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Preface 

General Approach and Mathematical Level 

The general goals for the eighth edition remain the same as those in recent editions. 
We feel as if it is important to retain a balance between theory and applications. 
Engineers and physical scientists as well as computer scientists are trained in cal
culus and thus mathematical support is given when we feel as if the pedagogy-
is enhanced by it. This approach prohibits the material from becoming a collec
tion of tools with no mathematical roots. Certainly students with a mathematical 
background of calculus, and, in a few cases, linear algebra, have the capability to 
understand the concepts more thoroughly and use the resulting tools more intel
ligently. Otherwise there is a clear danger that, the student will only be able to 
apply the material within very narrow bounds. 

The new edition contains a substantially larger number of exercises. These 
exercises challenge the student to be able to use concepts from the text to solve 
problems dealing with many real-life scientific and engineering situations. The 
data sets involved in the exercises are available for download from website at 
http://www.prenhaU.com.. The increase in the quantity of exercises results in a 
much broader spectrum of areas of applications, including biomedical, biocngi-
neering, business problems, computer issues, and many others. Even the chapters 
that deal in introductory probability theory contain examples and exercises that 
carry a broad range of applications that students of science and engineering will 
easily recognize as important. As in past editions, the use of calculus is confined 
to elementary probability theory and probability distributions. These topics are 
discussed in Chapters 2. 3, 1, 6, and 7. Chapter 7 is an optional chapter that 
includes transformations of variables and moment generating functions. Matrix 
algebra is used only a, modest amount in linear regression material in Chapters 11 
and 12. For those who desire the use of more substantial support with matrices, an 
optional section in Chapter 12 is available. The instructor who wishes to minimize 
the use of matrices may bypass this section with no loss of continuity. Students 
using this text should have completed the equivalent of one semester of differential 
and integral calculus. An exposure to matrix algebra would be helpful but not 
necessary if the course context excludes I he aforementioned optional section given 
in Chapter 12. 

http://www.prenhaU.com


xvi Preface 

Content and Course Planning 
This text is designed for either a one- or two-semester course. A reasonable cur
riculum for a one-semester course might include Chapters 1 through 10. Many 
instructors desire for students to be exposed in some degree to simple linear re
gression in a one semester course. Thus one may choose to include a portion of 
Chapter 11. On the other hand, some instructors wish to teach a portion of analy
sis of variance, in which case Chapters 11 and 12 may be excluded in favor of some 
portion of Chapter 13, which features one factor analysis of variance. In order to 
provide sufficient time for one or perhaps even both of these topics, the instructor 
may wish to eliminate Chapter 7 and/or certain specialized topics in Chapters 5 
and 6 (for example, treatment on the gamma, lognormal, and Weibull distribu
tions, or material on the negative binomial and geometric distributions). Indeed, 
some instructors find that in a one-semester course in which regression analysis 
and analysis of variance are of primary interest, there may be topics in Chapter 
9 on estimation that may be removed (e.g., maximum likelihood, prediction in
tervals, and/or tolerance limits). We feel as if the flexibility exists that allows a 
one-semester course given any priorities set down by the instructor. 

Chapter 1 is an elementary overview of statistical inference designed for the 
beginner. It contains material on sampling and data analysis and contains many-
examples and exercises for motivation. Indeed, some very rudimentary aspects of 
experimental design are included along with an appreciation of graphic techniques 
and certain vital characteristics of data collection. Chapters 2, 3, and 4 deal with 
basic probability as well as discrete and continuous random variables. Chapters 5 
and 6 cover specific discrete and continuous distributions with illustrations of their 
use and relationships among them. In addition, a substantial number of examples 
and exercises are given that illustrate their use. Chapter 7 is an optional chapter 
that treats transformation of random variables. An instructor may wish to cover 
this material only if he or she is teaching a more theoretical course. This chapter 
is clearly the most mathematical chapter in the text. Chapter 8 contains addi
tional material on graphical methods as well as a very important introduction to 
the notion of a sampling distribution. Probability plotting is discussed. The mate
rial on sampling distribution is reinforced by a thorough discussion of the central 
limit theorem as well as the distribution of a sample variance under normal i.i.d. 
(independently and identically distributed) sampling. The t and F distributions 
are introduced along with motivation regarding their use in chapters that follow. 
Chapters 9 and 10 contain material on one and two sample point and interval 
estimation and hypothesis testing. Material on confidence intervals, prediction in
tervals, tolerance intervals, and maximum likelihood estimation in Chapter 9 offeis 
the instructor considerable flexibility regarding what might be excluded in a one-
semester course. A section on Bayes estimation that was available in the seventh 
edition in Chapter 9 has been removed. More attention will be given to this topic 
in the "New to This Edition" section that follows. 

