
Section 1.2 Just Intonation 

 

Recall that the Pythagorean tuning system is designed to preserve octaves and perfect fifths. However, 

there are some drawbacks to this tuning system: 

 

 There will always be (at least) one perfect fifth that is not tuned correctly. The mathematical 

reason for this is that twelve fifths are approximately, but not exactly, equal to seven octaves.  

 The frequency ratios of several intervals other than perfect fifths are close to, but not quite, 

other ratios that are also pleasing to the ear. For example, the C-E interval has a frequency ratio 

of  
81

64
≈ 1.266 which is very close to the “nicer” ratio of  

5

4
= 1.25. Other such examples: 

o 
32

27
≈ 1.185 is close to the “nicer” ratio of 

6

5
= 1.2. 

o 
27

16
≈ 1.688 is close to the “nicer” ratio of 

5

3
≈ 1.667. 

 

Generally speaking, the ear prefers intervals whose frequency ratios (higher frequency divided by lower 

frequency) are “nicer” fractions, which essentially means fractions with smaller denominators.  

 

The second of these drawbacks (“close… but not quite”) can be addressed through a process called “just 

intonation.” This is a tuning system designed to “preserve” certain preferred intervals, at the expense of 

other less important intervals. (Note that terms such as “preferred” and “less important” are subjective 

and could be defined in ways other than those we’ll elect to use in our treatment.)  

 

We’ll develop a system consistent with the one in the text (p. 27) based on the following principles: 

 All octaves will be preserved 

 The following frequency ratios for intervals whose lower note is the “base” note (C, for our 

example) will be preserved: 

o Perfect fifth: 7 semitones, frequency ratio = 3/2 

o Perfect fourth: 5 semitones, frequency ratio = 4/3 

o Major third: 4 semitones, frequency ratio = 5/4 (rather than the Pythagorean ratio 

81/64) 

o Major sixth: 9 semitones, frequency ratio = 5/3 (rather than the Pythagorean ratio 

27/16) 

Note: the names “third,” “fourth,” “fifth” and “sixth” correspond to the third, fourth, fifth and 

sixth notes of what is called the “major scale.” For example, starting from C, these notes are, 

respectively: E, F, G and A.  

 Frequency ratios for other notes will be selected in such a way as to preserve fifths, fourths, 

thirds and/or sixths wherever possible (with the understanding that we’ll sometimes be forced 

to choose between one interval and another – there is no single “right” choice in these cases.) 

 

Note: the “just intonation tuning system” is not unique – there is a wide variety of ways to tune the 

octave using the just intonation process. In the following, the word “decide” is used to indicate steps at 

which we are selecting one method (from among several possibilities) to carry out the process.  

 

The first two guidelines above give us the following start to our just intonation system: 

 



 
 

Next, we will decide to preserve the fifths G-D and E-B: 

Raise the G by a perfect fifth to tune the D:  
3

2
×

3

2
=

9

4
   

So, the higher D is tuned to 9/4 of the base frequency, implying the lower D – one octave lower - 

is tuned to 9/8 of the base frequency.  

Raise the E by a perfect fifth to tune the B:  
5

4
×

3

2
=

15

8
 

So, the E is tuned to 15/8 of the base frequency, implying the higher E – one octave higher – is 

tuned to 15/4 of the base frequency.  

 
 

 

  



(Note: for the remainder of this section, we’ll focus on just one octave of the twelve-tone scale.) 

Now we’ll tune the other five notes of the scale – the ones corresponding to the “black keys” on the 

standard keyboard.  To begin this process, we’ll decide to preserve the intervals C#-F and D#-G; note 

that both pairs of notes are separated by four semitones, so both intervals should be major thirds (with 

a frequency ratio of 5/4): 

Lower the G by a major third to tune D#:  
3

2
÷

5

4
=

3

2
×

4

5
=

6

5
 

Lower the F by a major third to tune C#:   
4

3
÷

5

4
=

4

3
×

4

5
=

16

15
. 

 
  



Next, we will decide to tune G# and A# by preserving the intervals C#-G# and D#-A#. Note that both 

pairs of notes are 7 semitones apart, so both intervals should be perfect fifths (with a 3/2 frequency 

ratio): 

Raise the C# by a perfect fifth to tune G#:  
16

15
×

3

2
=

8

5
 

Raise the D# by a perfect fifth to tune A#:   
6

5
×

3

2
=

9

5
.

