Urban Welfare: Tourism in Barcelona

Treb Allen

Simon Fuchs

Sharat Ganapati

Georgetown & NBER

Rocio Madera

SMU & CESifo

Alberto Graziano Ju

Judit Montoriol-Garriga

CaixaBank Research*

Boston University September 2023

* The views expressed herein are those of the authors and not necessarily those of CaixaBank, the Federal Reserve Bank of Atlanta, or the Federal Reserve System.

What is the spatial effect of an economic shock?

What is the spatial effect of an economic shock?

• Option 1: Regression based framework, e.g.:

$$\mathbf{y}_{it} = \beta \times \mathbf{shock}_{it} + \delta_i + \delta_t + \varepsilon_{it}$$

- + "Lets the data speak"; relaxes parametric assumptions (e.g. Frechet).
- No insight into aggregate & welfare effects; ignores GE spatial linkages.

What is the spatial effect of an economic shock?

• Option 1: Regression based framework, e.g.:

$$\mathbf{y}_{it} = \beta \times \mathbf{shock}_{it} + \delta_i + \delta_t + \varepsilon_{it}$$

- + "Lets the data speak"; relaxes parametric assumptions (e.g. Frechet).
- No insight into aggregate & welfare effects; ignores GE spatial linkages.
- Option 2: Model based framework: e.g.:

$$\hat{y}_{it} = \sum_{j=1}^{J} \pi_{ij} imes \hat{shock}_{jt} imes \hat{y}_{jt}^{ heta}$$

- + Incorporates aggregate & welfare effects + GE spatial linkages.
- Relies on model assumptions / simplifications; results can be opaque.

- Regression based approach, designed by theory.
 - Welfare effects of (local) shocks with minimal modeling assumptions.
 - "Lets the data speak": Incorporates GE spatial linkages into empirical framework.

- Regression based approach, designed by theory.
 - Welfare effects of (local) shocks with minimal modeling assumptions.
 - "Lets the data speak": Incorporates GE spatial linkages into empirical framework.
- Based on two theoretical insights from simple model:
 - 1. Envelope theorem applied to residents' consumption & commuting \longrightarrow Analytical Welfare
 - 2. Perturbation to market clearing \longrightarrow GE spatial linkages

- Regression based approach, designed by theory.
 - Welfare effects of (local) shocks with minimal modeling assumptions.
 - "Lets the data speak": Incorporates GE spatial linkages into empirical framework.
- Based on two theoretical insights from simple model:
 - 1. Envelope theorem applied to residents' consumption & commuting \rightarrow Analytical Welfare
 - 2. Perturbation to market clearing \longrightarrow GE spatial linkages

• Apply methodology to estimate welfare effect of tourism in Barcelona:

- Rich new data on expenditure and income spatial patterns
- Causal (shift-share) identification from variation in tourist timing from RoW

- Regression based approach, designed by theory.
 - Welfare effects of (local) shocks with minimal modeling assumptions.
 - "Lets the data speak": Incorporates GE spatial linkages into empirical framework.
- Based on two theoretical insights from simple model:
 - 1. Envelope theorem applied to residents' consumption & commuting \rightarrow Analytical Welfare
 - 2. Perturbation to market clearing \longrightarrow GE spatial linkages

• Apply methodology to estimate welfare effect of tourism in Barcelona:

- Rich new data on expenditure and income spatial patterns
- Causal (shift-share) identification from variation in tourist timing from RoW
- Show that it outperforms options 1 & 2.

Literature and Contribution

First-Order Impact of Price Shocks

• Deaton (1989), Kim & Vogel (2020), Atkin et al. (2018), Baqaee & Burstein (2022)

Small shocks in general equilibrium

• Allen et al. (2020), Baqaee & Farhi (2019), Kleinman et al. (2020), Porto (2006)

Impact of Tourism

• Almagro & Domínguez-lino (2019), García-López et al. (2019), Faber & Gaubert (2019)

Urban Quantitative Spatial Economics

• Ahlfeldt et al. (2015), Monte et al. (2018), Allen & Arkolakis (2016), Heblich et al. (2020)

Big Data Spatial Economics

• Athey et al. (2020), Couture et al. (2020), Davis et al. (2019), Agarwal et al. (2017), Miyauchi et al. (2021)

Outline of Talk

A General Methodology for (small) Urban Shocks

Tourism in Barcelona

Empirical Strategy and Identification

Is Tourism Good for Locals?

Comparison with a Quantitative GE Model

Conclusion

Setup

- A city is a set of $\{1, ..., N\} \equiv N$ blocks.
- Each $n \in \mathcal{N}$ inhabited by representative resident
 - with homothetic preferences.
- Each $i \in \mathcal{N}$ inhabited by representative firm producing differentiated variety
 - with CRS technology.
- Residents Blocks are separated by (iceberg) commuting and trade costs.
- Tourists reside in RoW i = 0, produce own (numeraire) variety.

Setup

- A city is a set of $\{1, ..., N\} \equiv N$ blocks.
- Each $n \in \mathcal{N}$ inhabited by representative resident
 - with homothetic preferences.
- Each $i \in \mathcal{N}$ inhabited by representative firm producing differentiated variety
 - with CRS technology.
- Residents Blocks are separated by (iceberg) commuting and trade costs.
- Tourists reside in RoW i = 0, produce own (numeraire) variety.

Question

Impact of a (foreign) demand shock $E^T \equiv \{E_1^T, ..., E_N^T\}$ on residents $\{1, ..., N\}$ welfare?

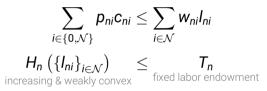
Residents

Residents

• Representative resident *n* consumes/commutes to solve:

$$\max_{[\mathbf{c}_{ni}, l_{ni}]} u_n \left(\{ \mathbf{c}_{ni} \}_{i \in \{0, \mathcal{N}\}} \right)$$

s.t. to budget & labor constraints:

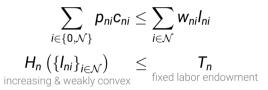


Residents

• Representative resident *n* consumes/commutes to solve:

$$\max_{[c_{ni}, l_{ni}]} u_n \left(\{ c_{ni} \}_{i \in \{0, \mathcal{N}\}} \right)$$

s.t. to budget & labor constraints:



• Homothetic demand $\implies u_n = v_n/G(\mathbf{p}_n)$, where income v_n solves:

$$\mathbf{v}_n \equiv \max_{\{l_{ni}\}} \sum_{j \in \mathcal{N}} w_j l_{nj}$$

s.t. the labor constraint.

Insight 1: An analytical expression for welfare impact of (small) shocks Q: What is the first order impact of a change in prices and/or wages on the welfare of residents in *n*?

• Optimization gives indirect utility $u_n = \frac{T_n - J(w_n)}{G(p_n)}$

• Then envelope theorem yields

$$\mathbf{d} \ln \mathbf{u} \text{tility}_{n} = \underbrace{\sum_{i} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{m} \mathbf{u} \mathbf{t} \mathbf{n} \mathbf{g}_{n \to i} \times \partial \ln \mathbf{w} \mathbf{g} \mathbf{e} \mathbf{s}_{i}}_{\Delta \text{Spatial Income}} - \underbrace{\sum_{i} \mathbf{s} \mathbf{p} \mathbf{e} \mathbf{n} \mathbf{d} \mathbf{n} \mathbf{g}_{n \to i} \times \partial \ln \mathbf{p} \mathbf{r} \mathbf{c} \mathbf{e} \mathbf{s}_{i}}_{\Delta \text{Spatial Price Index}}$$
(1)

Insight 1: An analytical expression for welfare impact of (small) shocks **Q**: What is the first order impact of a change in prices and/or wages on the welfare of residents in *n*?

• Optimization gives indirect utility $u_n = \frac{T_n}{T_n}$

 $\frac{T_n \quad J(\boldsymbol{w}_n)}{G(\boldsymbol{p}_n)}$ Price aggregator

• Then envelope theorem yields

$$\mathsf{d} \ln \mathbf{u}_n = \underbrace{\sum_{i} \mathbf{c}_{ni} \times \partial \ln \mathbf{w}_i}_{\Delta \text{Spatial Income}} - \underbrace{\sum_{i} \mathbf{s}_{ni} \times \partial \ln \mathbf{p}_i}_{\Delta \text{Spatial Price Index}}$$

• Extends the insights of e.g. Houthakker (1952), Domar (1961), Hulten (1978), Deaton (1989), Porto (2006) to an urban setting with commuting.

• Representative firm in location $i \in \mathcal{N}$ combines labor, capital and a specific factor to produce its differentiated variety, with share of $\theta_i^l(\theta^k)$ of income accruing to labor (capital).

- Representative firm in location $i \in \mathcal{N}$ combines labor, capital and a specific factor to produce its differentiated variety, with share of $\theta_i^l(\theta^k)$ of income accruing to labor (capital).
- In equilibrium:
 - Firm income is equal to total sales:

$$y_i = p_i q_i = \sum_{n \in \mathcal{N}} s_{in} v_n + s_i E^T,$$

where $s_i E^T$ is the demand shock in *i*.

- Representative firm in location $i \in \mathcal{N}$ combines labor, capital and a specific factor to produce its differentiated variety, with share of $\theta_i^l(\theta^k)$ of income accruing to labor (capital).
- In equilibrium:
 - Firm income is equal to total sales:

$$y_i = p_i q_i = \sum_{n \in \mathcal{N}} s_{in} v_n + s_i E^T,$$

where $s_i E^T$ is the demand shock in *i*.