Chapters 11 through 17 contain ample material for a second semester. Simple 
and multiple linear regression are contained in Chapters 8 and 12, respectively. 
Chapter 12 also contains material on logistic regression, which finds applications 
in many areas of engineering and the biological sciences. The material covered in 
multiple linear regression is quite extensive and thus provides flexibility for the 
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instructor. Among the "special topics" to which an instructor has access are the 
special case of orthogonal rcgressors, categorical or indicator variables, sequential 
methods for model selection, study of residuals and violation of assumptions, cross 
validation and the use of PRESS and C,„ and, of course, logistic regression. Chap
ters 13 through 17 contain topics in analysis of variance, design of experiments, 
nonparametric statistics, and quality control. Chapter 15 treats two-level factorials 
(with and without blocking) and fractional factorials, and again flexibility is abun
dant because of the many "special topics" offered in this chapter. Topics beyond 
the standard 2k and fractional 2* designs include blocking and partial confound
ing, special higher fractions and screening designs, Plackett-Burman designs, and 
robust parameter design. 

All chapters contain a large number of exercises, considerably more than what 
was offered in the seventh edition. More information on exercises will be given in 
the "New To This Edition" section. 

Case Studies and Computer Software 
The topical material in two-sample hypothesis testing, multiple linear regression, 
analysis of variance, and the use of two-level factorial experiments is supplemented 
by case studies that feature computer printout and graphical material. Both SAS 
and MINFTAB are featured. The use of the computer printout underscores our 
feeling that the students should have the experience of reading and interpreting 
computer printout and graphics, even if that which is featured in the text is not 
what is used by the instructor. Exposure to more than one type of software can 
broaden the experience base for the student. There is no reason to believe that 
the software in the course will be that which he or she will be called upon to use 
in practice following graduation. Many examples and case studies in the text are 
supplemented, where appropriate, by various types of residual plots, quantile plots, 
normal probability plots, and others. This is particularly prevalent in the material 
used in Chapters 11 through 15. 

New to This Edition 

General 

1. There arc 15 20% new problem sets incorporated, with many new applications 
demonstrated in engineering as well as biological, physical, and computer 
science. 

2. There is new and end-ofLchapter review material where appropriate. This 
material emphasizes key ideas as well as risks and hazards that the user of 
material covered in the chapter must be aware of. This material will also 
provide demonstration of how it is influenced by material in other chapters. 

3. A new mini (and optional) chapter on Bayesian statistics has been incorpo
rated. The chapter will be a practical offering with applications emphasized 
in many fields. 

4. There are extensive additional changes made throughout, based on need per
ceived by authors and reviewers. The following outlines some specifics. 
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Chapter 1: Introduction to Statistics and Data Analysis 

Chapter 1 contains a substantial amount of new material. There is new exposition 
on the difference between discrete and continuous measurements. Many illustra
tions are given with particular real life applications of discrete measurements (e.g., 
numbers of radioactive particles, the number of personnel responsible for a partic
ular port facility, and the number of oil tankers arriving each day at a port city). 
Special attention is given to situations associated with binary data. Examples are 
given in the biomedical field as well as quality control. 

New concepts (for this text) are discussed in Chapter 1 which deal with proper
ties of a distribution or sample other than those that characterize central tendency 
and variability. Quartiles and, more generally, quantiles are defined and discussed. 

The importance of experimental design and the advantages that it offers is 
expanded beyond that of the seventh addition. In this development important 
notions that are treated include randomization, reduction of process variability, 
and interaction among factors. 

The readers are exposed in the first chapter to different types of statistical 
studies: the designed experiment, the observational study, and the retrospective 
study. Examples are given of each type and advantages and disadvantages are 
discussed. The chapter continues to emphasize graphical procedures and where 
they apply. 

Nineteen new exercises were added to Chapter 1. Some make use of data from 
studies conducted at the Virginia Tech consulting center and some are taken from 
engineering journals and others involve historical data. This chapter now contains 
30 exercises. 

