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About Microtoolkit

Sam's Microprobe Analysis Kit, or SMAK for short, is a data-processing toolkit for x-ray microprobes. It contains the basic functions for:

Importing ASCII fluorescence data and displaying as an image

Support for several colormaps and displays of scale legends

Ability to perform math operations on data channels, including basic addition, subtraction, multiplication, division, as well as smoothing and derivatives.

Production of correlation plots, with the ability to make arbitrary masks for regions of particular interest.

Display of tricolor RGB plots, with a selected channel representing a color.

Ability to combine data channels from multiple files.

Display of raw data from image by selecting data pixels, producing a line plot in x and y directions.

Recall of MCA data if data was saved at collection time.

Ability to rebin data to capture missed peaks.

Principal component analysis routines on MCA data. Components can be saved back to image maps. Preliminary routine for using PCA to do EXAFS included as well.

XANES imaging fitting routine to do linear least squares regressions given maps performed at several energies. User enters matrix of standards and gets the fitted proportions as a function of location on the sample.

Data formats from several microprobes have are supported, with more on the way. Current data formats supported at this time are: 

SSRL Microscan files

SSRL SCANE ASCII files (format for saved files)

SSRL MGScan ASCII files

SSRL Super grid files

GSE-CARS files

PNC-CAT files

MRCAT files

ALS beamline 10.3.2 files

RGB files from Diamond

JPG, TIFF, GIF, BMP image formats

Future ability to include other formats is planned, including possible plug-in type support.  A generic ASCII file loader to accommodate other file formats may be provided in the future.  The program is still in its early stages of development, but all questions and particularly comments for improvement are welcomed.  
1. Downloading and Installing Microtoolkit

Microtoolkit is available for download at the following address: 

http://home.comcast.net/~sam_webb/smak.html
At this point downloads of SMAK are in the form of Win32 executables (tested on WinXP) and MacOSX. 

For Mac installation, please open the dmg file and drag the application bundle to your "Applications" folder. There may still be issues with running the application - if it crashes because it cannot find "tile", download the required zip file at http://home.comcast.net/~sam_webb/tile0.8.3.zip, and install the folder to your "/Library/Tcl/8.4" directory. 

Source code in Python source for Linux, Mac or Unix machines will be provided soon. As of now, it is still relatively untested on non-win platforms.  Any feedback on the use of the code on other platforms is greatly appreciated.
Things to consider before moving forward
Not all data formats are currently supported; if you’re having trouble loading data generated from a facility not on the list but would like to use the software, contact Sam Webb.

After extended data analysis sessions, errors often crop up in the arrays holding your data; if Microtoolkit suddenly starts behaving strangely (e.g. plotting odd-looking fluorescence data not consistent with your desired operation, crashing with specific function, etc), your best first option is to save your data, close Microtoolkit, and re-open. This will refresh the arrays and allow you to continue normally.
Most of the bugs in Microtoolkit have been identified and eliminated, but there are always a few lurking around the corner! If Microtoolkit keeps crashing, first close and reopen the program as stated above. If you still encounter problems, try opening another dataset (you can use the dataset accompanying this manual) to be sure your data isn’t corrupted. If you still encounter problems, try erasing Microtoolkit from your hard drive and re-installing (perhaps try a different version, if available on the website). As a last resort, contact Sam Webb for help.
Forgot a keyboard shortcut?  Oops, how do I zoom again? Those and a few other quick tips are in the “help” tab of microtoolkit (Fig 1.1)
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2 Examining Data

In this section you will:

Open files

Examine Fluorescence data

Examine incoming X-ray intensity over the course of map collection (I0STRM)

Look at data channel statistics, like the mean and median intensity values

Normalize your fluorescence data to I0STRM using Map Math Functions

2.1 Opening Files

“I just downloaded Microtoolkit but I don’t have any data of my own to examine. What do I do?” You’re in luck.
Accompanying this documentation are datasets which we’ll use to perform routine (and a few “advanced”) data analyses which are commonly used to reduce, decipher and publish data. In fact, if you are wholly unfamiliar with Microtoolkit, or haven’t done much micro-x-ray mapping, then I recommend you follow along with the supplied datasets (as much as time permits) prior to diving into your own. 
First, create a shortcut (or alias) to microtoolkit on your desktop. To do this, simply go to the executable (microtoolkit.exe), right click it, “create a shortcut”, drag it to your desktop. Chances are you’ll be closing/reopening Microtoolkit a fair amount, so it’s handy to have the executable in an easily accessed place. Also, before getting started, I recommend setting up a file system for your data analysis session, with at least three folders (arranged in any hierarchy you like). First, keep a file folder with your raw data; now copy this folder, and rename it something else. Second, set up a folder where you can store your processed data (called “processed”, “cooked”, etc). Now you have three folders, one with your raw data, which you’ll never use for processing, one with your copied raw data, and one where you will you’re your processed data. Don’t manipulate your original raw data, unless you have it backed up somewhere else. Just don’t do it! If it becomes corrupted, you’ll have to track down your original data on a server somewhere (if it was backed up—not always the case), which isn’t fun for anyone. 
Ok. Let’s open a file! The first dataset we’ll examine was collected from a human skin sample containing high concentrations of Gadolinium. The investigators were interested in the chemical composition of Gd (nano)particles deposited in the tissues of patients exposed to high concentrations of Gd in MRI imaging studies. 
Click the “Open button”,not the “load button” (more on that later) and from the “Gd” folder, pick the data file named “LN10_fine_12000_001.dat”. You should see the following (Fig 2.1):

[image: image3.png]

We first note that the fluorescence channels (regions of interest) we set up during data collection are listed in the left pane of the main Microtoolkit window—the “Data Channels” pane. We also note that by default, the first channel automatically selected is “I1” (or sometimes “I0”). Accordingly, we see just a red, boring field in our image display of I1. As you probably know, I0 is typically an ion chamber placed somewhere upstream of our sample, and represents the incoming X-ray flux which interacts with our sample. Conversely, I1 is typically placed after our sample, and generates a signal representative of a sample’s X-ray absorption (or transmission), ion chamber numbering may change based on beamline.  Now look at the intensity values in the image display of channel I0 or I1; note that as you hover the mouse over any point in the image display, the X and Y coordinates of that point will be displayed in the lower right corner, along with a value of intensity (Z). For image displays of either I1 or I0, the entire map just has intensities of “1”. In reality, when collecting data, I0 and I1 will almost never (ok, definitely never) just read 1.0 all the time (unless something is seriously wrong with the experimental setup)…so what’s going on? It turns out that for reasons not discussed here, data collected in “mapping mode”—as was done with this sample, and most which you will examine—is processed differently than data collected in “spectroscopy” mode. When in mapping mode, I0 and I1 data are collected in channels called I0STRM or I1STRM (data is “streaming” into these channels rather than being stored in a stepwise manner). 
In the “Data Channels” pane, select “I0STRM.” (Fig 2.2)
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Now we are displaying our true I0 data for each pixel collected in our map—hover the mouse over different locations, and you’ll see the Z value change. It’s also easy to see a clear pattern, where I0 values at the bottom of the image display are higher than the top. Why? If you collected your data correctly, you set up a scan area in which data is collected starting at the lower left corner.  As the sample stage is then moved, pixels of data are filled in from left to right, until an entire line of data is collected, then move up a pixel…thus the map is generated by collecting data from left to right, and from bottom to top. In our image, we are therefore clearly seeing a decline in I0 over time, which almost always means that the SPEAR ring at SSRL is not operating in “top off” mode; that is, the voltage of the ring is in continuous decline and not being maintained at a nominal level. “Based on color difference, there doesn’t seem to be much difference between the top and the bottom of the map”, you say. True; to visually glean the difference between the start and ending values of I0, adjust the “Low” threshold slider until it’s at 0.85. You’ll then see something like this (Fig 2.3): 
[image: image5.png]