• Fraction θ_i^l of firm income accrues to labor:

$$\sum_{n \in \mathcal{N}} w_i I_{ni} = \theta_i^l \left(\sum_{n \in \mathcal{N}} s_{in} v_n + s_i E^T \right)$$

Insight 2: An analytical expression for GE propagation of shocks Q: What is the short-run impact of a change in E^{T} on prices and wages?

Insight 2: An analytical expression for GE propagation of shocks **Q**: What is the short-run impact of a change in E^{τ} on prices and wages?

• Holding labor & exp. shares fixed and perturbing the market clearing conditions:

$$\partial \ln \mathbf{p} = \beta \left(\mathbf{M} d \ln \mathbf{w} + \mathbf{D}^{\mathsf{T}} \partial \ln \mathbf{E}^{\mathsf{T}} \right)$$
$$\partial \ln \mathbf{w} = \beta \left(\mathbf{I} - \mathbf{M} \right)^{-1} \mathbf{D}^{\mathsf{T}} \partial \ln \mathbf{E}^{\mathsf{T}}$$

where $\beta \equiv \mathbf{1} - \theta^k$ and:

$$\mathbf{M} \equiv (\mathbf{D}_{y})^{-1} \, \mathbf{S} \mathbf{D}_{v} \mathbf{C}; \ \mathbf{S} \equiv [s_{in}]; \ \mathbf{C} \equiv [c_{nj}];$$
$$\mathbf{D}_{y} \equiv diag(y_{i}); \ \mathbf{D}_{v} \equiv diag(v_{n}); \ \mathbf{D}_{T} \equiv diag\left(\frac{s_{i} E^{T}}{y_{i}}\right)$$

Insight 2: An analytical expression for GE propagation of shocks **Q**: What is the short-run impact of a change in E^{τ} on prices and wages?

• Holding labor & exp. shares fixed and perturbing the market clearing conditions:

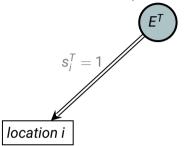
$$\partial \ln \mathbf{p} = \beta \left(\mathbf{M} d \ln \mathbf{w} + \mathbf{D}^{\mathsf{T}} \partial \ln \mathbf{E}^{\mathsf{T}} \right)$$
$$\partial \ln \mathbf{w} = \beta \left(\mathbf{I} - \mathbf{M} \right)^{-1} \mathbf{D}^{\mathsf{T}} \partial \ln \mathbf{E}^{\mathsf{T}}$$

where $\beta \equiv \mathbf{1} - \theta^k$ and:

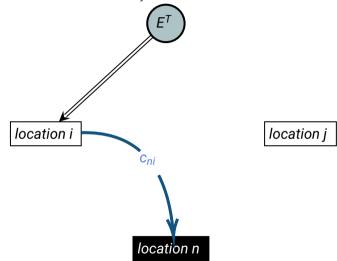
$$\begin{split} \mathbf{M} &\equiv \left(\mathbf{D}_{y}\right)^{-1} \mathbf{S} \mathbf{D}_{v} \mathbf{C}; \ \mathbf{S} &\equiv [s_{in}]; \ \mathbf{C} &\equiv [c_{nj}]; \\ \mathbf{D}_{y} &\equiv diag\left(y_{i}\right); \ \mathbf{D}_{v} &\equiv diag\left(v_{n}\right); \ \mathbf{D}_{T} \equiv diag\left(\frac{s_{i} E^{T}}{y_{i}}\right) \end{split}$$

Short-run GE response to local shocks in static framework.

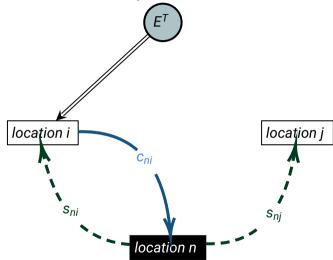
Consider external **demand shock** E^{T} to a city



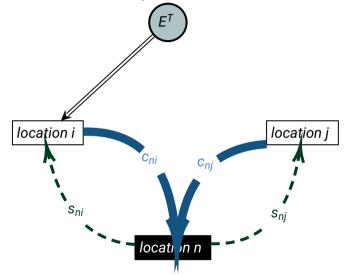
Consider external **demand shock** E^{T} to a city \rightarrow **Income Shock**



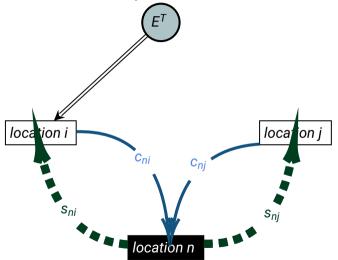
Consider external **demand shock** E^{T} to a city \rightarrow **Income Shock** \rightarrow **Demand**



Consider external **demand shock** E^{T} to a city \rightarrow **Income Shock** \rightarrow **Demand** \rightarrow **Income**



Consider external **demand shock** E^T to a city \rightarrow **Income Shock** \rightarrow **Demand** \rightarrow **Income** \rightarrow **Demand**



Insight 2: Analytical expressions for GE propagation of shocks, ctd.

• Solving the system and using a Neumann series expansion:

 $\frac{\partial}{\partial}$

$$\frac{\ln p_{i}}{\ln E^{T}} = \beta \left(1 + [M_{ii}] + [M_{ii}^{2}] + ... \right) \left(\frac{\mathbf{s}_{i} E^{T}}{\mathbf{y}_{i}} \right)$$

$$\overset{\text{GE HTE of own shock}}{\underset{j \neq i}{\text{GE spillovers from shocks elsewhere}}}$$

Insight 2: Analytical expressions for GE propagation of shocks, ctd.

• Solving the system and using a Neumann series expansion:

$$\frac{\partial \ln p_{i}}{\partial \ln E^{T}} = \underbrace{\beta \left(1 + [M_{ii}] + [M_{ii}^{2}] + ...\right) \left(\frac{s_{i}E^{T}}{y_{i}}\right)}_{\text{GE HTE of own shock}} + \underbrace{\beta \sum_{j \neq i} \left([M_{ij}] + [M_{ij}^{2}] + ...\right) \left(\frac{s_{j}E^{T}}{y_{j}}\right)}_{\text{GE spillovers from shocks elsewhere}}$$

• And similarly for residential incomes:

$$\frac{\partial \ln \mathbf{v}_n}{\partial \ln \mathbf{E}^T} = \beta \sum_{j \in \mathcal{N}} \mathbf{c}_{nj} \sum_{k \in \mathcal{N}} \left(\left[\mathbf{M}_{jk}^0 \right] + \left[\mathbf{M}_{jk} \right] + \left[\mathbf{M}_{jk}^2 \right] + ... \right) \left(\frac{\mathbf{s}_k \mathbf{E}^T}{\mathbf{y}_k} \right)$$

(3)

Taking stock

• Question: Welfare impact on residents of a demand shock in a spatial network?

Taking stock

- Question: Welfare impact on residents of a demand shock in a spatial network?
- Proposed framework provides analytical expressions for:
 - Resident welfare (equation 1)
 - GE propagation of demand shocks throughout the city (equations 2 and 3).

Taking stock

- Question: Welfare impact on residents of a demand shock in a spatial network?
- Proposed framework provides analytical expressions for:
 - Resident welfare (equation 1)
 - GE propagation of demand shocks throughout the city (equations 2 and 3).
- Evaluating the welfare effects of an urban shock requires:
 - Consumption share data $\mathbf{S} \equiv \{\mathbf{s}_{\textit{ni}}\}_{\textit{n}=1,\textit{i}=1}^{\textit{N},\textit{N}}$
 - Income share data $\mathbf{C} \equiv \{\mathbf{c}_{ni}\}_{n=1,i=1}^{N,N}$
 - Estimates of key elasticities: $\{\partial \ln p_i, \partial \ln v_n\}_{i=1}^N$ to an exogenous shock $\partial \ln E^T$ (next)

Outline of Talk

A General Methodology for (small) Urban Shocks

Tourism in Barcelona

Empirical Strategy and Identification

Is Tourism Good for Locals?

Comparison with a Quantitative GE Model

Conclusion

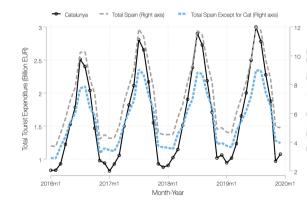
(Within-year) welfare impact of tourism spending on locals?

• Large part of the economy

- 7% of world exports
- 330 million jobs
- Spain: 11% of GDP

(Within-year) welfare impact of tourism spending on locals?

- Large part of the economy
 - 7% of world exports
 - 330 million jobs
 - Spain: 11% of GDP
- Growing, especially in cities
 - BCN: 25% secular ↑ in past 5 yrs
 - BCN: 200% seasonal ↑ within year



(Within-year) welfare impact of tourism spending on locals?

• Large part of the economy

- 7% of world exports
- 330 million jobs
- Spain: 11% of GDP

• Growing, especially in cities

- BCN: 25% secular ↑ in past 5 yrs
- BCN: 200% seasonal ↑ within year
- Contentious

New Generation of High Resolution Urban Datasets

- Working closely with Caixabank, largest Spanish bank based in Barcelona
- First paper to combine:
 - 1. High resolution bilateral expenditure data.
 - 2. High resolution residential income data.
 - 3. High resolution commuting data.