Chapter 2: Probability 

There are new examples and new exposition to better demonstrate the notion of 
conditional probability. Chapter 2 offers 136 total exercises. All new exercises 
involve direct applications in science and engineering. 

Chapter 3: Random Variables and Probability Distributions 

There is new exposition on the notion of "dummy" variables that, play an important 
role in the Bernoulli and binomial distributions. There are many more exercises 
with new applications. The new review at the end of the chapter introduces the 
connection between material in Chapter 3 with the concept of distribution param
eters and specific probability distributions discussed in future chapters. 

Topics for new exercises include particle size distribution for missile fuel, mea
surement errors in scientific systems, studies of time to failure for manufactured 
washing machines, the production of electron tubes on an assembly line, arrival 
time problems at certain big city intersections, shelf life of a product, passenger 
congestion problems in airports, problems with impurities in batches of chemical 
product, failure in systems of electronic components working in parallel, and many 
others. There are now 82 exercises in this chapter. 
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Chapter 4: Mathematical Expectation 

Several more exercises were added to Chapter 4. Rules for expectations and vari
ances of linear functions were expanded to cover approximations for nonlinear 
functions. Examples are given to illustrate the use of these rules. The review 
at the end of Chapter 4 reveals possible difficulties and hazards with practical 
applications of the material since most examples and exercises assume parameters 
(mean and variance) are known and in true applications these parameters would be 
estimated. Reference is made to Chapter 9, where estimation is discussed. There 
are now 103 exercises in this chapter. 

Chapter 5: Some Discrete Probability Distributions 

New exercises representing various applications of the Poisson distribution have 
been added. Additional exposition has been added that deals with the Poisson 
probability function. 

New exercises include real life applications of the Poisson, binomial, and hy-
pergeometric distributions. Topics for new exercises include flaws in manufactured 
copper wire, highway potholes in need of repair, patient traffic in an urban hos
pital, airport luggage screening, homeland security detection of incoming missiles, 
and many others. In addition, plots are given that provide the reader with a clear 
indication about the nature of both the Poisson and the binomial distribution as 
parameters change. There are now 105 exercises in this chapter. 

Chapter 6: Some Continuous Probability Distributions 

Many more examples and exercises dealing in both the exponential and the gamma 
distribution have been added. The "lack of memory" property of the exponential 
distribution is now discussed at length and related to the bond between the ex
ponential and Poisson distributions. The section on the Weibull distribution is 
greatly improved and expanded. The extensions presented focus on the measuring 
and interpretation of the failure rate or "hazard rate" and how knowledge of the 
parameters of the Weibull allow the user to learn how machines wear or even get 
stronger over time. More exercises are given that involve the Weibull and lognormal 
distributions. Caution is expressed in the review much like that in Chapter 5. In 
practical situations, guesses or estimates of process parameters of the gamma dis
tribution in, say, failure rate problems or parameters of either a gamma or Weibull 
distribution, may be unstable, thereby introducing errors in calculations. There 
are now 84 exercises in this chapter. 

Chapter 7: Functions of Random Variables (optional) 

No major changes are included in this optional chapter. 

Chapter 8: Fundamental Distributions and Data Description 

There is additional exposition on the central limit theorem as well as the general 
concept of sampling distributions. There are many new exercises. The summary 
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provides important information on t. \2-. and F. including how they are used and 
what assumptions are involved. 

More attention is given in Chapter 8 to normal probability plotting. In addition, 
the central limit theorem is discussed in more detail in order that the reader can 
gain more insight about what size n must be before normality can be invoked. 
Plots are given to illustrate this. 

Additional exposition is given regarding the normal approximation to the bi
nomial distribution and how it works in practical situations. The presentation 
presents an intuitive argument that connects the normal approximation of the bi
nomial to the central limit theorem. The number of exercises in this chapter is 
now 75. 

Chapter 9: One- and Two-Sample Estimation Problems 

Many new applications are revealed in new exercises in this chapter. The summary 
gives rationale and hazards associated with the so-called large sample confidence 
interval. The importance of the assumption of normality and the conditions under 
which it is assumed are discussed. 

Early in the chapter the development of confidence intervals offers a pragmatic 
discussion about why one must begin with the "known er' case. It is suggested that 
these kinds of situations do not actually occur in practice but consideration of the 
known s case initially provides a structure that allows the more useful "unknown 
CT" to be understood more easily by students. 

