
Section 1.3: Equal Temperament 

 

Both of the tuning systems we’ve considered thus far – Pythagorean and just intonation – use frequency 

ratios to determine which tones to include within each octave. Pythagorean is based entirely on 

preserving all octaves and (almost) all perfect fifths; just intonation also preserves all octaves, but allows 

certain fifths to become imperfect, or “broken,” in order to preserve some other desirable intervals 

(such as thirds and sixths). The next system we'll consider, called “equal temperament,” is based on an 

entirely different consideration.  

 

One drawback of both systems considered thus far is the problem of inconsistent semitones – that is, 

each individual step (actually called a “half step” in musical terminology) does not have the same 

frequency ratio as each of the others. For example, in a Pythagorean tuning system based on “C,” the 

first semitone, C-C#, has a frequency ratio of 256/243 (or about 1.0535), while the second semitone, C#-

D, has frequency ratio of 2187/2048 (1.0679). This inconsistency – which persists throughout the scale – 

makes it impossible to “transpose” a melody or chord without fundamentally changing its sound. Just 

intonation has this drawback as well (as seen in the homework). 

 

The desire for a tuning system that allows for transposition, while still almost preserving desirable just 

intonation intervals such as thirds, fourths, fifths, and sixths, is what leads to the development of “equal 

temperament.” This new tuning system is designed based on the following criteria: 

 Preserve all octaves – that is, pairs of notes separated by an octave will always have a frequency 
ratio of exactly 2/1 

 Consistent semitones –pairs of notes separated by 1 semitone will always have the same 
frequency ratio – no exceptions! 

 

The trick to constructing 12-tone equal temperament (hereafter referred to as “12-TET”) is to figure out 

what semitone frequency ratio we need to use in order to preserve both consistent semitones and 

octaves. If we have twelve semitones to the octave, then raising a note by semitones twelve times must 

have the cumulative effect of raising it by an octave. Mathematically: if 𝑅 is the frequency ratio of a 

semitone, then 𝑅 multiplied by itself 12 times – that is, 𝑅12 - must be equal to 2. The only frequency 

ratio with this desired property is the twelfth root of 2:𝑅 = √2
12

, or about 1.0595. Under 12-TET, every 

semitone is tuned according to this frequency ratio.  

  



For our other tuning systems, we presented a keyboard diagram summarizing one octave of frequencies 

in the system. The corresponding diagram for 12-TET is shown below, with “R” inserted in place of √2
12

: 

 

For example, consider the piano frequencies diagram that appeared on the first page of Section 1.0. This 
diagram, which shows the actual tuning used on most modern keyboards, is based on the 12-TET system 
described above, with A4 (the fourth A on the keyboard) tuned to exactly 440 Hz. Below we’ll see how 
the frequencies of the notes in the octave from A4:440 to A5:880 are obtained: 
 
A4: 440 Hz 

A#4: 440 × √2
12

≈ 466.16 Hz 

B4: 440 × ( √2
12

)
2

≈ 493.88 Hz 

C4: 440 × ( √2
12

)
3

≈ 523.25 Hz 

…and so on, as shown in the diagram to the right.  
 
Note that the next higher A has frequency  

A5: 440 × ( √2
12

)
2

= 440 × 2 = 880 Hz, 

as required. 
 
 
Now that all semitones have the same frequency ratio, we can easily find frequency ratios for other 
intervals as well based on their widths in semitones. For example, consider the “perfect fifth” interval, 
whose width is traditionally seven semitones. (Recall that the “ideal” frequency ratio of a perfect fifth is 
3/2, or 1.5.) We’ll consider the A-E perfect fifth as a working example. If we are given the frequency of 
the A, then we must raise by a semitone 7 times to find the frequency of the next higher E. This requires 

multiplying the frequency of the A by √2
12

 seven times; or, equivalently, it requires multiplying by 

( √2
12

)
7

, which (use your calculator!) is approximately 1.4983. This is the 12-TET frequency ratio for all 

seven-semitone intervals. (Note that it is not exactly 1.5… but, it is very close!)  
 
As another example, consider the major third, which is a four-semitone interval. By the same reasoning 

used in the preceding paragraph, the 12-TET frequency ratio of a major third would be ( √2
12

)
4

, or 

approximately 1.2599. (Again, note that this is close to the “ideal” frequency ratio of 5/4, or 1.25.) It’s 
instructive to find this frequency ratio in yet another way: note that a major third (four semitones) is 
exactly 1/3 of an octave (12 semitones). This means the frequency ratio of a major third should be a 
number, we’ll call it R for now, such that multiplying by T three times gives us a result of 2. In other 



“words,” we should have 𝑅3 = 2, which implies 𝑅 = √2
3

 .  If you enter this into your calculator, you’ll 

find that this result, approximately 1.2599, is consistent with the ( √2
12

)
4

 we obtained earlier, as it 

should be!  
 
