Lecture 11
Computer graphics
Rendering
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Computerv

So far...Computer vision tasks

Processing over 2D images

detection, generation, segmentation...

l

classification

Slide by Amnon Geifman
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Geometry in computer vision

Geometry
3D

Structure from motion problem
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Computer graphics

Computer graphics
photorealistic image formation = rendering

Classical rendering

The process of transforming a scene definition including cameras, lights, surface geometry and
material into a simulated camera image is known as rendering

All ingredients of physical image formation are modelled in computer graphics
* light sources

* scene geometry

* material properties

* light transport

* optics

* sensor behavior

| DL4ACV Weizmann



Photorealistic Rendering—Basic Goal
What are the INPUTS and OUTPUTS?

camera geometry materials lights

... l g 9.8 9 g 9

Rasterization

(MU 15-462/662
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Computer graphics

Neural rendering

Deep image or video generation approaches that enable explicit or implicit control of scene properties
such as illumination, camera parameters, pose, geometry, appearance and semantic structure

Neural rendering brings the promise of addressing both reconstruction and rendering by using deep
networks to learn complex mappings from captured images to novel images

| DL4ACV Weizmann




SIGGRAPH 2020 Technical Papers Trailer







Computer graphics is everywhere
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Entertainment (movies, games)
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Industrial design
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Computer aided engineering (CAE)
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Photorealistic Rendering—Basic Goal -

mpurs and OUTPUTS?

camera geometry materials lights

ee0e .
000

\/ | (“scene”)
Ray Tracer

(MU 15-462/662
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Perspective projection
Pinhole camera model

* Objects look smaller as they get further away
* Parallel lines “meet” at infinity

3D object

camera

2D image




Perspective projection
Pinhole camera model

m Notice two similar triangles:

p=(x,y,z)

— <—|image

3D object

q=(u,v)

e Camera pinhole at ¢ = (0,0,0)
* The image plane located z = —1

. . . . X
e Using similar triangles v = %and u=-



Photorealistic Rendering—Basic Goal

What are the INPUTS and OUTPUTS?

camera geometry materials

B 2o s

W-

g B 9 9 g 9

lights

|

~ %
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Rasterization

(“scene”)
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Rendering -

Drawing on the screen

Image

camera / Light Source
T O
\"“\“H\

View Ray

e camera (view point)
* light sources

* geometry

* material properties

Scene Object



Rendering -

Drawing on the screen

Two ways of turning triangles into image

e Rasterization Everything is a Triangle
e Ray tracing Vs

Input: Output:
projected position of triangle vertices: Po, Py, P, set of pixels “covered” by the triangle




Rendering
Drawing on the screen

Rasterization

* for each primitive (triangle), which pixels are covered?
* extremely fast (Billions of triangles per second on GPU)
* harder (but possible) to achieve photorealism
 games and real-time applications

Ray tracing A

e for each pixel, which primitives (triangles) are seen? ijﬁ% ’*’C::m
* generally slower N s

* easier to get photorealism \\ 'I) f.

* movies and video clips

| DL4CV Weizmann



Ray Tracing vs. Rasterization—Illumination -

B More major difference: sophistication of illumination model

- [LOCAL] rasterizer processes one primitive at a time; hard* to
determine things like “Ais in the shadow of B”

- [GLOBAL] ray tracer processes on ray at a time; ray knows about
everything it intersects, easy to talk about shadows & other “global”
illumination effects

RASTERIZATION RAY TRACING

Q: What illumination effects are missing from the image on the left?

] DLACY Weizman: TBut not impossible to do some things with rasterization (e.g., shadow maps). .. just results in more complexity CMU 15-462/662



Rendering -

The visibility problem
rasterization

Question 1: what pixels does the triangle overlap?
(“coverage”)

Pixel Question 2: which triangle is closest to

the camera in each pixel? (“occlusion”)

2= DLACV Weizmann
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Rendering
The visibility problem
ray tracing

-
“““““
=

Pinhole
Camera
(0,0)

Virtual
Sensor

m Visibility problem in terms of rays:

- COVERAGE: What scene geometry is hit by a ray from a pixel through the pinhole?
= OCCLUSION: Which object is the first hit along that ray?

