
Chapter 4 Measuring Effort for Software Project Page 1

Prepared by Kean Tak, MSc, Lecturer of IT @ RUPP June-2009

There are many techniques that can be used to rigorously estimate or measure effort and cost for a

software project, such as:

- Function Point (FP)

 - Source Lines of Code (SLOC) .

- COnstructive COst MOdel (COCOMO)

- Delphi

4.1. SLOC Technique (Source Line of Code Technique)

- The SLOC technique is an objective method of estimating or calculating the size of the

project.

- The project size helps determine the resources, effort, cost, and duration required to

complete the project.

- It is also used to directly calculate the effort to be spent on a project.

- We can use it when the programming language and the technology to be used are

predefined.

- This technique includes the calculation of lines of codes (LOC), documentation of pages,

inputs, outputs, and components of a software program.

 4.1.1. Counting SLOC

-The use of SLOC techniques can be used in the case of the technology or language

remains unchanged throughout the project. Generally, it can be used when you are using

third- generation language, such as FORTRAN or COBOL.

-To count the SLOC the following must be considered:

 The count includes:

 - The SLOC delivered to client.

 - The SLOC written only by the development team are counted

 - The declaration statements are counted as source lines of code

 The count excludes:

 - The code created by application generators.

 - The comments inserted to improve the readability of program.

- Once, you get the numbers of line of code of SLOC, you can estimate or calculate the

total effort and cost to complete the given project.

Example:

- Assume estimated lines of code of a system is: 33,200 LOC

- Average productivity for system of this type is: 620 LOC/person-month

- There are 6 developers

- Labor rate is: $ 800 per person-month

Calculate the total effort and cost required to complete the above project.

Solution

+Way1

=> Total Effort = Total LOC/Productivity = 33200/620=53.54 ≈ 54 person-months

=> 6 developers Effort = Total Effort/6 = 54/6 = 9 months

=> Total Cost = Total Effort * Labor Rate = 54 * 800 ≈ $43,200

+Way2

=> Cost per LOC = Labor Rate /Productivity=800/620=$1.29 ≈ $1.3

=> Total Cost = Total LOC * Cost per LOC = 33,200* 1.3=$43160 ≈ $43,200

Chapter 4 Measuring Effort for Software Project Page 2

Prepared by Kean Tak, MSc, Lecturer of IT @ RUPP June-2009

=> Total Effort = Total Cost / Labor Rate = 43,200/800 = 54 person-months

 4.1.2. Disadvantages of Using SLOC Technique

- The SLOC technique is language-dependent (i.e It depends on specific type of language

experienced).

- The effort required to calculate source lines of code. This may not be the same for all

languages.

4.2. FP Technique (Function Point Technique)

 4.2.1- History .
- Function points were developed as an alternative to lines of codes to measure the size of

software.

- Allan.J.Albrecht invented function point estimates in 1979 at IBM.

- Thereafter, he introduced General System Characteristics (GSCs) in 1984.

- From 1990 onwards, International Function Point Users Group (IFPUG) made periodic

revision to the function point theory.

 4.2.2- Features

- The total size of a software project is expressed in total function points.

- It is independent 'of the computer language, development methodology, technology, or

capability of the project team developing the software project.

- To calculate FP for a project, some components are required.

- The FP technique is a direct indicator or measurement of a software application

functionality from the user's perspective.

- It is the most popular technique used to estimate the size of a software project.

- The total size of a project is estimated in the term of FP.

- After calculating the total size of a project in FP, you divide the total FP into the different

phases of the software development life cycle. Or you can calculate separately for each

phase.

- You can also use it to determine how much effort per FP is required to complete the

particular phase. For example, the testing phase is planned for 20 FP of work. And the

project managers, basing on their past project experience, determine the amount of effort

in person-months(or man-months), person-days, or person-hours required in the testing

phase. For instance, they experienced spend 2 days per FP, then the total effort in this

case is (2 * 20)/(number of worker) days to complete this phase.

