
THEME ARTICLE: MICROPROCESSOR AT 50

Evolution of the Graphics Processing Unit
(GPU)
William J. Dally and Stephen W. Keckler, NVIDIA Corporation, Santa Clara, CA, 95051, USA

David B. Kirk , Independent Consultant

Graphics processing units (GPUs) power today’s
fastest supercomputers, are the dominant
platform for deep learning, and provide the

intelligence for devices ranging from self-driving cars
to robots and smart cameras. They also generate com-
pelling photorealistic images at real-time frame rates.
GPUs have evolved by adding features to support new
use cases. NVIDIA’s GeForce 256, the first GPU, was
a dedicated processor for real-time graphics, an appli-
cation that demands large amounts of floating-point
arithmetic for vertex and fragment shading computa-
tions and highmemory bandwidth. As real-time graphics
advanced, GPUs became programmable. The combina-
tion of programmability and floating-point performance
made GPUs attractive for running scientific applications.
Scientists found ways to use early programmable GPUs
by casting their calculations as vertex and fragment
shaders. GPUs evolved to meet the needs of scientific
users by adding hardware for simpler programming, dou-
ble-precision floating-point arithmetic, and resilience.

The availability of easily programmed GPUs with
high floating-point performance enabled the current
revolution in deep learning. AI researchers have found
them the ideal platforms to train deep neural net-
works for vision, speech recognition, natural language
processing, recommender systems, and other applica-
tions. GPUs evolved to meet the needs of these appli-
cations by adding deep-learning-specific data types
and instructions. Today, they are the dominant plat-
form for deep learning training and inference.

EARLY 3-D GRAPHICS HARDWARE
The high computational demands of graphics ren-
dering led to the development of special-purpose
hardware to carry out the computations needed
to generate an image. The Evans and Sutherland

Computer Corporation was founded in 1968 to build
special-purpose 3-D graphics hardware. Using the
small-scale integration technology of the day, these
expensive multirack systems were used for demand-
ing applications such as flight simulators.

THE AVAILABILITY OF EASILY
PROGRAMMED GPUs WITH HIGH
FLOATING-POINT PERFORMANCE
ENABLED THE CURRENT
REVOLUTION IN DEEP LEARNING.

Moore’s law scaling of integrated circuit technol-
ogy drastically reduced the cost of graphics systems
and led them to evolve in two directions. In the late
1980s, Silicon Graphics built a new generation of 3-D
graphics systems and high-end professional worksta-
tions. At the same time, low-cost 2-D graphics capabil-
ities were supported both in mass market products
such as PCs and in video game consoles. Early con-
soles were sprite-based, copying virtual rectangles to
the screen to display backgrounds, scenes, and char-
acters. The earliest PC graphics cards were simply 2-D
accelerators and display controllers. They copied pixel
values from PC system memory to frame buffer
memory, and ultimately to a CRT screen generating
addresses and sync signals and providing D/A conver-
sion. 2-D graphics accelerators evolved to support
text and window acceleration in hardware, copying,
stretching, and blending images (textures) together.

The advent of 3-D video game consoles such as
3DO, Sega Saturn, and Sony Playstation ushered in
the era of mass-market 3-D gaming. The desire to
support 3-D graphics on PCs for gaming inspired the
entire field of 2.5-D and 3-D graphics accelerators, an
opportunity so compelling that over 60 companies
were founded to address this market. Founded in 1993
by Jensen Huang, Chris Malachowsky, and Curtis Priem,
NVIDIA aimed to bring sophisticated 3-D graphics to the

0272-1732 � 2021 IEEE
Digital Object Identifier 10.1109/MM.2021.3113475
Date of current version 19 November 2021.

IEEE Micro Published by the IEEE Computer Society November/December 202142
Authorized licensed use limited to: Nvidia Corp. Downloaded on December 10,2021 at 18:51:20 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4632-2876
https://orcid.org/0000-0003-4632-2876
https://orcid.org/0000-0003-4632-2876
https://orcid.org/0000-0003-4632-2876
https://orcid.org/0000-0003-4632-2876
https://orcid.org/0000-0002-4887-5098
https://orcid.org/0000-0002-4887-5098
https://orcid.org/0000-0002-4887-5098
https://orcid.org/0000-0002-4887-5098
https://orcid.org/0000-0002-4887-5098

PC platform and to compete with game consoles. The
inspiration for 3-D PC graphics came from the sophisti-
cated and expensive graphics pipelines in 3-D profes-
sional workstations such as those created by Silicon
Graphics. NVIDIA’s founders observed that the larger
and more complex chips enabled by Moore’s law would
allow increased integration and functionality to make
PC-based 3-D gaming affordable.

