
The General Binomial Theorem: Part 1

Introduction

One of most basic algebraic formulas which a student encounters in high school curriculum is

the following

and its variant for . And after many exercises and problems later one encounters

another formula of similar nature namely

and one wonders if there are similar formulas for higher powers of .

This optimism is amply rewarded and further down the mathematical curriculum one

encounters a general formula for positive integral powers of  and the result is important

enough to deserve a name: The Binomial Theorem. The Binomial Theorem states that if  is a

positive integer then

and the right hand side above is sometimes written compactly as

The symbol  is called a binomial coefficient and is defined for all numbers  and

non-negative integers  by

The binomial theorem has an easy proof based on induction and it is purely an algebraic result.

Our topic of discussion today is an extension of the above result for the case when  is not

necessarily a positive integer. In that case the result is known by the name The General

Binomial Theorem or Binomial Theorem for General Index and it transcends the powers of

algebra and belongs more properly to the field of mathematical analysis. We turn to this

powerful result next.

The General Binomial Theorem

The general binomial theorem does not try to deal with the expression  for all values

of  rather it is a conditional result and is presented in the following form:

If  are real numbers with  then
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Thus the formula for  is no longer a finite expression but rather an infinite series and

we have a condition that . The series involved is called the binomial series and it is

absolutely convergent when  and divergent when . We will talk later about its

behavior when . The proof of the above formula is difficult and it belongs to the

infamous category of theorems whose proofs lie beyond the scope of the book/syllabus.

In order to prove the general binomial theorem we need two results from differential calculus:

 for real  and . This result is already established as one of

the standard limits in an earlier post.

Taylor's Theorem with Cauchy's Form of Remainder: This we discuss next along

with its proof.

Taylor's Theorem with Cauchy's Form of Remainder

We have already encountered a version of Taylor's theorem with Peano's form of remainder in

an earlier post (see another proof available on MSE). Here we need a stronger version of

Taylor's theorem and undoubtedly it needs stronger hypotheses to remain valid. We state the

theorem below:

Taylor's Theorem: Let  be a positive integer. If  is a function such that  is

continuous in  and  exists in  then

where

for some number  and any chosen integer  with .

The proof is based on Rolle's Theorem. Let us put  and define a function  by

and another function  by

where  is some integer between  and . Clearly  is continuous on  and

differentiable on  and we have . Therefore by Rolle's Theorem there is

a value  such that . Moreover since  we can write

 for some  and thus . The derivative  is given by
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and  implies that

or

Noting the value of  we see that the proof of the theorem is complete.

The term  is said to be the remainder after  terms in the Taylor's series expansion for

. When  we obtain the Lagrange's form of Remainder namely

and if  then we get Cauchy's form of Remainder

Note that the statement of Taylor's theorem and the proof above assumes that  but it is

easily seen that it holds even if . A particular instance of this theorem is used to find

infinite series expansion of certain functions. If we put  and  in the Taylor's

theorem we obtain the following result which goes by the name of Maclaurin's series:

where

for some  and  an integer between  and .

As can be seen the value of  depends on  as well  and . Also note that the value of 

itself is based on . Normally for  we use one of the two choices mentioned above (i.e. use

Lagrange's or Cauchy's form of remainder). Let's then write  for  assuming that a

reasonable choice of  has been made. If for certain values of  we can ensure that

 as  then from equation  we obtain an infinite series for  as

and this is valid for all those values of  for which  as . In practice we

usually show that for values of  in a certain range and any  the expression
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 as  and thus obtain the above Maclaurin's series for .

The easiest examples of such series are obtained for  as follows:

and in each case it is easily proven that  as  for all real values of .

Therefore the above series expansions are valid for all real values of .

Proof of The General Binomial Theorem

Now it is time to apply Taylor's theorem on function  where  are real

numbers and  so that . Clearly the limit formula

mentioned above implies that the derivative of  is  for real  and

. Therefore  and it is easily seen that  exists for all positive

integers  and . Moreover we have

and by Taylor's theorem we have

or

where we use the Cauchy's form of remainder

If  then it is easily checked that the expression  lies in  for all .

Further  is less than  if  and it is less than  if

. Hence
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therefore  as . It follows from equation  that  as  for

all real values of  and  with . Therefore taking limits as  in equation 

we get the general binomial theorem

for all real  with .

Note that our proof of the binomial theorem is based on the derivative formula 

which in turn is based on the limit formula  and therefore one should not use binomial

theorem in proving the derivative formula for . However many calculus textbooks perform a

kind of intellectual fraud by presenting the following proof of derivative formula for :

The use of general binomial theorem is justified because as  we can ensure that

. The real problem lies in the circular nature of the proof above because the binomial

theorem itself is proved using this derivative formula. Note that if  is a positive integer then it

is possible to use the binomial theorem to express  as a finite sum and then obtain the

same result.

We can salvage the above calculation of derivative of  if we can somehow establish the

binomial theorem for general index without the use of derivatives. Surprisingly it is possible to

prove the general binomial theorem without using theorems of differential calculus and we will

have a look at it in the next post.
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