
DL4CV Weizmann

Learning from Videos

Feb 6st, 2023

Tali Dekel

DL4CV Weizmann

Videos

Videos are all around us
Span an enormous space of spatial and temporal signals

DL4CV Weizmann

Challenges in Videos: size of video

Size of video >> size of image

time

3 x H x W

4D tensor:
T x 3 x H x W

~30 frames per second (fps)

Uncompressed size (3 bytes per pixel):
SD (640 x 480): ~1.5 GB per minute
HD (1920 x 1080): ~10 GB per minute

Image video

5fps, half the spatial
resolution

Reduce spatial and temporal resolution

Computational constrains → short, low-res clips

Slide inspiration: Justin Johnson, EECS 498-007

https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/

DL4CV Weizmann

Challenges in Videos: size of video
Computational constrains → short, low-res clips

Walking
Running
Cycling

Jumping
.
.

Original video(long, high FPS)

Test time: inference on different short clips, average predictions

Training: Short, low FPS

Slide inspiration: Justin Johnson, EECS 498-007

Input video

https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/

DL4CV Weizmann

Challenges in Videos: Videos Datasets
space of video >> space of image → lots of training data

UCF101

YouTube videos
13320 videos, 101 action categories

YouTube-8M

8M video clips, Machine-generated
annotations from 3,862 classes

Sports-1M

YouTube videos

1,133,157 videos, 487 sports labels

Kinetics

YouTube videos
650,000 video clips, 600 human

action classes

“ImageNet”-equivalent dataset for videos?
Massive human labelling efforts

DL4CV Weizmann

Today

Deep Learning-based Models for Videos
• How to reduce computation cost without sacrificing accuracy?
• What architecture to best capture temporal patterns?

Self-Supervision in Videos
• Which types of pretext tasks can we define to capture temporal information?
• Learning from a single video and neural video represenation

Karpathy et. al., Large-scale Video Classification with Convolutional Neural Networks, CVPR, 2014

DL4CV Weizmann Karpathy et. al., Large-scale Video Classification with Convolutional Neural Networks, CVPR, 2014

Input video frame

2D
CNN

“Biking”

Models for Videos: Single-Frame Baseline

• Train 2D CNN to classify video frames independently

DL4CV Weizmann

Models for Videos: Single-Frame Baseline

Karpathy et. al., Large-scale Video Classification with Convolutional Neural Networks, CVPR, 2014

Input video frames

• Train 2D CNN to classify video frames independently
• Average predicted probs at test-time

2D
CNN

“Biking”

2D
CNN

“Biking”

2D
CNN

“Biking”

2D
CNN

“Biking”

2D
CNN

“Biking”

DL4CV Weizmann

Models for Videos: Late Fusion

Karpathy et. al., Large-scale Video Classification with Convolutional Neural Networks, CVPR, 2014

• Learn features for each frame using a 2D CNN, concatenate feature, and fuse

Input video frames

2D
CNN

MLP (FC)

2D
CNN

MLP (FC)

Frame features:
D x H’ x W’

Frame features:
D x H’ x W’

Flatten + concatenate and feed to FC layers
2DH’W’

“Biking”

DL4CV Weizmann

Models for Videos: Late Fusion w/ pooling

Karpathy et. al., Large-scale Video Classification with Convolutional Neural Networks, CVPR, 2014

Learn features for each frame, apply spatial-temporal average pool, and then fuse

Input video frames

MLP (FC)

2D
CNN

2D
CNN

MLP (FC)

Concatenated
features:

T x D x H’ x W’

“Biking”

2D
CNN

2D
CNN

2D
CNN

Average Pool over space and time

Pooled feature: D

DL4CV Weizmann

Models for Videos: Late Fusion w/ pooling

Karpathy et. al., Large-scale Video Classification with Convolutional Neural Networks, CVPR, 2014

Learn features for each frame, apply spatial-temporal average pool, and then fuse

Pros: allow the network to learn global motion
characteristics by comparing outputs of both towers

Cons: late fusion is late…
hard to represent low level motion between frames

DL4CV Weizmann

Models for Videos: Early Fusion

Karpathy et. al., Large-scale Video Classification with Convolutional Neural Networks, CVPR, 2014

Input video frames

• Combines temporal information immediately on the pixel level
• Treat time as another “channel” dimension

