# Lecture 10: Videos



June 6<sup>st</sup>, 2021

# Tali Dekel









# Videos

Videos are all around us Span an enormous space of spatial and temporal signals











### **Challenges in Videos: size of video**



Size of video >> size of image

Computational constrains  $\rightarrow$  short, low-res clips

 $3 \times H \times W$ 





~30 frames per second (fps)

Uncompressed size (3 bytes per pixel): SD (640 x 480): **~1.5 GB per minute** HD (1920 x 1080): **~10 GB per minute** 

**Reduce spatial and temporal resolution** 



5fps, half the spatial resolution



### **Challenges in Videos: size of video**

**DL4CV** Weizmann

WAIC

Computational constrains  $\rightarrow$  short, low-res clips



# **Challenges in Videos: Videos Datasets**

space of video >> space of image  $\rightarrow$  lots of training data

"ImageNet"-equivalent dataset for videos?

**Massive human labelling efforts** 



UCF101 YouTube videos 13320 videos, 101 action categories

# Kinetics

#### Kinetics

YouTube videos 650,000 video clips, 600 human action classes



#### YouTube-8M

8M video clips, Machine-generated annotations from 3,862 classes



Sports-1M YouTube videos 1,133,157 videos, 487 sports labels





#### **Deep Learning-based Models for Videos**

- How to reduce computation cost without sacrificing accuracy?
- What architecture to best capture temporal patterns? *Karpathy et. al., Large-scale Video Classification with Convolutional Neural Networks, CVPR, 2014*

#### **Self-Supervision in Videos**

- Which types of pretext tasks can we define to capture temporal information?
- Applications



# **Models for Videos: Single-Frame Baseline**

• Train 2D CNN to classify video frames independently



Input video frame



# **Models for Videos: Single-Frame Baseline**

- Train 2D CNN to classify video frames independently
- Average predicted probs at test-time



Input video frames



### **Models for Videos: Late Fusion**

• Learn features for each frame using a 2D CNN, concatenate feature, and fuse



Input video frames



# **Models for Videos: Late Fusion w/ pooling**

Learn features for each frame, apply spatial-temporal average pool, and then fuse



Input video frames



## Models for Videos: Late Fusion w/ pooling

Learn features for each frame, apply spatial-temporal average pool, and then fuse

Pros: allow the network to learn global motion characteristics by comparing outputs of both towers

Cons: late fusion is late... hard to represent low level motion between frames



Input video frames





- Combines temporal information immediately on the pixel level
- Treat time as another "channel" dimension



Input video frames



Extending the filters in the first Conv Layer to: T x 3 x H x W kernel



Input: T x 3 x H x W

Weights: C x T x 3 x h x w

Output: C x H' x W'



Extending the filters in the first Conv Layer to: T x 3 x H x W kernel

• Not temporal shift invariance; specific filter is learned to each time step



Input: T x 3 x H x W

Weights: C x T x 3 x h x w

Output: C x H' x W'



Extending the filters in the first Conv Layer to: T x 3 x H x W kernel

• Not temporal shift invariance; specific filter is learned to each time step



Input: T x 3 x H x W

Weights: C x T x 3 x h x w

Output: C x H' x W'

**Pros: Allow the network to learn local motion characteristics** 

Cons:



Input video frames



### Models for Videos: Slow Fusion a.k.a 3D Convs

• Extend 2D Convs and pooling to 3D to slowly fuse temporal information throughout the model



Input video frames



## Models for Videos: Slow Fusion a.k.a 3D Convs

- Extend 2D Convs and pooling to 3D to slowly fuse temporal information throughout the model
- Slide the kernels in both space and time



Input: T x 3 x H x W

Weights: C x t x 3 x h x w

Output: C x T' x H' x W'



## Models for Videos: Slow Fusion a.k.a 3D Convs

- Extend 2D Convs and pooling to 3D to slowly fuse temporal information throughout the model
- Slide the kernels in both space and time







First layer filters 3(rgb) x 4 (t) x 5 (h) x 5 (w)



#### Weights: C x t x 3 x h x w

DL4CV Weizmann

# **Models for Videos: Multi-scale**

How can we reduce computational cost while maintaining accuracy? Reduce video resolution  $\rightarrow$  lower performance Reduce network's capacity  $\rightarrow$  lower performance