One-sided bounds of all types are now presented and discussion is given as to 
when they are used as opposed to the two-sided counterparts. New examples are 
given which require the use of the one-sided intervals. These include confidence 
intervals, prediction intervals, and tolerance intervals. The concept of a mean 
squared error of an estimator is discussed. Thus the notion of bias and variance 
can be brought together in the general comparison of estimators. Twenty-seven 
new exercises are included in Chapter 9. There are now 111 exercises in this 
chapter. 

Chapter 10: One- and Two-Sided Tests of Hypotheses 

We have an entirely restructured exposition on the introduction to hypothesis 
testing. It is designed to help the student have a clear picture of what is being ac
complished and not being accomplished in hypothesis testing. The notion that we 
rarely, if ever, "accept the null hypothesis'' is discussed with illustrations. There 
is also a thorough discussion with examples, of how one should structure or set 
up the null and alternative hypotheses. The notion that rejection implies "sam
ple evidence refutes HQ" and that HQ is actually the logical complement to Hi 
is discussed precisely with several examples. Much is said about the concept of 
"fail to reject HQ'1 and what it means in practical situations. The summary pro
duces "misconceptions and hazards" which reveals problems in drawing the wrong 
conclusions when the analyst "fails to reject" the null hypothesis. In addition, 
"robustness" is discussed, which deals with the nature of the sensitivity of various 
tests of hypotheses to the assumption of normality. There are now 115 exercises in 
this chapter. 
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Chapter 11: Simple Linear Regression 

Many new exercises are added in simple linear regression. Special exposition is 
given to the pitfalls in the use of R2, the coefficient of determination. Much 
additional emphasis is given to graphics and diagnostics dealing in regression. The 
summary deals with hazards that one may encounter if diagnostics are not used. 
It is emphasized that diagnostics provide "checks" on the validity of assumptions. 
These diagnostics include data plots, plots of student.ized residuals, and normal 
probability plots of residuals. 

An important presentation is made early in the chapter about the nature of 
linear models in science and engineering. It is pointed out that these are often 
empirical models that are simplifications of more complicated and unknown struc
tures. 

More emphasis is given in this chapter on data plotting. "Regression through 
the origin'' is discussed in an exercise. More discussion is given on what it means 
when H0: /? = 0 is rejected or not rejected. Plots are used for illustration. There 
are now 68 exercises in this chapter. 

Chapter 12: Multiple Linear Regression 

Additional treatment is given in this chapter on the pitfalls of R2. The discussion 
centers around the need to compromise between the attempt to achieve a "good fit" 
to the data and the inevitable loss in error degrees of freedom that is experienced 
when one "overfits." In that regard the "adjusted R2"' is defined and discussed with 
examples. In addition, the CV (coefficient of variation) is discussed and interpreted 
as a measure that can be used to compare competing models. Several new exercises 
are present to provide the reader experience in comparing competing models using 
real data sets. Additional treatment is given to the topic of "categorical regressors" 
with graphical tools used to support the underlying concepts. Additional exercises 
are given to illustrate practical uses of logistic regression in both industrial and 
biomedical research areas. There are now 72 exercises in this chapter. 

Chapter 13: One-Factor Experiments: General 

The discussion of Tukey's test on multiple comparisons is expanded considerably. 
More is presented on the notion of error rate and o>values in the context of simul
taneous confidence intervals. 

A new and important section is given on "Data Transformation in Analysis of 
Variance." A contrast is made with the discussion in Chapters 11 and 12 dealing 
with transformation to produce a good fit in regression. A brief presentation is 
given regarding the robustness of analysis of variance to the assumption of homo
geneous variance. This discussion is connected to previous sections on diagnostic 
plots to detect violations in assumptions. 

Additional mention is made of the root causes of violation of the homogeneous 
variance assumption and how it is often a natural occurrence when the variance 
is a function of the mean. Transformations are discussed that can be used to ac
commodate the problem. Examples and exercises are used for illustration. Several 
new exercises were added. The total number of exercises in this chapter is 67. 
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Chapter 14: Factorial Experiments (Two or More Factors) 

Considerable attention is given to the concept, of interaction and interaction plots 
quite early in the chapter. Examples are given in which scientific interpretations 
of interaction are given using graphics. New exercises highlight the use of graphics 
including diagnostic plots of residuals. Several new exercises appear in this chapter. 
All include experimental data from chemical and biological sciences and all include 
emphasis on graphical analysis. There are 43 exercises in this chapter. 

