Irrationality of $\zeta(2)$ and $\zeta(3)$: Part 2

In the last post we proved that $\zeta(2)$ is irrational. Now we shall prove in a similar manner that $\zeta(3)$ is irrational. Note that this proof is based on Beukers' paper "A Note on the Irrationality of $\zeta(2)$ and $\zeta(3)$."

Irrationality of $\boldsymbol{\zeta}(\mathbf{3})$

Like the case of $\zeta(2)$ we first establish certain formulas concerning some double integrals which are related to $\zeta(3)$. The derivation of these formulas is based on the integral formulas established in last post.

Preliminary Results

Let r, s be non-negative integers with $r>s$. Then we have

$$
\begin{align*}
& \int_{0}^{1} \int_{0}^{1} \frac{-\log x y}{1-x y} x^{r} y^{r} d x d y=2 \sum_{n=1}^{\infty} \frac{1}{(n+r)^{3}} \tag{1}\\
& \int_{0}^{1} \int_{0}^{1} \frac{-\log x y}{1-x y} x^{r} y^{s} d x d y=\frac{1}{r-s}\left\{\frac{1}{(s+1)^{2}}+\frac{1}{(s+2)^{2}}+\cdots+\frac{1}{r^{2}}\right\} \tag{2}
\end{align*}
$$

Using equation (2) from the last post we get

$$
\int_{0}^{1} \int_{0}^{1} \frac{x^{r+\alpha} y^{r+\alpha}}{1-x y} d x d y=\sum_{n=1}^{\infty} \frac{1}{(n+r+\alpha)^{2}}
$$

Differentiating the above relation with respect to α we get

$$
\int_{0}^{1} \int_{0}^{1} \frac{x^{r+\alpha} y^{r+\alpha} \log x y}{1-x y} d x d y=\sum_{n=1}^{\infty} \frac{-2}{(n+r+\alpha)^{3}}
$$

Now putting $\alpha=0$ the first result is established. This means that

$$
\int_{0}^{1} \int_{0}^{1} \frac{-\log x y}{1-x y} d x d y=2 \zeta(3)
$$

and if r is a positive integer then

$$
\int_{0}^{1} \int_{0}^{1} \frac{-\log x y}{1-x y} x^{r} y^{r} d x d y=2\left\{\zeta(3)-\left(\frac{1}{1^{3}}+\frac{1}{2^{3}}+\cdots+\frac{1}{r^{3}}\right)\right\}
$$

Next from equation (3) of last post we have

$$
\int_{0}^{1} \int_{0}^{1} \frac{x^{r+\alpha} y^{s+\alpha}}{1-x y} d x d y=\frac{1}{r-s}\left\{\frac{1}{s+\alpha+1}+\frac{1}{s+\alpha+2}+\cdots+\frac{1}{r+\alpha}\right\}
$$

Differentiating the above relation with respect to α we get

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1} \frac{x^{r+\alpha} y^{s+\alpha} \log x y}{1-x y} d x d y \\
& \quad=\frac{1}{r-s}\left\{\frac{-1}{(s+\alpha+1)^{2}}+\frac{-1}{(s+\alpha+2)^{2}}+\cdots+\frac{-1}{(r+\alpha)^{2}}\right\}
\end{aligned}
$$

Putting $\alpha=0$ in the above equation we obtain equation (2).

From the above results it is now clear that if $P(x), Q(x)$ are polynomials of degree n with integer coefficients then

$$
\int_{0}^{1} \int_{0}^{1} \frac{-\log x y}{1-x y} P(x) Q(y) d x d y=\frac{a \zeta(3)+b}{d_{n}^{3}}
$$

where a, b are some integers dependent on polynomials $P(x), Q(x)$ and d_{n} denotes the LCM of numbers $1,2, \ldots, n$ (aslo for completeness we can assume $d_{0}=1$).

Strategy of the Proof

Now we choose a specific polynomial $P_{n}(x)$ defined by

$$
P_{n}(x)=\frac{1}{n!} \frac{d^{n}}{d x^{n}}\left\{x^{n}(1-x)^{n}\right\}
$$

Since $P_{n}(x)$ is a polynomial of degree n with integer coefficients it follows that the integral defined by

$$
I_{n}=\int_{0}^{1} \int_{0}^{1} \frac{-\log x y}{1-x y} P_{n}(x) P_{n}(y) d x d y
$$

can be expressed in the form

$$
I_{n}=\frac{a_{n} \zeta(3)+b_{n}}{d_{n}^{3}}
$$

where a_{n}, b_{n} are integers dependent on n.

We will establish that

1. $I_{n} \neq 0$ for all positive integers n.
2. $d_{n}^{3} I_{n} \rightarrow 0$ as $n \rightarrow \infty$.

This will imply that the expression $a_{n} \zeta(3)+b_{n} \rightarrow 0$ as $n \rightarrow \infty$ and is never zero for any value of n. If $\zeta(3)$ were rational, say p / q, then we would have $\left|a_{n} \zeta(3)+b_{n}\right| \geq 1 / q$ and hence $a_{n} \zeta(3)+b_{n}$ would not tend to zero. This contradiction proves that $\zeta(3)$ is irrational.