- Similarly, you can express the cost required to complete FP of work for a particular phase.

- At the end of a project, you can also express the number of defects reported per FP for a

phase.

- Basing on the size of the project in FP, you can estimate or calculate the numbers of LOC

by multiplying the average number of LOC/ FP for a given language (AVC) by the total

number of function points of the project.

-To calculate the numbers of line of code, the following formula is used:

 LOC = LOC per FP * FP OR LOC = AVC * FP where:

 - AVC: is the average number of LOC/FP for a given language

 - LOC: is the numbers of line of code

 - FP : is the Total numbers of Function Point

Chapter 4 Measuring Effort for Software Project Page 3

Prepared by Kean Tak, MSc, Lecturer of IT @ RUPP June-2009

-To define AVC, the following table is used to choose the type of programming

languages that will be used when developing a sw project:

Programming Language LOC/FP (average) Select

 Assembly Language 320

 C 128

 COBOL/Fortran 105

 Pascal 90

 Ada 70

 C++ 64

 Visual Basic 32

 Object-Oriented Languages 30

 Smalltalk 22

 Code Generators (PowerBuilder) 15

 SQL/Oracle 12

 Spreadsheets 6

 Graphical Languages (icons) 4

 Note: You may use the similar one from the table for other languages.

-To calculate the total FP, the following formula is used:

 FP = CT * (0.65 + 0.01 * ΣFi) Where:

-FP: Total Function Points

-CT: Count Total. To calculate this, you have to fill the correct number for the following count of

each of 5 parameters and select the one of sw project complexity levels

Measurement Parameter Count
Simple

Average

Complex

 Total

 Number of user inputs
  3 4 6 =

 Number of user outputs  4 5 7 =

 Number of user inquiries
  3 4 6 =

 Number of files  7 10 15 =

 Number of external interfaces
  5 7 10 =

 Count Total

Chapter 4 Measuring Effort for Software Project Page 4

Prepared by Kean Tak, MSc, Lecturer of IT @ RUPP June-2009

 +Each total=each Count * the corresponding number in the complexity level selected

+CT= The sum of each total or CT= total1 + total2 + total3 + total4 + total5

-ΣFi (i=1 to 14): The sum of all 14 Complexity Adjustment Values(CAV) or Complexity

Weighting Factors(CWF) which each value is ranged from 0 to 5 depending on the complexity

level of each type. To do this, you have to complete each of the following values in the table

below:

Table of Complexity Weighting Factors (CWF)
Each factor on a scale of 0 to 5 is the degree of influence which answers to each question

(0 = No influence, 1 = Incidental, 2 = Moderate, 3 = Average, 4 = Significant, 5 = Critical)
This is called to calculate the Total Weighting Factors (TWF)

 Question 0 1 2 3 4 5

 1. Does the system require reliable backup and
recovery?

 2. Are data communications required?

 3. Are there distributed processing functions?

 4. Is performance critical?

 5. Will the system run in an existing, heavily utilized
operational environment?

 6. Does the system require on-line data entry?

 7. Does the on-line data entry require the input
transaction to be built over multiple screens or
operations?

 8. Are there master files updated on-line?

 9. Are the inputs, outputs, files, or inquiries complex?

10. Is the internal processing complex?

11. Is the code designed to be reusable?

12. Are conversion and installation included in the
design?

13. Is the system designed for multiple installations in
different organizations?

14. Is the application designed to facilitate change and
ease of use by the user?

You can then calculate FP by substituting the values of CT and TWF(ΣFi) into the FP formula

above. And then you substitute the value of obtained FP and LOC/FP into the LOC formula above,

you will obtain the total numbers of line of code.