- Context stream (low res): process low res video frames (H/2, W/2)
- Fovea sterm (high res): process a (H/2, W/2) crop from the original resolution

Reduce the input dimentionalty by half



### **Action classification -- Sports-1M**

types of sports

**DL4CV** Weizmann



- Fine grained labels for 487 different
- Correct prediction
  - Incorrect prediction



### **Action classification -- Sports-1M**

#### Sports-1M Top-5 Accuracy



DL4CV Weizmann

M Karpathy et. al., Large-scale Video Classification with Convolutional Neural Networks, CVPR, 2014 Slide credit: Justin Johnson, <u>EECS 498-007</u>

# Models for Videos: C3D (Convolutional 3D)

- 3D CNN that uses all 3x3x3 Convs and 2x2x2 poolings
- The "VGG" of 3D CNNs
- Transfer learning: extract learned video features, train a simple linear classifier for various tasks



Problem: 3D convs are VERY expensive!
 C3D on small inputs takes 3x VGG and 56x AlexNet FLOPs





# Non-deep learning video classification

Motion is the most informative cue for action recognition  $\rightarrow$  design hand crafted motion features:



Aggregate local motion features to compute a global representation of the video  $\rightarrow$  linear SVM for action recognition

### **MODEL MOTION EXPLICITLY**

Wang et. al., Dense trajectories and motion boundary descriptors for action recognition, 2013

团 DL4CV Weizmann

Peng et. al., Bag of Visual Words and Fusion Methods for Action Recognition: Comprehensive Study and Good Practice, 2014

### Non-deep learning video classification

Motion is the most informative cue for action recognition  $\rightarrow$  hand crafted motion features:





### **Explicitly modeling motion in deep-based models**

Optical flow: For each pixel in frame t, determines its corresponding pixel in frame t+1



Frame t+1





#### Optical flow provides local motion cues





Color wheel Saturation = mag. Color = angle



### Two Stream Networks: modeling motion explicitly

Idea: separate motion (multi-frame) from static appearance (single frame)





Simonyan and Zisserman, Two-Stream Convolutional Networks for Action Recognition in Videos, NIPS 2014

### Two Stream Networks: modeling motion explicitly

Idea: separate motion (multi-frame) from static appearance (single frame)





Simonyan and Zisserman, Two-Stream Convolutional Networks for Action Recognition in Videos, NIPS 2014

### **Additional models**

#### Inflating 2D networks to 3D (I3D)

Take an existing 2D CNN model → convert it to a 3D CNN model Transfer the weights from 2D and 3D

Carreira and Zisserman, "Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset", CVPR 2017

#### Long range temporal processing

Use LSTMs and RNNs to model long range temporal information

Baccouche et al, "Sequential Deep Learning for Human Action Recognition", 2011 Donahue et al, "Long-term recurrent convolutional networks for visual recognition and description", CVPR 2015

#### Long range temporal processing

Self attention, non-local networks, Transformers



### **Self-Supervision in Videos**



- Temporal order
- Cycle consistency
- Video Speedup
- Video colorization

### Self-Supervision in Videos: frame ordering

**Training data:** shuffled video frames, original video frames **Pretext task:** predict if the frames are in the correct temporal order (binary classification task)





### Self-Supervision in Videos: frame ordering





Misra et. al., Shuffle and Learn: Unsupervised Learning using Temporal Order Verification, ECCV 2016

### Self-Supervision in Videos: frame ordering

Transfer learning: fine-tune spatial stream for video classification



| Dataset | Initialization            | Mean Accuracy |
|---------|---------------------------|---------------|
| UCF101  | Random                    | 38.6          |
|         | (Ours) Tuple verification | 50.2          |
| HMDB51  | Random                    | 13.3          |
|         | UCF Supervised            | 15.2          |
|         | (Ours) Tuple verification | 18.1          |



Ultimate goal: Tracking

**Pretext task:** video colorization by learning to copy color from a reference frame **Training data:** grayscale videos + original color videos