The first generation of 3-D PC graphics cards per-
formed fragment (or pixel) computations of rasteriza-
tion, color interpolation, texture mapping, Z-buffering
(hidden surface removal), and shading. Given the
coordinates and parameters of a triangle’s vertices in
a 2-D screen space, they would generate the depth
and color of each pixel in the triangle and composite
these pixels into the frame buffer. The vertex compu-
tations to transform the vertices from world space to
screen space, clip the triangles against the viewport,
and compute the lighting of each vertex remained on
the host CPU. NVIDIA’s first successful product of
this type was RIVA-128 (NV3), which was released in
1997.

The evolution of these 3-D accelerators included
the ability to blend multiple textures simultaneously
for more sophisticated lighting and shading. NVIDIA’s
RIVA-TNT and TNT2 (NV4 and NV5) had these capabili-
ties, as well as parallel processing of multiple pixels at
several points in the pipeline, including rasterization,
shading, and at the Z-buffer/memory interface.

GeForce 256: THE FIRST GPU
Introduced in 1999, the GeForce 256 was the first chip
to combine the vertex computations for transforma-
tion and lighting and the fragment computations on
the same chip. This fully integrated graphics engine
was named a “graphics processing unit” or GPU. Off-
loading the vertex computations from the host
enabled higher geometric complexity in games at the
cost of requiring significant floating-point perfor-
mance. For example, the perspective transformation
requires a 4�4 matrix–vector multiply and a perspec-
tive division operation. The vertex and pixel computa-
tions in the GeForce 256 were configurable fixed-
function hardware, organized in a hardwired pipeline.

As PC games became more sophisticated, demand
grew to modify the vertex and pixel computations to
achieve more complex graphical effects. Programma-
ble “shaders” had been used in offline software
graphics since the 1980s. The GeForce 3 (NV20) GPU
introduced a programmable vertex shader in 2001, and
in 2002, the GeForce FX introduced programmable
fragment shaders.

GPU COMPUTING
As the combination of high floating-point performance
and programmability made GPUs with programmable
shaders an attractive platform for scientific computing,
the field of general-purpose GPU (GPGPU) program-
ming emerged. A GeForce 6 had a peak performance of
108 billion single-precision floating-point operations
per second (108 GFLOPS), in contrast to a contempo-
rary CPU that provided only 8 GFLOPS. However, pro-
gramming these GPUs was challenging. Input and
output were very restricted. Fragment shaders only
received input from interpolated vertex attributes and
textures and only deposited output into the frame
buffer. Programmers had to cast their applications as
rendering texture mapped and blended triangles to
harness the FLOPS of these GPUs. Early GPGPU pro-
grams contained pages of inscrutable shader code
that forced scientific algorithms into this form.

To harness the increasing capabilities of the hard-
ware, GPUs ultimately leveraged stream processing pro-
gramming models that hid much of the complexity
of shader programming from scientific programmers.
Emphasizing parallelism and producer–consumer locality,
stream programming systems were originally developed
for dedicated stream processors such as Imagine1 and
Merrimac.2 These systems, however, were ideally suited
to GPU programming. The Brook programming language,
originally developed for Merrimac, was adapted to GPUs
as Brook-GPU.3 Brook was later adopted by AMD as the
language used to program their unified shader GPUs.

The stream processingmodel influenced the design
of GPUs intended for computing. Starting in 2003, Bill
Dally, leader of the stream processing project at Stan-
ford, began consulting with NVIDIA working with John
Nickolls and Erik Lindholm to transfer stream process-
ing ideas into the design of the GeForce 8 (NV50) GPU.
In 2004, Ian Buck, the principal developer of Brook,
joined NVIDIA and with many collaborators developed
the CUDA programming language.4

The GeForce 8 GPU or G80 introduced streaming
multiprocessors (SMs) that were used to run both ver-
tex and fragment shaders. These SMs could also run
“compute shaders” independent of the graphics pipeline
specifically in the form of CUDA cooperative thread
arrays. A shared memory facilitated communication
between the threads in an array. The G80 “Tesla” GPU
and CUDA were launched in 2006, and they greatly
reduced the barriers to developing GPU-based scientific
and other general-purpose applications.5,6 Figure 1
shows a die photo of a G80 GPU, which consists of 681
million transistors and delivers 346 GFLOPS of FP32
throughput and 86GB/s of DRAMbandwidth.

November/December 2021 IEEE Micro 43

MICROPROCESSOR AT 50

Authorized licensed use limited to: Nvidia Corp. Downloaded on December 10,2021 at 18:51:20 UTC from IEEE Xplore. Restrictions apply.

However, revolutionary hardware and a new pro-
gramming language do not by themselves make a revo-
lution. Legacy high-performance computing (HPC)
applications were primarily written in FORTRAN and
were single-threaded serial programs. G80 was a mas-
sively parallel threaded processor, and CUDA was a
thread- and data-parallel C-like programming language.
David Kirk, NVIDIA’s Chief Scientist, and Wen-mei Hwu,
Professor of Electrical and Computer Engineering at
University of Illinois at Urbana-Champaign (UIUC), pro-
totyped a graduate class at UIUC to produce a new gen-
eration of parallel programmers. The lecture notes from
this class evolved into the popular parallel programming
textbook Programming Massively Parallel Processors,7

which has been translated into many languages and
printings, andwill soon be released in its 4th edition.