Input:
T x 3 x H x W

Reshaped input:
3T x H x W

Implemented by extending the
filters in the first Conv Layer to:
T x 3 x H x W kernels
Rest of the network is 2D CNN

MLP (FC)
MLP (FC)

“Biking”

2D
CNN

DL4CV Weizmann

Models for Videos: Early Fusion

Extending the filters in the first Conv Layer to: T x 3 x H x W kernel

Weights: C x T x 3 x h x w

𝑇

ℎ

𝑤

Input: T x 3 x H x W

𝑇

𝐻

𝑊

Output: C x H’ x W’

𝐻’

𝑊′

DL4CV Weizmann

Models for Videos: Early Fusion

Karpathy et. al., Large-scale Video Classification with Convolutional Neural Networks, CVPR, 2014

Extending the filters in the first Conv Layer to: T x 3 x H x W kernel
• Not temporal shift invariance; specific filter is learned to each time step

Input: T x 3 x H x W Weights: C x T x 3 x h x w Output: C x H’ x W’

𝐻’

𝑊′

𝑇

𝐻

𝑊

Large motion
occured

Weights: C x T x 3 x h x w

𝑇

ℎ

𝑤

DL4CV Weizmann

Models for Videos: Early Fusion

Karpathy et. al., Large-scale Video Classification with Convolutional Neural Networks, CVPR, 2014

Extending the filters in the first Conv Layer to: T x 3 x H x W kernel
• Not temporal shift invariance; specific filter is learned to each time step

Input: T x 3 x H x W Weights: C x T x 3 x h x w Output: C x H’ x W’

𝐻’

𝑊′

𝑇

𝐻

𝑊

Large motion
occured

Weights: C x T x 3 x h x w

𝑇

ℎ

𝑤

DL4CV Weizmann

Models for Videos: Early Fusion

Karpathy et. al., Large-scale Video Classification with Convolutional Neural Networks, CVPR, 2014

Input video frames

Input:
T x 3 x H x W

Reshaped input:
3T x H x W

MLP (FC)
MLP (FC)

“Biking”

2D
CNN

Pros: Allow the network to learn local motion characteristics

Cons:
• Not temporal shift-invariant
• Only have one layer of

temporal processing

DL4CV Weizmann

Models for Videos: Slow Fusion a.k.a 3D Convs

Karpathy et. al., Large-scale Video Classification with Convolutional Neural Networks, CVPR, 2014

Input video frames

• Extend 2D Convs and pooling to 3D to slowly fuse temporal information
throughout the model

Input:
T x 3 x H x W

Reshaped input:
3T x H x W

Filters are sliding in both space
and time

MLP (FC)
MLP (FC)

“Biking”

3D
CNN

DL4CV Weizmann

Input: T x 3 x H x W Weights: C x t x 3 x h x w

𝑡

ℎ

𝑤

𝑇

𝐻

𝑊

Models for Videos: Slow Fusion a.k.a 3D Convs

• Extend 2D Convs and pooling to 3D to slowly fuse temporal information
throughout the model

• Slide the kernels in both space and time

• Temporal shift-invariant!

Output: C x T’ x H’ x W’

𝐻′

𝑊′
𝑇′

DL4CV Weizmann

Input: T x 3 x H x W Weights: C x t x 3 x h x w

𝑡

ℎ

𝑤

𝑇

𝐻

𝑊

Models for Videos: Slow Fusion a.k.a 3D Convs

• Extend 2D Convs and pooling to 3D to slowly fuse temporal information
throughout the model

• Slide the kernels in both space and time

First layer filters
3(rgb) x 4 (t) x 5 (h) x 5 (w)

Karpathy et. al., Large-scale Video Classification with Convolutional Neural Networks, CVPR, 2014

𝐻′

𝑊′
𝑇′

DL4CV Weizmann

Models for Videos: Multi-scale
How can we reduce computational cost while maintaining accuracy?