We’ve basically now set a lower color threshold which is ~85% of the maximum I0 (Z) value observed in the map, and consequently, variation in I0 becomes more visually apparent. At this point, you might be asking “if the incoming X-ray intensity is declining over time, won’t my fluorescence data—like for Gd, Ca, P, Fe—decline over time, too?” The answer is “yes”, but a better question might be “how much variation in I0 must be present in my map to make a substantial difference in my data analysis/presentation, and how can I correct for it?” We will revisit these questions very soon; but for now, let’s back up just for a moment and examine the other channels present in our dataset. 
In the image display window, set the sliding “Low” threshold back to 0.0. Now, in the main window, take a moment to explore the other channels in the dataset by simply clicking on them in the “Data Channels” pane. Note that there are a couple of channels (named ICR and OCR) in the dataset, which we haven’t mentioned here, and which were not specified as SCA’s when you collected your data at the beamline. We’ll come back to these channels when we discuss how to perform “Deadtime Correction” in section 3. 
Let’s examine the channel where we collected fluorescence data for the gadolinium k-α peak (“GdA”). You should see this (Fig 2.4): 
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In many samples (particularly, geologic), there are often very high differences in elemental concentration over small spatial scales. Consequently, images may be “swamped” by hotspots of elements, e.g. by a specific mineral grain; but we’re often also interested in the background element distribution, as well.  Here, we have hotspots of Gd against a relatively low Gd background. By clicking on “Log Scale” we now reset the map colors to a log scale (Fig 2.5). 
[image: image7.png]
Further, we can play around with the image thresholding to emphasize/de-emphasize variations in elemental composition (Fig 2.6)
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Examining data in such a manner is often particularly helpful when ascertaining points or areas to perform further analysis, e.g. where to perform micro-XAS or XRD.
In the next section, we will return to the question of whether or not the variation in I0 observed over the course of our data collection will substantially impact our fluorescence data.
2.2 Manipulating Data with “Map Math” options and Examining Map Statistics
Now reset the Low and High sliding thresholds to 0.0 and 1.0, respectively, and de-select the “Log Scale” checkbox in the Image Display window. Select “I0STRM”, and examine the values of Z at the start and end of the scan (Fig 2.7).

[image: image9.png]
You’ll notice that the starting and ending values of I0stream are 18307 and 15898 (incidentally, these values represent 1.8307 and 1.5898 Volts as displayed on I0 and I1 at the beamline), which represents an approximate 13% decline in X-ray flux over the course of data collection. Ideally, we wouldn’t see any fluctuation in I0STRM over the course of our experiment, thus differences in sample fluorescence would be wholly attributed to changes in sample concentration, etc (i.e. variations in fluorescence would be internally consistent). However, the synchrotron is a less than ideal place, and I0 will fluctuate not only from voltage decay when not operating in top-off mode, but also when collection takes place during a beam re-fill, or when other anomalies in SPEAR result in voltage fluctuations.  It is therefore often helpful to normalize fluorescence data to I0stream to account for such fluctuations. To do so, we will utilize the “Map Math” suite of options in Microtoolkit. And it’s easy.
Either click the green “Map Math” button in the main window of Microtoolkit, or select “Open Math Window” in the Process dropdown menu. You will see this (Fig 2.8):
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The options in this screen represent a powerful set of tools for data processing, with a wide range of possible operations. In our case, we simply want to normalize the fluorescence data in our map to I0 stream. First, enter a new channel name (without spaces or unusual characters). Here we’ll just name the channel GdAnorm. Now, to normalize the GdA data to incoming X-ray intensity, we simply select “GdA” in the left Data Channel pane, “Divide” in the operation pane, and “I0STRM” in the right Data Channel pane (Fig 2.9). 
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Pressing “Do Calculation” will perform the operation and update the GdA fluorescence map without saving the new channel or overwriting the raw GdA data. “Save Calculation” saves the processed data in the new channel “GdAnorm”, which will then be visible in the main Microtoolkit Data Channel pane. Click “Save Calculation.”  Now click on the “GdAnorm” channel in the main Microtoolkit Data Channel Pane. You should see this (Fig 2.10): 
[image: image12.png]

Your GdA data is now normalized to fluctuations in I0Stream! But hold on, examine the pixel intensities (Z) in the Image display of GdAnorm, and note that they are indeed small. Why? It’s simply because we normalized our relatively low counts in our original GdA dataset (10-20 or so on average, take a look at the raw GdA channel and observe the counts, if you wish), to the very high counts present in I0stream. Unfortunately, this is problematic if you want to perform further mathematical operations, because many functions—like PCA—will perform poorly or crash when trying to process fractional data. Luckily, there is an easy work-around; we can simply use the Map Math “kit” to multiply our map by a scalar, which will increase all pixel values by some consistent value. But what scalar should we use? For consistency, it is useful to multiply our normalized map to the average or median intensity of all values found in I0STRM; this will get our intensities close to their original values, and will make the dataset easier for the Microtoolkit algorithms to process. 
We can use a simple option to display a variety of statistics for our I0STRM map, including the median/mean values, etc. In the “Analyze” drop-down menu, select “Data Summary.” You will see the following window open (Fig 2.11):
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Here we have a variety of potentially useful map statistics for each of our data channels; these can be quite handy; for example, if you need to summarize the variation in Gd counts present within your sample. Here, we just want to find the mean I0STRM value, which is 16996. Close this window by clicking “OK.”

Now go back to the Map Math window (re-open if you closed it).  Type a new channel name called “Gdcorrected”. In the left channel pane, select “GdAnorm”, for Operation select “Multiply”, and for the right Data Channel select “Scalar.” In the Scalar field which pops up, type 16996. Click “Save Calculation” (Fig 2.12)  If the scalar field does not appear grab the lower right corner of the calculate math window and make the window bigger.
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Now go back to the original Microtoolkit Data Channel Pane, and select the new Gdcorrect channel. Examine your intensity (Z) values, and note that there are now whole numbers associated with intensity (which is exactly what we want) (Fig 2.13). 
[image: image15.png]
To normalize or not to normalize?

Let’s put our normalized and raw data side by side (Figure 2.14). 

[image: image16.png]

In the most simple plots of our data above (no log scale, thresholding, etc), it is apparent that the raw and mormalized data sets look virtually identical. While a 13% decrease in incoming flux over the course of data collection is substantial, it’s clear that there’s little qualitative impact regardless of normalization….if the data will only be used for visualization, normalization, may not matter. But a 13% variation in flux MIGHT have more of an impact when performing more advanced analysis, such as PCA or quantification. In the case of advanced analysis, you probably want to normalize. A rule of thumb for normalizing data might be that if you see more than 5% variation in I0stream, then the data should be normalized, else it is probably just as well to work with the raw data. Also, if anything “weird” happened during data collection (the beam dumped and refilled, there was a bizarre power spike, etc), then normalize. The decision whether to normalize is ultimately subjective; but if you’re unsure, just do it.  It’s easy. 
3. Deadtime Correction

In this section you will:

Garner a simple understanding of deadtime and how it affects your data
Gain exposure to correlation plots
Determine whether or not deadtime correction is necessary

Deadtime correct your data

The concept of deadtime is very simple. Most detectors used in XRF experiments (mapping, spectroscopy, etc) use solid-state electronics (e.g. Germanium or Si-drift) to count and discriminate the energy of incoming photons. To do this, they detect incoming photons, and apply algorithm(s) to the resulting signal to, ultimately, generate an “MCA spectrum” (MCA=”multi-channel analyzer”). However, if too many photons interact with the detector at once, the detector simply cannot count all of them due to the amount of “deadtime” it takes to process the signal generated by each photon interacting with the detector. The result is that areas in a map with very high counts are possibly showing lower intensity values than they should, because not all photons coming from these areas are being properly counted. Thus areas showing high intensity should, in reality, be even more intense.