Chapter 15: 2k Factorial Experiments and Fractions 

Early in this chapter new material has been added to highlight and illustrate the 
role of two-level designs as screening experiments. In this regard they are often 
part of a sequential plan in which the scientist or engineer is attempting to learn 
about the process, assess the role of the candidate factors, and give insight that 
will aid in determining the most fruitful region of experimentation. The notion of 
fractional factorial designs is motivated early. 

The motivation of the notion of "effects" and the graphical procedures that are 
used in determining "active effects" are discussed in more detail with examples. 
The chapter uses considerably more graphical illustrations and geometric displays 
to motivate the concepts for both full and fractional factorials. In addition, graph
ical depictions are used to illustrate the available lack-of-fit information when one 
augments the two-level design with center runs. 

In the development and discussion of fractional factorial designs, the procedure 
for constructing the fraction is greatly simplified and made much more intuitively 
appealing. "Added columns" that are selected according to the desired alias struc
ture are used with several examples. We feel as if the reader can now gain a better 
understanding of what is gained (and lost) by using fractions. This represents a 
major simplification from the previous edition. For the first time a substantial 
table is given that allows the reader to construct two-level designs of resolution HI 
and IV. Eighteen new exercises were added to this chapter. The total number of 
exercises in this chapter is now 50. 

Chapter 16: Nonparametric Statistics 

No major changes are included. The total number of exercises is 41. 

Chapter 17: Statistical Quality Control 

No major changes are included. The total number of exercises is 10. 

Chapter 18: Bayesian Statistics (optional) 

This chapter is completely new in the eighth edition. The material on Bayesian 
statistics in the seventh edition (in Chapter 9) was removed in favor of featuring 
this subject in a new self-contained chapter. 

This chapter treats the pragmatic and highly useful elements of Bayesian statis
tics of which students in science and engineering should be aware. The chapter 
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presents the important concept of subjective probability in conjunction with the 
notion that in many applications population parameters are truly not constant but 
should be treated as random variables. Point and interval estimation is treated 
from a Bayesian point of view and practical examples are displayed, This chapter 
is relatively short (ten pages) and contains 9 examples and 11 exercises. 
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Chapter 1 

Introduction to Statistics 
and Data Analysis 

1.1 Overview: Statistical Inference, Samples, 
Populations, and Experimental Design 

Beginning in the 1980s and continuing into the twenty-first century: an inordi
nate amount of attention has been focused on improvement of quality in American 
industry. Much has been said and written about the Japanese "industrial mira
cle," which began in the middle of the twentieth century. The Japanese were able 
to succeed where we and other countries had failed-namely, to create an atmo
sphere that allows the production of high-quality products. Much of the success of 
the Japanese has been attributed to the use of statistical methods and statistical 
thinking among management personnel. 

Use of Scientific Da ta 

The use of statistical methods in manufacturing, development of food products, 
computer software, pharmaceutical, and many other areas involves the gathering 
of information or scientific data. Of course, the gathering of data is nothing new. 
It has been done for well over a thousand years. Data have been collected, summa
rized, reported, and stored for perusal. However, there is a profound distinction 
between collection of scientific information and inferential statistics. It is the 
latter that has received rightful attention in recent decades. 

The offspring of inferential statistics has been a large "toolbox" of statistical 
methods employed by statistical practitioners. These statistical methods are de
signed to contribute to the process of making scientific: judgments in the face of 
uncertainty and variation. The product density of a particular material from 
a manufacturing process will not always be the same. Indeed, if the process in
volved is a batch process rather than continuous, there will be variation in material 
density between not only the batches (batch-to-batch variation) that come off the 
line, but also within-batch variation. Statistical methods are used to analyze data 
from a process such as this one in order to gain more sense of where in the prr 
cess changes may be made to improve the quality of the process. In this, qur" 
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may well be defined in relation to closeness to a target density value in harmony 
with what portion of the time this closeness criterion is met. An engineer may be 
concerned with a specific instrument that is used to measure sulfur monoxide in 
the air during pollution studies. If the engineer has doubts about the effectiveness 
of the instrument, there are two sources of variation that must be dealt with. 
The first is the variation in sulfur monoxide values that are found at the same 
locale on the same day. The second is the variation between values observed and 
the true sulfur monoxide that is in the air at the time. If either of these two 
sources of variation is exceedingly large (according to some standard set by the 
engineer), the instrument may need to be replaced. In a biomedical study of a 
new drug that reduces hypertension, 85% of patients experienced relief while it is 
generally recognized that the current or "old drug" brings relief to 80% of patients 
that have chronic hypertension. However, the new drug is more expensive to make 
and may result in certain side effects. Should the new drug be adopted? This is 
a problem that is encountered (often with much more complexity) frequently by 
pharmaceutical firms in harmony with the FDA (Federal Drug Administration). 
Again, the consideration of variation needs to be taken into account. The "85%" 
value is based on a certain number of patients chosen for the study. Perhaps if the 
study were repeated with new patients the observed number of "successes" would 
be 75%! It is the natural variation from study to study that must be taken into 
account in the decision process. Clearly this variation is important since variation 
from patient to patient is endemic to the problem. 

