Math 210, Fall 2015
Collected Homework \#5 - due Tuesday, 10/13

1. Define relation \vdash on \mathbb{N} as follows:

$$
x \vdash y \text { iff } x y \equiv 0 \text { or } 1(\bmod 3)
$$

For example: $4 \vdash 6$, since $4 \times 6=24 \equiv 0(\bmod 3)$.
Also, $4 \vdash 7$, since $4 \cdot 7=28 \equiv 1(\bmod 3)$.
However, $4 \nvdash 8$, since $4 \cdot 8=32 \equiv 2(\bmod 3)$.

For each of the five relation properties discussed in Section 1.4, determine which properties are possessed by \vdash on the set of natural numbers. Justify each of your answers with a proof or a counterexample.
2. Reconsider relation \vdash, but this time defined on the set, S, of natural numbers that are not divisible by 3. That is, $S=\{1,2,4,5,7,8,10,11, \ldots\}$

For each of the five relation properties discussed in Section 1.4, determine which properties are possessed by \vdash on the set S. Justify each of your answers with a proof or a counterexample; you may refer back to your proof or example from \#1, if it is still valid on set S .
(Note: your results for \vdash as defined on set S should not be entirely identical to your results for \vdash on \mathbb{N}. At least one of your results should be different!)