An analogy is this: 
Say you want to go to the batting cages and practice catching some baseballs. You set up a machine to pitch you baseballs at a certain rate (say, baseballs per minute), but this rate increases over time (we’ll say it starts out at 1 baseball per minute, and slowly increases to 1000 baseballs per minute). Also, you being a scientist, and a geek of sorts, decide you want to measure the exact speed of each ball before it strikes your glove…you do this by putting a small device in your glove which measures the force exerted on your glove by the baseball, which you then use to calculate speed on impact. Every time you catch a baseball you have to walk over to your notebook and write down the number on your baseball glove meter (and for the sake of argument, we’ll assume you are a perfect catch, and catch the ball the same every way each time, and it always takes you the same amount of time to walk over and write down the value in your notebook. Basically, you are a robot)—it takes you 10 seconds to catch a ball, write the number down from your glove, and return. When the baseballs are coming at you at 1 ball per minute, you have no problem taking your glove measurement, writing it down, and walking back with enough time to catch the next ball and repeat the process. But when baseballs start being thrown at around 7 baseballs per minute, you start to miss baseballs. There is now “deadtime”, where you miss a baseball because you’re off writing down a number. The number of missed balls then increases proportional to the rate of baseballs thrown. Luckily, you have a really bored friend with a very accurate stopwatch, who ridicules you by shouting out the number of baseballs pitched every 10 seconds (and hence, you know how many balls you’ve missed in a 10 second period). You decide to write that number down, too. So now you have three datasets: two of them are generated by you; the number of baseballs caught per minute as well as their energy, and the third set is generated by your friend; the total number of baseballs thrown, including ones you missed. Not only could you now keep track of the baseball’s energy over time, you also know the total number of balls you should have caught, because your friend reminds you of how slow you are. The two people, you and your friend, could be thought of as two detectors; one which both counts photons and discriminates their energy, and the other which just counts photons, but doesn’t give a hoot about their energy. 

It turns out that there are indeed 2 “counters” set up, which record photon counts in 2 channels, named “ICR” and “OCR”. ICR counts ALL incoming photons, and is accurate until counts exceed ~1,000,000 photons/second. OCR counts photons and discriminates their energy, but starts to miss photons at around 100,000 counts/second. As long as our total counts don’t exceed ~1,000,000 photons/sec, (and our corresponding OCR counts don’t exceed ~250,000 counts, when using single element vortex detector…this value changes, based on which detector you use) we can construct a curve of OCR vs. ICR and correct the intensities of our map based on this relationship. This is otherwise known as a “deadtime curve.” Let’s construct one now.
First, in the main window of microtoolkit, click on the ICR and OCR data channels, just so you see what the data looks like. Remember, these are not channels, which contain element-specific data, rather, they represent the total number of photons counted by the detector without and with energy discrimination, respectively. 
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Note that in this dataset, ICR and OCR look very similar (often times they look quite different) (Fig 3.1).

Now lets examine the relationship between ICR and OCR. To do this, click the orange “Correlation Plots” button (or “Correlation Plots” in the “View” drop-down menu). 

[image: image19.png]

You’ll now see the correlation plotter window (Fig 3.2). The correlation plotter is another very useful tool which we can use to examine the correlation between elements, extract information from PCA analysis, and much more. The plotter works by plotting coordinate-specific data, i.e. the ICR vs. OCR counts (or whatever else you might choose) for each pixel in our map. For now, we’ll stick to making a deadtime curve, but will return to these other topics soon.
On the left side you’ll see two panes for X and Y data plotting. In the X data pane select “ICR”, and in the Y data pane select “OCR.” You should now see a correlation plot of ICR vs. OCR. You’ll see a correlation plot which looks like this (Fig 3.3):
[image: image20.png]

This is great! You’ve generated a correlation plot which we can use to generate a deadtime curve. But there’s one small problem; notice how there is a large gap in our dataset, extending from 0-5500 counts in the OCR vs. ICR data? This exists because there is a glitch in the way data is collected at beamline 2-3; when the sample stage begins a new line of data (on the left edge of our fluorescence map), there are small inaccuracies in stage velocity which occur within the first pixel of data—this happens as the stage accelerates to its full velocity). So the first vertical line on the left side of our maps often contains skewed data, where the stage was lurching to its proper position (by the way, let’s give the stage a little credit; it has an accuracy of better than 500 nm, and runs nearly 24 hours day, 9 months a year…so what if it takes 1 pixel-worth of data to achieve its proper speed? Right?). Fortunately, there’s an easy way to get rid of this line of data. Without closing the Correlation Plotter window, go back to the main microtoolkit window. Click on any data channel, and the right click on the associated fluorescence map. You’ll see a drop-down option called “edge removal.” Click it (Fig 3.4). 
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Now return to the correlation plotter. The “gap” in our data is now gone, and we see a clear relationship between ICR and OCR (Fig 3.5). 
[image: image22.png]
Note that the relationship between ICR and OCR is linear across the entire range of plotted values. This essentially means that we have little or no deadtime in our data set, and that we really do NOT need to perform a deadtime correction on this data set. So, when do we need to deadtime correct our data? The answer is simple; any time you observe a non-linear relationship between ICR and OCR, AND your ICR counts are still in a linear range. It’s easy to see when your ICR counts are outside of linearity—the tell-tale sign is a “curling over” of the ICR-OCR curve (see figure below). When outside of linearity, there are 2 data points for every OCR point—the curve takes on the character of an inverse parabola, which has 2 solutions for every y position, so we can’t apply a simple curve to our data to linearize it. 



For now, let’s return to our dataset and perform a deadtime correction, even though it’s not needed. In the next chapter, we’ll be examining a dataset which does need a deadtime correction, so you’ll need to know how the process works. Deadtime correction is another very easy task.
Go back to the Correlation Plotter, and be sure that ICR and OCR are still plotted as X an Y. Now go to “analysis” and select “Do ICR-OCR Deadtime” (Fig 3.7) 

[image: image23.png]

Microtoolkit will now fit a curve to the ICR/OCR data (Fig 3.8). Note that there is now a fitting parameter displayed in the lower left corner as “DEADTIME: 6.67857317147.” It’s helpful to write this number down in your notes, especially if you’ll be working extensively with a dataset…this way, you can go back and deadtime correct your data without have to perform a curve-fit, as we have just done.

[image: image24.png]

Now go to the main microtoolkit window. Under “Process” select “Deadtime”, and “Apply Deadtime Correction” (Fig 3.9)
[image: image25.png]

This small window will then pop up (Fig 3.10).  If it doesn’t pop up the first time just go to “Process” select “Deadtime”, and “Apply Deadtime Correction” for a second time and it should work.
[image: image26.png]
Notice that the Deadtime “tau” value you wrote down was automatically transferred to the entry field. If for some reason you needed to deadtime correct your dataset again, you could just enter the number from your notes rather than curve fit again. Now, click the checkbox “Do DT correction”, and hit “OK”. The deadtime curve is now applied to all of your fluorescence data!  You do not need to make any new channels. Once again, deadtime correction is not necessary on this dataset, so you will really not see any difference between deadtime-corrected and raw data. However, you will certainly see visual differences in dead-time corrected datasets with higher counts. Also, it’s important to note that this deadtime value will stay in memory, even if you open a different dataset (as long as you don’t close Microtoolkit). This is handy if you have multiple datasets which were collected under similar conditions, and they all need to be deadtime corrected with the same curve. The “Do DT correction” can simply be applied to another dataset, which you open, without performing a curve-fit each time.

Now that we’ve normalized and deadtime corrected our data, and have a sense of how the correlation plotter is working, lets perform a little bit of data analysis!

4. Correlation plots of elements, smoothing data, tricolor plots, and creating masks

The dataset we’ve been examining was taken from a patient who was exposed to high concentrations of Gadolinium that was injected for use as an MRI contrasting agent. The Gd then precipitated in various tissues, including skin—the organ examined here. A natural question is to ask which elements are associated with Gd—is it a Gd-Ca-P precipitate of some sort? A simple way to explore this question is to examine correlation plots of Gd with other elements. 
4.1 Correlation Plots
In the Correlation Plotter, select the X data channel corresponding to the Gadolinium L-alpha line. In the Y data channels, click on the data collected for various other elements and examine how they correlate (or don’t correlate) with Gd. 
Examine the relationship between Gd and P. You should see this (Fig 4.1):

[image: image27.png]

There obviously appears to be a strong correlation between Gd and P; however, the plot looks just a little bit odd—at low counts, the P data are forming quantized “bins” which in this case, give the appearance of our P data making horizontal lines (I drew the red lines just for reference) (Fig 4.2):
[image: image28.png]

In this particular dataset, these “lines” do not interfere with our analysis, and they aren’t so visually distracting as to be something to really worry about. However, when counts are even lower (yet are significant), they can make our data difficult to interpret, and are visually distracting. Here’s an example from a completely different dataset (Fig 4.3):
[image: image29.png]

The reason for the data “behaving” this way is simple; the detector is counting photons over a giving time period, which is a quantized value (i.e. there are no fractional photons). When counts are low, (especially below ~20 counts per time period), they are binned into integer values—these bins hold a lot of data points, but are relatively close together (e.g. in the case above, there are >100 data points in each S bin between 1 and 10). If we are trying to draw out relationships in our data, it may be helpful to eliminate this quantization, which we can do by applying a small amount of smoothing to our data. 
4.2 Smoothing to Improve Correlation Plots