At the same time, NVIDIA funded support for CUDA
Centers of Excellence at many universities to promote
the teaching of CUDA and adoption of GPU technology
and parallel programming. Kirk and Hwu also supported
many “teach the teachers” events including the annual
PUMPS summer school at UPC/BSC in Barcelona, Spain.

Feedback from the large and growing GPU comput-
ing community led to the development of HPC-specific
features in the Fermi generation of GPUs in 2010. These
features included improved support for double-preci-
sion floating-point operations, 750 GFLOPS DP in Fermi
versus zero in G80, and reliability, availability, and ser-
viceability (RAS) features including ECC on main mem-
ory and parity protection for on-chipmemories.

With HPC features, high performance, and effi-
ciency, GPUs quickly became the technology of choice

for large scientific computers. A major milestone for
GPU computing was the Titan system consisting of
18,688 NVIDIA Kepler (K20) GPUs at Oak Ridge
National Labs (ORNL), which took the #1 position on
the Top 500 list in November 2012 with a Linpack per-
formance of 17.6 PFLOPS. In June 2018, the Summit
System at ORNL continued the tradition, taking the #1
position with a Linpack performance of 122.3 PFLOPS,
powered by 27,648 NVIDIA Volta (V100) GPUs.8 Six of
the top ten machines on the June, 2021 Top 500 list
were powered by NVIDIA GPUs.

THE CURRENT REVOLUTION IN DEEP
LEARNINGWAS ENABLED BY GPUs ,
AND FURTHER PROGRESS IN DEEP
LEARNING IS LARGELY GATED BY GPU
PERFORMANCE.

The success of GPUs in HPC has required the devel-
opment of a large and diverse software ecosystem,
whose maturation took place over the course of a
decade. Based on the CUDA programming system, the
GPU programming ecosystem now includes other meth-
ods of programming GPUs, such as CUDA Fortran and
OpenACC. The next level of support is a set of numerical
libraries including CuBLAS, CuSparse, and CuFFT that
provide highly optimized code for the key functions of
many numerical programs. Applications can then lever-
age these libraries to exploit GPU capabilities. Today,
over 600 HPC applications are accelerated by GPUs,9

includingmolecular dynamics codes such asGROMACS,
NAMD, AMBER, and LAMMPS; weather codes such as
WRF; fluid dynamics codes such as ANSYS and Open-
FOAM; chemistry codes such as Gaussian, VASP, Quan-
tum Espresso, and GAMESS; and structural analysis
codes such as LS-DYNA andANSYS.

DEEP LEARNING HARDWARE
The current revolution in deep learning was enabled
by GPUs, and further progress in deep learning is
largely gated by GPU performance. Making deep learn-
ing successful has required three ingredients: algo-
rithms, datasets, and hardware. The core algorithms
for deep learning: deep neural networks, convolutional
networks, training with backpropagation, stochastic
gradient descent, and others, had all been developed
in the 1980s or earlier. Large datasets such as PASCAL
VOC and ImageNet were available by 2005. The miss-
ing ingredient was hardware fast enough to train

FIGURE 1. NVIDIA G80 GPU launched November, 2006. Pho-

tograph courtesy of Fritzchens Fritz.

44 IEEE Micro November/December 2021

MICROPROCESSOR AT 50

Authorized licensed use limited to: Nvidia Corp. Downloaded on December 10,2021 at 18:51:20 UTC from IEEE Xplore. Restrictions apply.

a powerful neural network on a large dataset, in
a reasonable amount of time.

This ingredient was provided by easily programma-
ble GPUs with high floating-point performance. The
field of computer vision, for example, was transformed
by the development of AlexNet in 2012, a convolutional
neural network trained on a pair of GeForce 580 (Fermi)
GPUs in two weeks. AlexNet won the ImageNet com-
petition in 2012 with such a large accuracy improve-
ment that the computer vision community largely
abandoned manually designed feature detectors in
favor of neural networks. Similar results followed in
other fields such as speech recognition, natural lan-
guage processing, and recommender systems.

GPUs democratized deep learning, making the
technology accessible to anyone with a GPU-equipped
PC. In 2010, researchers at Google Brain built a deep
neural network to find cats on the Internet using
16,000 CPUs. This experiment was repeated in 2012 on
48 GPUs10 using software that ultimately became
cuDNN, a CUDA library for deep learning. Just as
CUDA simplified the task of scientific programming on
GPUs, cuDNN simplified the task of implementing
deep learning on GPUs, facilitating widespread use by
deep learning researchers and practitioners.

As shown in Figure 2, the complexity of deep learn-
ing models has increased dramatically over time. The
complexity of natural language models, for example,
has increased by 1,000� in only two years from BERT in
2018 to GPT-3 in 2020. These models have significantly
better fidelity, but the ability to train successively more
complex models has depended on increasing hardware
performance.

