[Note: the procedure described in this handout is adapted from "Theory of Computing: A Gentle Introduction" by Kinber \& Smith, 2001, Prentice-Hall]

Suppose M is DFA with alphabet Σ, state set Q, final state set F, and transition function δ.
Definition: two states $s, t \in Q$ are called "indistinguishable" if, for all strings in $w \in \Sigma^{*}$, the computation on w starting from state s ends in a final state iff the computation on w starting from state t ends in a final state. In other "words," we say s is indistinguishable from t if the condition $\delta^{*}(w, s) \in F \leftrightarrow \delta^{*}(w, t) \in F$. holds for all strings w.

Notation: we write $s \equiv t$ to indicate that s and t are indistinguishable states of a DFA.
Definition: two states $s, t \in Q$ are said to be "indistinguishable by strings of length n or less" if the condition $\delta^{*}(w, s) \in F \leftrightarrow \delta^{*}(w, t) \in F$ holds for all strings w of length n or less.

Notation: we write $s \equiv_{n} t$ to indicate that s and tare indistinguishable by strings of length n or less.

For example: if states s and t are indistinguishable by the strings $\lambda, a, b, a a, a b, b a$, and $b b$, then s and t would be "indistinguishable by strings of length 2 or less," so we could write $s \equiv_{2} t$.

Example: Consider the DFA described by the diagram below:

We have $\Sigma=\{a, b\}, Q=\{0,1,2,3,4,5\}, F=\{1,3,5\}$, and δ according to the diagram.

For each value of n, we wish to find the equivalence classes of states relative to the relation \equiv_{n}. We do so inductively, starting with \equiv_{0}. Two states are indistinguishable by strings of length zero when both are final states or when both are non-final states. Therefore, our \equiv_{0} equivalence classes are $F=\{1,3,5\}$ and $F^{\prime}=\{0,2,4\}$.

Now, when $n>0$, the rule is that $s \equiv_{n} t$ iff both of the following are true:
(a) $s \equiv_{n-1} t$ and
(b) for all $x \in \Sigma, \delta(s, x) \equiv_{n-1} \delta(t, x)$

In other words - s,t are indistinguishable by strings of length $n-1$ or less; and, for each symbol in Σ, the states to with s and t are "mapped" are indistinguishable by strings of length $n-1$ or less.

We'll proceed by testing conditions (a) and (b) above for each pair of states in \equiv_{n-1} in order to find the equivalence classes for \equiv_{n}. We'll know we're done when, for some value of n , the equivalence classes for \equiv_{n} are the same as those for \equiv_{n-1}.

Let's see what all of this means by applying it to the example introduced on the preceding page. We start with \equiv_{0} equivalence classes $F=\{1,3,5\}$ and $F^{\prime}=\{0,2,4\}$. Now, here's how to find the \equiv_{1} equivalence classes...

Start with $\mathrm{F}=\{1,3,5\}$. For each state in this set, let's investigate the computations on a and b :
$\delta(1, a)=5 \in F \quad \delta(3, a)=5 \in F \quad \delta(5, a)=3 \in F$
$\delta(1, b)=4 \in F^{\prime} \quad \delta(3, b)=2 \in F^{\prime} \quad \delta(5, b)=2 \in F^{\prime}$
For each state q in $\mathrm{F}, \delta(q, a) \in F$ and $\delta(q, b) \in F^{\prime}$. Therefore, no pair of states in $\{1,3,5\}$ is distinguishable by either a or b. As a result, $\{1,3,5\}$ will be an equivalence class of \equiv_{1}.

Now, let's carry out the same analysis of $\{0,2,4\}$:
$\delta(0, a)=2 \in F^{\prime} \quad \delta(2, a)=1 \in F \quad \delta(4, a)=0 \in F^{\prime}$
$\delta(0, b)=1 \in F \quad \delta(2, b)=3 \in F \quad \delta(4, b)=5 \in F$
This is a bit more interesting. First, note that states 0 and 4 are not distinguishable by either a or b; for each, a maps to F^{\prime}, while b maps to F. However, state 2 does not follow the same rules - specifically, $\delta(2, a) \in F$, while $\delta(0, a)$ and $\delta(4, a) \in F^{\prime}$. Therefore, state 2 is distinguishable from states 0 and 4 by the symbol a. The result of all of this is that the \equiv_{0} equivalence class $\{0,2,4\}$ gets broken up into two distinct \equiv_{1} equivalence classes: $\{0,4\}$ and \{2\}.

Summary: Our \equiv_{1} equivalence classes are $\{1,3,5\},\{0,4\}$, and $\{2\}$. For the sake of notation, let's call these sets F (as before), A_{1}, and B_{1}, respectively. (The subscript is to connect these sets to \equiv_{1}, but that's a cosmetic choice - call them whatever you want!)

Since the \equiv_{1} classes are not all identical to the \equiv_{0} classes, we must continue this analysis for at least one more step. On the next page, we'll proceed to compute the \equiv_{2} equivalence classes from the \equiv_{1} equivalence classes...

Computation of \equiv_{2} equivalence classes from $\mathrm{F}=\{1,3,5\}, A_{1}=\{0,4\}, B_{1}=\{2\}$.
(Note: since B_{1} is a singleton set, it is already "broken up" as much as possible; we certainly can't distinguish state 2 from itself! So, we'll focus on the other two sets...)

