
Love this PDF? Add it to your Reading List! 4 joliprint.com/mag

blog.rootshell.be

MySQL Attacks Self-Detection

OSSEC, Security, Software,

I’m currently
attending the
Hashdays se-
curity confe-
rence in
Lucerne (Swit-
zerland). Yester-
day I attended
a first round of

talks (the management session). Amongst all the
interesting presentations, Alexander Kornbrust got
my attention with his topic: “Self-Defending Data-
bases“. Alexander explained how databases can be
configured to detect suspicious queries and prevent
attacks. Great ideas but there was only one negative
point for me: Only Oracle databases were covered.
But it sounds logical; In 2008, Oracle was the first
(70%) in terms of database deployments, followed
by Microsoft SQLServer (68%) and MySQL (50%).
I did not find more recent numbers but the top-3
should remain the same. Alexander gave me the
idea to investigate how to do the same with MySQL.

IMHO, MySQL is very poor in logging features. There
are three types of log files:

•	 The server log
•	 The general query log
•	 The slow query log

The server log contains all events related to the
MySQL daemon: when the server started, when it
was stopped and all critical errors that may occur
during operations. The general query log is where

are stored all events related to clients connections
and (optionally) each SQL statements received from
clienst. This log is very interesting to track the be-
haviour of clients but it has also two constraints:
it can have a huge performance impact on heavy
loaded servers (CPU, IO & storage) and the errors
returned by bad queries are NOT logged. Finally,
the slow query log is more relevant for developers
and DBA’s who can track queries which affect the
server performace. More information about the
MySQL logging can be found here. If you’re im-
plementing a log management solution, having a
copy of all queries is of course interesting but errors
are even more important. MySQL has no way to
log errors returned by malformed queries. Why is
this information relevant? In most cases, queries
are performed automatically by applications and
should not return errors (I mean, at syntax level).
If malformed queries are received, it could be an
attacker trying to guess databases, tables or rows
names. It can be an attempt of MySQL injection.
Errors can be detected at application level, by a WAF
but, like we say in French: “On n’est jamais mieux
servi que par soi-même“. This can be translated to:
“If you want it done right, do it yourself“. The goal is
to catch the error at server level. How?

MySQL has mechanisms to detect errors using “han-
dlers“. You can declare a handler like this:

DECLARE EXIT HANDLER FOR SQLSTATE <value>
<statement>

Again, we are facing a lack of flexibility: handlers
can be used only in stored procedures and you must
know which errors to track (the SQLSTATE values).
This is unmanageable to track all errors.

November 1, 2012

ht
tp

://
bl

og
.r

oo
ts

he
ll.

be
/2

01
2/

11
/0

1/
m

ys
ql

-a
tt

ac
ks

-s
el

f-d
et

ec
tio

n/

Page 1

http://joliprint.com/mag
http://joliprint.com
http://blog.rootshell.be/
http://blog.rootshell.be/category/ossec/
http://blog.rootshell.be/category/security/
http://blog.rootshell.be/category/software/
http://www.hashdays.org
http://www.luzern.com/en/index.cfm
http://blog.red-database-security.com/
http://www.mysql.com/why-mysql/marketshare/
http://dev.mysql.com/doc/refman/5.0/en/server-logs.html

Love this PDF? Add it to your Reading List! 4 joliprint.com/mag

blog.rootshell.be

MySQL Attacks Self-Detection

The alternative is to use “mysql-proxy“. This tool
is not well-known but does very interesting stuff
in our case. MySQL proxy is deployed in front of
your MySQL server(s) to monitor, analyse and load-
balance the requests. The killer feature is the LUA
interface (nmap alike). With the help of LUA scripts,
you can inspect, filter or modify the requests be-
fore forwarding them to the server. In our case,
we won’t load-balance the traffic, let’s install and
run the proxy on the MySQL server itself (Debien
& Ubuntu packages exist).

The other component required is an UDF (“User
Defined Function“) to write the errors in a log file.
I re-used the same as I did in a previous blog post:
lib_mysqludf_log. This UDF allows you to output
data in the regular server log:

mysql> drop function lib_mysqludf_log_info; mysql>
drop function log_error; mysql> create function
lib_mysqludf_log_info returns string so name ‘lib_
mysqludf_log.so’; mysql> create function log_error
returns string so name ‘lib_mysqludf_log.so’; mysql>
select log_error(«This is a major failure!»);

The next step will be to inspect the packets and mo-
dify them on the fly to add some logging capabili-
ties. In MySQL, this is achieved by appending the
“SHOW WARNINGS” statement and some variables
declared with “SET”. The data flow is described in
the schema below:

Let’s use a LUA script to perform this. It will contain
three functions:

•	 read_packet() will intercept MySQL requests
and rewrite the SQL statement

•	 read_query_results() will intercept the SQL
results (the answer sent back to the client)
and will extract useful information like the
error type, the code and the error

•	 write_log() will dump the information to the
server log using the log_error() UDF

The script is available here.