High Resolution Data on Urban Consumption & Income Networks

Consumption Shares

- Source: Caixabank's account & point-of-sale data (165M+ transactions pa) ~ 54% of total exp. (HBS)
- Locals: 1095 residential tiles \times 1095 cons tiles \times 20 sectors \times 36 months (1/2017 12/2019)
- Tourists: 15 countries of origin \times 1095 cons tiles \times 20 sectors \times 36 months

High Resolution Data on Urban Consumption & Income Networks

Consumption Shares

- Source: Caixabank's account & point-of-sale data (165M+ transactions pa) ~ 54% of total exp. (HBS)
- Locals: 1095 residential tiles \times 1095 cons tiles \times 20 sectors \times 36 months (1/2017 12/2019)
- Tourists: 15 countries of origin \times 1095 cons tiles \times 20 sectors \times 36 months

Income Shares

- Source: Caixabank's payrolls from over 400k accounts
- Mean, total, and median income per 1095 residential census tract Comparison: INE
- Combined with mobility patterns imputed from weekday lunches
 - + Alternative commuting patterns from cell phone locations (INE)

High Resolution Data on Urban Consumption & Income Networks

Consumption Shares

- Source: Caixabank's account & point-of-sale data (165M+ transactions pa) ~ 54% of total exp. (HBS)
- Locals: 1095 residential tiles \times 1095 cons tiles \times 20 sectors \times 36 months (1/2017 12/2019)
- Tourists: 15 countries of origin \times 1095 cons tiles \times 20 sectors \times 36 months

Income Shares

- Source: Caixabank's payrolls from over 400k accounts
- Mean, total, and median income per 1095 residential census tract Comparison: INE
- Combined with mobility patterns imputed from weekday lunches
 - + Alternative commuting patterns from cell phone locations (INE)

Housing prices and rental rates

- Idealista ("Spanish Zillow")
- Monthly frequency for neighborhoods (more aggregated than census blocks)

Two Stylized Facts Towards Welfare Analysis

FACT 1: Tourist spending varies across space and time

 \rightarrow Identification strategy for elasticities

FACT 2: Locals' spending and income spatially determined by residence

 $\rightarrow~$ Consumption and Income shares

Two Stylized Facts Towards Welfare Analysis

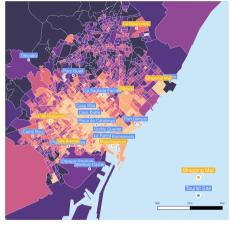
FACT 1: Tourist spending varies across space and time

 \rightarrow Identification strategy for elasticities

FACT 2: Locals' spending and income spatially determined by residence

 $\rightarrow~$ Consumption and Income shares

Fact 1A: Tourist spending varies across space

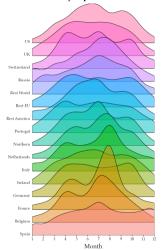


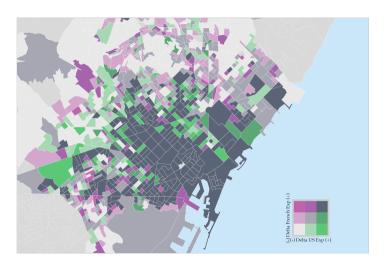
Average (yearly) expenditure per sqm by tourists.

0-0.4EUR	0.88 – 1.36EUR	2.11 – 3.19EUR	4.8 – 7.87EUR	14.52 – 31.77EUR
0.4 – 0.88EUR	1.36 – 2.11EUR	3.19 – 4.8EUR	7.87 – 14.52EUR	31.77 - 1658.87EUR

FACT 1B: Tourism varies across time within the city

Monthly Expenditure Shares





Two Stylized Facts Towards Welfare Analysis

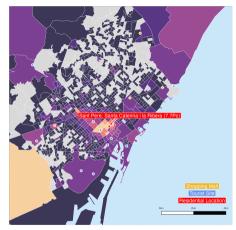
FACT 1: Tourist spending varies across space and time

 \rightarrow Identification strategy

FACT 2: Locals' spending and income are spatially determined by residence

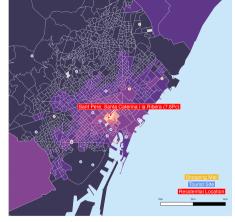
 $\rightarrow~{\rm Consumption}$ and Income shares

Fact 2: Locals spending and income patterns vary by residence

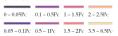


Shares

0-0.05Pc	0.1 - 0.5Pc	1 – 1.5Pc	2 – 2.5Pc	3.5 – 9.5Pc
0.05 – 0.1Pc	0.5 – 1Pc	1.5 – 2Pc	2.5 – 3Pc	

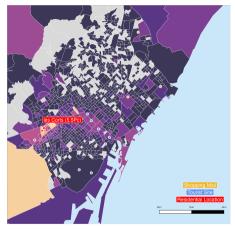


Shares



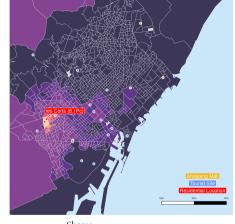
p Gravity 👗 Commuting Gravity 🛛

Fact 2: Locals spending and income patterns vary by residence



Shares

$0 - 0.05 \mathrm{Pc}$	0.1 – 0.5Pc	1.5 – 2Pc	2.5 – 3Pc	3.5 – 15.5Pc
0.05 - 0.1Pc	0.5 – 1Pc	2 – 2.5Pc	3 – 3.5Pc	



Shares

Outline of Talk

A General Methodology for (small) Urban Shocks

Tourism in Barcelona

Empirical Strategy and Identification

Is Tourism Good for Locals?

Comparison with a Quantitative GE Model

Conclusion

From Theory to Estimation

• Recall from equation (1) we have the following welfare expression:

$$d \ln u_n = \partial \ln v_n - \sum_{j \in \mathcal{N}} s_{nj} \partial \ln p_j$$

From Theory to Estimation

• Recall from equation (1) we have the following welfare expression:

$$d \ln u_n = \partial \ln v_n - \sum_{j \in \mathcal{N}} s_{nj} \partial \ln p_j$$

• From equations (2) and (3) we have the changes in prices and incomes:

$$\partial \ln p_i = \beta \sum_{j \in \mathcal{N}} \sum_{k \ge 0} M_{ij}^k \left(\frac{E_j^T}{y_j}\right) \partial \ln E_j^T$$
$$\partial \ln v_n = \beta \sum_{i \in \mathcal{N}} c_{ni} \sum_{j \in \mathcal{N}} \sum_{k \ge 0} M_{ij}^k \left(\frac{E_j^T}{y_j}\right) \partial \ln E_j^T$$

From Theory to **Estimation**

• Recall from equation (1) we have the following welfare expression:

$$d \ln u_n = \partial \ln v_n - \sum_{j \in \mathcal{N}} s_{jn} \partial \ln p_j$$

• Equations (2) and (3) in regression form:

$$\ln p_{it} = \beta \sum_{j \in \mathcal{N}} \sum_{k \ge 0} M_{ij}^k \left(\frac{E_{j0}^T}{y_{it}} \right) \ln E_{jt}^T + \delta_i + \delta_t + \varepsilon_{it}$$
$$\ln v_{nt} = \beta \sum_{i \in \mathcal{N}} c_{ni} \sum_{j \in \mathcal{N}} \sum_{k \ge 0} M_{ij}^k \left(\frac{E_{j0}^T}{y_{j0}} \right) \ln E_{jt}^T + \delta_n + \delta_t + \varepsilon_{nt}$$

1. What about non-pecuniary effects?

- 1. What about non-pecuniary effects?
 - Example: Value eating at a restaurant near the beach more than just the food.
 - Tourists may change those amenities.

- 1. What about non-pecuniary effects?
 - Example: Value eating at a restaurant near the beach more than just the food.
 - Tourists may change those amenities.

 \rightarrow Solution: Use expenditure share gravity to recover "amenity adjusted" prices.

- 1. What about non-pecuniary effects?
 - Example: Value eating at a restaurant near the beach more than just the food.
 - Tourists may change those amenities.
- \rightarrow Solution: Use expenditure share gravity to recover "amenity adjusted" prices.
- 2. Tourist spending $\{\ln E_{it}^T\}$ may be correlated with other changes in prices and incomes $\{\varepsilon_{it}\}$

- 1. What about non-pecuniary effects?
 - Example: Value eating at a restaurant near the beach more than just the food.
 - Tourists may change those amenities.
- \rightarrow Solution: Use expenditure share gravity to recover "amenity adjusted" prices.
- 2. Tourist spending $\{\ln E_{it}^T\}$ may be correlated with other changes in prices and incomes $\{\varepsilon_{it}\}$
 - Example: Both tourists and locals prefer to spend more time near the beach when weather is nice.

- 1. What about non-pecuniary effects?
 - Example: Value eating at a restaurant near the beach more than just the food.
 - Tourists may change those amenities.
- \rightarrow Solution: Use expenditure share gravity to recover "amenity adjusted" prices.
- 2. Tourist spending $\{\ln E_{it}^T\}$ may be correlated with other changes in prices and incomes $\{\varepsilon_{it}\}$
 - Example: Both tourists and locals prefer to spend more time near the beach when weather is nice.
- \rightarrow Solution: "shift-share" IV relying on variation in tourist preferences across origins & timing of visitors (from Fact 1B)

1. Recovering amenity-adjusted prices

- From CES preferences, derive gravity regression, estimate by PPML
 - In δ_{it} is the destination fixed effect of a gravity regression:

$$\ln X_{nit} = \ln \delta_{nt} + \ln \delta_{it} + (1 - \sigma_t) \ln \tau_{nit} + \varepsilon_{nit}$$

• τ_{nit} is the iceberg friction (calculated from travel time, origin income, and average bilateral expenditure)

1. Recovering amenity-adjusted prices

- From CES preferences, derive gravity regression, estimate by PPML
 - In δ_{it} is the destination fixed effect of a gravity regression:

 $\ln X_{nit} = \ln \delta_{nt} + \ln \delta_{it} + (1 - \sigma_t) \ln \tau_{nit} + \varepsilon_{nit}$