In our dataset, counts in the P channel are low relative to GdA. So let’s apply a small amount of smoothing to the P channel to eliminate the quantization and allow for fractional values. There are multiple ways to smooth data in Microtoolkit; here, we’ll use a simple smoothing algorithm, but more advanced methods of smoothing/data processing will be covered later. For now, go back to the main Microtoolkit window and select “Map Math.”  Create a new channel called Psmooth, select P as a Data Channel, and “Smooth” as an operation. Note that the right-side “Data Channel” will be greyed out, as there is no second data set used in our smoothing operation. Click “Save Calculation.” (Fig 4.4)
[image: image30.png]

Now return to the correlation plotter, be sure GdA is selected as the independent Data Channel, and select “Psmooth” as the dependent (Y) channel. Note that the plot of GdA vs. Psmooth is less visually distracting than the plot of GdA vs. the raw P data (Fig 4.5). But is the smoothed data more or less “accurate?” (this is a common question). The smoothing algorithm uses nearest neighbor values to interpolate pixels; this interpolation process tends to pull down pixel values which are quantized slightly too high, and pull up values which are quantized slightly too low, thus tightening the range of observed values (this is apparent when examining the correlation plots of GdA vs. smoothed or unsmoothed data). Smoothing therefore tends to reveal correlations which are difficult to observe with unsmoothed data. As for the “accuracy”—smoothing data is a perfectly legitimate thing to do, as long as you explain what you did! It is not necessarily “better” or “worse” than examining the raw data; it really just depends on how you are applying the processing to whatever problem you are examining. If you are applying smoothing to a channel with thousands of counts in only 2 bins (representing 1 and 2 counts), it probably isn’t going to really help you. If you’re doing it to sharpen a correlation plot between elements with many bins and many counts (as we have done here), it’s fine, as long as you explain your methods and why you performed them.
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Here’s another example of how smoothing can clarify correlations. Select “Fe” as the independent (X) variable, and the raw P channel as the dependent (Y) variable. You’ll see the following correlation plot (Fig 4.6):

[image: image32.png]
Now select the “Psmooth” channel as the dependent (Y) variable (Fig 4.7). 

[image: image33.png]
Note that in both plots, there are obviously 2 “end members” of iron, which contain either consistent ratio of Fe:P or a relatively fixed P concentration vs. variable Fe. It is clear that these two trends are clarified when using our P channel which has been smoothed.

Now that you’ve been (almost) thoroughly introduced to correlation plots, lets learn more about how we can use them to visualize chemical differences in our fluorescence maps. For example, in the last plot we generated (Fe:Psmooth), we see two trends in our data, which might represent two different forms of Fe (or P). “That’s interesting”, you think “I wonder how these different trends in Fe:P composition connect with our fluorescence maps.” It turns out, answering this question is easy! We can simply apply masks to any section of our correlation plot and use this mask in our florescence data. Let’s try it.

4.3. Applying Masks to XRF Maps

In the correlation plotter, be sure that the independent (X) data channel is Fe, and the dependent channel is Psmooth. Now click “Define Mask.” Now move the mouse over the bottom left corner of the plotted data. Click once. You’ll see a red dot appear (Fig 4.8). 
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Now keep clicking as to make a “mask” around the data corresponding to the Fe:Psmooth correlated data (Fig 4.9):
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When you near the end of the “mask”, close the polygon by double clicking (Fig 4.10).

[image: image36.png]

If you’re successful, a “mask complete” message should appear in the lower left message bar. You’ve just created a mask, which will allow us to display only this selected data in our fluorescence map(s). To do this, go back to the main microtoolkit window (don’t close the correlation plotter). First, click the blue “ignore mask” button in the center-bottom of the main microtoolkit window (this is just to clear any other mask we may have inadvertently created while performing other tasks). Now select the “Fe” Data Channel. It should look like this (Fig 4.11):
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This is your raw Fe data.
Now click the green “Use Mask” button on the main Microtoolkit window. Your new Fe map looks like this:

[image: image38.png]
Pretty cool! We’ve just plotted only the data we masked in our correlation plot. To save this data in its own channel, click the “Map Math” button. Name the new channel “FePcorr”. As a (left side) data channel, select Fe, and for an operation, select “Apply Mask”. Note that the right-side data channel pane will grey out, as there is no second dataset used in this operation. Click “Save Calculation.” (Fig 4.13)
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In the Main Microtoolkit window, there is now a channel called “FePcorr”.

Now, as a test of your skills, go back to your correlation plotter and click the red “Clear Mask” button. Your old mask should disappear. Now create a mask around the other iron data “grouping”, which has variable Fe counts with relatively fixed Psmooth counts (Fig 4.14):
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Now go back to the main Microtoolkit window, click “Use Mask”, and create a new channel named “FePfixed” using Map Math. Now click the blue “Ignore Mask” button, so we don’t keep applying our mask to our new channels (which wouldn’t really make sense to do). Your new channel should look something like this (Fig 4.15):
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4.4 Tricolor Plots

Now we have 2 different channels representing iron data from two Fe:P groupings, which we suspect, have different chemistry. How can we plot these two groupings on the same fluorescence map? One way to do it is with a Tricolor plot. Click “Tricolor Plot” in the main Microtoolkit Window. This will appear: 
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Now scroll down through the channels. Next to the “FePcorr” channel, select the first (R) radio button. You should see a plot which looks like this (4.17):

[image: image43.png]

Next to the “FePfixed” channel, click the second (G) radio button (Fig 4.18):
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You now have a 2-color plot, which displays your correlated Fe:P data (Red) and your fixed P/variable Fe data in Green. A quick note: this is a great way to examine data at the beamline for planning further analysis. For example, you can now use this map to select points to perform iron microXANES or microXRD…the more data you process while at the beamline (on-the-fly), the more guided and interesting measurements you can make!
Finally, let’s add a third element to the map. Try applying the blue channel (third radio button) to the remaining channels. After cycling through all of them, select the GdA channel (Figure 4.19). 
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With what “chemical group” is the Gd most associated (you could also explore this question using the correlation plotter)? Now, say we want Gd to REALLY show up in our map—that is, we want to make the Gd signal more intense. We can do this by manipulating the intensity thresholds associated with each channel. To do this, go into the Tricolor Plot Control panel, and change the default high threshold value associated with the GdA (blue) channel from 674.0 to 200, be sure to hi return to make the changes take effect. (Fig 4.20).
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The resulting tri-color plot is (Fig 4.21):
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At this point, you’ve performed quite a bit of work on the dataset, so it’s a good idea to save your processed data. To do this, simply go to the main window of Microtoolkit and click the blue “Save Processed” button, or select “Save Data” from the “File” drop down menu. Save your data in your “Processed” file folder…note that Microtoolkit will automatically append a “processed” extension to your file name, so if you are a fast-clicker and hit “save” without changing anything, you’re raw data is still safe. 
Let’s add a few other items to this plot. In the main window, select the “Legend” drop-down menu, and select “Show Scalebar.’ The selected fluorescence map will appear, along with a newly-added scalebar. The scalebar will also show up on the tricolor plot, this scalebar is to indicate size. If you want, you can select “Place Scalebar” under “Legend” and put it in a different location on the map. Also, select “Save Tricolor Map” under “Legend”. A dialog box will show up, prompting you to save the corresponding tricolor legend as show here (4.22):
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You can use your favorite photo-editing software (or PowerPoint, etc) to add this legend to your plot. You now have a tricolor plot with a scalebar and add-able legend (Fig 4.23). 
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To save a high-resolution image of your tricolor plot, select “save high-res tricolor plot” under the “file” drop-down menu. Also, you can save any individual channel in a similar manner; to save the raw GdA data, for example, select the GdA channel, and select either “save display” or “save high-res display” under the “file” drop-down menu.

Now that you’ve successfully plotted your data, lets move on to quantification.
5.  Quantitative Analysis
The purpose behind the quantitative analysis is to put “real” concentration numbers in your map data, rather than the tenuous label of “counts”. What the Toolkit herein does is take a measurement based on a standard and convert the “counts” of an element into some form of concentration. There are many caveats to doing a proper quantitative analysis!