Reduce network’s capacity → lower performance

Reduce video resolution → lower performance

• Context stream (low res):
process low res video frames (H/2,
W/2)

• Fovea sterm (high res):
process a (H/2, W/2) crop from the
original resolution

Reduce the input dimentionalty by half

Karpathy et. al., Large-scale Video Classification with Convolutional Neural Networks, CVPR, 2014

DL4CV Weizmann

Action classification -- Sports-1M

• 1 million YouTube videos
• Fine grained labels for 487 different

types of sports

• Ground truth
• Correct prediction
• Incorrect prediction

Karpathy et. al., Large-scale Video Classification with Convolutional Neural Networks, CVPR, 2014

DL4CV Weizmann

Action classification -- Sports-1M

Slide credit: Justin Johnson, EECS 498-007

Single frame: a
shockly powerful
baseline

Karpathy et. al., Large-scale Video Classification with Convolutional Neural Networks, CVPR, 2014

This is from 2014…

https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/

DL4CV Weizmann

Models for Videos: C3D (Convolutional 3D)

Tran et al, “Learning Spatiotemporal Features with 3D Convolutional Networks”, ICCV 2015

• 3D CNN that uses all 3x3x3 Convs and 2x2x2 poolings
• The “VGG” of 3D CNNs

• Transfer learning: extract learned video features, train a simple linear classifier
for various tasks

• Problem: 3D convs are VERY expensive!
C3D on small inputs takes 3x VGG and 56x AlexNet FLOPs

DL4CV Weizmann

Non-deep learning video classification
Motion is the most informative cue for action recognition → design hand crafted
motion features:

Aggregate local motion features to compute a global representation of the video →
linear SVM for action recognition

MODEL MOTION EXPLICITLY
Wang et. al., Dense trajectories and motion boundary descriptors for action recognition, 2013

Peng et. al., Bag of Visual Words and Fusion Methods for Action Recognition: Comprehensive Study and Good Practice, 2014

Track/match points Compute local motion features

DL4CV Weizmann

Non-deep learning video classification

Motion is the most informative cue for action recognition → hand crafted motion
features:

Mean accuracy on UCF-101

DL4CV Weizmann

Explicitly modeling motion in deep-based models

Frame t

Frame t+1

Color wheel
Saturation = mag.
Color = angle

Optical flow between two frames

Optical flow: For each pixel in frame t, determines its corresponding pixel in frame t+1

Optical flow provides local motion cues

DL4CV Weizmann Simonyan and Zisserman, Two-Stream Convolutional Networks for Action Recognition in Videos, NIPS 2014

Two Stream Networks: modeling motion explicitly
Idea: separate motion (multi-frame) from static appearance (single frame)

fusion

FC layers

“Biking”

Temporal
stream

ConvNet

Multi-frame optical flow

Spatial
stream

ConvNet

Frame t

”Single Frame”
baseline

Precomputed flow
fields between

concuective frames

using “Early Fusion”
baseline

DL4CV Weizmann Simonyan and Zisserman, Two-Stream Convolutional Networks for Action Recognition in Videos, NIPS 2014

Two Stream Networks: modeling motion explicitly
Idea: separate motion (multi-frame) from static appearance (single frame)

Spatial
stream

ConvNet

Temporal
stream

ConvNet

fusion

FC layers

“Biking”

Frame t Multi-frame optical flow

”Single Frame”
baseline

Precomputed flow
fields between

concuective frames

using “Early Fusion”
baseline

DL4CV Weizmann

Additional models

Inflating 2D networks to 3D (I3D)
Take an existing 2D CNN model → convert it to a 3D CNN model
Transfer the weights from 2D and 3D

Carreira and Zisserman, “Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset”, CVPR 2017

Long range temporal processing
Use LSTMs and RNNs to model long range temporal information

Baccouche et al, "Sequential Deep Learning for Human Action Recognition”, 2011 Donahue et al,
“Long-term recurrent convolutional networks for visual recognition and description”, CVPR 2015

Long range temporal processing
Self attention, non-local networks, Transformers

DL4CV Weizmann

Self-Supervision in Videos

• Temporal order
• Cycle consistency
• Video Speedup
• Video colorization

Video: https://ajabri.github.io/timecycle/

𝜙
𝑧

Tasks

DL4CV Weizmann

Self-Supervision in Videos: frame ordering

Training data: shuffled video frames, original video frames
Pretext task: predict if the frames are in the correct temporal order (binary classification
task)

Misra et. al., Shuffle and Learn: Unsupervised Learning using Temporal Order Verification, ECCV 2016