Variability in Scientific Da ta 

In the problems discussed above the statistical methods used involve dealing with 
variability and in each case the variability to be studied is that encountered in 
scientific data. If the observed product density in the process is always the same 
and is always on target, there would be no need for statistical methods. If the 
device for measuring sulfur monoxide always gives the same value and the value 
is accurate (i.e., it is correct), no statistical analysis is needed. If there was no 
patient-to-patient variability inherent in the response to the drug (i.e., it either 
always brings relief or not), life would be simple for scientists in the pharmaceu
tical firms and FDA and no statistician would be needed in the decision process. 
Inferential statistics has produced an enormous number of analytical methods that 
allow for analysis of data from systems like those described above. This reflects the 
true nature of the science that we call inferential statistics, namely that of using 
techniques that allow us to go beyond merely reporting data but, rather, allow 
the drawing of conclusions (or inferences) about the scientific system. Statisticians 
make use of fundamental laws of probability and statistical inference to draw con
clusions about scientific systems. Information is gathered in the form of samples, 
or collections of observations. The process of sampling is introduced in Chapter 
2 and the discussion continues throughout the entire book. 

Samples are collected from populations that are collections of all individuals 
or individual items of a particular type. At times a population signifies a scientific 
system. For example, a manufacturer of computer boards may wish to eliminate 
defects. A sampling process may involve collecting information on 50 computer 
boards sampled randomly from the process. Here, the population is all computer 
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boards manufactured by the firm over a specific period of time. In a drug experi
ment, a sample of patients is taken and each is given a specific drug to reduce blood 
pressure. The interest is focused on drawing conclusions about the population of 
those who suffer from hypertension. If an improvement is made in the computer 
board process and a second sample of boards is collected, any conclusions drawn 
regarding the effectiveness of the change in process should extend to the entire 
population of computer boards produced under the "improved process." 

Often, it is very important to collect scientific data in a systematic way, with 
planning being high on the agenda. At times the planning is, by necessity, quite 
limited. We often focus only on certain properties or characteristics of the items or 
objects in the population. This characteristic has particular engineering or, say, bi
ological importance to the "customer," the scientist or engineer who seeks to learn 
about the population. For example, in one of the illustrations above the quality 
of the process had to do with the product density of the output of a process. An 
engineer may need to study the effect of process conditions, temperature, humidity, 
amount of a particular ingredient, and so on. He or she can systematically move 
these factors to whatever levels are suggested according to whatever prescription 
or experimental design is desired. However, a forest scientist who is interested 
in a study of factors that influence wood density in a certain kind of tree cannot 
necessarily design an experiment. In this case it may require an observational 
study in which data are collected in the field but factor levels could not be pre
selected. Both of these types of studies lend themselves to methods of statistical 
inference. In the former, the quality of the inferences will depend on proper plan
ning of the experiment. In the latter, the scientist is at the mercy of what can 
be gathered. For example, it is sad if an agronomist is interested in studying the 
effect of rainfall on plant yield and the data are gathered during a drought. 

One should gain an insight into the importance of statistical thinking by man
agers and the use of statistical inference by scientific personnel. Research scientists 
gain much from scientific data. Data provide understanding of scientific phenom
ena. Product and process engineers learn more in their off-line efforts to improve 
the process. They also gain valuable insight by gathering production data (on
line monitoring) on a regular basis. This allows for determination of necessary 
modifications in order to keep the process at a desired level of quality. 

