (640 x 480): **~1.5 GB per minute** HD (1920 x 1080): **~10 GB per minute**

Reduce spatial and temporal resolution

5fps, half the spatial resolution

Challenges in Videos: size of video

Computational constrains \rightarrow short, low-res clips

Challenges in Videos: Videos Datasets

space of video >> space of image \rightarrow lots of training data

"ImageNet"-equivalent dataset for videos?

Massive human labelling efforts

UCF101 YouTube videos 13320 videos, 101 action categories

Kinetics

Kinetics

YouTube videos 650,000 video clips, 600 human action classes

YouTube-8M

8M video clips, Machine-generated annotations from 3,862 classes

Sports-1M YouTube videos 1,133,157 videos, 487 sports labels

Deep Learning-based Models for Videos

- How to reduce computation cost without sacrificing accuracy?
- What architecture to best capture temporal patterns? *Karpathy et. al., Large-scale Video Classification with Convolutional Neural Networks, CVPR, 2014*

Self-Supervision in Videos

- Which types of pretext tasks can we define to capture temporal information?
- Learning from a single video and neural video represenation

Models for Videos: Single-Frame Baseline

• Train 2D CNN to classify video frames independently

Input video frame

Models for Videos: Single-Frame Baseline

- Train 2D CNN to classify video frames independently
- Average predicted probs at test-time

Input video frames

Models for Videos: Late Fusion

• Learn features for each frame using a 2D CNN, concatenate feature, and fuse

Input video frames

Models for Videos: Late Fusion w/ pooling

Learn features for each frame, apply spatial-temporal average pool, and then fuse

Input video frames

Models for Videos: Late Fusion w/ pooling

Learn features for each frame, apply spatial-temporal average pool, and then fuse

Pros: allow the network to learn global motion characteristics by comparing outputs of both towers

Cons: late fusion is late... hard to represent low level motion between frames

Input video frames

- Combines temporal information immediately on the pixel level
- Treat time as another "channel" dimension

Input video frames

Extending the filters in the first Conv Layer to: T x 3 x H x W kernel

Input: T x 3 x H x W

Weights: C x T x 3 x h x w

Output: C x H' x W'

Extending the filters in the first Conv Layer to: T x 3 x H x W kernel

• Not temporal shift invariance; specific filter is learned to each time step

Input: T x 3 x H x W

Weights: C x T x 3 x h x w

Output: C x H' x W'

Extending the filters in the first Conv Layer to: T x 3 x H x W kernel

• Not temporal shift invariance; specific filter is learned to each time step

Input: T x 3 x H x W

Weights: C x T x 3 x h x w

Output: C x H' x W'

Pros: Allow the network to learn local motion characteristics

Cons:

Input video frames

Models for Videos: Slow Fusion a.k.a 3D Convs

• Extend 2D Convs and pooling to 3D to slowly fuse temporal information throughout the model

Input video frames

Models for Videos: Slow Fusion a.k.a 3D Convs

- Extend 2D Convs and pooling to 3D to slowly fuse temporal information throughout the model
- Slide the kernels in both space and time

Input: T x 3 x H x W

Weights: C x t x 3 x h x w

Output: C x T' x H' x W'

Models for Videos: Slow Fusion a.k.a 3D Convs

- Extend 2D Convs and pooling to 3D to slowly fuse temporal information throughout the model
- Slide the kernels in both space and time

h t w

First layer filters 3(rgb) x 4 (t) x 5 (h) x 5 (w)

Weights: C x t x 3 x h x w

DL4CV Weizmann

Models for Videos: Multi-scale

How can we reduce computational cost while maintaining accuracy? Reduce video resolution \rightarrow lower performance Reduce network's capacity \rightarrow lower performance

- Context stream *(low res)*: process low res video frames (H/2, W/2)
- Fovea sterm (high res): process a (H/2, W/2) crop from the original resolution

Reduce the input dimentionalty by half

Action classification -- Sports-1M

 Fine grained labels for 487 different types of sports

DL4CV Weizmann

- Correct prediction
- Incorrect prediction

Action classification -- Sports-1M

Sports-1M Top-5 Accuracy

DL4CV Weizmann

nn Karpathy et. al., Large-scale Video Classification with Convolutional Neural Networks, CVPR, 2014 Slide credit: Justin Johnson, <u>EECS 498-007</u>