Zi5| DL4CV Weizmann
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Photorealistic Rendering—Basic Goal -

What are the INPUTS and OUTPUJS?

(amera geometry

'Y |
< P

materials lights

“‘ “q’ - 1
. . . | g Yo U g 9

(“scene”)

Rasterization

(MU 15-462/662
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Geometry
Why triangles?

* can approximate any shape

* always planar, well-defined normal :

e easy tointerpolate data, using “barycentric coordinates” g

e optimized and uniform drawing pipeline H‘“x%-

”P°i"tﬂg/
lllinell
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Examples of geometry

3 TZe
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xamples of geometry

Bl
1
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Geometry
Scene representation

Explicit (discretization of the object geometry)
e point cloud

e voxels

* polygon mesh
* triangle mesh

25 DLACV Weizmann
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Geometry
Scene representation

Implicit (continuous representation)

e algebraic surfaces

 levelset f:R3 >R, f(x,v,z) =0
 more general, signed distance function

m Examples:

2 +y*+24 =1 (R—Vx24+y2)? + 22 =r?

Zi5| DL4CV Weizmann
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Geometry
Scene representation

Implicit shapes
f(x)>0

flx)=0

flx) <0

Surface represented implicitly
s = {x € R®|f(x) = 0}

%‘3%—% DLACV Weizmann
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Geometry
Scene representation
Implicit shapes

Eikonal equation
V() =1,x€Q
f(x) =0,x €0Q

Signed distance function
(SDF)

%‘3%—% DL4CV Weizmann
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Geometry
Scene representation

Implicit

e description can be compact (algebraic surfaces)

* easy to determine if a point in (inside / outside) on the shape
* expensive / not easy to generate all points of shape

Explicit (point cloud, triangle mesh)

* easy representation (list of points (x,y, z))

* hard to test whether a point is inside / outside the shape
e easy to generate the geometry

e DL4ACV Weizmann




Geometry
Triangle mesh (explicit)

* store vertices as triplets of coordinates (x, y, z)

* store triangles as triplets of indices (i, j, k)

e DL4ACV Weizmann

m E.g., tetrahedron:

W NhNE=O

VERTICES

X y 2

: -1 -1 -1

1 -1 1
1 1 -1

: =1 1 1

1

TRIANGLES

1

w w o o

R O W ihu

k

N LN B



Geometry
Triangle mesh

Barycentric coordinates ¢;, ¢,
for interpolation inside triangles

pk/\p.

ad

$i + i+ ¢ =1
$i, (P]' ¢ >0

P = ¢ip; + ¢ip; + PPy

(MU 15-462/662
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Geometry

Triangle mesh
2D Linear interpolation

Look for a, b, c
flx,y) =ax+ by +c f(p)
such that

f(xn: yn) =fn n€{i] kj}

f) =¢if ) +¢;f(pj) + drf (1)

P, = (x,y)

2 DLacy Weizmann
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Geometry -

Triangle mesh

Barycentric coordinates ¢;, ¢;, ¢y,

0 < ¢il¢j;¢k = 1
¢+ @+ ¢ =1 p=¢P,+¢;P; + ¢, Py
~ AAPC
i = AABC
 ACPB
;= AABC
_ ABPA

Pr = AABC



Geometry
Triangle mesh

Barycentric coordinates can be used to interpolate any
attribute associated with vertices, e.g. color, texture
coordinates

color(x) = color(x;)¢; + color(xj)qu + color(x; )¢y

=l DLACV Weizmann




The Rasterization Pipeline

Rough sketch of rasterization pipeline:

ﬁ (w,h) ........

X I —— % ........

(0’0) ........