DL4CV Weizmann

Self-Supervision in Videos: frame ordering

Triplet Siamese network for sequence verificationGenerating positive and
negative examples

Misra et. al., Shuffle and Learn: Unsupervised Learning using Temporal Order Verification, ECCV 2016

DL4CV Weizmann

Self-Supervision in Videos: frame ordering

Misra et. al., Shuffle and Learn: Unsupervised Learning using Temporal Order Verification, ECCV 2016

Transfer learning: fine-tune spatial stream for video classification

DL4CV Weizmann

Self-Supervision in Videos: Learning correspondence

Ultimate goal: Correspondence

Wang and Efros, Learning Correspondence from the Cycle-consistency of Time, CVPR 2019

Self-Supervision in Videos: Learning correspondence

Ultimate goal: Correspondence, without using off-the-shelf tracking methods

How to obtain supervision?

Supervision: Cycle-Consistency in Time

ℱℱ
ℱ

ℱ
ℱ

ℱ

Track forwards, back to the future

time

Track backwards in time

Wang and Efros, Learning Correspondence from the Cycle-consistency of Time, CVPR 2019

Skip-cycles: skipping occlusions

Self-Supervision in Videos: Learning correspondence

Supervision: Cycle-Consistency in Time
Challenge: Occlusions

Wang and Efros, Learning Correspondence from the Cycle-consistency of Time, CVPR 2019

Differentiable tracker: densely match features in learned feature space

𝑔 𝐴 ≔ 𝜃
Crop

𝑥𝑡−1
𝑝Computed

Correlation

Self-Supervision in Videos: Learning correspondence

Wang and Efros, Learning Correspondence from the Cycle-consistency of Time, CVPR 2019

𝑃𝑡

𝐼𝑡−1

240 𝑥 240

10𝑥10𝑥𝐶

𝑥𝑡
𝑝

30𝑥30𝑥𝐶

𝑥𝑡−1
𝐼

𝐴 ∈ 𝑅900𝑥100

Test time: compute features to each frame, compute features affinity, propagate
information using the affinities

Self-Supervision in Videos: Learning correspondence

𝐼𝑡−1
𝐼𝑡

Wang and Efros, Learning Correspondence from the Cycle-consistency of Time, CVPR 2019

𝑦𝑡−1

Self-Supervision in Videos: Learning correspondence

Wang and Efros, Learning Correspondence from the Cycle-consistency of Time, CVPR 2019

Self-Supervision in Videos: Temporal cycle consistency

Dwibed et. al. Temporal Cycle-Consistency Learning, CVPR’19

Jabri et. al, Space time correspondence as Contrastive Random Walk, NeurIPS

2020

Uniform Speed Up (2x) Adaptive Speed Up (2x)

time

Speed up
rate Speed up

rate

Jittery, unnatural motions Same duration, more natural

time

Self-Supervision in Videos: Learning the Speediness in Videos

Ultimate goal: Watch video content faster by adaptively speeding up the video

Joint work with: Sagie Benaim, Ariel Ephrat, Oran Lang, Inbar Mosseri, Bill Freeman, Miki Rubinstein and Michal Irani, CVPR 2020

“Speediness” in Videos

Slower FasterNormal speed
Automatically predict speediness in videos

Joint work with: Sagie Benaim, Ariel Ephrat, Oran Lang, Inbar Mosseri, Bill Freeman, Miki Rubinstein and Michal Irani, CVPR 2020

Input segment

(30 frames)

Normal speed
or

Sped Up

Self supervised

training on Kinetics

“Learning and Using the Arrow of Time”, Wei at.
al, CVPR 2018

Pretext task: Predict if a given video segment is sped up or not
Training data: sped up video segments + original video segments

Self-Supervision in Videos: Learning the Speediness in Videos

Input segment

(30 frames)

Normal speed
or

Sped Up

Self supervised

training on Kinetics

Pretext task: Predict if a given video segment is sped up or not
Training data: sped up video segments + original video segments

Self-Supervision in Videos: Learning the Speediness in Videos

Learning properties of natural motion, avoid “easy cheats” →

very challenging!