Models for Videos: C3D (Convolutional 3D)

- 3D CNN that uses all 3x3x3 Convs and 2x2x2 poolings
- The "VGG" of 3D CNNs
- Transfer learning: extract learned video features, train a simple linear classifier for various tasks

Problem: 3D convs are VERY expensive!
C3D on small inputs takes 3x VGG and 56x AlexNet FLOPs

Non-deep learning video classification

Motion is the most informative cue for action recognition \rightarrow design hand crafted motion features:

Aggregate local motion features to compute a global representation of the video \rightarrow linear SVM for action recognition

MODEL MOTION EXPLICITLY

Wang et. al., Dense trajectories and motion boundary descriptors for action recognition, 2013

局 DL4CV Weizmann

Peng et. al., Bag of Visual Words and Fusion Methods for Action Recognition: Comprehensive Study and Good Practice, 2014

Non-deep learning video classification

Motion is the most informative cue for action recognition \rightarrow hand crafted motion features:

Explicitly modeling motion in deep-based models

Optical flow: For each pixel in frame t, determines its corresponding pixel in frame t+1

Frame t+1

Optical flow provides local motion cues

Color wheel Saturation = mag. Color = angle

Two Stream Networks: modeling motion explicitly

Idea: separate motion (multi-frame) from static appearance (single frame)

Simonyan and Zisserman, Two-Stream Convolutional Networks for Action Recognition in Videos, NIPS 2014

Two Stream Networks: modeling motion explicitly

Idea: separate motion (multi-frame) from static appearance (single frame)

Simonyan and Zisserman, Two-Stream Convolutional Networks for Action Recognition in Videos, NIPS 2014

Additional models

Inflating 2D networks to 3D (I3D)

Take an existing 2D CNN model → convert it to a 3D CNN model Transfer the weights from 2D and 3D

Carreira and Zisserman, "Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset", CVPR 2017

Long range temporal processing

Use LSTMs and RNNs to model long range temporal information

Baccouche et al, "Sequential Deep Learning for Human Action Recognition", 2011 Donahue et al, "Long-term recurrent convolutional networks for visual recognition and description", CVPR 2015

Long range temporal processing Self attention, non-local networks, Transformers

Self-Supervision in Videos

- Temporal order
- Cycle consistency
- Video Speedup
- Video colorization

Self-Supervision in Videos: frame ordering

Training data: shuffled video frames, original video frames **Pretext task:** predict if the frames are in the correct temporal order (binary classification task)

Self-Supervision in Videos: frame ordering

Self-Supervision in Videos: frame ordering

Transfer learning: fine-tune spatial stream for video classification

Dataset	Initialization	Mean Accuracy
UCF101	Random	38.6
	(Ours) Tuple verification	50.2
HMDB51	Random	13.3
	UCF Supervised	15.2
	(Ours) Tuple verification	18.1

Self-Supervision in Videos: Learning correspondence

Ultimate goal: Correspondence

Wang and Efros, Learning Correspondence from the Cycle-consistency of Time, CVPR 2019

Self-Supervision in Videos: Learning correspondence

Ultimate goal: Correspondence, without using off-the-shelf tracking methods

How to obtain supervision?

Supervision: Cycle-Consistency in Time

Track backwards in time

Track forwards, back to the future

Wang and Efros, Learning Correspondence from the Cycle-consistency of Time, CVPR 2019

Self-Supervision in Videos: Learning correspondence

Supervision: Cycle-Consistency in Time Challenge: Occlusions

Skip-cycles: skipping occlusions

Wang and Efros, Learning Correspondence from the Cycle-consistency of Time, CVPR 2019

Self-Supervision in Videos: Learning correspondence

Differentiable tracker: densely match features in learned feature space

$$A(j,i) = \frac{\exp\left(x^{I}(j)^{\mathsf{T}}x^{p}(i)\right)}{\sum_{j}\exp\left(x^{I}(j)^{\mathsf{T}}x^{p}(i)\right)} \qquad A \in \mathbb{R}^{900x100}$$

Self-Supervision in Videos: Learning correspondence

Test time: compute features to each frame, compute features affinity, propagate information using the affinities

Self-Supervision in Videos: Learning correspondence

Wang and Efros, Learning Correspondence from the Cycle-consistency of Time, CVPR 2019