The point of the preceding example is to justify a change in notation, which we will use from here on 

out. In general, the number √2
2

 may be written in the exponential form 2
1

12, and ( √2
12

)
𝑛

 (where n is any 

whole number) may be written as 2𝑛 12⁄ . More generally, the nth root of any number can be written 
using the exponent 1/n – that is, 

√𝒂
𝒏

= 𝒂𝟏 𝒏⁄  
 

where “a” can be any positive number.  
 
Further, using the “power-of-a-power rule” for exponents (see section 1.3.2 if this is unfamiliar), it 
follows that 

( √𝒂
𝒏

)
𝒎

= 𝟐𝒎 𝒏⁄ . 
 

In particular, in the 12-TET tuning system, every m-semitone interval has the frequency ratio 2𝑚 12⁄ .  
 
So, for example, refer back a few paragraphs to the discussion of a major third (four semitones) under 

12-TET. The frequency ratio of this interval, ( √2
12

)
4

, can be rewritten as 24 12⁄ . Also note that the 

fraction 4/12 reduces to 1/3, which means our frequency ratio can also be rewritten as 21 3⁄ ; this 

corresponds to the observation that the frequency ratio must also be equal to √2
3

.  
 
For further review of properties of exponents (and logarithms), see Section 1.3.2.)  
 
 Practice Exercises (answers are on the next page): 

1. Suppose a standard 12-tone keyboard is tuned using 12-TET with an A tuned to 450 Hz. Find the 
frequency of the next higher C, the next higher E, and the next lower D.  
 

2. Suppose a pentatonic scale is tuned using 5-TET, with base note A:440 Hz. Find the frequencies 
of the other notes in the pentatonic scale (up to A:880 Hz).  
 

 

 
OK, I’ve got this one tuned to 450… now what? I’m just a kitten, help me out here… 



Practice Exercise Answers 
 

1. Keep in mind that 12-TET frequency ratios depend entirely on the number of semitones 
between the upper and lower notes: 

 Next higher C: first notice that A-C is a three-semitone interval. Therefore, the 

corresponding frequency ratio is 23 12⁄  (which is about 1.189). So, to raise from A:450 to the 
next higher C, we’d multiply by this frequency ratio:  

𝟒𝟓𝟎 × 𝟐𝟑 𝟏𝟐⁄ ≈ 𝟓𝟑𝟓. 𝟏𝟒 𝑯𝒛 
 

Note: If you round off 23 12⁄  to 1.189 before multiplying, you end up with 535.05 – this is not 
a huge error (only about 0.1 Hz), but it’s best to avoid rounding errors whenever possible. It 
is strongly recommended to let the calculator do its job, by using exact quantities at each 
step of a calculation rather than rounding off at intermediate steps. ( 
 

 Next higher E: This is very similar to the previous part of the problem; the only difference is 

that, since C-E is a seven semitone interval, we’ll multiply by the frequency ratio 27 12⁄ : 

450 × 27 12⁄ ≈ 674.24 𝐻𝑧 
 

 Next lower D: The number of semitones between an A and the next lower D is seven, so our 

frequency ratio is again 27 12⁄ . However, since we’re lowering the pitch this time, we will 
divide by this frequency ratio to tune the next lower D: 

450 ÷ 27 12⁄ ≈ 300.34 𝐻𝑧 
 

Alternate solution: Another way to approach this would be to start by dropping down to the 
next-lower A, whose frequency is 450 ÷ 2 = 225 𝐻𝑧. Then, we could count from that A up 
to the next D, finding that A-D is a five semitone interval. Therefore, we’d raise A:225 by the 

frequency ratio 25 12⁄ :  

225 × 2
5

12 ≈ 300.34 𝐻𝑧 
 

Notice that dividing by 2
7

12 has the same effect as dividing by 2 and then multiplying by 2
5

12. 
This is a consequence of the division rule for exponents (covered in more detail in section 
1.3.2).  
 

2. Under 5-TET, the frequency ratio of one “semitone” would be 21 5⁄  rather than 2
1

12. So, to find 
the frequency of each note in the 5-TET pentatonic scale, we’d start from A:440 and repeatedly 

multiply by 21 5⁄   (which, incidentally, is about 1.1487). 

 440 Hz 

 440 × 21 5⁄ ≈ 505.43 𝐻𝑧 
 (440 × 21 5⁄ ) × 21 5⁄ ≈ 580.58 𝐻𝑧 (or, equivalently: 440 × 22 5⁄ ≈ 580.58) 

 440 × 23 5⁄ ≈ 666.92 𝐻𝑧 

 440 × 24 5⁄ ≈ 766.08 𝐻𝑧 
 440 × 2 = 880 𝐻𝑧 
 
Side note: compare these results to the 12-TET piano tuning table from earlier in this section. What 12-
TET frequencies are the closest matches to these pentatonic frequencies? For example, 505.43 Hz is 
between B:493.88 and C:523.25, but slightly closer to B. How about the others 


