
Irrationality of ζ(2) and ζ(3): Part 2

In the last post we proved that  is irrational. Now we shall prove in a similar manner that

 is irrational. Note that this proof is based on Beukers' paper "A Note on the Irrationality

of  and ."

Irrationality of 

Like the case of  we first establish certain formulas concerning some double integrals which

are related to . The derivation of these formulas is based on the integral formulas

established in last post.

Preliminary Results

Let  be non-negative integers with . Then we have

Using equation  from the last post we get

Differentiating the above relation with respect to  we get

Now putting  the first result is established. This means that

and if  is a positive integer then

Next from equation  of last post we have

Differentiating the above relation with respect to  we get
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Putting  in the above equation we obtain equation .

From the above results it is now clear that if  are polynomials of degree  with

integer coefficients then

where  are some integers dependent on polynomials  and  denotes the LCM

of numbers  (aslo for completeness we can assume ).

Strategy of the Proof

Now we choose a specific polynomial  defined by

Since  is a polynomial of degree  with integer coefficients it follows that the integral

defined by

can be expressed in the form

where  are integers dependent on .

We will establish that

 for all positive integers .1. 

 as .2. 

This will imply that the expression  as  and is never zero for any

value of . If  were rational, say , then we would have  and hence

 would not tend to zero. This contradiction proves that  is irrational.

Estimation of 

Now we come to the proof of the two claims mentioned above which are vital to obtain a

contradiction needed to prove the irrationality of .

First we need to observe that
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hence on putting  we get

Using the above equation we can write the integral  as a triple integral

Using integration by parts  times with respect to  we get

Following Beukers, we apply the substitution

so that

Hence

and

Also note that as  moves from  to ,  moves from  to .

After substituting these expressions we get

Using integration by parts  times with respect to  we get

and from this expression it is clear that  as the integrand is positive for all
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We next need to find an estimate for the function  defined by

for . Finding the maximum value using first and second partial derivatives

seems a bit complicated hence it is better to go for a simpler approach based on inequalities.

The denominator of  is  and clearly we have

and hence we have

If we put  then  which is maximum when 

and the maximum value is . Similar is the case for . The maximum value of

 is clearly . Hence we have

Therefore by equation  we get

From the last post we know that if  is a fixed number then  for all sufficiently

large values of . Hence it follows that

for all sufficiently large values of . If we choose  such that  then we can see that

the right hand side of equation  above tends to zero as . Therefore  as

. We have thus completed the proof of irrationality of .
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