Transform/position objects in Project objects onto D
the world the screen

Sample triangle coverage

- A

Combine samples into final Sample texture maps/ Interpolate triangle
image (depth, alpha, ...) evaluate shaders attributes at covered samples

m Reflects standard “real world” pipeline (OpenGL/Direct3D)

25 DLACV Weizmann
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Geometry
Surfaces, manifolds and meshes

* Intuitively, a surface is the boundary or “shell” of an object
e Surfaces are manifold
e if youzoomin,
you can draw a regular coordinate grid

Zi5| DL4CV Weizmann
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Geometry
Surfaces, manifolds and meshes

Example. Non-manifold shape
can’t draw ordinary 2D grid at the center
no matter how close we get

%‘3%@% DLACV Weizmann
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Examples—Manifold vs. Nonmanifold -

m Which of these shapes are manifold?

v §x
:




Geometry
Surfaces, manifolds and meshes

For polygonal mesh, easy to

check whether- |t- is ? manifold YES YES
* every edge isincident to only

one or two polygons
* the polygons incident to a

vertex form a closed or an

open fan
P NO
closed fan
open fan V/

boundary

A

| DL4CV Weizmann



Geometry
Surfaces, manifolds and meshes

 What about the boundary of the surface?

* The boundary is where the surface “ends”

* Locally, looks like a half disk
* Globally, each boundary forms a loop
* Polygon mesh

e one polygon per boundary edge
* boundary vertex looks like a “pacman”

- o

%E%g DL4CV Weizmann
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Geometry
Surfaces, manifolds and meshes

(MU 15-462/662
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Geometry -

Ray-mesh intersection

* Think about a ray of light traveling from the sun
* Want to know where a ray pierces a surface

* Might pierce surface in many places

* Asignificant step towards visibility and ray tracing

25 DLACV Weizmann
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Geometry
Ray equation

Unit

Ray source , ,
direction

r(t) =0+ td

Point along ray o
parametrized by t ‘V




Geometry
Ray-plane intersection

Intersection between
plane NTx = ¢

and

rayr(t) = o + td

NTT(t) = C N unit normal
NT p c—NTo C offset
td) =c=>t=
(o+td) =c NT g
c—NTo
r(t) =0+ d

NTd




Geometry
Ray-triangle intersection

* need to determine if point of intersection is within the triangle
 compute ray-plane intersection
e compute barycentric coordinates of hit point

e if all barycentric coordinates are positive, point in triangle

%ﬁ%g DL4ACV Weizmann




Geometry
Ray-triangle intersection

* Parametrize triangle given vertices p,, P1, P2 using barycentric
coordinates
fw,v) =0 —-u—v)pe + upy + vp;
* Does a point p within the triangle? Do
e Solve foru,v

p = Ppo +u(Pr — po) + v(p2 — Po)
P2

Po —

e Ifu,v,1 —u—1v = 0the point p is within the triangle

%ﬁ%g DL4CV Weizmann
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Geometry
Ray-triangle intersection

o P2
d
* Does a point p = 0 + td within the triangle? o
* Solve directly foru, v, t
0+ td = po +u(P1 —Po) + v(P2 — Po) Do

[P1 —Po P2—Po —d] =0 —Po

u
v
L




Geometry
Ray-mesh intersection

Challenges in performance
* How to accelerate the naive algorithm, given a ray, scan

all triangles
* There are a lot of triangles and a lot of rays
* By hierarchical approach and dedicated hardware

25 DLACV Weizmann




Why care about performance?

.
e, TSP

Pixar’s “Coco” — about 50 hours per frame (@24 frames/sec)

5 DL4ACV Weizmani CMU 15-462/662
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Photorealistic Rendering—Basic Goal
What are the INPUTS and OUTPUTS?

N

(amera

geometry

materials

48, 29%¢

o @

Rasterization

(MU 15-462/662




Radiometry = measuring light

Aim: Photo realistic images

& ’%A;/J
 Sa ol
-'-~....b-

r —

ke )
)

Which color at each pixel?

o - g
vy N 1
P Q:
¢ f ‘"r"/. :,-
e >
Sy ¥

c g
(%
tE A\

S ((F
!

* How much light (illumination) at each pixel?

 Why some parts of the surface look lighter
or darker?