Normal speed
or

Sped Up

Self supervised

training on Kinetics

Pretext task: Predict if a given video segment is sped up or not
Training data: sped up video segments + original video segments

Self-Supervision in Videos: Learning the Speediness in Videos

Input

N

T

Space-time
Features

N/32

T

(1024 Channels)

Pooling

(spatial max,
temporal average)

1 x 1024

1x1 Conv

Normal Speed
or

Sped Up

3D Conv
Network

* “Rethinking spatiotemporal feature learning: Speed-accuracy trade-offs in video classification”,
Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and Kevin Murphy, ECCV’18.

* Based on S3D-G

Inference: sliding window → prediction for every frame

Normal
speed

Sped-up

Self-Supervision in Videos: Learning the Speediness in Videos

From “Speediness” to Speedup factor:
Low speediness → speedup more
High speediness→ speedup less

Time (frame)

S
p

ee
d

u
p

 f
a

ct
o

r

S
p

ee
d

in
e
ss

0 50 100 150 200 250 300 350
0

1

2

3

4

0.2

0.4

0.6

0.8

1

Self-Supervision in Videos: Learning the Speediness in Videos

Learning the Speediness in Videos: Adaptive Video Speedup

Uniform Speedup 2x Adaptive Speedup 2x (ours)

Self Supervised Action Recognition

Pre-trained

SpeedNet

Retrieved top-3 resultsQuery
Video Retrieval

Learning the Speediness in Videos: Transfer Learning

“Memory Eleven”
artistic video by Bill Newsinge

blue/green =

normal speed

yellow/orange =

slowed down

Our space-time
speediness visualization

https://www.youtube.com/watch?v=djylS0Wi_Io

Learning the Speediness in Videos: CAM visualizations

https://www.youtube.com/watch?v=djylS0Wi_Io

Enhance the way we perceive our dynamic world

Re-rendering Everyday Videos

Re-rendering Everyday Videos
Retime the motions of individual people within frames

“Layered Neural Rendering for Retiming People in Video”

SIGGRAPH Asia’20

along with their scene effects!

Re-rendering Everyday Videos

“Omnimatte: Associating Objects and Their Effects in Video”, CVPR’21 (Oral)

Input video

Re-rendering Everyday Videos

Input video

Re-rendering Everyday Videos

“Omnimatte: Associating Objects and Their Effects in Video”, CVPR’21 (Oral)

Re-rendering Everyday Videos

Editing everyday videos – key challenge

Associating objects and their scene effects !

Input segments [Mask-RCNN] Removal result [FGVC, Gao et al.]

Our Output Background Layer Our Output Layer 1 Our Output Layer 2

Input Video Input Mask 1* Input Mask 2*

Omnimatte: Associating objects and their scene effects

Omnimatte Method

Background Layer

Object I Layer

Object II LayerOmnimatte

Model

Reconstructed

frame

Input Video Reconstructed

Video

Self-supervised training
Reconstuction as

supervision

𝑓θ

Trained on a single video:
no additional external

information

Layer I

Layer 0

How to associate a

layer with an object?

Omnimatte Method

Omnimatte

Model

RGBA Layer I

(color + opacity)

Background Layer

RGBA Layer N

Frame t

𝑓θ

Frame t

Background

Mask I

Mask N

Layer 0

Omnimatte Method

Omnimatte

Model

Flow I

Flow N

RAFT [ECCV’20]

Model objects + static background explicitly!

𝑓θ

Frame t

Background

Mask I

Mask N

Layer I

Layer 0

Omnimatte Method

Omnimatte

Model

Flow I

Flow N

RGBA Layer I

(color + opacity)

Model objects + static background explicitly!

𝑓θ

Frame t

Background

Mask I

Mask N

Layer I

Layer 0

Omnimatte Method

Omnimatte

Model

RGBA Layer N

Flow I

Flow N

RGBA Layer I

(color + opacity)

𝑓θ

Omnimatte

Model

Frame t Mask I

Mask N

Flow I

Flow N

Fixed Noise Input

Background Layer 0

Omnimatte Method

RGBA Layer N

RGBA Layer I

(color + opacity)

• Static background

• Bg. motion ≅ homographies

𝑓θ

Omnimatte

Model

Frame t Mask I

Mask N

Flow I

Flow N

Fixed Noise Input

Background Layer 0

Background Layer

Omnimatte Method

RGBA Layer N

RGBA Layer I

(color + opacity)

• Static background

• Bg. motion ≅ homographies

𝑓θ

Omnimatte

Model

Frame t Mask I

Mask N

Flow I

Flow N

Fixed Noise Input

Background Layer 0

Background Layer

Omnimatte Method

RGBA Layer N

RGBA Layer I

(color + opacity)

Reflection, shadows etc.

inferred automatically!