- τ_{nit} is the iceberg friction (calculated from travel time, origin income, and average bilateral expenditure)
- $\ln \delta_{it}$ denotes attractiveness of *i* = prices & amenity value
 - Low $\ln \delta_{it}$ means either prices are very high or amenity value low

1. Recovering amenity-adjusted prices

- From CES preferences, derive gravity regression, estimate by PPML
 - In δ_{it} is the destination fixed effect of a gravity regression:

 $\ln X_{nit} = \ln \delta_{nt} + \ln \delta_{it} + (1 - \sigma_t) \ln \tau_{nit} + \varepsilon_{nit}$

- τ_{nit} is the iceberg friction (calculated from travel time, origin income, and average bilateral expenditure)
- $\ln \delta_{it}$ denotes attractiveness of *i* = prices & amenity value
 - Low $\ln \delta_{it}$ means either prices are very high or amenity value low
- Amenity-adjusted prices: $\ln p_{it} = (1/(1 \hat{\sigma}_t)) \times \ln \hat{\delta}_{it}$

• Intuition: Use fact that tourists from different countries visit at different times, spend money in different places

- Intuition: Use fact that tourists from different countries visit at different times, spend money in different places
- Instrument for tourist expenditure with:

$$B_{it}^{\mathsf{T}} = \sum_{g \in \mathcal{T}} \mathbf{s}_{git}^{\mathsf{0}} imes E_{gt}^{\mathsf{T}}$$

- Intuition: Use fact that tourists from different countries visit at different times, spend money in different places
- Instrument for tourist expenditure with:

$$\mathsf{B}_{it}^{\mathsf{T}} = \sum_{g \in \mathsf{T}} \mathsf{s}_{git}^{\mathsf{0}} imes \mathsf{E}_{gt}^{\mathsf{T}}$$

• Shares s_{qit}^0 capture spatial preferences for tourist origin g in baseline

- *Intuition:* Use fact that tourists from different countries visit at different times, spend money in different places
- Instrument for tourist expenditure with:

$$\mathsf{B}_{it}^{\mathsf{T}} = \sum_{g \in \mathsf{T}} \mathsf{s}_{git}^{\mathsf{0}} imes \mathsf{E}_{gt}^{\mathsf{T}}$$

- Shares s_{qit}^0 capture spatial preferences for tourist origin g in baseline
- Shifts E_{qt}^{T} from changes in total tourist expenditure (elsewhere)

Estimation & Results

• Average treatment effect:

$$\ln p_{it} = \beta_1 \ln E_{it}^T + \delta_i + \delta_t + \varepsilon_{it}$$

• Average treatment effect:

$$\ln \boldsymbol{p}_{it} = \beta_1 \ln \boldsymbol{E}_{it}^T + \delta_i + \delta_t + \varepsilon_{it}$$

• With own & others GE linkages:

$$\ln p_{it} = \beta_1 \ln E_{jt}^T + \beta_2 \left(1 + [M_{ii}] + ...\right) \left(\frac{E_{i0}^T}{y_{i0}}\right) \ln E_{it}^T$$

$$\stackrel{\text{GE HTE of own shock}}{= \beta_3 \sum_{j \neq i} ([M_{ij}] + ...) \left(\frac{E_{j0}^T}{y_{j0}}\right) \ln E_{jt}^T + \delta_i + \delta_t + \varepsilon_{it}$$

$$\stackrel{\text{GE spillovers from shocks elsewhere}}{= \beta_3 \sum_{j \neq i} ([M_{ij}] + ...) \left(\frac{E_{j0}^T}{y_{j0}}\right) \ln E_{jt}^T + \delta_i + \delta_t + \varepsilon_{it}}$$

DEPENDENT VARIABLE: LOG LOCAL PRICE (AMENITY-ADJUSTED)

ATE: No Spatial Spillovers			
Local Tourist Spending	0.0536* (0.0292)		
Tourist Spending Everywhere (GE)			
GE Locally			
Spillovers from Elsewhere			
Fixed-effects			
Census Tract	Yes		
Year-Month	Yes		
N	25,379		
Within R ²	0.01481		

Driscoll-Kraay (L=2) standard-errors in parentheses. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1.

DEPENDENT VARIABLE: LOG LOCAL PRICE (AMENITY-ADJUSTED)

	ATE: No Spatial Spillovers	GE (exact sum): All Spatial Spillovers	
Local Tourist Spending	0.0536* (0.0292)	-0.0357 (0.0258)	
Tourist Spending Everywhere (GE)		0.3449*** (0.0607)	
GE Locally			
Spillovers from Elsewhere			
Fixed-effects			
Census Tract	Yes	Yes	
Year-Month	Yes	Yes	
N	25,379	25,379	
Within R ²	0.01481	0.03878	

Driscoll-Kraay (L=2) standard-errors in parentheses. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1.

DEPENDENT VARIABLE: LOG LOCAL PRICE (AMENITY-ADJUSTED)

	ATE: No Spatial Spillovers	GE (exact sum): All Spatial Spillovers	GE (exact sum): Own/Else Spillovers
Local Tourist Spending	0.0536* (0.0292)	-0.0357 (0.0258)	-0.0357 (0.0263)
Tourist Spending Everywhere (GE)		0.3449*** (0.0607)	
GE Locally			0.3306*** (0.0558)
Spillovers from Elsewhere			0.4184*** (0.1463)
Fixed-effects			
Census Tract	Yes	Yes	Yes
Year-Month	Yes	Yes	Yes
N	25,379	25,379	25,379
Within R ²	0.01481	0.03878	0.04174

Driscoll-Kraay (L=2) standard-errors in parentheses. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1.

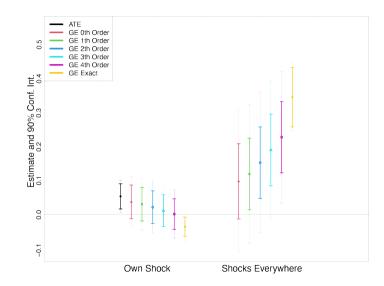
Inside GE Propagation Prices

- Consider different degree approximations to GE linkages
- GE Exact \equiv Leontief Inverse

Inside GE Propagation Prices

- Consider different degree approximations to GE linkages
- GE Exact \equiv Leontief Inverse

- Thinner C.I: Driskoll-Kraay S.E.
- Thicker C.I: Robust S.E.



Effect of tourism on incomes

• Average treatment effect:

$$\ln \mathbf{v}_{nt} = \beta_1 \ln \mathbf{E}_{nt}^T + \delta_n + \delta_t + \varepsilon_{nt}$$

Effect of tourism on incomes

• Average treatment effect:

$$\ln \mathbf{v}_{nt} = \beta_1 \ln \mathbf{E}_{nt}^{\mathsf{T}} + \delta_n + \delta_t + \varepsilon_{nt}$$

• With own & others GE linkages:

$$n \mathbf{v}_{nt} = \beta_1 \ln \mathbf{E}_{nt}^T + \beta_2 \sum_{j \in \mathcal{N}} \mathbf{c}_{nj} \left(1 + [\mathbf{M}_{jj}] + ...\right) \left(\frac{\mathbf{E}_{j0}^I}{\mathbf{y}_{j0}}\right) \ln \mathbf{E}_{jt}^T$$

GE HTE of own shock
$$+ \beta_3 \sum_{j \in \mathcal{N}} \mathbf{c}_{nj} \sum_{k \neq j} \left([\mathbf{M}_{jk}] + ...\right) \left(\frac{\mathbf{E}_{k0}^T}{\mathbf{y}_{k0}}\right) \ln \mathbf{E}_{kt}^T + \delta_n + \delta_t + \varepsilon_{nt}$$

GE spillovers from shocks elsewhere

Effect of tourism on incomes

DEPENDENT VARIABLE: LOG LOCAL EARNINGS

	ATE:	GE:	GE:
	No Spatial Spillovers	All Spatial Spillovers	Own/Else Spillovers
Local Tourist Spending	0.0109	0.0059	0.0059
	(0.0065)	(0.0045)	(0.0044)
Tourist Spending Everywhere (GE)		0.3040** (0.1464)	
GE Locally			0.3040** (0.1462)
Spillovers from Elsewhere			0.3032 (0.2453)
Fixed-effects			
Census Tract	Yes	Yes	Yes
Year-Month	Yes	Yes	Yes
N	25,379	25,379	25,379
Within R ²	0.00025	0.00116	0.00116

Driscoll-Kraay (L=2) standard-errors in parentheses. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1.

Inside GE Propagation

Incomes

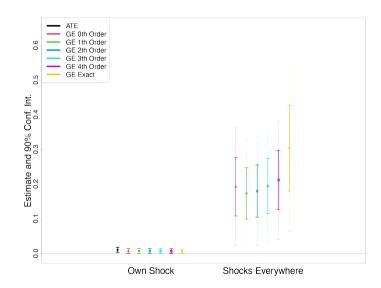
- Consider different degree approximations to GE linkages
- GE Exact \equiv Leontief Inverse

Inside GE Propagation

Incomes

- Consider different degree approximations to GE linkages
- GE Exact \equiv Leontief Inverse

- Thinner C.I: Driskoll-Kraay S.E.
- Thicker C.I: Robust S.E.



Outline of Talk

A General Methodology for (small) Urban Shocks

Tourism in Barcelona

Empirical Strategy and Identification

Is Tourism Good for Locals?

Comparison with a Quantitative GE Model

Conclusion

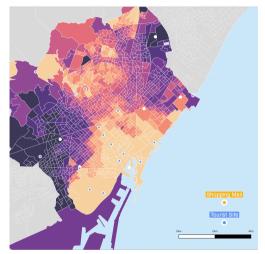
Is tourism good for locals?

