
COSC 362: The State Minimization Problem 
 

[Note: the procedure described in this handout is adapted from “Theory of Computing: A Gentle 
Introduction” by Kinber & Smith, 2001, Prentice-Hall] 

 
Suppose M is DFA with alphabet 𝛴, state set Q, final state set F, and transition function 𝛿.  
 
Definition: two states 𝑠, 𝑡 ∈ 𝑄  are called “indistinguishable” if, for all strings in 𝑤 ∈ 𝛴∗, the 
computation on w starting from state 𝑠 ends in a final state iff the computation on 𝑤 
starting from state 𝑡 ends in a final state. In other “words,” we say 𝑠 is indistinguishable 
from 𝑡 if the condition 𝛿∗(𝑤, 𝑠) ∈ 𝐹 ↔ 𝛿∗(𝑤, 𝑡) ∈ 𝐹. holds for all strings 𝑤.  
 
Notation: we write  𝑠 ≡ 𝑡  to indicate that 𝑠 and 𝑡 are indistinguishable states of a DFA. 
 
Definition: two states 𝑠, 𝑡 ∈ 𝑄 are said to be “indistinguishable by strings of length 𝑛 or 
less” if the condition  𝛿∗(𝑤, 𝑠) ∈ 𝐹 ↔ 𝛿∗(𝑤, 𝑡) ∈ 𝐹 holds for all strings 𝑤 of length 𝑛 or less. 
 
Notation: we write 𝑠 ≡𝑛 𝑡 to indicate that s and t are indistinguishable by strings of length 
n or less.   
 

For example: if states  𝑠 and 𝑡 are indistinguishable by the strings 𝜆, 𝑎, 𝑏, 𝑎𝑎, 𝑎𝑏, 𝑏𝑎, and  𝑏𝑏, then 
𝑠 and 𝑡 would be “indistinguishable by strings of length 2 or less,” so we could write 𝑠 ≡2 𝑡. 

 
Example: Consider the DFA described by the diagram below: 

 
 
We have 𝛴 = {𝑎, 𝑏}, 𝑄 = {0,1,2,3,4,5}, 𝐹 = {1,3,5}, and 𝛿 according to the diagram.  
  



For each value of 𝑛, we wish to find the equivalence classes of states relative to the relation 
≡𝑛. We do so inductively, starting with ≡0. Two states are indistinguishable by strings of 
length zero when both are final states or when both are non-final states. Therefore, our ≡0 
equivalence classes are 𝐹 ={1,3,5} and 𝐹′ = {0,2,4}. 
 
Now, when 𝑛 > 0, the rule is that 𝑠 ≡𝑛 𝑡 iff  both of the following are true: 

(a) 𝑠 ≡𝑛−1 𝑡  and 
(b) for all 𝑥 ∈ 𝛴, 𝛿(𝑠, 𝑥) ≡𝑛−1 𝛿(𝑡, 𝑥) 

 
In other words – s,t are indistinguishable by strings of length n-1 or less; and, for each symbol in 
Σ, the states to with s and t are “mapped” are indistinguishable by strings of length n-1 or less.  

 
We’ll proceed by testing conditions (a) and (b) above for each pair of states in ≡𝑛−1 in 
order to find the equivalence classes for ≡𝑛. We’ll know we’re done when, for some value of 
n, the equivalence classes for ≡𝑛 are the same as those for ≡𝑛−1. 
 
Let’s see what all of this means by applying it to the example introduced on the preceding 
page. We start with ≡0 equivalence classes 𝐹 = {1,3,5} and 𝐹′ = {0,2,4}. Now, here’s how to 
find the ≡1 equivalence classes… 
 
Start with F={1,3,5}. For each state in this set, let’s investigate the computations on 𝑎 and 𝑏: 
  
𝛿(1, 𝑎) = 5 ∈ 𝐹   𝛿(3, 𝑎) = 5 ∈ 𝐹 𝛿(5, 𝑎) = 3 ∈ 𝐹 
𝛿(1, 𝑏) = 4 ∈ 𝐹′   𝛿(3, 𝑏) = 2 ∈ 𝐹′ 𝛿(5, 𝑏) = 2 ∈ 𝐹′  
 
For each state q in F, 𝛿(𝑞, 𝑎) ∈ 𝐹 and 𝛿(𝑞, 𝑏) ∈ 𝐹′. Therefore, no pair of states in {1,3,5} is 
distinguishable by either 𝑎 or 𝑏. As a result, {1,3,5} will be an equivalence class of ≡1. 
 