At any particular excitation energy (i.e. the energy that the monochromator is set to) there will be a particular amount of absorption by the sample and the various elements therein. The amount of absorption will determine how much fluorescence will be emitted (as you can not have fluorescence without absorption). This amount of absorption will decrease as slowly as the excitation energy goes farther from an absorption edge. Thus, if you want to measure sulfur fluorescence, you should probably not be trying to make the measurement at 18keV! Additionally, the absorption and resultant yield for the sample will be different at various excitation energies, so a calibration measurement at 8keV will be different than one at 12keV.

Additionally, the air path between the sample and the detector will affect the amount of fluorescence observed. If you change detector distances, the calibration measurements will no longer be valid. For harder fluorescence x-rays, this effect will be smaller, but for the lower or squishy x-ray energies, this can be a very large effect.

Most important is the matrix effects of the sample. If you are making measurements in thin sections of tissue, then it is likely that your sample is not having a large effect. If the tissue is thick, then you may need to worry about how much of the excitation x-rays enter the sample (i.e. the penetration depth) and then, how much of the fluorescence x-rays actually escape the sample. Again, for a near homogeneous biological tissue, this may not be too bad. For a soil/rock sample, this is much more difficult. These issues also stress the importance of having a well-defined thickness for your sample if you want to do true quantification. The Microanalysis Toolkit assumes that you sample is infinitely thin (for now) and makes NO thickness corrections. These features will hopefully come at a later date. Thus, this procedure is really only semi-quantitative.
5.1  Things to remember:

Run a calibration standard at each experimental excitation energy

Run a calibration standard at each experimental detector distance


Make careful note of the I0 ion chamber gains (particularly if you change the gains)

What do I think about my matrix?
What do I think about the thickness?
You know, I bet this is really only semi-quantitative (yes!)

5.2  How to do it.

Standard measurement can/should be done at the beam line. At SSRL, there is a provision of many elements of interest. Each standard is a thin film support with an element of interest deposited on a Mylar film at approximately 50 micrograms per square cm, a list is featured in the file xrfstandards.ppt included with the example data for this manual. The label on the case will have the true concentration. If you have a matrix matched standard, or other standard, measure it! You can still follow the procedure below. Measure a small region of your standard with a map of roughly 30×30 pixels and a similar pixel spacing and dwell times as your data collection.

Calibration Setup
Let’s get started by (re)examining our Gd dataset from the first sections of the tutorial. It turns out you have a strong desire to quantify the amount of zinc present in your sample, so at the beamline, you obtain an XRF map of your sample at 12000 eV.  Then you collect an XRF map of a ZnTe thin-film standard foil (not to be confused with calibration foils used for XAS which calibrate mono energy) at the same energy and detector distance as your XRF map. You now have all the data you need to perform semi-quantitative analysis of zinc. 
First we need to create a calibration file. This is done by loading a data file of our standard thin film. Open the file named “ZnTe_stnd_12keV_12000_001.dat.” Now select the “Zn” channel. You should see this:
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Note that there is a line of empty/distorted data on the left side of the map. Accordingly, we can remove this line of bad data by right clicking on the flourescence map and choosing “edge removal,” as you have done in a previous section. Your map should now look relatively uniform, like this:
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Another option for removing this edge (or zooming to a different area of the map) is to zoom (control-left click and hold and drag over the area to zoom). To undo the zoom, right click and select clear zoom.  Be aware this will also undo your edge removal.
Next choose “Analyze - Quantification - Add Data to QuantFile” from the menubar. A dialog will appear asking if you want to do this. Click “yes”. Here you will need to provide a file name (for example, ZnQuant). Save the file in the “processed” folder. If the QuantFile exists, it will APPEND to the end, NOT OVERWRITE. Next select the channel (or channels) of data that are present in this standard measurement and push OK.
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A dialog appears with data entry fields to characterize the standard. 
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The “Chan Name” field is the data channel name that was selected and cannot be changed. The “Element” field is the element that you wish to quantify. The “Std Formula” is for the chemical formula of the standard. “Std Conc” is the concentration of the FORMULA (not the element). The Toolkit will make corrections for the elemental abundance in the formula. “Cts/I0” should be filled in for you and is the average counts of the element selected divided by the signal in I0 (or I0STRM if done at SSRL in continuous scan mode). The quantification process will normalize the data to I0 so you will not have to make this correction later. Lastly there is a dropdown menu to select the gain on the I0 ion chamber during the measurement. This is critical if you change the gains throughout the experiment. If you do not change the gains, then this field is NOT important (but should be set to the same value for all your standards and samples!) Once you are done with entering the information, click “Save” and the data will be added to the QuantFile. Repeat these steps for additional elements of interest, selecting the SAME QuantFile each time, but it is ok to select different data files.
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The Final Analysis

Now, after all elements of interest are in the QuantFile, the calibration can be applied to a real data file. Open the data file named “LN10_fine_12000_001.dat” and then select “Analyze - Quantification - Quantitative Analysis” from the menubar. Select the channels you want to quantify (they need to be ones that you have standardized above, i.e. Zn). You are presented with the Quantitative Analysis dialog, which asks for similar parameters to those you entered in the first steps. If you have them memorized you can type them all in. Better to go to the “File” menu and select “Load parameters”, and select your “ZnQuant” file from your “processed folder”; now choose “Zn” from the drop down menu (Zn should be the only option, at this point)—this will fill the appropriate entry fields with your Zn quantification parameters. At this point, if you collected your sample data with different I0 gains than the standards, you would select the new values in the “Samp I0 Gain” drop downs. Clicking the “Quantify” button will complete the process. 
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In the end, you will find a new data channel(s), titled “Xx-conc1” …in this case, Zn-conc1.
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This channel will be normalized to I0 and now in units of concentration, rather than counts (i.e. micrograms per cm2 or whatever units you used for your Std Conc value). You can now progress to do further calculations (with Map Math) to normalize to the beam size, make thickness approximations to get grams per volume, etc. Also, you can always examine the range of you data by selecting “Legend - View Colormap” from the menubar.
[image: image57.png]
For example, let’s say our sample has a uniform thickness of 100 microns, and we are assuming Zn fluorescence is escaping from the entire sample (not too bad an assumption for a C-rich biological sample). For any given point, we can thus convert from units of “micrograms per cm/2” to “nanomoles per cm/3” (perhaps a more intuitive unit) by simply applying the following dimensional conversion:
[image: image58.emf]
We just need to divide our quantified Zn data by 0.0006538 to achieve our desired units. This can be done in map math: 
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If you’ve performed the same conversion, values of Zn in your map should range from ~100-1600 nmol/cm3 Zn. NOTE: If you want to make a tri-color plot, you want to avoid fractional values. For example, if you were working in units of millimoles/cm3, map values would only range from ~0.1-2.0, and your tri-color plot won’t look so great. 
5.3  Summary
Load a data measurement of a standard, then perform an edge correction or zoom to find a uniform region.

Add the information to a QuantFile by choosing a file, followed by entering the composition and concentration information.

Repeat steps above as necessary for additional elements of interest.

Open a “real” data file

Select quantification, choose elements of interest, and load the QuantFile.

Adjust gains if necessary and press “Quantify”
If desired use map math to normalize/account for beam size, sample thickness, etc.
6.  Working with MCA files and (re)binning MCA data to create channels
You’ve gone to the beamline. You’ve collected gigabytes of amazing data (enough for 3-4 nature papers….or at least enough for a Goldschmidt abstract). You get home and analyze your data, but realize that in your caffeine/nicotine crazed frenzy at the beamline (along with watching re-runs of “lost” and “Mr. Ed”), you forgot to window the most important element of your study! You’re in luck; as long as you saved MCA files with each XRF dataset, you can bin data and create new windows, or re-bin data if you feel your original windows were misaligned.
First, the following set of instructions is based on the premise you SAVED your MCA files with each XRF scan. When collecting data at the beamline using the program Microscan, it is critical that you select the “Yes” radiobutton for “Save MCA File”, just above where you save the filename, on the right hand side of the program. This will ensure MCA files are saved for each XRF dataset.
First, open your XRF dataset in Microtoolkit. Here, we’ll examine XRF data collected on small thin section of chromium-bearing soil (a serpentine soil sample collected at Edgewood Park, Menlo Park, CA). The file is in the “chromite_grain” folder, and the XRF file name is Cr_Grain. Open it in Microtoolkit and select the “Cr” channel:
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Now cycle through the channels. This map was collected at an energy of 7200 eV, so all elements present at appreciable quantities with K or L-edges at or below the binding energy of Fe, and above the energy of (approximately) Si will fluoresce. 

