Math 210, Fall 2015

Collected Homework #5 – due Tuesday, 10/13

1. Define relation \vdash on \mathbb{N} as follows:

 $x \vdash y$ iff $xy \equiv 0$ or 1 (mod 3)

For example: $4 \vdash 6$, since $4 \times 6 = 24 \equiv 0 \pmod{3}$. Also, $4 \vdash 7$, since $4 \cdot 7 = 28 \equiv 1 \pmod{3}$. However, $4 \nvDash 8$, since $4 \cdot 8 = 32 \equiv 2 \pmod{3}$.

For each of the five relation properties discussed in Section 1.4, determine which properties are possessed by \vdash on the set of natural numbers. Justify each of your answers with a proof or a counterexample.

2. Reconsider relation \vdash , but this time defined on the set, S, of natural numbers that are not divisible by 3. That is, $S = \{1, 2, 4, 5, 7, 8, 10, 11, ...\}$

For each of the five relation properties discussed in Section 1.4, determine which properties are possessed by \vdash on the set S. Justify each of your answers with a proof or a counterexample; you may refer back to your proof or example from #1, if it is still valid on set S.

(Note: your results for \vdash as defined on set S should *not* be entirely identical to your results for \vdash on \mathbb{N} . At least one of your results should be different!)