The general characteristics and brief description of the 14 complexity adjustment values above

are shown below:

Total Weighting Factor(ΣFi)

Chapter 4 Measuring Effort for Software Project Page 5

Prepared by Kean Tak, MSc, Lecturer of IT @ RUPP June-2009

N
o

Characteristics Description

1 Operational Ease
The degree to which the application attends to operational aspects, such as

backup, start-up, and recovery processes

2 Data Communication
The degree to which an application communicates with the other

applications

3 Distributed Functions
The degree to which an application transfers or shares data among the

component of applications

4 Performance
The degree of the response time and throughput performance of an

application

5 Heavily Used on figuration
The degree to which the computer resources, where the application runs, are

used

6 On-line Data Entry The percentage of data that is entered by using interactive transaction

7 Transaction Rate
The frequency of transactions that are executed, on a daily, weekly, or

monthly basis

8 On-line Update The degree to which the number of internal logical files is updated on-line

9 End-user Efficiency
The degree to which human factors and user friendliness are to be

considered

10 Complex Processing
The degree to which the complexity of logic influences the processing logic,

in turn, influences the development of the application

11 Reusability

The degree to which the application and code in the application are

specifically designed, developed, and supported to be reused in other

applications

12 Installation Ease
The degree to which conversion from a previous environment influences the

development of the application

13 Multiple Sites
The degree to which the application is developed for multiple locations and

User organizations

14 Facilitates Change
The degree to which the application is developed for easy modification of

processing logic or data structure

Example1: Assuming we have collected data for a sw project as shown in the two tables below. The

development team uses SQL Server for developing this sw project. Calculate FP and LOC.

Measurement Parameter Count
Simple

Average

Complex

 Total

 Number of user inputs 13
  3 4 6 = 52

 Number of user outputs 10
  4 5 7 = 50

 Number of user inquiries 3
  3 4 6 = 12

 Number of files 4
  7 10 15 = 40

 Number of external interfaces 2
  5 7 10 = 14

 Count Total

168

Chapter 4 Measuring Effort for Software Project Page 6

Prepared by Kean Tak, MSc, Lecturer of IT @ RUPP June-2009

No
General System Characteristics Degree of Influence (Value)

1 Operational Ease 2

2 Data Communication 5

3 Distributed Functions 4

4 Performance 5

5 Heavily Used Configuration 2

6 Transaction Rate 3

7 On-line Data Entry 4

8 On-line Update 2

9 End-user Efficiency 3

10 Complex Processing 4

11 Reusability 5

12 Installation Ease 2

13 Multiple Sites 3

14 Facilitates Change 4

Total complexity adjustment or Total Weighting Factor
value

 48

 FP = 168 * (0.65 + 0.01 * 48) = 189.84 ≈ 190 FPs

 LOC = FP * 12 = 190 * 12 = 2280 LOCs

 Example2: Part of analysis model for SafeHome software

- Number of user inputs = 3 (password, panic button, and activate/deactivate)

- Number of user outputs = 2 (massages and sensor status)

- Number of user inquiries = 2 (zone inquiry and sensor inquiry)

- Number of file = 1 (system configuration file)

- Number of external interfaces = 4 (test sensor, zone setting, activate/deactivate, and alarm alert)

Chapter 4 Measuring Effort for Software Project Page 7

Prepared by Kean Tak, MSc, Lecturer of IT @ RUPP June-2009

+Assume Weighting Factor is simple:

 CT = (3*3)+(2*4)+(2*3)+(1*7)+(4*5)= 50

+And assume ∑Fi = 46

 FP = 50 x [0.65 + (0.01 x 46)] = 55.50  56FP

 4.2.3- Using FP for Initial Estimation

 Example:

 + Assuming that:

- To complete one FP of work, the project requires 10 hours (Productivity = 10hours/FP)

- The total FP estimated is 200 FP for the project

- The project team works 8 person-hours per working day

- There are 20 working days in a month

 + Calculate the effort required to complete the sw project

 Solution

To complete a project of 200 FP, you require:

+Effort in person-hours:

 Effort = 200 FP * 10hrs/FP = 2000 person-hours

+Effort in person-days:

 Effort = 2000 hours/8 hours = 250 person-days

+Effort in person-months:

 Effort = 250 person-days/20 days = 12.5 person-months

+Note:

- If there are two developers on the project, then you would require =12. 5 months/2 developers =

6.25 months to complete the work.