There are times when a scientific practitioner wishes only to gain some sort 
of summary of a set of data represented in the sample. In other words, no infer
ential statistics are used. Rather a set of single-number statistics or descriptive 
statistics is helpful. These numbers give a sense of center of location of the data, 
variability in the data, and the general nature of the distribution of observations 
in the sample. Though no specific statistical methods leading to statistical in
ference are incorporated, much can be learned. At times, descriptive statistics 
are accompanied by graphics. Modern statistical software packages allow for com
putation of means, medians, standard deviations, and other single-number 
statistics as well as produce graphs that show a "footprint" of the nature of the 
sample. Definitions and illustrations of the single-number statistics, as well as 
descriptions of graphical methods including histograms, stem-and-leaf plots, dot 
plots, and box plots, will be given in sections that follow. 
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1.2 The Role of Probability 

In this book, Chapters 2 to 6 deal with fundamental notions of probability. A thor
ough grounding in these concepts allows the reader to have a better understanding 
of statistical inference. Without some formalism in probability, the student can
not appreciate the true interpretation of data analysis through modern statistical 
methods. It is quite natural to study probability prior to studying statistical infer
ence. Elements of probability allow us to quantify the strength or "confidence" in 
our conclusions. In this sense, concepts in probability form a major component 
that supplements statistical methods and help gauge the strength of the statisti
cal inference. The discipline of probability, then, provides the transition between 
descriptive statistics and inferential methods. Elements of probability allow the 
conclusion to be put into the language that the science or engineering practitioners 
require. An example follows that enables the reader to understand the notion of 
a P-value, which often provides the "bottom line" in the interpretation of results 
from the use of statistical methods. 

Example 1.1:1 Suppose that an engineer encounters data from a manufacturing process in which 
100 items are sampled and 10 are found to be defective. It is expected and antic
ipated that occasionally there will be defective items. Obviously these 100 items 
represent the sample. However, it has been determined that in the long run, the 
company can oidy tolerate 5% defective in the process. Now, the elements of prob
ability allow the engineer to determine how conclusive the sample information is 
regarding the nature of the process. In this case the population conceptually 
represents all possible items from the process. Suppose we learn that if the process 
is acceptable, that is, if it does produce items no more than 5% of which are defec
tive, there is a probability of 0.0282 of obtaining 10 or more defective items in a 
random sample of 100 items from the process. This small probability suggests that 
the process does, indeed, have a long-run percent defective that exceeds 5%. In 
other words, under the condition of an acceptable process, the sample information 
obtained would rarely occur. However, it did occur! Clearly, though, it would 
occur with a much higher probability if the process defective rate exceeded 5% by 
a significant amount. J 

From this example it becomes clear that the elements of probability aid in the 
translation of sample information into something conclusive or inconclusive about 
the scientific system. In fact, what was learned likely is alarming information to 
the engineer or manager. Statistical methods (which we will actually detail in 
Chapter 10) produced a P-value of 0.0282. The result suggests that the process 
very likely is not acceptable. The concept of a P-value is dealt with at length 
in succeeding chapters. The example that follows provides a second illustration. 

Example 1.2:1 Often the nature of the scientific study will dictate the role that probability and 
deductive reasoning play in statistical inference. Exercise 9.40 on page 297 provides 
data associated with a study conducted at the Virginia Polytechnic Institute and 
State University on the development, of a relationship between the roots of trees and 
the action of a fungus. Minerals are transferred from the fungus to the trees and 
sugars from the trees to the fungus. Two samples of 10 northern red oak seedlings 
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are planted in a greenhouse, one containing seedlings treated with nitrogen and 
one containing no nitrogen. All other environmental conditions are held constant. 
All seedlings contain the fungus Pisolithus tinctorus. More details are supplied in 
Chapter 9. The stem weights in grams were recorded after the end of 140 days. 
The data are given in Table 1.1. 