• Welfare Formula

$$d \ln u_n = \frac{\partial \ln v_n}{\partial \ln E_i^T} \times d \ln E_i^T - \sum_i s_{ni} \times \frac{\partial \ln p_i}{\partial \ln E_i^T} \times d \ln E_i^T$$

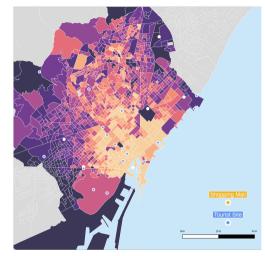
- *s*_{ni} use baseline averages in 2017
- Predict income and price changes from January to July using our data and IV

Income (Panel A) and Price Effects (Panel B) - GE



Change in Income (GE)

8.9 – 10.31 Pc	$10.5 - 10.61 \ \mathrm{Pc}$	$10.71 - 10.78 \ \mathrm{Pc}$	10.83 – 10.9 Pc	$10.99 - 11.15 \ \mathrm{Pc}$
				1
$10.31 - 10.5 \ \mathrm{Pc}$	$10.61-10.71\;{\rm Pc}$	$10.78-10.83\;{\rm Pc}$	$10.9 - 10.99 \; \mathrm{Pc}$	$11.15-12.73 \ \rm Pc$

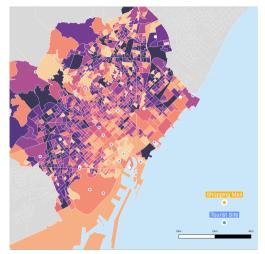


Change in Price Index (GE)

$4.81 - 8.17 \ Pc$	8.57 – 8.75 Pc	8.91 – 9.03 Pc	9.15 – 9.27 Pc	9.41 – 9.63 Pc
--------------------	----------------	----------------	----------------	----------------

 $8.17-8.57\ {\rm Pc}\quad 8.75-8.91\ {\rm Pc}\quad 9.03-9.15\ {\rm Pc}\quad 9.27-9.41\ {\rm Pc}\quad 9.63-11.75\ {\rm Pc}$

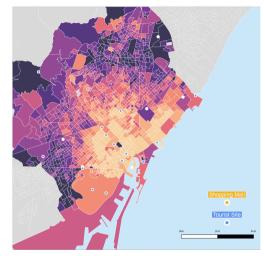
Income (Panel A) and Price Effects (Panel B) - ATE



Change in Income (ATE)

 $-0.95 - 0.36 \ \mathrm{Pc} \quad 0.41 - 0.44 \ \mathrm{Pc} \quad 0.47 - 0.5 \ \mathrm{Pc} \quad 0.52 - 0.55 \ \mathrm{Pc} \quad 0.58 - 0.62 \ \mathrm{Pc}$

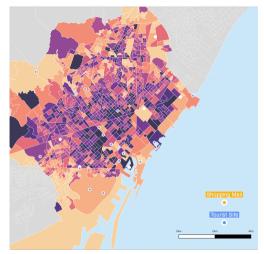
 $0.36 - 0.41 \ \mathrm{Pc} \quad 0.44 - 0.47 \ \mathrm{Pc} \quad 0.5 - 0.52 \ \mathrm{Pc} \quad 0.55 - 0.58 \ \mathrm{Pc} \quad 0.62 - 2.31 \ \mathrm{Pc}$



Change in Price Index (ATE)

1.05 – 1.67 Pc	$1.74 - 1.79 \ Pc$	$1.84 - 1.89 \; Pc$	$1.94 - 1.99 \; \mathrm{Pc}$	$2.07-2.16\ \mathrm{Pc}$
		1.89 – 1.94 Pc		2.16 – 2.48 Pc

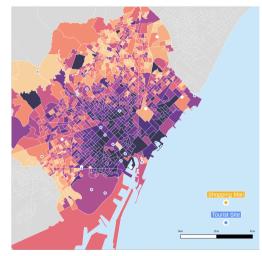
Welfare Effects: With and without GE spillovers



Change in Welfare (GE)

 $0.73 - 1.34 \ \mathrm{Pc} \quad 1.46 - 1.54 \ \mathrm{Pc} \quad 1.63 - 1.71 \ \mathrm{Pc} \quad 1.81 - 1.91 \ \mathrm{Pc} \quad 2.09 - 2.42 \ \mathrm{Pc}$

 $1.34 - 1.46 \ \mathrm{Pc} \quad 1.54 - 1.63 \ \mathrm{Pc} \quad 1.71 - 1.81 \ \mathrm{Pc} \quad 1.91 - 2.09 \ \mathrm{Pc} \quad 2.42 - 5.82 \ \mathrm{Pc}$



Change in Welfare (ATE)

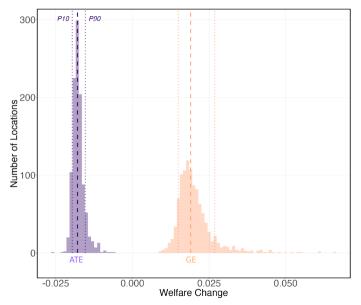
 $-2.63 - -1.63 \ \mathrm{Pc} \quad -1.57 - -1.51 \ \mathrm{Pc} \quad -1.46 - -1.42 \ \mathrm{Pc} \quad -1.38 - -1.33 \ \mathrm{Pc} \quad -1.26 - -1.13 \ \mathrm{Pc}$

-1.63 – -1.57 Pc $\,$ -1.51 – -1.46 Pc $\,$ -1.42 – -1.38 Pc $\,$ -1.33 – -1.26 Pc $\,$ -1.13 – 0.37 Pc $\,$

Welfare Effects: With and without GE spillovers

Average resident's welfare impact of tourists:

- With GE: 1.8%
- Without GE: -1.4%
- ⇒ Ignoring GE spillovers understates welfare benefits



Outline of Talk

A General Methodology for (small) Urban Shocks

Tourism in Barcelona

Empirical Strategy and Identification

Is Tourism Good for Locals?

Comparison with a Quantitative GE Model

Conclusion

- Consider a standard urban "quantitative" model with:
 - Cobb-Douglas nest of housing and a CES composite of tradables.
 - Frechet distribution of firm & resident productivities
 - Cobb-Douglas production functions.

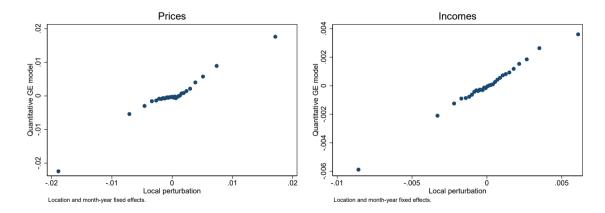
- Consider a standard urban "quantitative" model with:
 - Cobb-Douglas nest of housing and a CES composite of tradables.
 - Frechet distribution of firm & resident productivities
 - Cobb-Douglas production functions.
- With structural elasticities calibrated to match:
 - Income responses to tourism (commuting elasticity 4.65)
 - Expenditure responses to prices (demand elasticity \sim 9)
 - Housing share (0.3) adjusted to account for spatial variation in home-ownership rates
 - Observed capital (0.43), labor (0.35), and specific factor shares (0.22)

- Consider a standard urban "quantitative" model with:
 - Cobb-Douglas nest of housing and a CES composite of tradables.
 - Frechet distribution of firm & resident productivities
 - Cobb-Douglas production functions.
- With structural elasticities calibrated to match:
 - Income responses to tourism (commuting elasticity 4.65)
 - Expenditure responses to prices (demand elasticity \sim 9)
 - Housing share (0.3) adjusted to account for spatial variation in home-ownership rates
 - Observed capital (0.43), labor (0.35), and specific factor shares (0.22)
- Delivers the same GE market clearing conditions as above.

- Consider a standard urban "quantitative" model with:
 - Cobb-Douglas nest of housing and a CES composite of tradables.
 - Frechet distribution of firm & resident productivities
 - Cobb-Douglas production functions.
- With structural elasticities calibrated to match:
 - Income responses to tourism (commuting elasticity 4.65)
 - Expenditure responses to prices (demand elasticity \sim 9)
 - Housing share (0.3) adjusted to account for spatial variation in home-ownership rates
 - Observed capital (0.43), labor (0.35), and specific factor shares (0.22)
- Delivers the same GE market clearing conditions as above.
- But can now solve for exact (non short-run, non-local) changes in prices and incomes.

- Consider a standard urban "quantitative" model with:
 - Cobb-Douglas nest of housing and a CES composite of tradables.
 - Frechet distribution of firm & resident productivities
 - Cobb-Douglas production functions.
- With structural elasticities calibrated to match:
 - Income responses to tourism (commuting elasticity 4.65)
 - Expenditure responses to prices (demand elasticity \sim 9)
 - Housing share (0.3) adjusted to account for spatial variation in home-ownership rates
 - Observed capital (0.43), labor (0.35), and specific factor shares (0.22)
- Delivers the same GE market clearing conditions as above.
- But can now solve for exact (non short-run, non-local) changes in prices and incomes.
- *Question*: Does this quantitative GE model better explain the data?

Comparison to full quantitative model: Predictions are very similar



Comparison to full quantitative model: Effect of tourism on prices

	Local perturnbation	Quantitative GE model	Both
Local perturbation	1.000***		1.104**
	(0.267)		(0.418)
Quantitative GE model		0.149	-0.117
		(0.379)	(0.405)
Fixed-effects			
Census Tract	Yes	Yes	Yes
Year-Month	Yes	Yes	Yes
N	25,377	25,377	25,377
Within R ²	0.0388	0.0032	0.0403

DEPENDENT VARIABLE: LOG LOCAL PRICE (AMENITY-ADJUSTED)

Driscoll-Kraay (L=2) standard-errors in parentheses. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1.

Comparison to full quantitative model: Effect of tourism on incomes

PANEL B: LOG LOCAL EARNINGS	
-----------------------------	--

	Local perturnbation	Quantitative GE model	Both
Local perturbation	1.000** (0.450)		0.685 (0.424)
Quantitative GE model		1.000* (0.501)	0.656 (0.498)
<i>Fixed-effects</i> Census Tract Year-Month	Yes Yes	Yes Yes	Yes Yes
N Within R ²	25,377 0.0012	25,377 0.0011	25,377 0.0015

Driscoll-Kraay (L=2) standard-errors in parentheses. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1.

Outline of Talk

A General Methodology for (small) Urban Shocks

Tourism in Barcelona

Empirical Strategy and Identification

Is Tourism Good for Locals?

Comparison with a Quantitative GE Model

Conclusion

Conclusion

• New method to estimate the welfare impact of spatial shocks

- Avoids parametric assumptions, "let's the data speak"
- Incorporates GE spatial linkages

Conclusion

• New method to estimate the welfare impact of spatial shocks

- Avoids parametric assumptions, "let's the data speak"
- Incorporates GE spatial linkages
- Estimate the welfare effect of tourism on locals
 - Unique urban spending and income spatial networks data
 - Identification based on timing/preferences of different tourist groups

Conclusion

• New method to estimate the welfare impact of spatial shocks

- Avoids parametric assumptions, "let's the data speak"
- Incorporates GE spatial linkages
- Estimate the welfare effect of tourism on locals
 - Unique urban spending and income spatial networks data
 - Identification based on timing/preferences of different tourist groups

Results suggest:

- Our method captures important GE variation missed by traditional approaches, with important welfare implications.
- Quantitative GE approach add little additional insight
- Substantial variation in welfare effect of tourism, depending on where you live.

Theory Appendix

Commuting Implied Exposure Derivation

• Disposable income is given by

$$\mathbf{v}_n = \sum_{i=1}^N \mathbf{w}_i \ell_{ni}$$

• Totally differentiating and applying the envelope result from above, we obtain,

$$\mathrm{d}\ln v_n = \sum_{i=1}^N c_{ni}\mathrm{d}\ln w_i$$

• Impact of tourist expenditure shock,

$$\mathrm{d} \ln \mathbf{v}_n = \sum_{i=1}^N \mathbf{c}_{ni} \frac{\mathrm{d} \ln \mathbf{w}_i}{\mathrm{d} \ln \mathbf{E}^T} \mathrm{d} \ln \mathbf{E}^T \qquad \ln \mathrm{Ci} \mathrm{E}_{ntm}^T = \sum_i \mathbf{c}_{ni} \times \ln \mathbf{E}_{itm}^T$$

Shift-Share Instrument: Derivations

• Representative tourist for group g has preferences,

$$u_g = rac{E_g^T}{G\left(ilde{oldsymbol{p}}
ight)}$$

- Roy's identity gives expenditure shares
- Changes in tourist expenditure are:

$$dX_i^{ au} = \sum_g s_{gi} dE_g^{ au} + \sum_g s_{gi} db_{gi} + \sum_g s_{gi} dp_i$$

• Taking it to the data,

$$\Delta E_{imt}^{T} = \underbrace{\sum_{g} s_{gi} \times \Delta E_{gt}^{T}}_{\text{Group Composition}} + \epsilon_{imt}^{T}$$

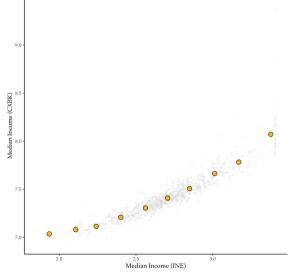
• where $\epsilon_{imt}^{T} = \sum_{g} s_{gi} db_{gi} + \sum_{g} s_{gi} dp_{i}$

Data Appendix

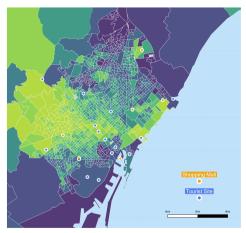
Sample of Locations

Coverage Area: Inner (dark) and Outer (light) Barcelona

Income Data: Comparison with Administrative Data



Income Distribution across Barcelona



Mean Income

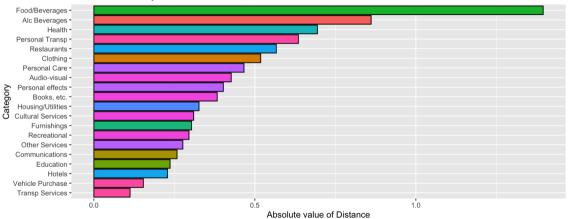
1039.61 - 1260.88	1421.98 - 1486.94	1585.91 - 1623.15	1705.59 – 1767.53	1956.66 - 2132.63
1260.88 - 1352.46	1486.94 - 1541.06	1623.15 - 1662.96	1767.53 - 1859.12	2132.63 - 2396.31
1352.46 - 1421.98	1541.06 - 1585.91	1662.96 - 1705.59	1859.12 - 1956.66	2396.31 - 11806.33

back

Empirical Analysis Appendix

Distance Coefficient for Gravity by Sector

Distance Elasticity



Source: CXBK Payment Processing (2019)

Commuting Gravity Estimates

Dependent Variables:	commuters	log(commuters+1)	log(commuters)	transactions	log(transactions+1)	log(transactions)
		Cell Phone			Lunchtime	
Model:	(1) Poisson	(2) OLS	(3) OLS	(4) Poisson	(5) OLS	(6) OLS
<i>Variables</i> Idist	-4.48*** (0.107)	-1.51*** (0.037)	-1.17*** (0.054)	-1.53*** (0.028)	-0.134*** (0.002)	-0.411*** (0.012)
Fixed-effects Origin Destination Origin (CT) Destination (CT)	4	√ √	v v	1 1	۲ ۲	۲ ۲
Fit statistics Observations Pseudo R ²	24,025 0.798	24,025 0.117	2,162 0.193	1,051,159 0.598	1,216,609 0.343	42,086 0.091

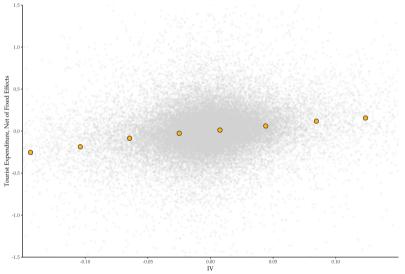
Heteroskedasticity-robust standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

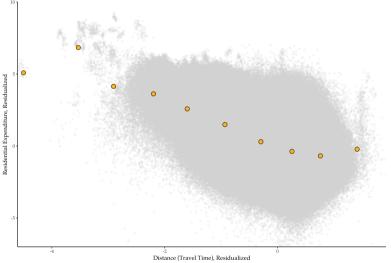
Impact of tourism on housing

Dependent Variable: log Housing prices					
	ATE: Housing Price	e ATE: Rent			
Own Tourist Shock	0.095 (0.0341)**	0.066 (0.024)**			
<i>Fixed Effects</i> Census Tract	Yes	Yes			
N Within R²	1,728 0.004	1,718 0.001			

Shift Share: First Stage



Fit of Gravity Specification



Expenditure Gravity Regressions

Dependent Variables:	Bilateral Spending		log(Bilateral Spending+1)		log(Bilateral Spending)	
Model:	(1) Poisson	(2) Poisson	(3) OLS	(4) OLS	(5) OLS	(6) OLS
Variables log(travel time)	-2.17*** (0.003)	-2.17*** (0.003)	-1.37*** (0.0009)	-1.37*** (0.0009)	-1.36*** (0.001)	-1.36*** (0.001)
Fixed-effects Origin (CT) Destination (CT) Origin (CT)×YEARMONTH Destination (CT)×YEARMONTH	√ √	√ √	√ √	√ √	√ √	√ √
Fit statistics Observations Pseudo R ²	43,204,320 0.781	43,125,480 0.788	43,204,320 0.127	43,204,320 0.130	6,566,622 0.120	6,566,622 0.126

Heteroskedasticity-robust standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Comparison with Household Budget Survey

COICOP (2D)	COICOP (2D)	Local	Spanish Tourists	Foreign Tourists	Total	Survey (INE)	Survey Adj (INE)
11	Food/Beverages	32.82 (24.72)	1.32 (5.04)	4.51 (5.10)	38.66	12.96	23.82
21	Alc Beverages	1.97 (1.48)	0.07 (0.28)	0.60 (0.68)	2.64	0.71	1.31
31	Clothing	11.58 (8.72)	1.94 (7.39)	12.00 (13.55)	25.51	3.39	6.23
41	Housing/Utilities	2.81 (2.12)	0.78 (3.00)	0.59 (0.67)	4.19	5.33	9.80
51	Furnishings	10.03 (7.55)	3.32 (12.67)	2.01 (2.27)	15.35	0.88	1.62
61	Health	10.76 (8.10)	1.94 (7.40)	1.82 (2.06)	14.52	2.24	4.12
71	Vehicle Purchase	3.14 (2.36)	0.18 (0.67)	0.32 (0.36)	3.63	3.78	6.95
72	Personal Transp	7.27 (5.47)	2.06 (7.89)	0.70 (0.79)	10.03	6.38	11.73
73	Transp Services	10.13 (7.63)	6.52 (24.90)	9.61 (10.85)	26.26	1.90	3.49
81	Communications	0.30 (0.23)	0.02 (0.09)	0.08 (0.09)	0.40	0.33	0.61
91	Audio-visual	5.06 (3.81)	0.57 (2.17)	1.78 (2.01)	7.40	0.58	1.07
93	Recreational	2.62 (1.97)	0.27 (1.03)	1.21 (1.37)	4.09	1.43	2.63
94	Cultural Services	4.29 (3.23)	0.62 (2.38)	2.79 (3.15)	7.70	0.57	1.05
95	Books, etc	1.64 (1.23)	0.22 (0.85)	0.53 (0.60)	2.39	1.30	2.39
101	Education	1.11 (0.84)	0.10 (0.39)	0.61 (0.69)	1.82	0.77	1.41
111	Restaurants	17.73(13.35)	3.79 (14.46)	19.04 (21.50)	40.56	7.83	14.39
112	Hotels	1.13 (0.85)	1.49 (5.69)	23.12 (26.11)	25.75	1.21	2.22
121	Personal Care	4.84 (3.64)	0.32 (1.23)	0.97 (1.10)	6.14	2.53	4.65
123	Other	2.49 (1.88)	0.36 (1.37)	5.69 (6.42)	8.54	0.32	0.59
Total		131.72 (100)	25.88 (100)	87.97 (100)	245.58	54.4	100

Model Setup

• Demand

$$G(\boldsymbol{p}_n) = \left(\sum_{s=0}^{S} \alpha_s \left(\left(\sum_{i=1}^{N} \tilde{p}_{nis}^{1-\sigma_s}\right)^{\frac{1}{1-\sigma_s}} \right)^{1-\eta} \right)^{\frac{1}{1-\eta}}$$

• Wage Aggregator ($\epsilon < 0$)

$$J(\boldsymbol{w}_n) = \left(\sum_{i} (w_{ni})^{1-\epsilon}\right)^{\frac{1}{1-\epsilon}}$$

• Production with Specific Factors

$$Q_{is} = F_{is} \left(\ell_{is}, m_{is}
ight) = z_{is} \ell_{is}^{\beta_s} m_{is}^{1-\beta_s}$$

Equilibrium

[label=dekequilibrium]

• Market Clearing Condition

$$y_{is} = \sum_{n=1}^{N} s_{nis} v_n + \sum_{g=1}^{G} s_{gis} E_g^T$$

• Labor Market Clearing

$$w_i \ell_i = \sum_{s=0}^{S} \theta_s^{\ell} \sum_{n=1}^{N} s_{nis} v_n + \sum_{s=0}^{S} \theta_s^{\ell} \sum_{g=1}^{G} s_{gis} E_g^{T}$$

• Disposable Income

$$\mathbf{v}_n = \left(\sum_i \left(w_{ni}\right)^{1-\epsilon}\right)^{\frac{1}{1-\epsilon}} \times T_n$$

Hat Algebra

• Market Clearing Condition

$$\hat{y}_{is} = \pi_{is}^{local} \sum_{n=1}^{N} \left(\pi_{is}^{n} \hat{s}_{nis} \hat{v}_{n} \right) + \pi_{is}^{group} \sum_{g=1}^{G} \left(\pi_{is}^{g} \hat{s}_{gis} \hat{E}_{g}^{T} \right)$$

• Labor Market Clearing

$$\sum_{s} \frac{\beta_{s} \mathbf{y}_{is}}{\sum_{s'} \beta_{s} \mathbf{y}_{is'}} \hat{\mathbf{y}}_{is} = \sum_{n=1}^{N} \frac{\mathbf{w}_{i} \ell_{ni}}{\sum_{n'=1}^{N} \mathbf{w}_{i} \ell_{n'i}} \left(\hat{\mathbf{w}}_{ni} \right)^{\theta} \hat{T}_{n} \hat{W}_{n}^{1-\theta}$$

• Disposable Income

$$\hat{v}_{n} = \sum_{i=1}^{N} \frac{I_{ni} w_{i}}{\sum_{i'=1}^{N} I_{ni'} w_{i'}} \left(\hat{w}_{ni}\right)^{\theta} \hat{T}_{n} \hat{W}_{n}^{1-\theta}$$

Parameterization

Parameter	Value	Comment			
β_{s}	0.65 ∀s	labor share of income			
σ_{s}	4 ∀s	elasticity of substitution (within sectors)			
η	η 1.5 elasticity of substitution (between se				
θ	1.5	labor dispersion $(1 - \epsilon)$			
γ	$\left[0,0,0,0\right]$	consumption spillovers			

Data Requirements

Data	Description	Comment		
I _{ni}	Commuting Flows	Lunch Expenditures		
X _{nis}	Base Local Expenditures			
X _{gis}	Base Tourist Expenditures			
\hat{x}_{gis} \hat{E}_i^T	Change in Tourist Expenditures	Difference from Jan to July		
v _n	Worker Incomes			

Roy's Identity for Labor Supply

• Income maximization problem:

$$\mathbf{w}_n = \max_{\{\ell_i\}} \sum_{i=1}^N \mathbf{w}_i \ell_i$$
 s.t. $H_n(\ell_n) = T_n$

• Maximand is the income function $y(w_n, T_n)$ and envelope theorem implies,

$$\frac{\partial \mathbf{y}(\cdot)}{\partial \mathbf{w}_i} = \ell_i$$

- Dual is cost minimization problem, where minimand is $h\left(oldsymbol{w}_{n},oldsymbol{ar{Y}}
 ight)$
- Differentiating we obtain,

$$\frac{\partial \mathbf{y}(\cdot)}{\partial \mathbf{w}_{i}} = -\frac{\frac{\partial h(\mathbf{w}_{n}, \mathbf{y}(\mathbf{w}_{n}, T_{n}))}{\partial \mathbf{w}_{i}}}{\frac{\partial h(\mathbf{w}_{n}, \mathbf{y}(\mathbf{w}_{n}, T_{n}))}{\partial \mathbf{y}}} = \ell_{i}$$

Derivation of Welfare Formula

 Assuming both homothetic demand and a homothetic income maximization problem allows us to write the indirect utility function as,

$$u_n = \frac{T_n J(\boldsymbol{w}_n)}{G(\boldsymbol{p}_n)}$$

• Totally differentiating,

$$\frac{\mathrm{d}\boldsymbol{u}_{n}}{\boldsymbol{u}_{n}} = \sum_{i=1}^{N} \frac{1}{J(\boldsymbol{w}_{n})} \frac{\partial \left(J(\boldsymbol{w}_{n})\right)}{\partial \boldsymbol{w}_{i}} w_{i} \frac{\mathrm{d}\boldsymbol{w}_{i}}{\boldsymbol{w}_{i}} + \sum_{i=1}^{N} G\left(\boldsymbol{p}_{n}\right) \frac{\partial \left(1/G\left(\boldsymbol{p}_{n}\right)\right)}{\partial \boldsymbol{p}_{ni}} p_{ni} \frac{\mathrm{d}\boldsymbol{p}_{ni}}{\boldsymbol{p}_{ni}}$$

• Applying Roy's identity for the income maximization and consumption problem from above,

$$\frac{\mathrm{d}u_n}{u_n} = \sum_{i=1}^N \frac{\ell_i}{v_n} w_i \frac{\mathrm{d}w_i}{w_i} - \sum_{i=1}^N \frac{q_{ni}}{v_n} p_{ni} \frac{\mathrm{d}p_{ni}}{p_{ni}}$$

Price Regressions: Group Estimates

Dependent Variables:	δ^{R}_{ist}	$\delta_{\textit{ist}}^{T.Dom}$	$\delta_{ist}^{T.For}$	δ^{R}_{ist}	$\delta_{ist}^{T.Dom}$	$\delta_{ist}^{T.F}$
		OLS		IV - R	ef: 2017 Ave	erage
Model:	(1)	(2)	(3)	(4)	(5)	(6
Variables						
$\ln E_{it}^T$	0.091***	0.485***	0.454***	-0.576***	-0.277***	0.02
n	(0.003)	(0.005)	(0.004)	(0.034)	(0.077)	(0.05
Fixed-effects						
Month-Year×Sector (480)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Location×Sector (21,920)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Location×Sector×Year (43,840)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Location×Sector×Month (263,040)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Fit statistics						
Observations	526,080	526,080	526,080	526,080	526,080	526,0
Adjusted R ²	0.994	0.991	0.994	0.993	0.99	0.99

Normal standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

• Preferences

$$u_n(\lbrace q_{ni}\rbrace_{i=1,...,N}) = \left(\sum_{i=1}^N \alpha_{ni}^{1/\sigma} q_{ni}^{(\sigma-1)/\sigma}\right)^{\sigma/(\sigma-1)}$$

• Constraint

$$\sum_{i=1}^{N} p_{ni} q_{ni} \leq v_n$$

• Utility max. gives lagrangian

$$\mathcal{L}(\{\boldsymbol{q}_{ni}\}_{i=1,\dots,N},\lambda) = \left(\sum_{i=1}^{N} \alpha_{ni}^{1/\sigma} \boldsymbol{q}_{ni}^{(\sigma-1)/\sigma}\right)^{\sigma/(\sigma-1)} + \lambda \left(\boldsymbol{v}_{n} - \sum_{i=1}^{N} \boldsymbol{p}_{ni} \boldsymbol{q}_{ni}\right)$$

$$\frac{\partial \mathcal{L}}{\partial q_{ni}} = \mathbf{0} \iff \left(\sum_{i=1}^{N} \alpha_{ni}^{1/\sigma} q_{ni}^{(\sigma-1)/\sigma}\right)^{1/(\sigma-1)} \alpha_{ni}^{1/\sigma} q_{ni}^{-1/\sigma} = \lambda p_{ni} \quad \forall i = 1, ..., N$$

$$rac{\partial \mathcal{L}}{\partial \lambda} = \mathbf{0} \iff \sum_{i=1}^{N} p_{ni} q_{ni} = \mathbf{v}_n$$