Your dataset looks great. However, now your advisor/collaborator/colleague asks “you know, the really useful question we should be asking is…how does Mn correlate with Cr and Fe?” Note, however, that Mn was not windowed at the beamline! Luckily, we have an MCA file we can access and “bin” to create a channel for Mn. 
6.1 Defining an MCA file


In microtoolkit, go to the “MCASpectra” dropdown menu and click “Define MCA file.” You will now be prompted to supply a file containing your MCA data, which is typically the same name as the XRF file which is open. To access the MCA file associated with this dataset, go to the “mca” folder in the “chromite_grain” folder, and select the “Cr_Grain.mca” file. Click “open.” You’ll now see a message at the bottom of the main microtoolkit window showing the MCA file path:
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Now go back to the MCASpectra drop-down menu and select “View MCA.”  This is a toggle switch nothing will appear immediately.  You can check that you did this correctly by clicking the MCASpectra drop-down and checking that “View MCA” has a checkmark on the left hand side.
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Now select the Cr channel (if not already selected), and double left-click somewhere in the Cr-rich soil mineral grain. You should see an MCA trace appear, as well as a x-y line profile of Cr concentration at the point selected. The important data here is the “MCA spectrum view” window. Go ahead and close the Cr X-Y line profile plot for now. 
6.2 Binning Data with an MCA File

The MCA Spectrum View panel is showing the fluorescence signal for the pixel you double-clicked, and should look something like this: 
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Note the very large peaks at bin numbers ~540 and 640. As a reminder, data at beamline 2-3 is typically collected in 10 eV increment bins, so these positions correspond to fluorescence energies of 5400 and 6400 eV, respectively, which correspond to the Ka lines of Cr and Fe. Note that if fluorescence data is binned differently (for example, as it is at beamline 14-3…5 eV increment bins) then the appropriate conversion must be made to appropriately decipher energy in the MCA trace.


Now we can bin our mca data to create a channel for Mn. In the MCA Spectrum View panel, select the “MCA” drop down menu, and click “Rebin MCA to Data.” You must now enter a bin range, as well as a new channel name. For the range of data to be binned, select a minimum and maximum bin which will be used to integrate data into a new channel. Referring to the X-Ray Data Booklet (http://xdb.lbl.gov/), we see the Mn Ka fluorescence line is at ~5899 eV, corresponding to an MCA bin of 590. Since we have an appreciable peak at this energy position in our trace (e.g. Mn appears to be abundant), we’ll set a fairly tight window around Mn of 200 eV, or 10 bins above and below the Mn line at 590. Finally, we supply a new channel name…here, we simply write “Mn.” Note that a transparent, colored box should appear bracketing the bins to be integrated. Now press “OK.” It may take 2 min or greater for microtoolkit to complete the pixel-by-pixel integration process.  You will know the program is working because soon after you press OK the phrase “Integrating MCA data …” will appear in the bottom left of the main window.
***WARNING! Binning data and creating channels from MCA files may take a lot of time, particularly if the size of your map/mca is large (> ~50 kb). Binning data from mb or gb-sized files may take hours, particularly on older/slower computers.  It is best to try and remember to bin all important channels before collecting data.***
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Now return to the main microtoolkit pane. There is now a “Mn” channel available for you to examine. Click on it. Examine correlations between Cr, Fe, and Mn to convince yourself that you have created a channel using unique data your MCA file. 
7.0 Principle Component Analysis (PCA) Analysis from Multi-Energy Maps

Principle Component Analysis (PCA) is procedure which converts a set of possibly correlated variables into principle components. On a practical level, PCA can be thought of as a procedure which extracts components from multiple datasets that explain the most variation between those datasets; the number of variables that explain most of the variation is typically less than the number of datasets being analyzed. For example, we can use PCA to extract variables which explain the most variation between several fluorescence maps, say, four maps collected at different energies. 

7.1 Background

Here, we will explore how we can use PCA to explain variation between XRF maps. But first, we’ll take a step back, and present how to blend the principles of X-ray absorption spectroscopy (XAS) with XRF mapping to yield maps correlating to chemical speciation. We can use such an approach, for example, to decipher the redox state of metals in a battery, or examine the mineralogy of iron within a geologic sample. We’ll start off by examining the XANES of several different iron-bearing minerals, including ferrihydrite, green rust, mackinawite, zero valent iron, and a few others. 
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We can immediately see that from a qualitative perspective most of the spectra look substantially different. It is also clear that the fluorescence yield for iron will be different for most minerals at a particular energy, which is primarily dictated by the electronic configuration of iron; more reduced iron minerals have an edge position shifted to the left, while more oxidized minerals are shifted to the right. Further, we can see that all spectra possess distinct (or subtle) difference beyond the white line. So the question arises: how can we exploit these differences, in this case, to map the chemistry of iron? The answer is to simply perform XRF maps at several energies that will preferentially excite different iron species. For example, say we were curious as to the distribution of iron sulfides and iron oxides (and perhaps some minerals with intermediate oxidation states, such as green rusts and/or magnetite) within a single mineral grain. It is clear that if we performed an XRF map at 7120 eV, zero valent iron (ZVI) and mackinawite would provide the greatest fluorescence yield, followed by siderite/green rust, and then ferrihydrite (see figure 7.2). Mapping at 7120 would therefore hypothetically provide us with fluorescence information for each of these minerals at each pixel on our XRF map. However, in order to be useful, we need to collect information at multiple energies, else we’re only getting enough data in 1 map to just say we have iron! In other words, we need to map at least 2 energies for PCA analysis to work (this is probably intuitive, and the reason why is explained in the PCA analysis section below), and it is likely you will need to map more; N maps must be performed to yield N components in PCA. 
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But how do we know how many energies to map? This highly depends on how well you know your sample! There are no set rules, but here are some general guidelines.

7.2 Strategies for using PCA

If you know your sample extremely well:

For example if you are analyzing a sample which you are absolutely sure only contains zero valent iron and siderite, you could map at 7113 and 7124 eV, where zvi fluorescence dominates, and where siderite/zvi fluorescence dominate, respectively. This would provide enough information to perform PCA analysis, which would yield enough information to separate the two species (Figure 7.1). While not necessary, most people wisely add one additional energy (or more) of their choice (often above the white line of all species) to improve the statistics of their analysis. In practice, people almost never just choose 2 energies…typically a minimum of three are chosen.
If all species in your sample are accounted for, an alternate (or complimentary) form of analysis is XANES fitting (see below), which utilizes a more simple least squares fitting analysis to define chemical species, rather than a statistical one (PCA). 
If you do NOT know what’s in your sample:

I’ve got a sample I scraped from my kitchen sink. It has iron (corrosion products), but I have no idea what the chemistry is! You’re in luck; PCA is a great tool for helping to resolve the spatial extent of different chemical species within a sample, even when those species are unknown. 
There are a few approaches you can use to constrain the number of energies you need to map. Again, there is no set method, and often one needs to iterate between the strategies listed below to succeed in using multiple energy mapping with subsequent PCA analysis.

