Let $A=\{1,2,3,4,5\}, B=\{a, b, c, d\}, C=\{r e d$, orange, purple $\}$

1. For each of the following, draw arrow diagrams for functions f and g that satisfy the given conditions, if possible. Or, if you believe no such example exists, explain why. (I'm not looking for any formal proofs not yet, at least. For each part, just provide a suitable example, or write a sentence or two to explain what goes wrong when you try to find a suitable example and are unable to do so.)
a) Functions $f: A \rightarrow B$ and $g: B \rightarrow C$ such that f is onto, g is not onto, and $g \circ f$ is onto.
b) Functions $f: C \rightarrow B$ and $g: B \rightarrow A$ such that f is one-to-one, g is not one-to-one, and $g \circ f$ is one-to-one.
c) Functions $f: A \rightarrow B$ and $g: B \rightarrow C$ such that g is onto, f is not onto, and $g \circ f$ is onto.
c) Functions $f: C \rightarrow B$ and $g: B \rightarrow A$ such that g is one-to-one, f is not one-to-one, and $g \circ f$ is one-to-one.
2. Based on your results from \#1, decide which of the following are probably theorems, and which ones are definitely not theorems. For each one that is not theorem, give a counterexample (this should come from one of your answers to problem \#1).

For functions f and g such that the image of f is contained in the domain of g (that is, for which $g \circ f$ is defined)...
a) If $g \circ f$ is onto, then g is onto
b) If $g \circ f$ is onto, then f is onto
c) If $g \circ f$ is $1-1$, then g is one-to-one
d) If $g \circ f$ is 1-1, then f is one-to-one
3. Optional: In \#2, you should have found that some of the given propositions appear to be theorems. Now, see if you can PROVE them!