Now, let’s carry out the same analysis of {0,2,4}: 
 
𝛿(0, 𝑎) = 2 ∈ 𝐹′ 𝛿(2, 𝑎) = 1 ∈ 𝐹 𝛿(4, 𝑎) = 0 ∈ 𝐹′ 
𝛿(0, 𝑏) = 1 ∈ 𝐹   𝛿(2, 𝑏) = 3 ∈ 𝐹 𝛿(4, 𝑏) = 5 ∈ 𝐹 
 
This is a bit more interesting. First, note that states 0 and 4 are not distinguishable by 
either 𝑎 or 𝑏; for each, 𝑎 maps to F’, while 𝑏 maps to F. However, state 2 does not follow the 
same rules – specifically, 𝛿(2, 𝑎) ∈ 𝐹, while 𝛿(0, 𝑎) and 𝛿(4, 𝑎) ∈ 𝐹′. Therefore, state 2 is 
distinguishable from states 0 and 4 by the symbol 𝑎. The result of all of this is that the ≡0 
equivalence class {0,2,4} gets broken up into two distinct ≡1 equivalence classes: {0,4} and 
{2}.  
 
Summary: Our ≡1 equivalence classes are {1,3,5}, {0,4}, and {2}. For the sake of notation, 
let’s call these sets 𝐹 (as before), 𝐴1, and 𝐵1, respectively. (The subscript is to connect these 
sets to ≡1, but that’s a cosmetic choice – call them whatever you want!)  
 
Since the ≡1 classes are not all identical to the ≡0 classes, we must continue this analysis 
for at least one more step. On the next page, we’ll proceed to compute the ≡2 equivalence 
classes from the ≡1 equivalence classes… 
  
  



Computation of ≡2 equivalence classes from F={1,3,5}, 𝐴1 = {0,4}, 𝐵1 = {2}. 
 
(Note: since 𝐵1  is a singleton set, it is already “broken up” as much as possible; we certainly 
can’t distinguish state 2 from itself! So, we’ll focus on the other two sets…) 
 
First, look at F={1,3,5}. For inputs a and b, we’ll see which ≡1 equivalence class  each of 
these states is mapped to. (NOTE: this is NOT the same as just tracking whether each state 
goes to a final or non-final state! That’s an important distinction, as we will see shortly…) 
 
𝛿(1, 𝑎) = 5 ∈ 𝐹   𝛿(3, 𝑎) = 5 ∈ 𝐹 𝛿(5, 𝑎) = 3 ∈ 𝐹 
𝛿(1, 𝑏) = 4 ∈ 𝐴1   𝛿(3, 𝑏) = 2 ∈ 𝐵1 𝛿(5, 𝑏) = 2 ∈ 𝐵1  
 
Note that our results are not all the same this time. While states 3 and 5 are not 
distinguishable by either  𝑎 or 𝑏, we see that state 1 is distinguishable from the others. In 
particular, for the symbol 𝑏, 1 is mapped to a state in 𝐴1, while 3 and 5 are both mapped to 
a state in 𝐵1. This implies that  {1,3,5} is not a ≡2 equivalence class; rather, it must be 
broken up into two smaller classes, {1} and {3,5}. For the sake of notation, let’s call these 𝐴2 
and 𝐵2, respectively. (Again, you can name your equivalence classes whatever you like, as 
long as you keep track!) So, we have ≡2 equivalence classes 𝐴2 = {1} and 𝐵2 = {3,5}. 
 