* Final image = at every point, what color and
how intense or bright it is

2= DLACV Weizmann
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Rendering is more than just color! -

m Also need to know how much light hits each pixel:

color intensity

b

%Wﬁﬁ .
JLﬁ ?é’-cg DL4CV Weizmani Image CMU 15-462/662




Radiometry
Electromagnetic radiation

«— Increasing Frequency (v)

11 B i3 Tike Tk pi'® ji'e Tk in'® in® in" [in i 1" v iH=
i i i i i i i i | i i i i
Y rays X rays LY IR Microwave |FM AM Long radio waves
Fadio waves
1 | | | | . I | n gl i 1 § I . | | I
w™* w* w2 "™ w* o* T ik Ti lig Tig lig [ig L (m)
e cemm T SSmeasg Increasing Wavelength (&) —

Visable spectiam

1111

4iH} S} LB LY

Increasing Wavelength (L) in am -

BbEE
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Radiometry
Electromagnetic radiation

Why Bananas Appear Yellow

The full spactrum of light falls on the bananas, but only light with wavelengths of 570 to 580 nanome-
ters, in other words "yellow™ light, 15 bounced off. (A nanometer is ane billionth of a meter,)

VISIBLE COLOR WAVELENGTHS

- T R P T L R

"'I' | -‘"'-..__
ultraviolet | - | infrared
[invisible 400 nm # 200 (invisible
short wave- e T lomg wave-
lengths) 570-580 nanometers lengths)

B , |
‘. b Yedlow light reflected from

the bananas stimulates
the eye’s cone cells to
varying degrees. Nerve
signals from the cones
travel to the optical cortex
of the brain for decoding.

SOURCE: NATIONAL LIBRARY OF MEDICINE, PHOTOS8.00M Graphic by Karl Tate @(}mﬂg

g
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Radiometry
Radiance and irradiance

Radiance and 1rradiance

» Radiance (L) — energy exiting a source or surface

» Irradiance (E)— incoming energy

e~ 4
N A

| DL4ACV Weizmann



Radiometry

Sensor

Radiant flux =

Radiant flux: energy per unit time
[Watts] received by the sensor (or
emitted by the light)

® = Time density of energy [Watts]

14

Zi5| DL4CV Weizmann
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Radiometry
Irradiance

Irradiance: area density of radiant flux

Given a sensor with area 4, we
consider the average flux over the
entire sensor area

® LAy

A
Irradiance (E) = flux density, i.e., the

incident flux per unit surface area

Watts
m2

%ﬁ%g DL4CV Weizmann




Given what we now know
about radiant energy...

Why do some parts of a
surface look lighter or darker?

DL4CV Weizmani (MU 15-462/662



Radiometry
Lambert’s law

Consider beam with flux @ incident on surface with area A

radiant flux
irradiance (energy per time)
(energy per time,
per area)

Zi5| DL4CV Weizmann
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Radiometry
Lambert’s law

Consider beam with flux @ incident on tilted surface with area A’

A A\

A= A"cosb

A = projected area of surface relative to direction of hbeam

%ﬁ%g DL4CV Weizmann
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Radiometry
Lambert’s law

Irradiance at surface is proportional to cosine of angle between light direction
and surface normal 9

A fa

A= A"cosb

%ﬁ%g DL4CV Weizmann
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Radiometry -

Ty p es o f | Ig h t = Common abstraction: infinitely bright light source “at infinity”

. : o N
directional lighting All light directions (L) are therefore identical

"y
i

* Infinitely bright light source at infinity

* All light direction (L) are identical

Zi5| DL4CV Weizmann
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Radiometry
Types of light

Isotropic point source

| DL4ACV Weizmann
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Radiometry
Types of light

Spotlight source Area light source

Spotlight position

[xy.21]
u,\:;? Cone angle Area light
! S [side view)
D "o ightdirection ! 0 1 T 1
to fra \ % wy Spodight direction 'g dv.dz.0 | | I I |
c:d:-c.d',r,dz.DE \ v, dxdy.dz0= SARAEET | [ I I
. 1 " I [ I [ I
\ #
Y . { | { | <
b
fragment 4 fr )
receives no light ' agl.m.nt .
(xy.z1) receives light
e (xy.z1)

g

%ﬁ%g DL4CV Weizmann
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Radiometry

Solid angle
m Angle: ratio of subtended arc length on
circle to radius /\l
l T
- )= ;
- Circle has 2 radians
m Solid angle: ratio of subtended area 0