Strategy 1) One could first run an XRF map at an energy above all edges of interest in a sample, which could be a fine (<~7 micron step size) or coarse, depending on the size of the features of interest. Afterward, XANES could be performed on multiple spots where chemical differences might be expected (again, there are no set “rules” on how many spots to choose a minimum of 3 spots is suggested, but to capture heterogeneity, far more may be needed). These XANES can then be plotted, and energies can be chosen predicated on where the largest differences are observed between spectra. The sample is then re-mapped at the selected energies.
Strategy 2) One can use their own standard library (or one obtained from a friendly colleague or beamline scientist) and choose energies based on those spectra. For example, one could use a “shotgun” approach for ME mapping iron, select 6-10 energies based on the standard library, and launch straight into mapping these energies. PCA is then performed, which can direct the user to obtain XANES within areas of interest revealed by PCA. Alternatively, one might observed red (oxidized) and black (presumably reduced) portions of a sample, and might therefore only choose 2-3 energies to capture oxidized vs. reduced parts of a sample.
Again, hybrid approaches (e.g. coarse ME mapping followed by spot XANES followed by fine ME of selected areas) may be appropriate, and it often helps to iterate between performing XANES, analyzing XANES from the literature/previous standard libraries, and ME mapping (not necessarily in that order!).
7.3 Performing PCA on multiple XRF maps (typically different energies)

First, we will cover the basics of PCA, which is a powerful yet relatively simple statistical tool used in a variety of disciplines (anything from material science to image compression to biology). Here, we’ll only provide a general description of how PCA works, followed by a brief tutorial on how to perform PCA in microtoolkit. 
A quick web search will yield a plethora of sites and text references which can be examined to further understand the details of PCA. A short description of PCA is as follows: First, data is collected at multiple energies—here, we’ll say that we’ve collected data at 7113 and 7130 eV. The mean value of these data sets is found, which is then subtracted from each element in the data. A covariance matrix is then constructed, using the definition:
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As a reminder, covariance is simply how variables vary with respect to each other, and is defined by: 
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Here, the covariance matrix for our two sets of data is represented by:
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Note that the matrix will be square (a requirement for finding eigenvectors/eigenvalues), and is symmetrical along the diagonal (since cov(7113,7130)=cov(7130,7113)). 
Next, the (square) covariance matrix is decomposed into unit eigenvectors and eigenvalues; these are vectors that give a scalar multiple of itself when operated on by an appropriate operator. For example, if a matrix value lies along a line y = x and is multiplied by an eigenvector, the value will still lie along line y = x (i.e. it doesn’t change direction). Further, given an n x n sized matrix, there will be n eigenvectors for that matrix, which will be orthogonal to each other (regardless of the number of dimensions). Eigenvalues, in general, are the value associated with an eigenvector. For example, multiplying a matrix by the eigenvector as mentioned above will translate the value along line y = x; the eigenvalue is the magnitude of this translation. 
Finding the eigenvectors for a matrix is not necessarily straightforward; finding them for matrices larger than ~3x3 typically require an iterative (software) approach. Finding the eigenvectors and associated eigenvalues of our covariance matrix yields
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It turns out that finding the unit eigenvectors/eigenvalues for a covariance matrix provides important information about our data.  In short, the eigenvector with the highest eigenvalue is the principle component of the dataset; thus the next step in PCA is to order the eigenvectors by eigenvalue, from highest to lowest. This gives you components in order of significance. Hence, we can construct a feature vector comprised of eigenvectors in the columns:
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At this point, we have a list of components ordered in terms of their significance. Now we can multiply our feature vector by our mean-adjusted data (transposed to rows), which will give us our original data, transformed solely in terms of the vectors in our feature vector. We can then examine these transformed data (components), for example, by creating bi-plots (e.g. component 1 vs. component 2).  If we transform our original data in term of ALL of the eigenvectors, we can completely reconstruct our dataset by multiplying our transposed feature vector (now in rows) with our transposed mean adjusted data (also in rows) and adding the mean of the original dataset. 
7.4 Performing PCA in Microtoolkit.

Now that we’ve introduced PCA, we can move on to a tutorial in microtoolkit, and extract components from XRF maps taken at different energies. 

First, open microtoolkit, and go to the “rifle_grain” folder in the tutorial data folder. You’ll notice there are multiple .dat files, with each one corresponding to an XRF map collected at a different mapping energy. In this case, the researcher (John Bargar, SSRL) was interested in the oxidization state of iron within natural sediments which had been contaminated with uranium.  Open the first map, “P101_fine_femap2_7113.dat.” Once opened, select the iron channel. You should see this:

[image: image73.png]
This is the iron map collected at 7113, and based on spectroscopy of iron (see Figure 7.1), we expect iron fluorescence to be lower than in the other xrf maps, which are collected at higher energy. Now, examine I0stream. Note that there is some structure in the intensity of incoming beam. At this point, it might be a good idea to normalize your Fe data with I0stream, since Fe fluorescence will obviously change based on the intensity of the incoming beam. However, if you do this, you must normalize to I0stream for all of the Fe XRF maps you will import (see below). In other words, you must treat all XRF maps the same way when performing PCA.
For brevity, and since normalization was covered in the preceding section, we will not worry about normalizing our data here. 

Now select “map math”, and create a new channel called “Fe7113” based on the Fe channel. Multiply this channel by a scalar of 1. This is simply creating a duplicate iron channel in your dataset with the name Fe7113, which will make it easier to keep track of (you’ll see why in a just a moment). Press “save calculation” if you haven’t done so already. Note that “Fe7113” is a new channel in your list of data channels.
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Now import the next highest iron map (P101_fine_femap2_7122_001.dat) by pressing, “import data from” and selecting the appropriate file. Microtoolkit will prompt you to select a data channel to import. Select “Fe.” Now enter a channel name of “Fe7122.” 
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After pressing “OK”, you’ll see “Fe7122” as a new data channel in the main program window:

[image: image76.png]
Now repeat this procedure for the remaining iron maps until you have imported all of them.  You can select more than one file at a time using shift and/or control.
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You’ve now imported all iron XRF maps, taken at different energies, into microtoolkit.  Take a moment to scroll through each of them, and take notice how iron fluorescence changes from map to map. Iron fluorescence is clearly different in each map, but doesn’t necessarily scale with increasing energy. 
Now, let’s perform PCA! This is perhaps the easiest part of the analysis. 

Click the green “PCA analysis” button, and select the XRF maps of iron (7113-7140). 
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Now press “PCA.” (PCA+Vmx and PCA+ScVmx) are PCA variations not discussed here, and are generally not used by most users). 
It will take a few moments for microtoolkit to perform PCA on your channels. You will know microtoolkit is working because it will say Working on PCA in the bottom lefthand corner of the main window, this will change to “Done!” when the PCA analysis is done.  In the list of data channels, scroll down and you will see components 1-6. Remember, we performed PCA on 6 channels, so we computed a 6x6 covariance matrix, resulting in 6 eigenvalues/eigenvectors, or 6 components. 

7.5 Examining PCA results

Now scroll through the different components. Remember, components are eigenvectors that describe the most variation in your dataset, and here are ranked from 1-6. It is important to stress that these components do not necessarily represent “real” components, e.g. iron in a certain oxidation state, etc., but they may correspond to them. For example, the first component in ME PCA typically corresponds to total concentration. This is simply due to fluorescence increasing as energy increases from below to above the absorption edge of (in this case) iron, regardless of oxidation state or chemistry. Component 2 often corresponds to changes in redox state, because substantial shifts in the absorption edge position are often observed between oxidized and reduced electronic configurations (see iron, Figure 7.1 above). Components 3 and below may also represent changes in redox state, and/or changes in chemistry. For example, they might capture variation between iron species with similar absorption edge positions, but which have different features (e.g. oscillations) beyond the white line. These variations may become apparent in the form of components, provided a mapping energy was chosen where these spectra differences are observed. 
So how can we garner information from PCA? There are multiple ways to examine components. First, we can simply scroll through our various components, and being thinking about how they correspond to physical attributes of our sample For example, scroll between the energy map Fe7140 and component 1. Notice that they look very similar; indeed, the map taken at 7140 is far above the absorption edge of iron, and could be thought of as a “total concentration” map of Fe. Since component 1 looks very similar, we can deduce that component 1 may indeed be capturing the variation between maps induced by increasing fluorescence with increasing energy. To further explore this, go to the fluorescence map (it doesn’t matter what channel is selected), and right click anywhere on it, and select “edge removal” to prepare the map for examining correlation plots. Now press “correlation plots” and examine Fe7140 vs. Comp1. 
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We immediately see that the map taken at 7140 strongly correlates with component 1. 
But what about the other components? What do the represent? We can begin exploring this by looking at more correlation plots. But first, select Fe7140 as the active data channel to display a map of total Fe concentration in the main window. Now go back to the correlation plotter and try examining component 1 vs. component 2. 