GPUs have evolved to meet this rapidly growing
demand for deep learning training performance in two

ways: scale-up and scale out. To facilitate scale-out, in
2015, the Pascal GPU introduced NVLink, a high-speed
GPU–GPU communication channel. Then, in 2017, the
Volta GPU introduced NVSwitch to enable high-perfor-
mance networks of GPUs. Nodes of GPUs connected by
NVSwitch share memory and communicate with other
nodes via Infiniband networking. While AlexNet was origi-
nally trained on two GPUs, modern language models are
trained on clusters with many thousands of GPUs. For
example, Selene, which is #6 on the June 2021 Top 500
list, is a deep learning (DL) training cluster consisting of
560 DGX-A100 boxes connected by Infiniband. Each DGX
box contains eight A100 GPUs connected by NVSwitch
for a total of 4,480GPUs.

Figure 3 shows how single GPU performance has
scaled up to meet the demands of deep learning. GPU
inference performance has improved by 317�, more than
doubling each year, from 2012 (Kepler) to 2020 (Ampere),
a trend far exceeding what Moore’s law scaling would
predict. Dubbed Huang’s Law, this increase has been
largely due to the addition of DL-specific data types and
instructions.11 The inference arithmetic performance
available in Kepler was 4 TFLOPS of 32-bit floating-point
(FP32) operations. This data representation exceeds the
precision required for DL (particularly for inference). In
addition, as the most complex instruction available in
Kepler was a fusedmultiply–add (FMA), Kepler could only
amortize the overhead of instruction fetch, decode, and
operand fetch over two math operations per lane.a In
2016, the Pascal architecture increased FP32 perfor-
mance to 10.6 TFLOPS and also added 21.3 TFLOPS

FIGURE 2. Scaling of deep learning: operations required to train vision and NLP models versus time.

aThe GPU’s SIMT architecture amortizes instruction over-
head over the 32-lanes of a warp.

November/December 2021 IEEE Micro 45

MICROPROCESSOR AT 50

Authorized licensed use limited to: Nvidia Corp. Downloaded on December 10,2021 at 18:51:20 UTC from IEEE Xplore. Restrictions apply.

of FP16 performance. Pascal not only delivered higher DL
performance but did so more efficiently because: 1) the
accuracy and dynamic range of FP16 is adequate for
most DL applications; and 2) Pascal’s dot-product
instructions, like FDP4, amortize the instruction overhead
over additional arithmetic operations.

In 2017, Volta introduced amajor advance in DL per-
formance with the Tensor Core architecture. The Volta
Tensor Cores implement a 4�4 FP16 matrix multiply
and accumulate instruction, HMMA, which forms the
inner loop of most DL algorithms. This single instruc-
tion implements 128 floating-point operations (64 FP16
multiplies and 64 FP32 adds), which amortizes instruc-
tion overheads and makes them negligible. As a result,
the GPU Tensor Cores deliver the flexibility of a pro-
grammable architecture with the efficiency of a spe-
cialized DL chip. The FP16 tensor cores in Volta provide
an aggregate 125 TFLOPS of FP16 performance. In 2018,
Turing introduced integer tensor cores, which provide
260 TOPS of INT8 performance through an IMMA
instruction that performs an 8�8 INT8 matrix multiply
and accumulate. This support in Turing was ideal for
most inference tasks for which INT8 has sufficient
accuracy and dynamic range.

In 2020, Ampere introduced tensor core support
for computation on sparse data. These sparse MMA
instructions double performance for weight matrices
where two out of every four elements are zero, called
structured sparsity. The sparse instructions bring
Ampere’s total inference performance to 1,248
TOPS (INT8). Ampere is described in more detail in
in the next section.

As with HPC, software is a key component of the
success of GPUs in deep learning. Starting with the

CuDNN library in 2012, a large ecosystem of deep
learning software has been developed to aid in the
creation and deployment of machine learning applica-
tions. NVIDIA’s Tensor RT (TRT) optimizes inference
code and its Triton Inference Server manages schedul-
ing of multiple models. Third-party frameworks includ-
ing TensorFlow, PyTorch, and Caffe2 are supported.
The DALI library manages the parts of training pipe-
lines auxiliary to deep learning, such as staging and
decompressing the data. A template library called
CUTLASS simplifies the process of developing highly
optimized matrix multiply kernels for each new gener-
ation of GPUs. Libraries supporting applications such
as medical imaging and video analytics are available.
The evolution of software stacks is also critical to DL
performance. In MLPerf Training v1.0 submissions, the
performance of benchmarks improved by up to 2.1�
on the same hardware, due to software enhance-
ments alone.