- /)
here to rad d
onsp erz 0 radius square %
- )= 3

- Sphere has 47 steradians




Radiometry -

Solid angle

The solid angle subtended by an object from a point on a surface =
The area covered by the object’s projection onto a unit hemisphere above the point

25| DL4CV Weizmann
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Radiometry -

Radiance
Radiance is the solid angle density of irradiance
L(p,w)
Radiance is energy along a ray defined by origin point p and direction w

Radiant energy per unit time per unit area per unit solid angle

W
m?2 sr

[— ]




Radiometry -

Radiance

A surface experiencing radiance L(p, w), coming in from solid angle dw
experiences irradiance

dE(p) = L(p,w) cos(8) dw

Radiance Lambert’s  Solid angle
law

dw




Radiometry -

Radiance properties

 Radiance is a fundamental quantity that characterizes the distribution of
light an environment

 Radiance is the quantity associated with a ray (constant a long a ray)
* Rendering is all about computing radiance

A pinhole camera measures radiance




Radiometry -

Irradiance from the environment

Computing flux per unit area on surface, due to incoming light from all directions




Recap: Radiance and Irradiance

irradiance radiance in direction @

\ /
E= » L(w) cosf dw

angle between w and normal

g

%E%g DL4CV Weizmani (MU15-462/662
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Photorealistic Rendering—Basic Goal -

What are the INPUTS and OUTPUTS? >\

amera geometry materials
g 0 0006 |
1/ 4) eeee |

(“scene”)

lights

Rasterization

(MU 15-462/662
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Radiometry -

Bidirectional reflectance distribution function

 When light hits a surface, the way it is reflected (scattered off the surface), depends on
the surface material properties

* This is encoded by the “Bidirectional reflectance distribution function” (BRDF)

* Given incoming direction w;, how much light gets scattered in any given outgoing
direction w,?

 The BRDF tells us how bright a surface appears when viewed from one direction while
light falls from another one

* Localillumination model (direct light), light directly from light sources to surfaces

%ﬁ%g DL4CV Weizmann




Radiometry -

Reflected radiance and incident irradiance

The incident radiance L;
The incident irradiance E; = L;cos 6;dw;
The reflected radiance L,

reflected energy Ly

BRDF = f (p, wi, wy) = incident energy  E; L;
Ei o Li COS eidWi

1
bt

ST




=l DLACV Weizmani

Some basic reflection functions

m |deal specular
Perfect mirror

B |deal diffuse

Uniform reflection in all directions

m Glossy specular

Majority of light distributed in
reflection direction

m Retro-reflective
Reflects light back toward source

Diagrams illustrate how incoming light energy from
given direction is reflected in various directions.

(MU 15-462/662



Example: perfect specular reflection -

[Zatonyi Sandor]

=l DLACV Weizmani MU 15-462/662
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Materials: red semi-gloss paint

%L’E—?% DL4CV Weizmani
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Materials: mirror
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Reflection equation
Multiple light sources

¥
X _ ~Y

Sum over all light sources
L(x0)=L(x0)+), LX) (x0,0)o,n)

Reflected Light  Emission  Incident BRDF Cosine of
(Output Image) Light (from Incident angle
light source)




Reflection equation
Environment of light sources

Replace sum with integral

L(xm)=L(x0)+ j L.(x,® )f(x,w,»,)cosbdw,
Q

Reflected Light  Emission Incident BRDF Cosine of
(Output Image) Light (from Incident angle
light source)




Reflection equation (local illumination) -
Recap

 The image of a three dimensional object depends on its shape, its reflectance properties,
and the distribution of the light sources

 The interactions of light with scene surfaces depend on the material properties of the
surfaces. Materials may be represented as bidirectional reflectance distribution functions
(BRDF)

 The BRDF leads to the reflection equation

* The reflection equation considers only local illumination (direct light), i.e., light directly
from light sources to surfaces

%ﬁ%g DL4CV Weizmann




Rendering equation (global illumination) -

Core functionality of photorealistic renderer is to estimate radiance at a given point, in a
given direction

To get photorealism we need to consider global illumination, multiple bounces (indirect
light), called interreflections.

