1. For each of the following computations modulo n, write the unique answer, r, such that $0 \leq r \leq n-1$.
a) $5+6 \equiv$ \qquad $(\bmod 8)$
b) $3+4 \equiv$ \qquad $(\bmod 7)$
c) $3-5 \equiv$ \qquad $(\bmod 8)$
d) $1-5 \equiv$ \qquad $(\bmod 7)$
e) $4 \cdot 5 \equiv$ \qquad $(\bmod 6)$
f) $4 \cdot 5 \equiv$ \qquad $(\bmod 5)$
2. Solve each of the following equations for x, if possible. This means to find one more or values of " x " in the range from 0 to $\mathrm{n}-1$ (where n is the "mod" for that equation) for which the equation is true.

If you're not sure how to approach these, you can start with a "trial-and-error" approach... that is, see if $x=0$ works, then try $x=1$, then $x=2$, and so on, up to $x=n-1$.
(Hint: one of these has multiple solutions, and two of these have no solution!)
a) $x-4=5(\bmod 10)$
b) $x-4=5(\bmod 7)$
c) $4 x=5(\bmod 10)$
d) $4 x=5(\bmod 7)$
e) $3 x=7(\bmod 12)$
f) $3 x=6(\bmod 12)$