Because of their high performance and rich soft-
ware ecosystem, today’s GPUs are the dominant
platform for deep learning applications. The most
recent MLPerf results demonstrate that NVIDIA
GPU systems are the fastest commercially available
platforms for both datacenter inference and
training.12–14

BECAUSE OF THEIR HIGH
PERFORMANCE AND RICH
SOFTWARE ECOSYSTEM, TODAY’S
GPUs ARE THE DOMINANT PLATFORM
FOR DEEP LEARNING APPLICATIONS.

FIGURE 3. Huang’s Law: GPU inference performance is more than doubling every year.

46 IEEE Micro November/December 2021

MICROPROCESSOR AT 50

Authorized licensed use limited to: Nvidia Corp. Downloaded on December 10,2021 at 18:51:20 UTC from IEEE Xplore. Restrictions apply.

A100: TODAY’S GPU
The Ampere A100, launched in 2020 and shown in
Figure 4, is the most recent NVIDIA GPU.15 Ampere is
built using a 7-nm technology and includes 54 billion
transistors on a reticle-limited 826-mm2 die. Table 1
compares key attributes of Ampere A100 (2020) to its
predecessor in the datacenter, the Volta V100 (2017)
GPU. Ampere dramatically increases each of these
key hardware features, including 5� greater FP16
throughput, 2.2� more DRAM bandwidth, and 6.7�
more on-chip L2 cache. In addition to massive parallel
computing throughput and memory bandwidth, the
Ampere architecture includes hardware support for
accelerating machine learning and HPC applications
along with features for scalability to large datacenters
and supercomputers.

Ampere also provides support for advances in the
CUDA programming model. For example, Ampere
accelerates CUDA task graphs by automatically
launching dependent compute tasks within complex
task graphs. Ampere also provides hardware support
for arrive–wait barriers that facilitate coordination
of asynchronous tasks in the GPU. Finally, Ampere
provides additional hardware support for CUDA’s
Cooperative Groups, such as a warp-wide reduction
operation that accelerates group-wide collective
operations.

Machine Learning Features
Each Ampere Tensor Core employs its 256 FP16 float-
ing-point units to perform an 8�4�8 mixed-precision
matrix multiply every cycle. The Tensor Core architec-
ture also supports high-throughput computation for

different numerical representations, including binary
(INT1), INT4, INT8, FP16, and BFloat16 (8-bit exponent,
7-bit mantissa or E8:M7). A100 also introduces a new
TensorFloat-32 (TF32) format (E8:M10) that provides
the same exponent dynamic range as FP32 but
reduces the precision of the mantissa to 10 bits. A100
provides hardware for this 19-bit format that runs at
8� the throughput of FP32 but with sufficient preci-
sion to mimic the accuracy of DNNs trained with
FP32.b

Mentioned earlier, A100 also provides hardware
support for structured sparsity in the Tensor Cores
that can be used to dramatically reduce DNN weight
storage and boost throughput by eliminating unneces-
sary arithmetic. Structured sparsity can be applied to
compress the weight matrix (typically used as matrix A
in the C = A�B GEMM formulation in the Tensor Cores)
by requiring two of the four values in each subvector to
be zero. This feature transforms the computation into
a smaller matrix that requires half the operations of a
dense formulation, producing a 2� speedup. While
structured sparsity requires an additional neural net-
work training refinement step, it produces no loss in
accuracy on a wide range of networks including those
for vision, object detection, segmentation, natural lan-
guagemodeling, and language translation.

In the memory system, A100 provides a range of fea-
tures to provide better control over data movement and
placement. To improve efficiency, A100 supports data
transfers directly from thememory hierarchy into shared
memory, without requiring the data to transit through
the register file. A100 also provides a new set of L2
cache control operations that allow the programmer

TABLE 1. V100 and A100 specifications.

Volta V100 Ampere
A100

Increase

FP64 7.8
TFLOPS

19.5 TFLOPS 2.5�

FP16 125
TFLOPS

624b

TFLOPS
5�

DRAM
Bandwidth

900 GB/s 2,000 GB/s 2.2�

NVLink
Bandwidth

300 GB/s 600 GB/s 2�

L2 Capacity 6 MB 40 MB 6.7�
DRAM Capacity 32 GB 80 GB 2.5�

FIGURE 4. NVIDIA A100 GPU, launched November, 2020

(image artistically rendered).

b624 TFLOPS for sparse matrices with 2:1 structured sparsity;
dense FP16 performance is 312 TFLOPS.

November/December 2021 IEEE Micro 47

MICROPROCESSOR AT 50

Authorized licensed use limited to: Nvidia Corp. Downloaded on December 10,2021 at 18:51:20 UTC from IEEE Xplore. Restrictions apply.

to influence the cache replacement policies and effec-
tively dictate which data structures stay resident in the
cache and which can be streamed from DRAM without
polluting the cache. Finally, the L2 cache includes hard-
ware-supported data compression in which data are
kept compressed in both DRAM and L2 (saving band-
width and capacity) and is then uncompressed/com-
pressedwhen they are transferred to and froman SM.