Self-Supervision in Videos: Temporal cycle consistency

Dwibed et. al. Temporal Cycle-Consistency Learning, CVPR'19

Jabri et. al, Space time correspondence as Contrastive Random Walk, NeurIPS 2020

Ultimate goal: Watch video content faster by adaptively speeding up the video

Joint work with: Sagie Benaim, Ariel Ephrat, Oran Lang, Inbar Mosseri, Bill Freeman, Miki Rubinstein and Michal Irani, CVPR 2020

"Speediness" in Videos

Slower

Normal speed

Joint work with: Sagie Benaim, Ariel Ephrat, Oran Lang, Inbar Mosseri, Bill Freeman, Miki Rubinstein and Michal Irani, CVPR 2020

Pretext task: Predict if a given video segment is sped up or not **Training data:** sped up video segments + original video segments

(30 frames)

Self supervised training on Kinetics

"Learning and Using the Arrow of Time", Wei at. al, CVPR 2018

Pretext task: Predict if a given video segment is sped up or not **Training data:** sped up video segments + original video segments

> Normal speed Self supervised training on Kinetics Sped Up **SpeedNet**

> > Input segment (30 frames)

Learning properties of natural motion, avoid "easy cheats" \rightarrow very challenging!

Oľ

Pretext task: Predict if a given video segment is sped up or not **Training data:** sped up video segments + original video segments

Inference: sliding window \rightarrow prediction for every frame

From "Speediness" to Speedup factor: Low speediness → speedup more High speediness → speedup less

Learning the Speediness in Videos: Adaptive Video Speedup

WAIC

Learning the Speediness in Videos: Transfer Learning

Self Supervised Action Recognition

Initialization		Supervised accuracy	
Method	Architecture	UCF101	HMDB51
Random init	S3D-G	73.8	46.4
ImageNet inflated	S3D-G	86.6	57.7
Kinetics supervised	S3D-G	96.8	74.5
CubicPuzzle [19]	3D-ResNet18	65.8	33.7
Order [40]	R(2+1)D	72.4	30.9
DPC [13]	3D-ResNet34	75.7	35.7
AoT [38]	T-CAM	79.4	-
SpeedNet (Ours)	S3D-G	81.1	48.8

Video Retrieval

Query

Retrieved top-3 results

Learning the Speediness in Videos: CAM visualizations

"Memory Eleven" artistic video by Bill Newsinge

Our space-time speediness visualization

blue/green = normal speed

yellow/orange =
slowed down

https://www.youtube.com/watch?v=djylS0Wi_lo

Enhance the way we perceive our dynamic world

Re-rendering Everyday Videos Retime the motions of individual people within frames along with their scene effects!

"Layered Neural Rendering for Retiming People in Video"

nnimatte: Associating Objects and Their Effects in Video", CVPR'21 (Oral)

Input video

nnimatte: Associating Objects and Their Effects in Video", CVPR'21 (Oral)

Editing everyday videos – key challenge

Associating objects and their scene effects !

Input segments [Mask-RCNN]

Omnimatte: Associating objects and their scene effects

Trained on a single video: no additional external information

Input Video

Omnimatte Model

Self-supervised training Reconstuction as supervision

Reconstructed Video

Background Layer

e **RGBA Layer I** (color + opacity)

Model

Model objects + static background explicitly!

Model objects + static background explicitly!

WAIC

RGBA Layer N

Omnimatte Method Reflection, shadows etc. inferred automatically! **Background Layer Fixed Noise Input** Ĵθ ·····**>** **RGBA Layer I** Frame t Omnimatte Flow I Mask I (color + opacity) Model Mask N Flow N

High correlation \rightarrow Easy to predict (fewer iterations)! Low correlation \rightarrow Difficult to predict (more iterations)

Original Frame

Input Mask 1

Input Mask 2

Synthetic test case I (single person)

Initialization

Original Foreground Trimap

Synthetic test case I (single person)

WAIC

Details (cloths, hair) are learned as training progresses

Original Frame

Training Progression

Synthetic test case I (single person)

Synthetic test case II correlated vs. uncorrelated motion)

Why It Works?

Correlated motion is learned earlier than uncorrelated motion

Input

Background

Synthetic test case II correlated vs. uncorrelated motion)

Why It Works?

