Math 160, Fall 2015
Collected Homework \#5 Solutions \& Comments

- Section 4.1, \#70

Find all relative minimum and maximum values of $f(x)=x+\frac{9}{x}+2$.
Solution: We begin by finding the "critical numbers" of f - numbers in the domain of f at which $f^{\prime}(x)=0$ or f^{\prime} is undefined. To this end, we'll need to find f^{\prime} :

$$
\begin{aligned}
f(x) & =x+\frac{9}{x}+2 \\
f^{\prime}(x) & =1-\frac{9}{x^{2}}
\end{aligned}
$$

Note that f^{\prime} is undefined at $x=0$; however, since 0 isn't in the domain of $f(f(0)$ is also undefined), this does not count as a "critical number." However, it is an x-value where $f^{\prime}(x)$ could change sign, so we'll have to account for it when we test intervals (see below):
Next, we'll set $f^{\prime}(x)=0$ and solve for x :

$$
1-\frac{9}{x^{2}}=0 \rightarrow 1=\frac{9}{x^{2}} \rightarrow x^{2}=9 \rightarrow x= \pm 3
$$

So, our critical numbers are 3 and -3 .
If we had a graph, we could easily locate the relative maximum/minimum points with this information. Since we don't have a graph handy, we'll instead test for intervals of increase/decrease.

Interval	Test Value	Result	
$(-\infty,-3)$	$x=-4$	$f^{\prime}(-4)=1-(9 / 16)>0$	(positive)
$(-3,0)$	$x=-1$	$f^{\prime}(-1)=1-(9 / 1)<0$	(negative)
$(0,3)$	$x=1$	$f^{\prime}(-1)=1-(9 / 1)<0$	(negative)
$(3, \infty)$	$x=4$	$f^{\prime}(-4)=1-(9 / 16)>0$	(positive)

This tells us that f is increasing when $x<-3$, and decreasing when $-3<x<0$. Therefore, f has a relative maximum at $x=-3$. Similarly, f has a relative minimum at $x=3$. Since $f(-3)=-3-$ $3+2=-4,(-3,-4)$ is a relative maximum of f; similarly, since $f(3)=$ $3+3+2=8,(3,8)$ is a relative minimum of f.

- Section 4.1, \#92

Determine the values of t at which $C(t)$ is increasing, and the values of t at which $C(t)$ is decreasing, on the interval $0 \leq t \leq 4$, where

$$
C(t)=\frac{t^{2}}{2 t^{3}+1} .
$$

First, we need to find the derivative of this function. We'll need to use the Quotient Rule:

$$
\begin{aligned}
C^{\prime}(t) & =\frac{\left(2 t^{3}+1\right)(2 t)-\left(t^{2}\right)\left(6 t^{2}\right)}{\left(2 t^{3}+1\right)^{2}} \\
& =\frac{4 t^{4}+2 t-6 t^{4}}{\left(2 t^{3}+1\right)^{2}}=\frac{2 t-2 t^{4}}{\left(2 t^{3}+1\right)^{2}}=\frac{2 t\left(1-t^{3}\right)}{\left(2 t^{3}+1\right)^{2}}
\end{aligned}
$$

Note that the only t-values where $C^{\prime}(t)$ can change sign are those where either its numerator or denominator is equal to zero. Also, don't forget that the domain of C is $0 \leq t \leq 4$, so the only values of t we're concerned with here are those between 0 and 4 .
The numerator of $C^{\prime}(t)$ is zero when $t=0$ or $t=1$. Since we're assuming t is at least 0 , it follows that $2 t^{3}+1$ is positive, which means the denominator is never negative. So the only time in the interval $0 \leq t \leq 4$ when C could switch from increasing to decreasing, or vice-versa, is at $t=1$.
So, we need to test the sign of $C^{\prime}(t)$ on the intervals $(0,1)$ and $(1, \infty)$. Note (again) that the denominator of $C^{\prime}(t)$ will be positive whenever t is positive, which means we only really have to check the numerator, $2 t\left(1-t^{3}\right)$. We can use $t=1 / 2$ and $t=2$ as test points for the intervals $(0,1)$ and $(1, \infty)$, respectively:

Interval Test Value Result

$$
\begin{array}{rlll}
(0,1) & t=1 / 2 & 2 t\left(1-t^{3}\right)=2(1 / 2)(1 / 8)>0 & \text { (positive) } \\
(1, \infty) & t=2 & 2 t\left(1-t^{3}\right)=2(2)(-7)<0 & \text { (negative) }
\end{array}
$$

So, $C^{\prime}(t)$ is positive when $0<t<1$, and negative when $t>1$.
Thus, $C(t)$ is increasing when $0<t<1$, and decreasing when $t>1$.

- Section 4.2, \#50

Find the inflection point(s) of $g(x)=x^{3}-6 x$.
Inflection points are points on a graph at which the second derivative changes sign. To find potential inflection points, we must find all values of x at which $g^{\prime \prime}(x)=0$. (More generally, we'd look for values of x in the domain of g at which $g^{\prime \prime}(x)$ is zero or undefined; since g is a polynomial in this example, $g^{\prime \prime}(x)=0$ is the only possibility we need to consider.)
If $g(x)=x^{3}-6 x$, then $g^{\prime \prime}(x)=6 x$. Clearly, then, $g^{\prime \prime}(x)$ is negative when x is negative, and $g^{\prime \prime}(x)$ is positive when x is positive. So, the inflection point of $g(x)$ occurs when $x=0$. Since $g(0)=0$, the single inflection point of $g(x)$ is the point $(0,0)$.

- Section 4.2, \#64

First, we'll set $g^{\prime}(x)=0$ to find the critical numbers of g. Since $g^{\prime}(x)=3 x^{2}-6=3\left(x^{2}-2\right)$, our critical numbers are $x= \pm \sqrt{2}$. To apply the Second Derivative Test, we must find the sign of $g^{\prime \prime}$ at each of these numbers.
Note that $g^{\prime \prime}(x)=6 x$. Therefore, $g^{\prime \prime}(-\sqrt{2})=-6 \sqrt{2}$, which is negative, and $g^{\prime \prime}(\sqrt{2})=6 \sqrt{2}$, which is positive.
Now we apply the Second Derivative Test:
Since $g^{\prime}(\sqrt{2})=0$ and $g^{\prime \prime}(\sqrt{2})<0, g$ has a relative minimum at $\sqrt{2}$.
Since $g^{\prime}(-\sqrt{2})=0$ and $g^{\prime \prime}(-\sqrt{2})<0, g$ has a relative maximum at $-\sqrt{2}$.
To find the value of g at each of these points, first note that

$$
(\sqrt{2})^{3}=(\sqrt{2})^{2} \cdot \sqrt{2}=2 \sqrt{2}
$$

Therefore,

$$
g(\sqrt{2})=2 \sqrt{2}-6 \sqrt{2}=-4 \sqrt{2}
$$

and

$$
\begin{aligned}
g(-\sqrt{2}) & =2(-\sqrt{2})-6(-\sqrt{2}) \\
& =-2 \sqrt{2}+6 \sqrt{2} \\
& =4 \sqrt{2}
\end{aligned}
$$

Thus, g has a relative minimum at $(\sqrt{2},-4 \sqrt{2})$, and g has a relative maximum at $(-\sqrt{2}, 4 \sqrt{2})$.