 4.2.4- FP-Based Estimation

 Example:
- Assume FP of a system is: 375

Chapter 4 Measuring Effort for Software Project Page 8

Prepared by Kean Tak, MSc, Lecturer of IT @ RUPP June-2009

- Average productivity for system of this type is: 6.5FP/pm

- Labor rate is: $ 800 per month

Cost per FP is: 800/6.5  $123

Total Estimated Cost is: $123 * 375  $46,100

Total Estimated Effort is: 46,100/800 = 57.62  58 person-months

 4.2.5- Using FP for Post-Project analysis
- FP can be used to express factor such as productivity, effort, defects, and cost used in an

already completed project.

- Expressing these factors in FP helps analyze a project effectively.

- Analysis of a project enables to apply the learning derived from a particular project to future

projects

Example:

 Total number of defects reported Total project size in FP

Project 1 10 150

 Defect density 10/150 = 0.067 defects /FP '''14'

Project 2 20 200

 Defect density 20/200 = 0.10 defects/FP

Project 3 40
. 1000

 Defect density 40/1000 = 0.04 defects /FP ,

 Defect density = Total number of defects/total project size in FP

Project 3 is of superior quality because it reported least number of defects . per FP of

development effort

4.3. COCOMO Techniques (COnstructive COst MOdel Techniques)

- COCOMO uses cost driver attributes to calculate the effort and duration of a project.

- COCOMO technique has three levels of implementation:

+ Basic

+ Intermediate

+ Advanced

 4.3.1- Basic COCOMO

-The basic COCOMO technique is used to estimates the effort and cost of a SW project by

using only the lines of code.

-We use basic COCOMO when we need a rough estimate of effort, such as during

maintaining a project.

-There are three steps involved in estimating the effort using basic COCOMO technique:

S1- Estimating the total delivered lines of code.

S2- Determine the effort constants based on the type of the project

S3- Substituting values for lines of code and effort constants in a formula

-There are three types of projects to be calculated effort. To determine the type of the

Chapter 4 Measuring Effort for Software Project Page 9

Prepared by Kean Tak, MSc, Lecturer of IT @ RUPP June-2009

project being developed, the end user has to select one of the three (3) types of

modes, which are organic, semi-detached, and embedded.

1-Organic Mode: Relatively small, simple software projects in which a small team with good
application experience work to a set of less than rigid requirement.

-The organic projects must have sufficient and defined objectives

-These are simple businesses and applications, such as a banking system and inventory

system

-The equation for the Effort (E) and Development time (D) for this model are:

2-Embedded Mode: A software project that must be developed within a set of tight hardware,
software and operational constraints.

-The embedded projects must have stringent and specialized HW, SW, and human resources

requirements.

-Organizations usually have less experience in developing such projects.

-Examples of such projects includes real-time operating systems, industrial automation

systems, and sophisticated space and aviation systems

-The equation for the Effort (E) and Development time (D) for this model are:

3-Semi-Detached Mode: An intermediate (in size and complexity) software project in which
teams with mixed experience levels must meet a mix of rigid and less than rigid requirements.

- Semidetached projects are combination of the preceding two types of SW projects

- Examples: a new operating system, a database management system

-The equation for the Effort (E) and Development time (D) for this model are:

Once the end user selects his/her model, he/she calculates the (E)ffort and
the (D)evelopment time (Duration).
In summary, you can select the software project type and substitute the values of C and K
from the following table into the formulas below the table:

Software Project Type C K Select

Organic 3.2 1.05

Embedded 2.8 1.20

Semi-detached 3.0 1.12

 Ei = C * (KLOC)
K

-Where Ei is the effort for a project, C and K are the effort or COCOMO constants depending

on the type of project being developed.