Nearby effects are learned earlier than distant effects

Synthetic test case III nearby vs. distant effects)

Why It Works?

Each person "grabs" its most correlated elements early

Synthetic test case IV multiple people)

Why does this work?

Deep Image Prior, Ulyanov, et al., CVPR 2018

DAVIS 2017 dataset. Masks generated using STM [ICCV'19]

Omnimatte Results

Omnimatte (RGBA)

Editing Effects Using Omnimatte – Logo Insertion

Input video

Editing Effects Using Omnimatte – Logo Insertion

Logo inserted

Editing Effects Using Omnimatte – Logo Insertion

Foreground RGBA layer

Layered Neural Representations for Video

Omnimatte: **Per-frame** RGBA layers

Per-frame RGBA Layers

- Per-frame representation
- Editing is restricted to per-frame manipulation

Neural Atlases: Per-video Atlas layers

Input video

Estimated per-video atlases

- A unified representation
- Easy and intuitive editing across time

Input video

Estimated **per-video** atlases

"Layered Neural Atlases for Consistent Video Editing" SIGGRAPH Asia'21

Input video

Estimated 2D Atlases

Estimated 2D Atlases

Input video

Estimated 2D Atlases

Edited video

Layered Neural Atlases

 $\mathcal{L} = \mathcal{L}_{color} + \mathcal{L}_{flow} + \mathcal{L}_{rigid} + \mathcal{L}_{sparsity}$

 $\mathcal{L} = \mathcal{L}_{color} + \mathcal{L}_{flow} + \mathcal{L}_{rigid} + \mathcal{L}_{sparsity}$

Reconstruction of the original video

$$\mathcal{L} = \mathcal{L}_{color} + \mathcal{L}_{rigid} + \mathcal{L}_{flow} + \mathcal{L}_{sparsity}$$

• Preserve the original structures in the atlases

Background Atlas

$\mathcal{L} = \mathcal{L}_{color} + \mathcal{L}_{flow} + \mathcal{L}_{flow} + \mathcal{L}_{sparsity}$

No Rigidity Loss (29.63dB)

 $\mathcal{L} = \mathcal{L}_{color} + \mathcal{L}_{rigid} + \mathcal{L}_{flow} + \mathcal{L}_{sparsity}$

Video frame j

$\mathcal{L} = \mathcal{L}_{color} + \mathcal{L}_{rigid} + \mathcal{L}_{f} + \mathcal{L}_{sparsity}$

No Optical Flow Loss (27.74dB)

$$\mathcal{L} = \mathcal{L}_{color} + \mathcal{L}_{rigid} + \mathcal{L}_{flow} + \mathcal{L}_{sparsity}$$

• Encourage a "minimal atlas"

 $\mathcal{L} = \mathcal{L}_{color} + \mathcal{L}_{rigid} + \mathcal{L}_{flow} + \mathcal{L}_{spotsity}$

No Sparsity Loss (28.80dB)

Foreground atlas

$$\mathcal{L} = \mathcal{L}_{color} + \mathcal{L}_{rigid} + \mathcal{L}_{flow} + \mathcal{L}_{sparsity}$$

- Reconstruction of the original video
- Preserve the original structures in the atlases
- Corresponding points mapped to the same atlas point
- Encourage a "minimal atlas"

$\mathcal{L} = \mathcal{L}_{color} + \mathcal{L}_{rigid} + \mathcal{L}_{flow} + \mathcal{L}_{sparsity}$

Complete Model (29.85dB)

Alpha initialization

Masks are refined during training

Original Video

User Input Masks

Atlas decomposition results

Foreground Atlas

Atlas decomposition results

Grid Atlas Ablation

Replacing the continuous Atlas with a discrete Atlas, and fine-tuning

Reconstruction

RGBA foreground layer

Foreground atlas

Off-the-shelf Image style transfer

Stylized background atlas

Foreground atlas

Background atlas

Background atlas

Foreground atlas

Photoshop Filter

Stylized background atlas

Add texture

Edited background atlas

WAIC

Background atlas

Limitations

- Complex geometry, self-occlusions and extreme deformations → multiple foreground layers
- Limited capacity: quality video length

Original

Foreground atlas

Background atlas

Predicted Alpha

Edited Result

Next tutorial: "Text and Image"