 

 

Finally, it remains to tune the sixth note of the scale, F#. Recall that F# is the note we get by raising C by 

six fifths (that is, “R6”) – or, alternately, by lowering it six fifths (“L6”). In a sense, this makes F# the tone 

that’s farthest removed from C, and – it turns out – the hardest one to tune. You can actually hear this 

for yourself -- if you play C and F# on a keyboard simultaneously, they do not sound good together at all. 

It turns out that there’s no good way to “fix” this – that is, it’s not possible to find a “nice” frequency 

ratio for F# that corresponds closely to its Pythagorean frequency ratio of 729/512 (or about 1.424). 

There’s no one standard “just intonation” frequency ratio to use for F#; presented below are a few 

options, based on which interval we might want to preserve: 

 

Lower B by a perfect fourth (5 semitones): 
15

8
÷

4

3
=

15

8
×

3

4
=

45

32
≈ 1.406 

(Note: raising D by a major third gives us the same result) 

 

Raise C# by a perfect fourth (5 semitones): 
16

15
×

4

3
=

64

45
≈ 1.422 

 

Lower A# by a major third (4 semitones): 
9

5
÷

5

4
=

9

5
×

4

5
=

36

25
= 1.44 

 

None of these frequency ratio options is particularly pleasing to the ear; or, mathematically, note that 

each has a denominator that is much larger than the ones we found for the other notes in the scale. 

Again, it’s important to note that Just Intonation is not one specific set of frequency ratios; rather, it’s a 

process one may use to tune the octave in such as way that certain desired intervals are preserved. 



There are many varieties of just intonation – in fact, many versions divide the octave into some number 

of notes other than the usual twelve! We won’t go into those here, but it is an interesting exercise to try 

to divide the octave into (for example) 17 distinct tones using just intonation.  

 

For a 12-tone scale, we could have changed several of our above results by making different decisions 

along the way. As just one example, refer back to the first decision we made: preserving the D-G perfect 

fourth interval. This decision led to a “broken” fifth, D-A. Recall that we tuned A to 5/3 of the “base” 

frequency (that is, C), and we tuned D to 9/8 of the base frequency. Therefore, the frequency ratio of 

the D-A interval is 
5

3
÷

9

8
=

5

3
×

8

9
=

40

27
≈ 1.481, which is not equal to 3/2. If, rather than tuning the D-G 

perfect fourth, we had decided instead to tune the D-A perfect fifth to a 3/2 frequency ratio, then we 

would have had a “broken” D-G perfect fourth: 

 

Alternate tuning (to preserve the D-A perfect fifth rather than the D-G perfect fourth): 

Lower A by a perfect fifth to tune D: 
5

3
÷

3

2
=

5

3
×

2

3
=

10

9
≈ 1.111 

(Compare this to the previous frequency ratio for D of 9/8, or 1.25.)  

 

This gives us a “broken” D-G interval: 
3

2
÷

10

9
=

3

2
×

9

10
=

27

20
= 1.35 

(This is close to, but different from, the desired perfect fourth frequency ratio of 
4

3
≈ 1.333). 

 

Again: neither of these choices is “right” or “wrong;” they are just different results due to different 

decisions. The main ideas here are that just intonation is a decision making process that can be used to 

tune the octave, and that any decisions we may make to preserve certain intervals will always have the 

effect of “breaking” other intervals. In short, there is no perfect tuning system – any method of tuning 

the octave will have its own pros and cons.  

 

  



Just Intonation Practice Exercises. (Answers are on the next page.) 

 

For all exercises, use these Just Intonation Frequency Ratios (shown here relative to C)  

 
 

 

Remembe rthat, as is the case with Pythagorean tuning, all octaves are preserved. For example, the 

frequency of the next higher D (to the right of the high C in the above column) will be twice the 

frequency of the D in the diagram, giving it a frequency of  
9

8
×

2

1
=

9

4
 that of the base frequency at C.  

 

 

1. In a just intonation tuning system based on C:500 Hz, what is the frequency of the next higher A#? 

The next lower A#? 

 

2. In a just intonation tuning system based on C:500 Hz, what note would have a frequency of 800 Hz?  

 

3. In a just intonation tuning system based on C:500 Hz, what note would have a frequency of 375 Hz?  

 

4. In a just intonation tuning system based on C:500 Hz, what note would have a frequency of 3750 Hz?  

 

5. In a just intonation tuning system based on D:300 Hz, what would be the frequency of the next higher 

F#? (Note: the above diagram’s frequency ratios are based on “C.” To figure out frequencies for a tuning 

system based on D:300, you need to figure out what type of interval D-F# will be, and then find the 

corresponding frequency ratio…) 

 

6. In a just intonation tuning system based on D:300 Hz, what note would have a frequency of 375 Hz? 

How about 4000 Hz?  

 

  



Practice Exercise Solutions and Comments 

 

1. The next higher A# has frequency 
500

1
×

9

5
= 900 Hz. The next lower A# will be one octave lower than 

900 Hz, so divide by 2 to get 450 Hz.  

 

2. To answer this question, figure out the frequency ratio between the “mystery” note and our base 

note: 800/500 reduces to 8/5, which is the frequency ratio of the C-G# interval (a.k.a. a “minor sixth”). 

So, our answer is G#.  

 

3. This is similar to #2, except our target note is below 375 Hz, so it’s in the next lower octave. As long as 

we remember that we can raise/lower by octaves by multiplying/dividing frequencies by 2, this will be 

fine… 

 

The frequency ratio (as found in #2 above) is 375/500, which reduces to ¾ (or 0.75). We can raise this 

note by an octave by multiplying by 2: ¾ times 2 = 3/2, which is the frequency ratio of the interval C-G (a 

perfect fifth). So, the note whose frequency is 375 Hz is the G below C:500.  

 

(Alternate solution: first raise 375 Hz by an octave to get 750 Hz. Then find the corresponding frequency 

ratio: 750/500 reduces to 3/2, giving us the C-G interval. Since 750 Hz is the frequency of G above C:500 

Hz, it follows that 375 Hz is the frequency of the next lower G.) 

 

4. The frequency ratio formed by 3750 Hz and our base of 500 Hz is 3750/500, which reduces to 15/2 

(divide on top and bottom by 250), or 7.5. We can lower this by octaves by multiplying by ½; if we do 

this twice, we get a frequency ratio of 15/8, which is the C-B interval (or “major seventh”) frequency 

ratio. So, 3750 Hz is the frequency of the B two octaves above C:500.  

 

Similar solution: First lower 3750 Hz by octaves twice; this gives us a result of 937.5 Hz. The frequency 

ratio 937.5/500 reduces to 1.875, or 15/8. This is another (equivalent) way to figure out that 3750 Hz 

corresponds to a B in this tuning sytem.  

 

Yet another solution: Start by finding another C that is closer to 3750 Hz. If we raise C:500 by octaves a 

couple of times, we get first C:1000, then C:2000. Now, the ratio 3750/2000 reduces to 15/8 (divide the 

top and bottom by 250 to get this), or 1.875 as a decimal; this, as noted twice already, is the frequency 

ratio for a major seventh (C-B interval), so our answer is B.  

 

Note: Any of the approaches shown here would be fine; one is not better or worse than the other. 

Really they are essentially the same, except for the order in which the steps are carried out. No matter 

how we get our answer, at some point we have to raise or lower a note by two octaves, so that we’re 

comparing frequencies of two notes in the same octave with a frequency ratio.  



5. If our just intonation tuning system is based on a D, rather than C, then all intervals will be tuned 

relative to D:300. In this case, the interval we’re interested in is D-F#, which is a major third (four 

semitones). So, the frequency ratio between the D and the F# must be a 5/4 ratio. Therefore, the 

frequency for the next higher F# will be 
5

4
× 300 = 375 Hz.  

 

 

6. In a just intonation tuning system based on D:300, the note with frequency 375 Hz will be an F#, as 

shown in #5. If we hadn’t just worked that out, we would find this result by looking at the frequency 

ratio 375/300, which reduces to 5/4 (or 1.25); since this is the ratio for a major third, we’d conclude that 

the corresponding note is four semitones above D, or F#. 

 

To determine the note with a frequency of 4000 Hz, we’d proceed as in #4 above. As in #4, there are 

several ways to work this out. One way is as follows:  

 

Since our base note is D:300, the next few D’s in the tuning system would be D:600, D:1200, D:2400, and 

D:4800. Since 4000 is between 2400 and 4800, we’ll look at the frequency ratio formed by D:2400 and 

the 4000 Hz note. This ratio is 4000/2400, which reduces to 5/3 (divide both numbers by 800 to get 

this), or 1.666… as a decimal. The diagram at the top of this handout tells us this is the frequency ratio 

for a nine-semitone interval, or “major sixth.” The note nine semitones above a D is a B; therefore, the 

note tuned to 4000 Hz would be a B – specifically, the B three octaves above D:300.  

 

Note: Alternately, we could have first lowered the 4000 Hz note by a few octaves to start; dividing by 2 

three times gives us 2000, then 1000, then 500. Comparing this to D:300 gives us a frequency ratio of 

500/300 = 5/3, and our conclusion follows as in the preceding paragraph.  

 

 

 

 