HPC Features
Traditional HPC workloads continue to demand more
double-precision compute performance, memory
bandwidth, and interconnect bandwidth. Leveraging
architecture concepts for GEMM acceleration, the
A100 incorporates Tensor Core support for double-
precision FP64 data types, boosting peak GPU perfor-
mance to 19.5 TFLOPS. In addition, A100 deploys the
third generation of NVLink interconnect, delivering
600 GB/s of total off-chip bandwidth through a combi-
nation of 50 Gb/s pin data rates and 12 NVLink chan-
nels. This high-speed interconnect enables tightly
coupled systems such as the DGX A100 to include
eight fully connected GPUs that can sustain 600 GB/s
between all pairs of GPUs and deliver 150 TFLOPS of
double-precision performance. When extended with
Infiniband, the 560 DGX-A100 systems of Selene
deliver 64 PFLOPS in just 2.6 MW; nine of the ten most
energy-efficient supercomputers on the June 2021
Green 500 list are based on A100 GPUs.

Graphics Features
In addition to traditional raster graphics, the Ampere
architecture includes improved hardware support for
ray tracing. Introduced in the Turing GPU generation,

the NVIDIA RT cores are integrated with the GPU’s
SMs to accelerate bounding-volume hierarchy data
structure traversal and ray-triangle intersection
tests.16 Parallel shader code running on the SM casts
millions of rays and passes them to the RT core, which
then indicates whether each ray has hit a triangle.
Ampere doubles the RT core throughput of Turing,
enabling 2–3� faster frame rendering than software-
only ray tracing on GPUs. Emphasizing the continuing
convergence between graphics and compute, Turing
and now Ampere enable graphics applications to
employ machine-learning-based graphics algorithms
such as deep learning supersampling (DLSS), using
the Tensor Cores to further accelerate ray tracing
pipelines.

THE ROAD AHEAD
GPUs have evolved into powerful parallel comput-
ing platforms with hardware support to accelerate
computer graphics, HPC, and deep learning. In the
coming years, GPUs will continue to evolve in per-
formance, in application areas, in scalability, and in
programmability.

As largely predicted in our article ten years ago,
GPU FP64 performance increased by 20� over the
decade from Fermi in 2010 to Ampere in 2020, an
annual growth rate of 35% (see Figure 5).17 We expect
this trend to roughly continue, with some slowing, in
future GPU generations. While the end of Dennard
scaling in 2005 halted traditional voltage scaling, semi-
conductor feature sizes are still being made smaller.
As GPUs move down the technology curve from the
7 nm of Ampere to 5 nm, 3 nm, and beyond, we will fit
more devices on each die, and the capacitance, and

FIGURE 5. Single GPU performance scaling.

48 IEEE Micro November/December 2021

MICROPROCESSOR AT 50

Authorized licensed use limited to: Nvidia Corp. Downloaded on December 10,2021 at 18:51:20 UTC from IEEE Xplore. Restrictions apply.

hence energy, of a given function will be reduced,
allowing more performance per unit area and power.
Deep learning inference performance has been
increasing at a much faster rate (see Figure 3) of over
100% per year. We expect this trend to continue for
the next several generations but then to converge to
the 35% per year rate as architecture matures and
gains become driven by technology.

AS GPUs MOVE DOWN THE
TECHNOLOGY CURVE FROM THE 7
NMOF AMPERE TO 5 NM, 3 NM, AND
BEYOND,WEWILL FIT MORE DEVICES
ON EACH DIE, AND THE
CAPACITANCE, AND HENCE ENERGY,
OF A GIVEN FUNCTIONWILL BE
REDUCED, ALLOWINGMORE
PERFORMANCE PER UNIT AREA AND
POWER.

A major challenge to the continued scaling of GPU
performance is main memory bandwidth. While bench-
marks like Linpack (HPL) make good use of caches and
can saturate the arithmetic units of an A100, most HPC
and ray-traced graphics applications are memory
bandwidth limited. A typical HPC application needs 1–4
bytes from main memory per FP64 arithmetic opera-
tion. For example, the HPCG benchmark, which is rep-
resentative of codes that use conjugate-gradient
solvers, has a Byte/Flop ratio of 4:1. A major jump in
memory bandwidth came in the Pascal generation with
the move to high-bandwidth memory (HBM) mounted
next to the GPU on a shared silicon interposer. How-
ever, Ampere’s FP64 Tensor Cores and HBM2E DRAM
still deliver a Byte/Flop ratio of only 0.1. We expect addi-
tional innovations in packaging and memory architec-
ture will be needed to continue scaling memory
bandwidth and HPC application performance.

GPUs are ideal platforms for integrating new
domain-specific hardware acceleration. They provide
a programmable platform with a high-bandwidth on-
chip and off-chip memory system and off-chip net-
working. Domain-specific hardware can be added
as new instructions in the SM (as with the tensor
core instructions for deep learning) or as separate
memory clients with operations launched from the
SM (as with the RT cores). In coming years, we
expect that new instructions and memory-based
accelerators will be added to GPUs to support

application areas such as databases, sparse linear
algebra, and bioinformatics.