[image: image80.png]
We are now plotting component 1, which correlates with total concentration, with component 2, which likely corresponds with the redox state of iron. We first note that there is some sort of pattern in our data, with a separation of low and high component 2 values, particularly when component 1 increases (as we move farther along the right side of the x axis. What does this mean? It turns out that when we perform PCA on XRF maps collected from low to high energies, more reduced species tend to be more negative, while oxidized tend to be more positive (but it is stressed that this may not be the case with your data! Remember, PCA components are values derived from analyzing (co)variance in the dataset…not actual physical phenomenon!). So now we can mask different data points where we think the sample might be more reduced or oxidized. First, we do this with the more reduced portion of the plot:
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Note that I haven’t been strict with defining a mask only based on values being less than 0 in component 2. I’ve masked some data points which appear to follow a trend, in which some values are greater than 0. When we apply this mask to our data set, we see the following:
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Now we can save this data channel by going to Map Math, and creating a new channel (I called it “FeRED”), selecting Fe7140, and selecting “Apply Mask” as our operation. Now, we can go back to our correlation plot, and mask the rest of our data
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Now save this masked Fe data as a channel (I called it “FeOX”). Now to visualize the data, we can make a bicolor plot to see how the data visually relates. Go to “Tricolor Plots.” Select FeOX as the red channel, and FeRED as the green channel. The image should look something like this: 
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It is immediately apparent how powerful PCA is in deciphering chemical variability in a sample. In fact,  PCA of ME XRF maps is extremely powerful when coupled with spectroscopy. After performing ME mapping, one can perform PCA (at the beamline) and determine where to perform selected XANES spectroscopy to examine Fe chemistry in greater detail. Indeed, the scientists examining this data followed this analysis up with XANES, represented by white dots, and found the spectra to be quite different between green and red areas, yet similar within those areas, respectively.
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In short, PCA is a very powerful tool to use at the beamline and can be used to direct your XANES analysis, and/or to produce maps which may show variation corresponding to variation in chemistry.
8. XANES FITTING
While PCA is a useful tool for examining components responsible for variation across datasets, it is a statistical tool, rather than a “fitting” tool; in other words, you are producing maps possibly corresponding (or not!) with physical phenomenon, such as redox state or other chemical attributes. So what if you know what is in your sample? For example, you are absolutely certain that your sample only has 2 forms of iron? In this case, you can perform multiple energy maps (typically at n+1 energies, where n=the number of known components), as described above, at energies where the XANES spectra are very different.
To do this, we’ll return to the sediment grain we examined in the previous exercise, in which we performed PCA. 
First, we want to examine the XANES spectra of the standards we want to use in our fitting. In this case, we’ll use the iron XANES spectra shown in the previous exercise. 
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We are making the assumption that there are only 5 minerals in our sample: 2-line ferrihydrite (an iron (hydr)oxide), mackinawite, zero-valent iron (ZVI), siderite, and carbonate green rust. We therefore choose n+1 energies to map, and we want most of those energies to correspond with locations in our normalized spectra where the XANES are as different as possible (the n+1, in this case, the 6th energy, is often chosen to be high above the white line, where differences in spectra are more minimal). The vertical lines in the plot above correspond to such energies. 

We now make a table of normalized fluorescence intensities for each of our standards (note that the vertical lines are slightly off from the energies listed below; we’ll fix this soon!), corresponding with each energy. In this example, it looks like:

	
	7113
	7122
	7124
	7127
	7129
	7140

	ZVI
	0.35
	0.93
	1.10
	1.10
	1.15
	1.04

	Mackinawite
	0.25
	0.90
	0.93
	1.00
	1.08
	1.04

	Siderite
	0.10
	0.95
	1.35
	1.12
	1.20
	1.12

	Carbonate GR
	0.12
	0.80
	1.11
	1.24
	1.25
	1.15

	Ferrihydrite
	0.15
	0.60
	0.75
	1.21
	1.20
	1.18


Now, we can perform XANES fitting on our data . Open the first fluorescence map (7113) within the rifle data folder. Now rename the iron channel as Fe7113, and import each additional iron channel from the other iron maps collected at the successive energies (Fe7120, Fe7124, Fe7127, Fe7140).  Your data channels should look like this:
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Now we’ll perform the XANES fitting. To do this, go to “analyze” and “XANES FITTING.” You’ll see the following box appear: 
[image: image89.png]
We now want to adjust the number of standards in our sample to 5, and name them appropriately. 
[image: image90.png]
Now we want to add the data channels, which correspond to the Fe maps at different energies, that we want to fit. To do this, go to “Select Channels”, scroll down, and select the appropriate iron channels. Also, scroll down (right-side scroll bar) to reveal the “update” button if you don’t see it. After selecting the channels, press “update.”
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Now enter the normalized fluorescence values you determined for each standard, at each energy. Your final matrix should look like: 

[image: image92.png]
If you want, press “validate.” A message will appear in the message pane of the main program window, telling you whether or not the matrix is valid (prior to hitting “ok”). If it says the matrix is valid, then click “OK” (if not, go back and check that you entered the appropriate number of standards in your matrix, etc).   Once you hit OK a message that says performing fitting will appear in the bottom lefthand corner of the main window.
Upon completion of the fit the message pane will proudly proclaim “Fit Complete!”,  and you will notice that the component names appear as data channels. Click through them. Also notice the “fiterror1” channel, which displays the residual, unfit data. 
Future Additions
Particle analysis

Splitting MCA files

Algorithms used in math operations (e.g., what algorithm is used for “smoothing”, etc)
Fig 1.1 The help file contains a list of common commands and shortcuts



Fig 2.1 Opening a File in Microtoolkit





Fig 2.2 Selecting I0STRM 



Fig 2.3 Using the Threshold Sliders



Fig 2.4 Selecting a Data Channel



Fig 2.5 Setting Scale to “Log”



Fig 2.6 Log Scale/Thresholding Combination



Fig 2.7 I0STRM Intensity Values at Beginning and End of Map



Fig 2.8 Math Window



Fig 2.9 Creating New Channel with Processed Data



Fig 2.10 Viewing Data in New Channel, “GdAnorm” 



Fig 2.11 Data Channel Summary 



Fig 2.12 Multiplying Data Channel “GdAnorm” by a Scalar 



Fig 2.13 Viewing New Data Channel “GdAcorrect” 
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Fig 2.14 Normalized and Raw Data 
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Fig 3.1 ICR and OCR 



Fig 3.2 Correlation Plotter 



Fig 3.3 Plotting Data 



Fig 3.4 Using the Edge Removal Tool



Fig 3.5 Correlation Plot Corrected for Edge Effect



Fig 3.6. Plots of ICR vs. OCR (different datasets).  
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Fig 3.7. Performing Deadtime Correction  



Fig 3.8. Deadtime Curve. Note Value of “Tau” or “Deadtime” in lower left corner  



Fig 3.9. Applying deadtime correction to fluorescence maps  



Fig 3.10. Applying Deadtime Correction to Dataset  



Fig 4.1. Gd vs. P. Note structured horizontal arrangement of data points from “binning”



Fig 4.2. Red lines emphasize “binning” structure



Fig 4.3 Very structured data



Fig 4.4 Using Map Math to Smooth Data



Raw



Smoothed



Fig 4.5 Raw vs. Smoothed Data



Figure 4.6 Raw Data



Figure 4.7 Smoothed Data



Figure 4.8 Starting a Mask 



Figure 4.9 Continuing a Mask 



Figure 4.10 Mask Completed 



Figure 4.11 Raw Fe Data 



Figure 4.12 Selected (Masked) Data from Correlation Plot 



Figure 4.13 Saving Masked Data



Figure 4.14 Selecting Different Data with Mask



Figure 4.15 Selected (Masked) Data Fe:PFixed



Figure 4.16 Selecting Data for Tri-Color Plot



Figure 4.17. Adding the First Color of a Tri-Color Plot



Figure 4.18. Adding the Second Color of a Tri-Color Plot



Figure 4.19. Adding the Final Color of a Tri-Color Plot



Figure 4.20 Adjusting Tri-Color Plot Thresholds



Figure 4.21. Changing the intensity scale on the third species of our tri-color plot



Figure 4.22 Legend for Tri-Color Plot



Figure 4.23 Scalebar for Tri-Color Plot



Figure 5.1 Opening an appropriate fluorescence data channel for a standard foil



Figure 5.2. A uniform distribution of counts in the standard XRF map



Figure 7.1 Normalized fluorescence iron XANES for mineral standards 



Figure 7.2. XRF maps of iron collected at different incident x-ray energies (values in eV)



Figure 8.1. Normalized fluorescence iron XANES of mineral standards
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