In real scenarios, light reflected from an object strikes other objects in the surrounding
area, illuminating them

When light energy hits a surface, several things can happen, depending on the surface
properties

e Reflection and interreflections

* Refraction

e Absorption

| DL4ACV Weizmann



Transmission

In addition to reflecting off surface, light may
be transmitted through surface.

Light refracts when it enters a new medium.

Zi5] DL4CV Weizmani
WAIC
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Rendering equation (global illumination) -
Principles, James Kajiya, 1986

* For a given indoor scene, every object in the room must contribute illumination to
every other object

 There is no distinction to be made between illumination emitted from a light source
and illumination reflected from a surface

* The illumination coming from surfaces must scatter in a particular direction that is
some function of the incoming direction of the arriving illumination, and the
outgoing direction being sampled

Zi5| DL4CV Weizmann
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Rendering equation (global illumination)
Challenge

Reflection equation

L(xo)=L(Xw)+ I L.(x, @) (X,0,0, )cos8dw.
 Computing reflection equation O

requires knowing the incoming
radiance from surfaces Rendering equation

4

X

 But determining incoming
radiance requires knowing
reflected radiance from surfaces

* So we have to compute another
integral, we have exactly the

same equation L(xo)=L(x» )+ | L(X~0)f(x0,0)cos6do,
Q

. o _ Reflected Light Emission  Reflected @ BRDF Cosine of
* Rendering equation is recursive (Output Image) Light Incident angle

%g DL4CV Weizmann UNKNOWN KNOWN UNKNOWN KNOWN KNOWN

SV
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Recursive Raytracing

m Basicstrategy: recursively evaluate rendering equation!

=l DLACV Weizmann



Rendering equation -

How to solve?

* Too hard for analytic solution

* . [ I I Image
Very challenging to apply directly recursive ray tracing . /g 8 ot Souce
* Monte-Carlo rendering @ | View Ray

* Ray tracingis crucial here 7:)
Scene Object

e Little control in rasterization, which rays we evaluate?

Zi5| DL4CV Weizmann

SV

WAIC



orms.

Direct illumination + reflection + transparency

Image credit: Henrik Wann Jensen




S &

-

Global illumination solution

3 DLACV Weizman Image credit: Henrik Wann Jensen
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Photorealistic Rendering—Basic Goal -

What are the INPUTS and OUTPUTS?

camera geometry materials lights

0000 -
€000 -
Qeow
| (“scene”)
Ray Tracer

(MU 15-462/662



Monte-Carlo rendering

How do we render a photorealistic image?
Combine

 Color

 Material

 Radiometry

* Ray tracing

 Rendering equation

into Monte-Carlo ray tracing algorithm

j%s%g DL4CV Weizmann
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Monte-Carlo rendering
Integration

We want to estimate the integral

1
f f(x)dx =?
0

Average (uniform sampling)

fo F)dx = %iﬂxo

Monte-Carlo methods randomly
choose samples

_ E(f(x)




Monte-Carlo rendering
Monte-Carlo path tracing

* Solving the rendering equation

Integrate radiance for each pixel by sampling
paths randomly

e Partition the rendering equation into direct
and indirect illumination

* Use Monte-Carlo to estimate each partition

* Importance-sampling, according to BRDF
and light sources

j%s%g DL4CV Weizmann
C

Specular
Surface

Diffuse Surface
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Noise decreases as
the number of
samples per pixel
Increases.

The top left shows 1
sample per pixel,
and doubles from
left to right each
square.

DL4CV Weizmann




LA,
= 3

ra

e P s




3“;

One- bounce;







Four-bo

o
]







DL4CV Weizmani




Summary

 Computer graphics, in particular rendering: ray tracing and rasterization

 Geometry representation, including implicit and explicit (triangular mesh),
and the use of barycentric coordinates

* Radiometry, including radiance and irradiance
* Materials properties are encoded by BRDF (Bidirectional reflectance distribution function)
* lllumination models
* local model -> reflection equation
« global model -> rendering equation
* Very challenging to solve the rendering equation

e Simplifications by Monte-Carlo sampling

e Also handful of ways using deep learning (next time)

%ﬁ%g DL4CV Weizmann
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