Estimation of $\boldsymbol{I}_{\boldsymbol{n}}$

Now we come to the proof of the two claims mentioned above which are vital to obtain a contradiction needed to prove the irrationality of $\zeta(3)$.

First we need to observe that

$$
\begin{aligned}
\int_{0}^{1} \frac{d z}{1-a z} & =\left[\frac{-1}{a} \log (1-a z)\right]_{z=0}^{z=1} \\
& =-\frac{\log (1-a)}{a}
\end{aligned}
$$

hence on putting $a=1-x y$ we get

$$
\frac{-\log x y}{1-x y}=\int_{0}^{1} \frac{d z}{1-(1-x y) z}
$$

Using the above equation we can write the integral I_{n} as a triple integral

$$
\begin{equation*}
I_{n}=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{P_{n}(x) P_{n}(y)}{1-(1-x y) z} d x d y d z \tag{3}
\end{equation*}
$$

Using integration by parts n times with respect to x we get

$$
I_{n}=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{(x y z)^{n}(1-x)^{n} P_{n}(y)}{\{1-(1-x y) z\}^{n+1}} d x d y d z
$$

Following Beukers, we apply the substitution

$$
w=\frac{1-z}{1-(1-x y) z}
$$

so that

$$
z=\frac{1-w}{1-(1-x y) w}, 1-z=\frac{x y w}{1-(1-x y) w}
$$

Hence

$$
d z=\frac{-x y}{\{1-(1-x y) w\}^{2}} d w
$$

and

$$
\begin{aligned}
\frac{z^{n}}{\{1-(1-x y) z\}^{n+1}} & =\frac{(1-w)^{n}}{\{1-(1-x y) w\}^{n}} \frac{w^{n+1}}{(1-z)^{n+1}} \\
& =\frac{(1-w)^{n}(1-(1-x y) w)}{(x y)^{n+1}}
\end{aligned}
$$

Also note that as z moves from 0 to $1, w$ moves from 1 to 0 .

After substituting these expressions we get

$$
I_{n}=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{(1-x)^{n}(1-w)^{n} P_{n}(y)}{1-(1-x y) w} d x d y d w
$$

Using integration by parts n times with respect to y we get

$$
\begin{equation*}
I_{n}=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{x^{n}(1-x)^{n} y^{n}(1-y)^{n} w^{n}(1-w)^{n}}{\{1-(1-x y) w\}^{n+1}} d x d y d w \tag{4}
\end{equation*}
$$

and from this expression it is clear that $I_{n}>0$ as the integrand is positive for all
$x, y, w \in(0,1)$.

We next need to find an estimate for the function $f(x, y, w)$ defined by

$$
f(x, y, w)=\frac{x(1-x) y(1-y) w(1-w)}{1-(1-x y) w}
$$

for $x, y, w \in(0,1)$. Finding the maximum value using first and second partial derivatives seems a bit complicated hence it is better to go for a simpler approach based on inequalities.

The denominator of $f(x, y, w)$ is $1-w+x y w$ and clearly we have

$$
1-w+x y w \geq 2 \sqrt{(1-w) x y w}
$$

and hence we have

$$
f(x, y, w) \leq \frac{1}{2} \sqrt{x}(1-x) \sqrt{y}(1-y) \sqrt{w(1-w)}
$$

If we put $x=t^{2}$ then $\sqrt{x}(1-x)=t\left(1-t^{2}\right)=t-t^{3}$ which is maximum when $t=1 / \sqrt{3}$ and the maximum value is $2 /(3 \sqrt{3})$. Similar is the case for $\sqrt{y}(1-y)$. The maximum value of $\sqrt{w(1-w)}$ is clearly $(w+1-w) / 2=1 / 2$. Hence we have

$$
f(x, y, w) \leq \frac{1}{2} \frac{2}{3 \sqrt{3}} \frac{2}{3 \sqrt{3}} \frac{1}{2}=\frac{1}{27}
$$

Therefore by equation (4) we get

$$
\begin{aligned}
I_{n} & =\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{\{f(x, y, w)\}^{n}}{1-(1-x y) w} d x d y d w \\
& \leq\left(\frac{1}{27}\right)^{n} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{1}{1-(1-x y) w} d x d y d w \\
& =\left(\frac{1}{27}\right)^{n} \int_{0}^{1} \int_{0}^{1} \frac{-\log x y}{1-x y} d x d y \\
& =2 \zeta(3)\left(\frac{1}{27}\right)^{n}
\end{aligned}
$$

From the last post we know that if $K>e$ is a fixed number then $d_{n}<K^{n}$ for all sufficiently large values of n. Hence it follows that

$$
\begin{equation*}
d_{n}^{3} I_{n}<2 \zeta(3)\left(\frac{K^{3}}{27}\right)^{n} \tag{5}
\end{equation*}
$$

for all sufficiently large values of n. If we choose K such that $e<K<3$ then we can see that the right hand side of equation (5) above tends to zero as $n \rightarrow \infty$. Therefore $d_{n}^{3} I_{n} \rightarrow 0$ as $n \rightarrow \infty$. We have thus completed the proof of irrationality of $\zeta(3)$.

Irrationality of $\zeta(2)$ and $\zeta(3)$: Part $2 \mid$ Paramanand's Math Notes

Paramanand's Math Notes

Shared under Creative Commons License