In addition to scaling up the performance of indi-
vidual GPUs, we expect GPUs to be scaled out to
larger clusters for both DL training and HPC appli-
cations. Today’s NVLink-connected Ampere sys-
tems enable groups of up to 8 GPUs to share
memory at per-GPU bandwidths of 600 GB/s, as if
they were a single GPU. In coming generations, we
expect the off-chip communication bandwidth to
continue to scale and the size of both NVLink-con-
nected nodes and Infiniband-connected clusters to
grow. We also anticipate closer integration between
GPUs, CPUs, and DPUs (smart NICs) to enable
higher bandwidth communication and I/O with less
overhead.

The use of CUDA and associated libraries has sim-
plified the programming of GPUs to the point where
over 600 HPC applications are GPU-accelerated. We
expect that future GPUs will be even easier to program
as better tools and abstractions for programming
them become available. For example, the Legate pro-
gramming system18 allows Numpy programs to be run
on any number of GPUs, from a single one to a 4,480
GPU cluster like Selene. Legate is built on top of
Legion,19 a runtime system that manages both the
task-graph of a multi-GPU application and its data
model. Legion schedules tasks and manages the com-
munication, replication, and migration of data, greatly
simplifying the task of programming a multi-GPU
system.

One challenge in programming future GPUs is the
inherent nonuniform cost of accessing different mem-
ory locations from different SMs. Historically, GPUs
have provided a uniform memory access (UMA) model
in which any memory location is equally accessible
from any SM. With increases in GPU size and multi-
GPU system scale, the UMA model becomes impossi-
ble to maintain, effectively requiring all memory to
appear equally far away. We expect that a shift to a
nonuniform memory access (NUMA) model will be
required to enable SMs to be close to some portion of
memory so that they can exploit that locality for
increased performance and efficiency. This shift will
require future GPU programs to express location and
affinity so threads and the data they operate on can
be co-located. While programmers already do this for
multi-GPU systems, we expect the NUMA model to
become useful within a single GPU as well.

GPUs have come a long way in the 20 years since
the GeForce 256. They have increased in performance
by 390�, have become highly programmable, and
have added domain-specific hardware to support

November/December 2021 IEEE Micro 49

MICROPROCESSOR AT 50

Authorized licensed use limited to: Nvidia Corp. Downloaded on December 10,2021 at 18:51:20 UTC from IEEE Xplore. Restrictions apply.

HPC, deep learning, and ray-traced graphics. We
expect comparable gains in performance and func-
tionality over the next two decades.

ACKNOWLEDGMENTS
The shared effort of thousands of NVIDIA hardware
and software engineers has resulted in the rapid evo-
lution of GPUs over the last two decades. We all look
forward to building the future together.

REFERENCES
1. B. Khailany et al., “Imagine: Media processing with

streams,” IEEE Micro, vol. 21, no. 2, pp. 35–46, Mar./Apr.

2001.

2. W. J. Dally et al., “Merrimac: Supercomputing with

streams,” in Proc. Int. Conf. High Perform. Comput.,

Netw., Storage Anal., 2003, pp. 35–35.

3. I. Buck et al., “Brook for GPUs: Stream computing on

graphics hardware,” ACM Trans. Graph., vol. 23, no. 3,

pp. 777–786, Aug. 2004.

4. J. Nickolls, I. Buck, M. Garland, and K. Skadron,

“Scalable parallel programming with CUDA: Is CUDA

the parallel programming model that application

developers have been waiting for?,” Queue, vol. 6, no. 2,

pp. 40–53, Mar. 2008.

5. E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym,

“NVIDIA tesla: A unified graphics and computing

architecture,” IEEE Micro, vol. 28, no. 2, pp. 39–55,

Mar./Apr. 2008.

6. J. Nickolls and W. J. Dally, “The GPU computing era,”

IEEE Micro, vol. 30, no. 2, pp. 56–69, Mar./Apr. 2010.

7. D. B. Kirk and W.-M. W. Hwu, Programming Massively

Parallel Processors: A Hands-On Approach. San Mateo,

CA, USA: Morgan Kaufmann, 2009.

8. J. Choquette, O. Giroux, and D. Foley, “Volta:

Performance and programmability,” IEEE Micro, vol. 38,

no. 2, pp. 42–52, Mar./Apr. 2018.

9. “GPUs now accelerate almost 600 HPC apps,” Nov.

2018. [Online]. Available: https://www.hpcwire.com/off-

the-wire/gpus-now-accelerate-almost-600-hpc-apps/

10. A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and

N. Andrew, “Deep learning with COTS HPC systems,”

in Proc. Int. Conf. Mach. Learn., 2013, pp. 1337–1345.

