Course Code	Course Title	L	Р	Т
MA505	Linear Algebra – I	4	0	4

Objectives of the course :

The aim of this course is to learn the concept of basic matrix algebra, vector spaces. Further we study the eigenvalues and eigenvectors of a matrix.

Objective 1 : Students will learn the fundamentals of basic matrix algebra.

Objective 2 : Students will study the concept of vector spaces and its basis and dimension.

Objective 3 : Students will derive and characterize the eigenvalues and eigenvectors of a matrix.

Course learning outcome: Upon completion of this course, the student will be able to:

- 1. Understand basic concepts of matrix algebra, elementary row operations, rank of a matrix, invertible matrices.
- 2. Characterize the solutions of a system of linear equations using Gaussian elimination and Gauss Jordan method.
- 3. Know the properties of a vector space, linearly independent subset, basis and dimension of a vector space and subspaces of a vector space.
- 4. Classify eigenvalues and eigenvectors of a matrix and apply Cayley Hamilton theorem to solve several problems.
- 5. Derive the minimal polynomial of a matrix.

Mapping of Course Outcome(s):

PO/ I			Pro	rogram Outcomes				
CO		PO1	PO2	PO3	PO4	PO5	PO6	PO7
Course Outcomes	CO1	S			М			М
	CO2	S			М			М
	CO3	М			S			S
	CO4	М			S			S
	CO5	М			М			М

L-Low, M-Medium, S-Strong

Text Books	T1	S. Axeler, Linear Algebra Done Right, 2 nd edition, Springer			
Reference books	R1	K. Hoffman and R. Kunze, Linear Algebra, 2 nd edition, Prentice-hall INC.			

Course Contents

Unit I : Basic matrix algebra, elementary row operations, rank of a matrix, invertible matrices. (12 hours).

Unit II : Solution of a system of linear equations, Gaussian elimination and Gauss-Jordan Method. (5 hours).

Unit III : Vector space, Sum and Direct sum of vector spaces, linearly independent subset, basis, dimension, subspaces of a vector space. (20 hours).

Unit IV : Characteristic polynomial, Cayley Hamilton Theorem and its applications. (13 hours).

Unit V : Annihilating polynomials, derivation of minimal polynomial of a matrix, properties of minimal polynomial. (6 hours).

LECTURE-WISE PLAN

Lecture	Learning outcomes	Topics to be covered		
No.				
1-2	Understand basic	Basic matrix algebra	R1	
3	concepts of matrix	Elementary row operations	R1	
4	algebra, elementary	Row echelon form	R1	
5	row operations, rank of a matrix, invertible matrices.	Reduced row echelon form	R1	
6		Rank of a matrix	R1	
7		Elementary matrices	R1	
8-10		Invertible matrices and its properties	R1	
11-12		Problems on basic matrix algebra	R1	
13	Characterize the	System of linear equations and its solution	R1	
14	solutions of a system of	Gaussian Elimination	R1	
15	linear equations using	Gauss Jordan method	R1	
16-17	Gaussian elimination	Problems on system of linear equations	R1	
	and Gauss – Jordan			
	method.			

Lecture	Learning outcomes	Topics to be covered	
No.			
18-19	Know the properties of	Definition and example of a vector space	T1
20-22	a vector space, linearly	Properties of a vector space	T1
23	independent subset,	Sum of vector spaces	T1
24-25	basis and dimension of	Direct sum of vector spaces	T1
26	a vector space and	Linear span	T1
27-28	subspaces of a vector	Linearly independent subset	T1
29-30	space.	Basis	T1
32		Dimension	T1
32		Definition and examples of subspaces	T1
33-34		Properties of a subspace of a vector space	T1
35-37		Problems on vector space and subspaces	T1
38	Classify eigenvalues and	Characteristic polynomial	R1
39-41	eigenvectors of a matrix	Derivation of eigenvalues and eigenvectors of a matrix	R1
42	and apply Cayley –	Cayley – Hamilton Theorem	R1
43-45	Hamilton theorem to	Application of Cayley – Hamilton Theorem	R1
46-50	solve several problems.	Problems on eigenvalues and Cayley-Hamilton	R1
		Theorem	
51-52	Derive the minimal	Annihilating polynomials	R1
53	polynomial of a matrix.	Minimal polynomial of a matrix	R1
54-56		Properties of minimal polynomial	R1
57-60		Problems on minimal polynomials	R1

: Evaluation Scheme :

Component	Duration	Marks	Remarks
Internal I		25	
Mid Term	2 hours	20	Closed Book
Examination			
Internal II		25	
Comprehensive	3 hours	30	Closed Book
Examination			

- 1. Attendance Policy : A student must normally maintain a minimum of 75% attendance in the course without which he/she will be disqualified from appearing in the respective examination.
- 2. Make-up Policy : A student, who misses any component of evolution for genuine reasons, must immediately approach the instructor with a request for make-up examination. The decision of the instructor in all matters of make-up will be final.
- **3.** Chamber Consultation Hours : During the chamber consultation hours, the student can consult the respective faculty in his or her chamber without any prior appointment.