First, look at $\mathrm{F}=\{1,3,5\}$. For inputs a and b , we'll see which \equiv_{1} equivalence class each of these states is mapped to. (NOTE: this is NOT the same as just tracking whether each state goes to a final or non-final state! That's an important distinction, as we will see shortly...)
$\delta(1, a)=5 \in F \quad \delta(3, a)=5 \in F \quad \delta(5, a)=3 \in F$
$\delta(1, b)=4 \in A_{1} \quad \delta(3, b)=2 \in B_{1} \quad \delta(5, b)=2 \in B_{1}$
Note that our results are not all the same this time. While states 3 and 5 are not distinguishable by either a or b, we see that state 1 is distinguishable from the others. In particular, for the symbol $b, 1$ is mapped to a state in A_{1}, while 3 and 5 are both mapped to a state in B_{1}. This implies that $\{1,3,5\}$ is not a \equiv_{2} equivalence class; rather, it must be broken up into two smaller classes, $\{1\}$ and $\{3,5\}$. For the sake of notation, let's call these A_{2} and B_{2}, respectively. (Again, you can name your equivalence classes whatever you like, as long as you keep track! So, we have \equiv_{2} equivalence classes $A_{2}=\{1\}$ and $B_{2}=\{3,5\}$.

Another way of thinking about what we've just shown: since 1 is not in the same \equiv_{2} equivalence class as 3 and 5 , there must be some string of length 2 which distinguishes state 1 from states 3 and 5. If you run through the possibilities (there are only four such strings), you will find that the string $b a$ is the culprit, since $\delta^{*}(1, b a)=0 \notin F$ while $\delta^{*}(3, b a)=\delta^{*}(5, b a)=1 \in F$.

Now, let's look at $A_{1}=\{0,4\}$, to see whether it survives as a \equiv_{2} equivalence class or needs to be broken up into smaller sets... again, we're looking at which \equiv_{1} equivalence class each mapping takes us to:

$$
\begin{array}{ll}
\delta(0, a)=2 \in B_{1} & \delta(4, a)=0 \in A_{1} \\
\delta(0, b)=1 \in F & \delta(4, b)=5 \in F
\end{array}
$$

Again, we see distinguishability here - specifically, states 0 and 4 are distinguished by the letter a. This means A_{1} must be broken into two smaller \equiv_{2} equivalence classes: $\{0\}$ and $\{4\}$. Let's call thee C_{2} and D_{2}, respectively. So, we now have \equiv_{2} equivalence classes $B_{1}=\{2\}, C_{2}=\{0\}$, and $D_{2}=\{4\}$.

Again, what this is telling us is that states 0 and 4 are distinguished from one another by some string of length 2 . One such example is the string $a a$, since $\delta^{*}(0, a a)=1 \in F$, while $\delta^{*}(4, a a)=2 \notin F$.

In summary, our \equiv_{2} equivalence classes are

$$
A_{2}=\{1\}, B_{2}=\{3,5\}, B_{1}=\{2\}, C_{2}=\{0\}, D_{2}=\{4\}
$$

All of these "singleton" classes tell us that states $1,2,0$, and 4 are essential to the DFA's transition function; in other words, there is no redundancy among them. So, the only remaining question is whether states 3 and 5 are distinguishable. To find out for sure, we'll continue our procedure one more step...

Computation of \equiv_{3} equivalence classes from the \equiv_{2} classes:

$$
A_{2}=\{1\}, B_{2}=\{3,5\}, B_{1}=\{2\}, C_{2}=\{0\}, D_{2}=\{4\}
$$

Again, the only remaining question is whether B_{2} is a \equiv_{3} equivalence class. If it is, then we'll be able to conclude that states 3 and 5 are indistinguishable in general. If not, then it will follow that the original DFA was minimal all along! Let's find out...
$\begin{array}{ll}\delta(3, a)=5 \in B_{2} & \delta(5, a)=3 \in B_{2} \\ \delta(3, b)=2 \in B_{1} & \delta(5, b)=2 \in B_{1}\end{array}$
At this point, we are done - we can conclude that states 3 and 5 are indistinguishable for strings of any length.

But wait - how do we know we're done? That is, how do we know for sure there isn't some much longer string that distinguishes states 3 and 5 ? Well, let's imagine (but not actually carry out) the process of using \equiv_{3} equivalence classes to calculate the \equiv_{4} equivalence classes. If we were to continue in this manner, we'd end up doing exactly the same thing we just did above - that is, we'd find that states 3 and 5 are indistinguishable relative to the \equiv_{3} equivalence classes, and are thus \equiv_{4} equivalence classes. For strings of length 5,6 , and so on, the steps would be exactly the same; it would become an endless, repeating loop.
(What we've just done here is essentially the inductive step of a proof by induction - in general, if we find some number, k, such that every \equiv_{k-1} equivalence class is also a \equiv_{k} equivalence class, it must follow that they will remain equivalence classes for \equiv_{n} for all higher values of n.)

Conclusion: the original DFA can be minimized by combining states 3 and 5 into one state, and leaving all of the other states as they are. Therefore, the minimized DFA is as follows:

