
Abel and the Insolvability of the Quintic: Part 2

In the last post we defined the concept of a radical field extension along the lines of the

definition of algebraic functions given by Abel. In the current post we will study some

properties of such field extensions which will ultimately enable us to study the field extension

 of  where  are elementary symmetric

functions of the indeterminates .

While discussing properties of radical extensions it will be found that at certain times it is

useful to let the base field contain all the roots of unity. Abel and his contemporaries always

assumed the existence of roots of unity as a given while dealing with solution of algebraic

equations.

Properties of Radical Extensions

We first show that in the definition of a radical extension  of  with  where 

with  we may drop the requirement that  be a prime. This is possible if we assume

that the base field  contains roots of unity.

Theorem 1: Let  be a field extension such that  where  is such that

 for some positive integer . If  contains a primitive  root of unity then  is a

radical extension of .

We proceed by induction. Starting with  we see that  so that  and clearly 

is then a radical extension of height  of . So let's suppose that  and that the result

holds for all exponents of  upto .

Let us first suppose that  where  are positive integers greater than  and less than .

Since we have , it follows by the induction hypothesis that  is a

radical extension of  and  is a radical extension of . Hence it follows that  is a

radical extension of .

If  is prime then we need to consider two cases: either  is an  power in  or it is not

an  power in . In the latter case we are done by the definition of a radical extension. So

we only need to consider the case that  for some . In this case we may assume

that  otherwise  and  so that  is a radical extension of height  of . Now

we have  so that  is an  root of unity. Since  contains a primitive  root

of unity, it contain all the  roots of unity. Hence  so that  and therefore

 so that  is a radical extension of height  of .

Next we see how we can generate radical extensions based on some given radical extension 

of . The following result discusses the scenario where we have towers of field extensions

 and . If  is a radical extension of  then based on it we can create
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a radical extension  of  which also includes .

Theorem 2: Let fields  be such that  and . Also let us

assume that . If  is a radical extension of  then there is a radical extension  of 

which is contained in  and contains .

The above theorem can be graphically represented as below:

Here the lines represent containment / field extension with the convention that a field at the

top contains the field below. Red lines indicate radical extensions.

The idea of the proof is that we adjoin the radicals  which are used in creation of  from 

to the field  to create a radical extension . This will naturally contain  and be contained in

 because all such radicals are part of . We carry this idea in a formal fashion in the proof

that follows.

We use induction on the height of radical extension  of . Let  be this height. If ,

then  and we can take  which contains  and is contained in  and clearly

 is a radical extension of  of height . So we have verified the theorem in case . Now

we assume that the result holds for all radical extensions  of  with height less than .

Since  is a radical extension of  of height , it follows that we have a radical extension 

of  of height  and  is a radical extension of height  of . This means that we have a

member  such that  and  where  is a certain prime and  is not a

 power in .

Clearly by the induction hypothesis we have a radical extension  of  which contains  and

is contained in . Now  and since  contains  and thus all the roots of unity we can

use Theorem 1 above to deduce that  is a radical extension of  and hence of .
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Clearly since  and  therefore . Also  and

 so that . Thus we have found a radical extension  of  which contains

 and is contained in .

The above result is so useful in combining multiple radical extensions to create one radical

extension. We have the following result in this connection:

Theorem 3: Let  be a field extension and let each of the elements 

in  lie in a radical extension of  contained in . Then there is a single radical extension of

 contained in  which contains all the elements .

Clearly if  the result holds. So let us suppose that there is a single radical extension  of

 which contains all the elements . Also let  be the radical extension of 

which contains . Using Theorem 2 we can see that there is a radical extension  of  which

contains  and thus we see that  is a radical extension of  which contains all the elements

.

Roots of Unity and Radicals

Note that the above results are dependent on the fact that the base field  contains roots of

unity. However if this is not the case then we have a remarkable result which shows that all the

roots of unity can be obtained via radical extensions. This was established by Gauss using his

theory of periods. We establish this result along the lines of Gauss using induction.

Theorem 4: If  is a positive integer and  is a field then the  roots of unity lie in a

radical extension of .

We need to establish this only for the primitive  roots of unity as the other roots are their

powers. For  the result is trivial and hence let . Let us assume that all  roots of

unity lie in a radical extension of  for all .

Clearly if  is composite, say  with  being positive integers greater than  and less

than  and  is a primitive  root of unity then  is an  root of unity and hence by

induction hypothesis lies in a radical extension  of . Again by the induction hypothesis we

can find a radical extension of  of  which contains all  roots of unity. Now

 and  contains all  roots of unity therefore by theorem 1,  is a radical

extension of  and hence of  which contains the primitive  root .

If  is prime then the argument is a bit tricky but Gauss uses the technique of Lagrange

resolvents. As usual let  be a primitive root of  and let  be a primitive  root of unity. We

set . Then  are the  primitive  roots of unity. Let  be an

 root of unity other than  and we form the Lagrange resolvent
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and then we can see that the cyclic permutation of  in that order changes

the expression  into . It follows that the expression  remains invariant

by the application of this permutation.

Now note that if we calculate the expression  it will involve multiplying the various

's and since these are primitive  roots of unity thier products will also be expressed as an

 root of unity. It follows that the expression  can be expressed in the form of a

linear combination of the 's where the coefficients will be certain polynomials in . Thus we

have

where  are polynomials in . Now we apply the cyclic permutation of the 's to the above

expression and note that doing so does not change the LHS. Thus we get

Adding these equations we get

and since the 's sum to  it follows that expression  is a polynomial in . By

induction hypothesis the  root  lies in a radical extension  of  and hence the

expression  also lies in . It follows by theorem 1 that  is a radical

extension of  and hence of . Considering all the  roots of unity it is clear that we

can find a radical extension  of  which contains all such expression . It can now be

easily checked that

and therefore . Thus we see that the primitive  root  lies in a radical extension of

. This completes the proof.

We next want to prove an important result regarding solvability of polynomials over a field. If

 is a polynomial over field  and  is a field extension then  can also be

regarded as a polynomial over field . We will establish that if  is solvable by radicals

over  then it is also solvable by radicals over . This also shows that if  is not solvable

by radicals over  then it is not solvable by radicals over . Thus in case we are trying to

establish non-solvability by radicals of some polynomial then it does not harm to extend the

field of coefficients. Thus it makes sense to always enlarge the field of coefficients to include

roots of unity and thereby all the complex numbers. By doing this we achieve a lot of simplicity

(via the use of theorems 1, 2, 3 above) in our proofs without losing any generality. We first
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prove a preliminary result.

Theorem 5: Let  be a field extension. If  is a radical extension of  then there is a

radical extension  of  such that  can be identified with a subfield of .

This result should be contrasted with theorem 2 as it does away with the requirement that base

field  should contain .

Again as usual the proof will be by induction on the height  of  over . If  then

 and we can take  which contains . If  so that  with

 not being a  power in . Now consider the polynomial . It is a

polynomial over  as well as over . Hence there is a splitting field  which contains all

the roots of . Since  is a root of this polynomial we can identify this  with some

member of . Since  it follows that  contains all the rational expressions in 

with coefficients in . In this sense .

If  is not a  power in , then  is a radical extension of  of height  and clearly it

contains both  and  and therefore . We thus have a radical extension of  which

contains .

If  is a  power in  say  with  then we have  so that  so

that  is a  root of unity. Clearly via theorem 4 there is a radical extension  of  which

contains  and hence contains . Clearly then  contains  and  and therefore .

This completes the proof when  is a radical extension of height  of .

If , then we have a radical extension  of  of height  and  is a radical

extension of height  of . By induction hypothesis we may assume that there is a radical

extension  of  which contains . Now we have scenario that  and  is a radical

extension of  of height . Clearly from the proof for height  we can see that there is a

radical extension  of  and hence of  which contains .

We now come to the final result of this post which shows that solvability by radicals of a

polynomial is not affected by extending the field of coefficients.

Theorem 6: Let  be a polynomial over field . If  is solvable by radicals over 

then it is also solvable by radicals over any field extension .

Let  be a radical extension of  containing a root  of . Clearly by theorem 5, the field

 can be assumed to be contained in some radical extension  of  and hence . It thus

follows that the radical extension  of  contains a root  of  and hence  is solvable

by radicals over .

We have covered the groundwork regarding radical extensions and these results will be used in
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the next post to establish the fundamental theorem of natural irrationalities which was first

proved by Abel.
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