𝑓θ

Omnimatte

Model

Frame t Mask I

Mask N

Flow I

Flow N

Fixed Noise Input

Background Layer 0

Omnimatte Method

RGBA Layer I

(color + opacity)

Person’s mask+flow → person’s shadow

Dog’s mask+shadow → person’s shadow

High correlation → Easy to predict (fewer iterations)!
Low correlation → Difficult to predict (more iterations)

𝑓θ

Losses

Opacity

regularization
Reconstruction initialization

Back-to-front compositing

Reconstruction (Frame t)

Original Frame Input Mask 1 Input Mask 2

Why It Works?

Synthetic test case I (single person)

Synthetic test case I (single person)

Why It Works?

Synthetic test case I (single person)

Why It Works?

Details (cloths, hair) are learned as training progresses

Original Frame
Training Progression

Synthetic test case II
(correlated vs. uncorrelated motion)

Why It Works?

Synthetic test case II
(correlated vs. uncorrelated motion)

Why It Works?

Correlated motion is learned earlier than
uncorrelated motion

Synthetic test case III
(nearby vs. distant effects)

Why It Works?

Nearby effects are learned earlier than distant
effects

Synthetic test case IV
(multiple people)

Why It Works?

Each person “grabs” its most correlated
elements early

Why does this work?

Deep Image Prior, Ulyanov, et al., CVPR 2018

Omnimatte Results

DAVIS 2017 dataset.
Masks generated using

STM [ICCV’19]

Input video

Editing Effects Using Omnimatte – Logo Insertion

Our edited result

Editing Effects Using Omnimatte – Logo Insertion

Logo inserted

Decomposing a Video into Layers

Our output layer

Editing Effects Using Omnimatte – Logo Insertion

Foreground RGBA layer

Layered Neural Representations for Video

Per-frame RGBA Layers

Omnimatte: Per-frame RGBA layers

• Per-frame representation

• Editing is restricted to per-frame

manipulation

Neural Atlases: Per-video Atlas layers

Estimated per-video atlases

• A unified representation

• Easy and intuitive editing across time

Layered Atlases for Video

“Layered Neural Atlases for Consistent Video Editing”

SIGGRAPH Asia’21

Estimated per-video atlases

Layered Atlases for Video

Layered Atlases for Video

Layered Atlases for Video

Edited video

Input video

Background

mapping MLP

Foreground

mapping MLP

Alpha (opacity)

MLP

Foreground

atlas MLP

Background

atlas MLP Output background atlas

Output forground atlas

Reconstructed Color for video pixel p:

Reconstructed video

Layered Neural Atlases

Losses

ℒ = ℒ𝑐𝑜𝑙𝑜𝑟 + ℒ𝑓𝑙𝑜𝑤 + ℒ𝑟𝑖𝑔𝑖𝑑 + ℒ𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦

Losses

Input
Frame 𝒕

Reconstruction
Frame 𝒕

ℒ = 𝓛𝒄𝒐𝒍𝒐𝒓 + ℒ𝑓𝑙𝑜𝑤 + ℒ𝑟𝑖𝑔𝑖𝑑 + ℒ𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦

• Reconstruction of the original video

Losses

ℒ = ℒ𝑐𝑜𝑙𝑜𝑟 + 𝓛𝒓𝒊𝒈𝒊𝒅 + ℒ𝑓𝑙𝑜𝑤 + ℒ𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦

• Preserve the original structures in the

atlases

Losses

ℒ = ℒ𝑐𝑜𝑙𝑜𝑟 + 𝓛𝒓𝒊𝒈𝒊𝒅 + ℒ𝑓𝑙𝑜𝑤 + ℒ𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦

No Rigidity Loss (29.63dB)

Foreground atlas Background atlas

Losses

ℒ = ℒ𝑐𝑜𝑙𝑜𝑟 + ℒ𝑟𝑖𝑔𝑖𝑑 + 𝓛𝒇𝒍𝒐𝒘 + ℒ𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦

Video frame i Video frame j

Foreground

Atlas

Corresponding points should be mapped

to the same atlas point

Losses

ℒ = ℒ𝑐𝑜𝑙𝑜𝑟 + ℒ𝑟𝑖𝑔𝑖𝑑 + 𝓛𝒇𝒍𝒐𝒘 + ℒ𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦

Foreground atlas

No Optical Flow Loss (27.74dB)

Background atlas

Losses

ℒ = ℒ𝑐𝑜𝑙𝑜𝑟 + ℒ𝑟𝑖𝑔𝑖𝑑 + ℒ𝑓𝑙𝑜𝑤 + 𝓛𝒔𝒑𝒂𝒓𝒔𝒊𝒕𝒚

• Encourage a “minimal atlas”

Losses

ℒ = ℒ𝑐𝑜𝑙𝑜𝑟 + ℒ𝑟𝑖𝑔𝑖𝑑 + ℒ𝑓𝑙𝑜𝑤 + 𝓛𝒔𝒑𝒂𝒓𝒔𝒊𝒕𝒚

Foreground atlas

No Sparsity Loss (28.80dB)

Background atlas

Losses

𝓛 = 𝓛𝒄𝒐𝒍𝒐𝒓 + 𝓛𝒓𝒊𝒈𝒊𝒅 + 𝓛𝒇𝒍𝒐𝒘 + 𝓛𝒔𝒑𝒂𝒓𝒔𝒊𝒕𝒚

• Reconstruction of the original video

• Preserve the original structures in the atlases

• Corresponding points mapped to the same atlas point

• Encourage a “minimal atlas”

Losses

𝓛 = 𝓛𝒄𝒐𝒍𝒐𝒓 + 𝓛𝒓𝒊𝒈𝒊𝒅 + 𝓛𝒇𝒍𝒐𝒘 + 𝓛𝒔𝒑𝒂𝒓𝒔𝒊𝒕𝒚
Complete Model (29.85dB)

Foreground atlas Background atlas

Alpha initialization

Masks are refined during training

Original Video User Input Masks

Output AlphaReconstruction

Background AtlasForeground Atlas

Atlas decomposition results

Background AtlasForeground Atlas

Atlas decomposition results

Grid Atlas Ablation

Replacing the continuous Atlas with a discrete Atlas, and fine-tuning

Foreground atlas

Background atlas

Foreground atlas Background atlas

Off-the-shelf

Image style transfer

Stylized background atlas

Foreground atlasBackground atlas

Photoshop Filter

Stylized background atlas

Foreground atlas Background atlas

Add texture

Edited background atlas

Foreground atlas Background atlas

Limitations

• Complex geometry, self-occlusions and extreme
deformations →multiple foreground layers

• Limited capacity: quality video length

DL4CV Weizmann

Next tutorial:
“Text and Image”

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 40
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49: “Speediness” in Videos
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55: Learning the Speediness in Videos: Adaptive Video Speedup
	Slide 57: Learning the Speediness in Videos: Transfer Learning
	Slide 58: Learning the Speediness in Videos: CAM visualizations
	Slide 59: Enhance the way we perceive our dynamic world
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 66: Editing everyday videos – key challenge
	Slide 67: Omnimatte: Associating objects and their scene effects
	Slide 70: Omnimatte Method
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79: Losses
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89: Omnimatte Results
	Slide 91
	Slide 92
	Slide 93: Decomposing a Video into Layers
	Slide 109: Layered Neural Representations for Video
	Slide 110: Layered Atlases for Video
	Slide 111: Layered Atlases for Video
	Slide 112
	Slide 113
	Slide 116
	Slide 117: Losses
	Slide 118: Losses
	Slide 119: Losses
	Slide 120: Losses
	Slide 121: Losses
	Slide 122: Losses
	Slide 123: Losses
	Slide 124: Losses
	Slide 125: Losses
	Slide 126: Losses
	Slide 127: Alpha initialization
	Slide 128: Atlas decomposition results
	Slide 129: Atlas decomposition results
	Slide 130: Grid Atlas Ablation
	Slide 131
	Slide 132
	Slide 133
	Slide 135: Limitations
	Slide 136
	Slide 137