11. J.-H. Huang, NVIDIA GPU Technology Conference,

Keynote Lecture, Mar. 28, 2018.

12. “ML Commons,” 2021. [Online]. Available: https://

mlcommons.org/en/

13. “Extending NVIDIA performance leadership with

MLPerf inference 1.0 results,” Apr. 2021. [Online].

Available: https://developer.nvidia.com/blog/

extending-nvidia-performance-leadership-with-mlperf-

inference-1-0-results/

14. “Global computer makers deliver breakthrough MLPerf

results with NVIDIA AI,” Jun. 2021. [Online]. Available:

https://blogs.nvidia.com/blog/2021/06/30/mlperf-ai-

training-partners/

15. J. Choquette, W. Gandhi, O. Giroux, N. Stam, and

R. Krashinsky, “NVIDIA A100 tensor core GPU:

Performance and innovation,” IEEE Micro, vol. 41, no. 2,

pp. 29–35, Mar./Apr. 2021.

16. J. Burgess, “RTX on-the NVIDIA turing GPU,” IEEE Micro,

vol. 40, no. 2, pp. 36–44, Mar./Apr. 2020.

17. S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and

D. Glasco, “GPUs and the future of parallel computing,”

IEEE Micro, vol. 31, no. 5, pp. 7–17, Oct. 2011.

18. M. Bauer and M. Garland, “Legate NumPy: Accelerated

and distributed array computing,” in Proc. Int. Conf.

High Perform. Comput., Netw., Storage Anal., 2019,

pp. 1–23.

19. M. Bauer, S. Treichler, E. Slaughter, and A. Aiken,

“Legion: Expressing locality and independence

with logical regions,” in Proc. Int. Conf. High

Perform. Comput., Netw., Storage Anal., 2012,

pp. 1–11.

WILLIAM J. DALLY is the Chief Scien-

tist and Senior Vice President of

research at NVIDIA Corporation, Santa

Clara, CA, USA, and an Adjunct Profes-

sor and former Chair of computer sci-

ence at Stanford University, Stanford,

CA, USA. His research interests include

domain-specific accelerators, parallel computer architectures,

interconnection networks, and high-speed signaling circuits.

Dally received a Ph.D. degree in computer science in 1986 from

theCalifornia Institute of Technology, Pasadena, CA, USA. He is

a Member of the National Academy of Engineering, and a Fel-

low of IEEE, ACM, and the American Academy of Arts and Sci-

ences. Contact him at bdally@nvidia.com.

50 IEEE Micro November/December 2021

MICROPROCESSOR AT 50

Authorized licensed use limited to: Nvidia Corp. Downloaded on December 10,2021 at 18:51:20 UTC from IEEE Xplore. Restrictions apply.

https://www.hpcwire.com/off-the-wire/gpus-now-accelerate-almost-600-hpc-apps/
https://www.hpcwire.com/off-the-wire/gpus-now-accelerate-almost-600-hpc-apps/
https://mlcommons.org/en/
https://mlcommons.org/en/
https://developer.nvidia.com/blog/extending-nvidia-performance-leadership-with-mlperf-inference-1-0-results/
https://developer.nvidia.com/blog/extending-nvidia-performance-leadership-with-mlperf-inference-1-0-results/
https://developer.nvidia.com/blog/extending-nvidia-performance-leadership-with-mlperf-inference-1-0-results/
https://blogs.nvidia.com/blog/2021/06/30/mlperf-ai-training-partners/
https://blogs.nvidia.com/blog/2021/06/30/mlperf-ai-training-partners/

STEPHEN W. KECKLER is the Vice

President of architecture research at

NVIDIA Corporation, Santa Clara, CA,

USA, and an Adjunct Professor of com-

puter science at the University of Texas

at Austin, Austin, TX, USA. His research

interests include parallel computer

architectures, high-performance computing, energy-efficient

architectures, and embedded computing. Keckler received a

Ph.D. degree in computer science in 1998 fromtheMassachusetts

Institute of Technology, Cambridge, MA, USA. He is a Fellow of

IEEE andACM.Contact himat skeckler@nvidia.com.

DAVID B. KIRK is the former Chief Scien-

tist, Vice President of architecture and

research, and Founder of NVIDIA Res-

earch at NVIDIA Corporation, Santa

Clara, CA, USA. He is currently an inde-

pendent consultant. He hasmade signifi-

cant contributions to graphics hardware

and graphics algorithm research. His current research interests

include computer science education, advancing parallel

programming, robotics, and artificial intelligence. Kirk received a

Ph.D. degree in computer science in 1993 from the Califor-

nia Institute of Technology, Pasadena, CA, USA. He is a

Member of the National Academy of Engineering. Contact

him at dkxxxx@hotmail.com.

November/December 2021 IEEE Micro 51

MICROPROCESSOR AT 50

Authorized licensed use limited to: Nvidia Corp. Downloaded on December 10,2021 at 18:51:20 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