-Table of COCOMO Constants

-Example: Estimate the effort of an application (organic type) with 4 KLOC:

Chapter 4 Measuring Effort for Software Project Page 10

Prepared by Kean Tak, MSc, Lecturer of IT @ RUPP June-2009

Ei = 3.2 * 4
1.05

 = 3.2 * 4.28  14 person-months

4.3.2- Intermediate COCOMO

-Calculating of effort by using the intermediate COCOMO technique involves an

additional step of calculating the effort adjustment factor (EAF).

-The effort adjustment factor is calculated by assigning ratings to 15 cost driver

attributes. .

-These cost driver attributes relate to the various aspects of a sw project, such as

project, product, personnel, and computer attributes.

-Using the intermediate COCOMO technique we can accurately estimate effort and

cost required for a project.

-There are three steps in calculating the effort:

-Step1: Estimate the initial development effort by using SLOC in the following

formula: Ei = C * (KLOC)
K

-Step2: The second step is to determine the relevant cost driver attributes that

affect your project intensively (This provides you with the value for EAF)

-Step3: Finally, you calculate the actual effort by multiplying the weighted cost

driver attributes with the initial effort estimation.

-There are 15 intermediate cost driver attributes, 3-product attributes, 4-computer

attributes, 5-personnel attributes, and 3-project attributes:

+3 Product attributes:

-Required Software Reliability

 -Database Size

 -Software Product Complexity

+4 Computer attributes:

-Execution Time Constraint

 -Main Storage Constraint

 -Virtual Machine Volatility

 -Computer Turnaround Time

+5 Personnel attributes:

-Analyst Capability

 -Application Experience

 -Programmer capability

 -Virtual Machine Experience

 -Programming Language Experience

 +3 Project attributes:

-Modern Programming Practices

 -Use of Software Tools

 -Required Development Schedule

Chapter 4 Measuring Effort for Software Project Page 11

Prepared by Kean Tak, MSc, Lecturer of IT @ RUPP June-2009

Cost Drivers

Rating

Negligible Low Average High
Very
High

Extremely
critical

Required Software Reliability (RSR)

Database Size (DBS) ..

Software Product Complexity (SPC)

Execution Time Constraint (ETC)

Main Storage Constraint (MSC)

Virtual Machine Volatility (VMV)

Computer Turnaround Time (CTT)

Analyst Capability (AC)

Applications Experience (AE)

Programmer Capability (PC)

Virtual Machine Experience (VME)

Programming Language Experience(PLE)

Modem Programming Practices (MPP)

Use of Software Tools (TOOL)

Required Development Schedule (RDS)

- Typically, the values that rate each cost driver attribute ranges from 0.9 through 1.4 .

- Usually, in organizations, the average rating is assigned a static value of 1.0

- The intermediate COCOMO technique formula is: E=EAF*Ei

- For example, in a customized insurance project, there are four modules which the total

effort estimate of the modules is 3 KLOC. Assuming there are four cost

driver attributes with the respective multiplying factors that might affect the

project most. C and K are 3.2 and 1.05 (organic project)

=> Ei =C * (KLOC)
K

= 3.2 * 31.05 = 3.2 * 3.16 = 10.11

Applicable cost driver attributes Rating Multiplying factors

SPC High 1.2

ETC Very high 1.35

AC Low 0.95

MPP Average 1.0

EAF = 1.2 * 1.35 * 0.95 * 1.0 = 1.53

=> E = EAF * Ei = 1.53 * 10.11 = 15.5 person months

4.3.3- Advanced COCOMO

-The advanced COCOMO technique uses the steps of the intermediate COCOMO

technique

Chapter 4 Measuring Effort for Software Project Page 12

Prepared by Kean Tak, MSc, Lecturer of IT @ RUPP June-2009

- In addition, it uses cost driver attributes assigned to each phase of the sw development life

cycle such as analysis and design

Applicability of COCOMO

- COCOMO is flexible and capable of using SLOC and FP

- You can use COCOMO when the size of a project is extensive and the requirements of the

project are vague

- In contrast, SLOC and FP can be used for projects where either the requirements are

more or less known or developers possess the relevant experience in developing projects

- Generally, you can use COCOMO when the sw development environment is new to an

organization

- You can use COCOMO when you do not have baseline data about past projects

- You can use FP or SLOC techniques when you have enough past project data to assign

accurate weight age to the 14 GSCs (General System Characteristics) or complexity

adjustment values and the various information domain value elements

4.4. Delphi Techniques

- The Delphi technique is a human-based estimation technique

- Human-based estimation techniques use human experience and analytical skills to estimate the

size, productivity, and effort required for a project.

- The rationale of using the Delphi technique is that when many experts independently arrive at

the same estimate on the basis of similar assumptions, the estimate is likely to be correct.

- The Delphi technique has eight basic steps:

+Step1: Identify the teams that need to perform the estimation activity.

Estimation experts: usually consist of groups of five or six experienced project managers.

- The estimation values provided by the project mangers are based on past project

history and their knowledge .

- However, only those project managers should be invited for estimation whose

experience of a past project matches that of the current project.

Estimation coordinator: An estimation coordinator is very similar to a moderator in a usual

meeting. The coordinator facilitates the meeting and ensures that the goals of the meeting

are fully achieved.

Author: An author is similar to a recorder of minutes in a meeting.

+Step 2:

-The author present the project details including client's needs and system requirements to

the group of experts

-The author also describes the expectation from the group.

-The author and experts jointly identify the tasks that need to be estimated.

-They also identify the valid assumptions that they need to consider while estimating.

+Step 3:

-The author and experts arrive at a consensus that any estimation with a specific variance

value will not be accepted.

-For example, they may decide that any variance above 25% will not be accepted as an

estimation value for computing the project effort or the productivity.

Chapter 4 Measuring Effort for Software Project Page 13

Prepared by Kean Tak, MSc, Lecturer of IT @ RUPP June-2009

+Step 4:

-The coordinator prepares a list of tasks jointly decided by the team and distributes the list to

all experts.

-These tasks comprise a project plan.

+Step 5:

-The experts independently make their estimates for each task.

-After recording their estimates, they hand over their estimates to the coordinator.

-This is a critical step

-While making estimates, no discussions or consultations are permitted because a mutual

discussion may influence the estimation logic of the fellow experts.

-The coordinator and the author jointly ensure this.

+Step 6:

-The coordinator prepares a summary of estimates for each task.

-After calculating the percentage of variance, the coordinator marks each task as accepted or

not accepted basing on the agreed accepted value.

Summary of Estimates Table

Task
Maximum
Estimation
(Hours)

Minimum
Estimation

(Hours)

Percentage
of Variance

Accepted or not
accepted (AlNA)

Cost And benefit
analysis

20 15 25 A

High level design 50 30 40 NA

+Step 7:

-The coordinator hands over the summary to the group of experts and the author.

-The group of experts and the author discuss tasks and assumptions where the percentage

of variance is more than the acceptable level.

-The maximum and minimum estimates of tasks are disclosed.

-To resolve the high percentage of the variance value, some tasks may be broken down

further or combined.

+Step 8:

-Revert to step 5 and repeat the steps.

-You do this until all tasks are assigned estimates that have an acceptable percentage of

variance value.

The Eight basic steps of Delphi Techniques:

Chapter 4 Measuring Effort for Software Project Page 14

Prepared by Kean Tak, MSc, Lecturer of IT @ RUPP June-2009

-The Delphi technique is a simple and subjective method of estimation.

-However, it is a very effective method because most of the estimates are tried and tested.

-You can use this method if the project is small or if you have the data and expertise that can

enable unambiguous estimates.