• For two consumption locations *i* and *j*

$$(\frac{\alpha_{ni}}{\alpha_{nj}})^{1/\sigma} (\frac{q_{ni}}{q_{nj}})^{-1/\sigma} = \frac{p_{ni}}{p_{nj}} \\ \frac{\alpha_{ni}}{\alpha_{nj}} = \frac{p_{ni}^{\sigma}}{p_{nj}^{\sigma}} \frac{q_{ni}}{q_{nj}}$$

• For two consumption locations *i* and *j*

$$\begin{array}{lll} \frac{\alpha_{ni}}{\alpha_{nj}} & = & \displaystyle \frac{\boldsymbol{p}_{ni}^{\sigma}}{\boldsymbol{p}_{nj}^{\sigma}} \frac{\boldsymbol{q}_{ni}}{\boldsymbol{q}_{nj}} \\ \boldsymbol{q}_{nj} & = & \displaystyle \frac{\alpha_{nj}}{\alpha_{ni}} \displaystyle \frac{\boldsymbol{p}_{ni}^{\sigma}}{\boldsymbol{p}_{nj}^{\sigma}} \boldsymbol{q}_{ni} \end{array}$$

• ×p_{nj}

$$\begin{array}{lll} q_{nj} p_{nj} & = & \displaystyle \frac{\alpha_{nj}}{\alpha_{ni}} \displaystyle \frac{p_{ni}^{\sigma}}{p_{nj}^{\sigma}} q_{ni} p_{nj} \\ q_{nj} p_{nj} & = & \displaystyle \frac{1}{\alpha_{nj}} q_{ni} \displaystyle p_{nj}^{\sigma} \alpha_{nj} \displaystyle p_{nj}^{1-\sigma} \end{array}$$

$$\sum_{j} q_{nj} p_{nj} = \frac{1}{\alpha_{nj}} q_{nj} p_{nj}^{\sigma} \sum_{j} \alpha_{nj} p_{nj}^{1-\sigma}$$

• using FOC2 (BC)

$$\mathbf{v}_n = \frac{1}{\alpha_{ni}} q_{ni} p_{ni}^{\sigma} P_n^{1-\sigma}$$

• and demand for good *i*

$$q_{ni} = \alpha_{ni} p_{ni}^{-\sigma} v_n P_n^{\sigma-1}$$

• We get indirect utility

$$U_{n} = \left(\sum_{i=1}^{N} \alpha_{ni}^{1/\sigma} \left[\alpha_{ni} p_{ni}^{-\sigma} \mathbf{v}_{n} P_{n}^{\sigma-1}\right]^{(\sigma-1)/\sigma}\right)^{\sigma/(\sigma-1)}$$
$$U_{n} = P_{n}^{\sigma-1} \mathbf{v}_{n} \left(\sum_{i=1}^{N} \alpha_{ni} p_{ni}^{1-\sigma}\right)^{\sigma/(\sigma-1)} = P_{n}^{\sigma-1} \mathbf{v}_{n} P_{n}^{-\sigma}$$
$$U_{n} = \frac{\mathbf{v}_{n}}{P_{n}} = \frac{\mathbf{v}_{n}}{\left(\sum_{i=1}^{N} \alpha_{ni} p_{ni}^{1-\sigma}\right)^{1/(1-\sigma)}}$$

• We can also express demand as total spending

$$X_{ni} = p_{ni}q_{ni} = \alpha_{ni} \left(\frac{p_{ni}}{P_n}\right)^{1-\sigma} v_n$$

• N blocks, each with representative resident(s) and firm(s)

- N blocks, each with representative resident(s) and firm(s)
- Firms in block i = 1, ..., N have constant returns to scale technology
 - Combining labor and a specific factor with labor share θ_i^ℓ

- N blocks, each with representative resident(s) and firm(s)
- Firms in block i = 1, ..., N have constant returns to scale technology
 - Combining labor and a specific factor with labor share θ_i^ℓ
- Residents of block n = 1, ..., N have homothetic preferences and choose
 - consumption of goods i = 1, ..., N to maximize utility s.t. income $\sum_{i} p_{ni}q_{ni} \leq v_n \rightarrow q_{ni}(p_n; v_n)$
 - supply of labor to i = 1, ..., N to max income $\sum_i w_i \ell_i$ s.t. time constraint $T_n \to I_{ni}(w_n; T_n)$

- N blocks, each with representative resident(s) and firm(s)
- Firms in block i = 1, ..., N have constant returns to scale technology
 - Combining labor and a specific factor with labor share θ_i^ℓ
- Residents of block n = 1, ..., N have homothetic preferences and choose
 - consumption of goods i = 1, ..., N to maximize utility s.t. income $\sum_{i} p_{ni}q_{ni} \leq v_n \rightarrow q_{ni}(p_n; v_n)$
 - supply of labor to i = 1, ..., N to max income $\sum_i w_i \ell_i$ s.t. time constraint $T_n \to I_{ni}(w_n; T_n)$
- Residents Blocks are separated by (iceberg) commuting and trade costs.
 - so that: $p_{nj} = \tau_{ni}p_j$ and $w_{ni} = \mu_{ni}w_i$.

- N blocks, each with representative resident(s) and firm(s)
- Firms in block i = 1, ..., N have constant returns to scale technology
 - Combining labor and a specific factor with labor share θ_i^ℓ
- Residents of block n = 1, ..., N have homothetic preferences and choose
 - consumption of goods i = 1, ..., N to maximize utility s.t. income $\sum_{i} p_{ni}q_{ni} \leq v_n \rightarrow q_{ni}(p_n; v_n)$
 - supply of labor to i = 1, ..., N to max income $\sum_i w_i \ell_i$ s.t. time constraint $T_n \to I_{ni}(w_n; T_n)$
- Residents Blocks are separated by (iceberg) commuting and trade costs.
 - so that: $p_{nj} = \tau_{ni}p_j$ and $w_{ni} = \mu_{ni}w_i$.

- N blocks, each with representative resident(s) and firm(s)
- Firms in block i = 1, ..., N have constant returns to scale technology
 - Combining labor and a specific factor with labor share θ_i^ℓ
- Residents of block n = 1, ..., N have homothetic preferences and choose
 - consumption of goods i = 1, ..., N to maximize utility s.t. income $\sum_{i} p_{ni}q_{ni} \leq v_n \rightarrow q_{ni}(p_n; v_n)$
 - supply of labor to i = 1, ..., N to max income $\sum_i w_i \ell_i$ s.t. time constraint $T_n \to I_{ni}(w_n; T_n)$
- Residents Blocks are separated by (iceberg) commuting and trade costs.
 - so that: $p_{nj} = \tau_{ni} p_j$ and $w_{ni} = \mu_{ni} w_i$.
- Tourists have the same preferences over consumption in blocks i = 1, ..., N

- N blocks, each with representative resident(s) and firm(s)
- Firms in block i = 1, ..., N have constant returns to scale technology
 - Combining labor and a specific factor with labor share θ_i^ℓ

• Residents of block n = 1, ..., N have homothetic preferences and choose

- consumption of goods i = 1, ..., N to maximize utility s.t. income $\sum_{i} p_{ni}q_{ni} \leq v_n \rightarrow q_{ni}(p_n; v_n)$
- supply of labor to i = 1, ..., N to max income $\sum_i w_i \ell_i$ s.t. time constraint $T_n \to I_{ni}(w_n; T_n)$
- Residents Blocks are separated by (iceberg) commuting and trade costs.
 - so that: $p_{nj} = \tau_{ni}p_j$ and $w_{ni} = \mu_{ni}w_i$.
- Tourists have the same preferences over consumption in blocks *i* = 1, ..., *N*Markets clear
 - Goods market clearing in location *i*:
 - Labor market clearing in location *i*:

$$y_i = E_i^R + E_i^T = \sum_{n=1}^N s_{ni} v_n + s_i^T E^T$$
$$\frac{w_i \ell_i}{\theta_i^\ell} = y_i = \sum_{n=1}^N s_{ni} v_n + s_i^T E^T$$

Bibliography

Agarwal, Sumit, Jensen, J. Bradford, & Monte, Ferdinando. 2017 (July). *Consumer Mobility and the Local Structure of Consumption Industries*. NBER Working Papers 23616. National Bureau of Economic Research, Inc.

Ahlfeldt, Gabriel M., Redding, Stephen J., Sturm, Daniel M., & Wolf, Nikolaus. 2015. The Economics of Density: Evidence From the Berlin Wall. *Econometrica*, **83**(6), 2127–2189.

Allen, Treb, & Arkolakis, Costas. 2016. Optimal City Structure. 2016 Meeting Papers 301.

Allen, Treb, Arkolakis, Costas, & Takahashi, Yuta. 2020. Universal Gravity. *Journal of Political Economy*, **128**(2), 393–433.

Almagro, Milena, & Domínguez-Iino, Tomás. 2019. Location Sorting and Endogenous Amenities: Evidence from Amsterdam.

Athey, Susan, Ferguson, Billy, Gentzkow, Matthew, & Schmidt, Tobias. 2020. Experienced Segregation.

Atkin, David, Faber, Benjamin, & Gonzalez-Navarro, Marco. 2018. Retail Globalization and Household Welfare: Evidence from Mexico. *Journal of Political Economy*, **126**(1), 1–73.
Baqaee, David R, & Burstein, Ariel. 2022. Welfare and Output With Income Effects and Taste Shocks*. *The Quarterly Journal of Economics*, **138**(2), 769–834.

Baqaee, David Rezza, & Farhi, Emmanuel. 2019. The Macroeconomic Impact of Microeconomic Shocks: Beyond Hulten's Theorem. *Econometrica*, **87**(4), 1155–1203.

Couture, Victor, Dingel, Jonathan, Green, Allison, & Handbury, Jessie. 2020. Quantifying Social