Another way of thinking about what we’ve just shown: since 1 is not in the same ≡2 equivalence 
class as 3 and 5, there must be some string of length 2 which distinguishes state 1 from states 3 
and 5. If you run through the possibilities (there are only four such strings), you will find that 
the string 𝑏𝑎 is the culprit, since 𝛿∗(1, 𝑏𝑎) = 0 ∉ 𝐹 while 𝛿∗(3, 𝑏𝑎) = 𝛿∗(5, 𝑏𝑎) = 1 ∈ 𝐹.  

 
Now, let’s look at 𝐴1={0,4}, to see whether it survives as a ≡2 equivalence class or needs to 
be broken up into smaller sets… again, we’re looking at which ≡1 equivalence class each 
mapping takes us to: 
 
𝛿(0, 𝑎) = 2 ∈ 𝐵1  𝛿(4, 𝑎) = 0 ∈ 𝐴1 
𝛿(0, 𝑏) = 1 ∈ 𝐹   𝛿(4, 𝑏) = 5 ∈ 𝐹 
 
Again, we see distinguishability here – specifically, states 0 and 4 are distinguished by the 
letter 𝑎. This means 𝐴1 must be broken into two smaller ≡2 equivalence classes: {0} and 
{4}.  Let’s call thee 𝐶2 and 𝐷2, respectively.  So, we now have ≡2 equivalence classes 
𝐵1 = {2}, 𝐶2 = {0}, and 𝐷2 = {4}.  
 

Again, what this is telling us is that states 0 and 4 are distinguished from one another by some 
string of length 2. One such example is the string 𝑎𝑎, since 𝛿∗(0, 𝑎𝑎) = 1 ∈ 𝐹, while 
𝛿∗(4, 𝑎𝑎) = 2 ∉ 𝐹. 
 

In summary, our ≡2 equivalence classes are 
𝐴2 = {1}, 𝐵2 = {3,5}, 𝐵1 = {2}, 𝐶2 = {0}, 𝐷2 = {4} 

 
All of these “singleton” classes tell us that states 1, 2, 0, and 4 are essential to the DFA’s 
transition function; in other words, there is no redundancy among them. So, the only 
remaining question is whether states 3 and 5 are distinguishable. To find out for sure, we’ll 
continue our procedure one more step… 
  



Computation of ≡3 equivalence classes from the ≡2 classes: 
𝐴2 = {1}, 𝐵2 = {3,5}, 𝐵1 = {2}, 𝐶2 = {0}, 𝐷2 = {4} 

 
Again, the only remaining question is whether 𝐵2 is a  ≡3 equivalence class. If it is, then 
we’ll be able to conclude that states 3 and 5 are indistinguishable in general. If not, then it 
will follow that the original DFA was minimal all along! Let’s find out… 
 
𝛿(3, 𝑎) = 5 ∈ 𝐵2 𝛿(5, 𝑎) = 3 ∈ 𝐵2 
𝛿(3, 𝑏) = 2 ∈ 𝐵1 𝛿(5, 𝑏) = 2 ∈ 𝐵1  
 
At this point, we are done – we can conclude that states 3 and 5 are indistinguishable for 
strings of any length.  
 
But wait – how do we know we’re done? That is, how do we know for sure there isn’t some 
much longer string that distinguishes states 3 and 5? Well, let’s imagine (but not actually 
carry out) the process of using ≡3 equivalence classes to calculate the ≡4 equivalence 
classes. If we were to continue in this manner, we’d end up doing exactly the same thing we 
just did above – that is, we’d find that states 3 and 5 are indistinguishable relative to the ≡3 
equivalence classes, and are thus ≡4 equivalence classes. For strings of length 5, 6, and so 
on, the steps would be exactly the same; it would become an endless, repeating loop. 
 

(What we’ve just done here is essentially the inductive step of a proof by induction – in general, 
if we find some number, 𝑘, such that every ≡𝑘−1 equivalence class is also a ≡𝑘 equivalence class, 
it must follow that they will remain equivalence classes for ≡𝑛 for all higher values of 𝑛.) 

 
Conclusion: the original DFA can be minimized by combining states 3 and 5 into one state, 
and leaving all of the other states as they are. Therefore, the minimized DFA is as follows: 
 

 
 

 