How does it works? First, let’s start the MySQL proxy.
By default, it binds on port 4040:

mysql-proxy --log-level=debug --daemon \ --proxy-
lua-script=/home/xavier/log_errors.lua

Then, let’s connect to your MySQL server and create
a database “customers” with a table “details“:

mysql -u xavier -P 4040 -p Enter password: mysql>
create database customers; mysql> use customers;
mysql> create table details (id integer, -> firstname
varchar(64), -> lastname varchar(64));

November 1, 2012

ht
tp

://
bl

og
.r

oo
ts

he
ll.

be
/2

01
2/

11
/0

1/
m

ys
ql

-a
tt

ac
ks

-s
el

f-d
et

ec
tio

n/

Page 2

http://joliprint.com/mag
http://joliprint.com
http://blog.rootshell.be/
http://dev.mysql.com/downloads/mysql-proxy/
http://www.lua.org/
http://blog.rootshell.be/2011/01/07/auditing-mysql-db-integrity-with-ossec/
http://www.mysqludf.org/lib_mysqludf_log/index.php
http://blog.rootshell.be/wp-content/uploads/2012/11/log_errors.lua.txt

Love this PDF? Add it to your Reading List! 4 joliprint.com/mag

blog.rootshell.be

MySQL Attacks Self-Detection

Now, let’s write a buggy SQL query (with a double
“i” the row name):

mysql> select * from customers where iid=1; ER-
ROR 1105 (07000): Unknown column ‘iid’ in ‘where
clause’

In your server log, you should see something like:

SQL-Error: 2012-11-01 15:10:11 xa-
vier@127.0.0.1:56899 -> Error 1055: Unknown co-
lumn ‘iid’ in ‘where clause’ -- select * from customers
where iid=1

Now, you have all the required information in a
flat file to generate alerts using your preferred log
management tool. Are you using OSSEC? Just use
the following decoder:

<decoder name=»mysql_sql_error»>
<prematch>^SQL-Error:</prematch> </deco-
der> <decoder name=»mysql_sql_error_details»>
<parent>mysql_sql_error</parent> <regex>(\S+)@
(\d+.\d+.\d+.\d+):\d+ -> Error (\d+): (\.+)</regex>
<order>user, srcip, id, extra_data</order> </deco-
der>

This decoder will extract and fulfill the following
OSSEC variables:

•	 user: the MySQL user who send the SQL
query

•	 scrip: the client IP address
•	 id: the MySQL error number
•	 extra_data will contain the error message

concatenated with the faulty SQL query

Once working properly, you can change the TCP
ports used by the mysqld and mysql-proxy. Change
the MySQL default port to an alternative port like
33060 and bind the proxy to 3306. This will be trans-
parent for all the clients.

A last important remark, mysql-proxy is still an
Alpha version for a while! I don’t know if a stable
version will be release and when. Using a proxy
may also have an impact on the performance. This
setup is a kind of proof-of-concept to show how to
extract valuable data directly from the database.

database, MySQL, OSSEC, Security, Software, SQL

Hack.lu 2012 Wrap-Up Day #3 Hashdays Wrap-up
Day #1

November 1, 2012

ht
tp

://
bl

og
.r

oo
ts

he
ll.

be
/2

01
2/

11
/0

1/
m

ys
ql

-a
tt

ac
ks

-s
el

f-d
et

ec
tio

n/

Page 3

http://joliprint.com/mag
http://joliprint.com
http://blog.rootshell.be/
http://dev.mysql.com/doc/refman/5.1/en/error-messages-server.html
http://blog.rootshell.be/tag/database/
http://blog.rootshell.be/tag/mysql/
http://blog.rootshell.be/tag/ossec/
http://blog.rootshell.be/tag/security/
http://blog.rootshell.be/tag/software/
http://blog.rootshell.be/tag/sql/
http://blog.rootshell.be/2012/10/25/hack-lu-2012-wrap-up-day-3/
http://blog.rootshell.be/2012/11/02/hashdays-wrap-up-day-1/
http://blog.rootshell.be/2012/11/02/hashdays-wrap-up-day-1/