Video colorization by learning to copy color from a reference frame





Vondrick et. al, Tracking Emerges by Colorizing Videos, ECCV 2018

DL4CV Weizmann



Vondrick et. al, Tracking Emerges by Colorizing Videos, ECCV 2018

**DL4CV** Weizmann



Vondrick et. al, Tracking Emerges by Colorizing Videos, ECCV 2018

Video colorization by learning to copy color from a reference frame

linear combination of the reference colors

$$y_j = \sum_i A_{ij} c_i$$

a similarity matrix between reference and target (rows sum to one)









**Predicted Segmentations** 



Held-out video







**Ultimate goal:** Correspondence







# **Learning Similarity from Tracking**



Tracking → Similarity [Wang et al, 2015; Pathak et al, 2017]





**Ultimate goal:** Correspondence, without using off-the-shelf tracking methods

#### How to obtain supervision?

Supervision: Cycle-Consistency in Time



Track backwards in time

Track forwards, back to the future

Supervision: Cycle-Consistency in Time Challenge: Occlusions



### Skip-cycles: skipping occlusions



Differentiable tracker: densely match features in learned feature space

$$A_{ij} = \frac{\exp\left(f_i^T f_j\right)}{\sum_k \exp\left(f_k^T f_j\right)}$$





Test time: compute features to each frame, compute features affinity, propagate information using the affinities







### Self-Supervision in Videos: Temporal cycle consistency



Dwibed et. al. Temporal Cycle-Consistency Learning, CVPR'19



Jabri et. al, Space time correspondence as Contrastive Random Walk, NeurIPS 2020



Ultimate goal: Watch video content faster by adaptively speeding up the video





Joint work with: Sagie Benaim, Ariel Ephrat, Oran Lang, Inbar Mosseri, Bill Freeman, Miki Rubinstein and Michal Irani, CVPR 2020

"Speediness" in Videos

### Slower

### Normal speed











Joint work with: Sagie Benaim, Ariel Ephrat, Oran Lang, Inbar Mosseri, Bill Freeman, Miki Rubinstein and Michal Irani, CVPR 2020

**Pretext task:** Predict if a given video segment is sped up or not **Training data:** sped up video segments + original video segments

(30 frames)

Self supervised training on Kinetics

"Learning and Using the Arrow of Time", Wei at. al, CVPR 2018





**Pretext task:** Predict if a given video segment is sped up or not **Training data:** sped up video segments + original video segments

Self supervised training on Kinetics SpeedNet

Normal speed or Sped Up

Input segment (30 frames)



Learning properties of natural motion, avoid "easy cheats" → very challenging!

**Pretext task:** Predict if a given video segment is sped up or not **Training data:** sped up video segments + original video segments



\* "Rethinking spatiotemporal feature learning: Speed-accuracy trade-offs in video classification", Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and Kevin Murphy, ECCV'18.

**Inference:** sliding window  $\rightarrow$  prediction for every frame



From "Speediness" to Speedup factor: Low speediness → speedup more High speediness → speedup less





### Learning the Speediness in Videos: Adaptive Video Speedup





### Learning the Speediness in Videos: Transfer Learning

Pre-trained SpeedNet



#### Self Supervised Action Recognition

| Initialization      |              | Supervised accuracy |        |
|---------------------|--------------|---------------------|--------|
| Method              | Architecture | UCF101              | HMDB51 |
| Random init         | S3D-G        | 73.8                | 46.4   |
| ImageNet inflated   | S3D-G        | 86.6                | 57.7   |
| Kinetics supervised | S3D-G        | 96.8                | 74.5   |
| CubicPuzzle [19]    | 3D-ResNet18  | 65.8                | 33.7   |
| Order [40]          | R(2+1)D      | 72.4                | 30.9   |
| DPC [13]            | 3D-ResNet34  | 75.7                | 35.7   |
| AoT [38]            | T-CAM        | 79.4                | -      |
| SpeedNet (Ours)     | S3D-G        | 81.1                | 48.8   |

Video Retrieval

Query



### Learning the Speediness in Videos: CAM visualizations



"Memory Eleven" artistic video by Bill Newsinge



Our space-time speediness visualization

blue/green = normal speed

yellow/orange =
slowed down



https://www.youtube.com/watch?v=djylS0Wi\_lo

# Next tutorial: "GPU Fundamentals"



# Next class: "Neural Rendering"