Table 1.1: Data Set for Example 1.2 
No Nitrogen 

0.32 
0.53 
0.28 
0.37 
0.47 
0.43 
0.36 
0.42 
0.38 
0.43 

Nitrogen 
0.26 
0.43 
0.47 
0.49 
0.52 
0.75 
0.79 
0.86 
0.62 
0.46 

In this example there are two samples from two separate populations. The 
purpose of the experiment is to determine if the use of nitrogen has an influence 
on the growth of the roots. The study is a comparative study (i.e.. we seek to 
compare the two populations with regard to a certain important characteristic). 
It is instructive to plot the data as shown in Figure 1.1. The o values represent 
the "with nitrogen" data and the x values represent the "without nitrogen" data. 
Now, the purpose of this experiment is to determine whether the use of nitrogen 
has an influence on the growth of the roots. Notice that the general appearance of 
the data might suggest to the reader that, on average, the use of nitrogen increases 
the stem weight. Four nitrogen observations are considerably larger than any of the 
no-nitrogen observations. Most of the no-nitrogen observations appear to be below 
the center of the data. The appearance of the data set would seem to indicate that 
nitrogen is effective. But how can this be quantified? How can all of the apparent 
visual evidence be summarized in some sense? As in the preceding example, the 
fundamentals of probability can be used. The conclusions may be summarized in 
a probability statement or P-value. Wc will not show here the statistical inference 
that produces the summary probability. As in Example 1.1, these methods will be 
discussed in Chapter 10. The issue revolves around the "probability that data like 
these could be observed" given that nitrogen has no effect, in other words, given 
that both samples were generated from the same population. Suppose that this 
probability is small, say 0.03. That would certainly be strong evidence that the 
use of nitrogen does indeed influence (apparently increases) average stem weight 
of the red oak seedlings. J 

How Do Probability and Statistical Inference Work Together? 

It. is important for the reader to gain the clear distinction between the discipline of 
probability, a science in its own right, and the discipline of inferential statistics. As 



Chapter 1 Introduction to Statistics and Data Analysis 

§ o 

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 

Figure 1.1: Stern weight data.. 

we have already indicated, the use or application of concepts in probability allows 
real-life interpretation of the results of statistical inference. As a result, it can be 
said that statistical inference makes use of concepts in probability. One can glean 
from the two examples above that, the sample information is available; to the analyst 
and, with the aid of statistical methods and elements of probability, conclusions 
are made about, some feature of the population (the process does not appear to 
be acceptable in Example 1.1 and nitrogen does influence average stem weights in 
Example 1.2). Thus for a statistical problem the sample along wi th inferen
t ial s ta t is t ics allows us to draw conclusions abou t t he populat ion, wi th 
inferential s tat is t ics making clear use of elements of probabili ty. This 
reasoning is inductive in nature. Now as we move into Chapter 2 and beyond, the 
reader will note' thai unlike our two examples here, we will not focus on solving 
statistical problems. Many examples will be given in which no sample is involved. 
There will be a population clearly described with all features of the population 
known. Then questions of importance will focus on the nature of data that might 
hypothetical]}' be drawn from the population. Thus one can say that problems 
in probabil i ty allow us to draw conclusions abou t characterist ics of hy
pothet ical da ta taken from the popula t ion based on known features of 
the populat ion. This type of reasoning is deductive in nature. Figure 1.2 shows 
the fundamental relationship between probability and inferential statistics. 

Probability 

Population Sample 

Statistical Inference 

Figure 1.2: Fundamental relationship between probability and inferential statistics. 

Now, in the grand scheme of things, which is more important, the field of 
probability or the field of statistics? They are both very important and clearly arc 
complementary. The only certainty concerning the pedagogy of the two disciplines 
lies in the fact that if statistics is to be taught: at more than merely a "cookbook" 
level, then the discipline of probability must be taught first. This rule stems from 
the fact that nothing can be learned about a population from a sample until the 
analyst learns the rudiments of uncertainty in that sample. For example, consider 
Example 1.1. The question centers around whether or not the population, defined 
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by the process, is no more than 5% defective. In other words the conjecture is 
that on t he average 5 out of 100 items are defective. Now, the sample contains 
100 items and 10 are defective. Does this support the conjecture or refute it? On 
the surface it would appear to be a refutation of the conjecture because. 10 out 
of 100 seem to be "a bit much." But without elements of probability, how do we 
know'.' Only through the study of materia] in future chapters will we learn that 
under the condition that the process is acceptable (5% defective), the probability 
of obtaining 10 or more defective items in a sample of 100 is 0.0282. 

We have given two examples where the elements of probability provide a sum
mary that the scientist or engineer can use as evidence on which to build a decision. 
The bridge between the data and the conclusion is, of course, based on foundations 
of statistical inference, distribution theory, and sampling distributions discussed in 
future; chapters. 

1.3 Sampling Procedures; Collection of Data 

In Section 1.1 we discussed very briefly the notion of sampling and the sampling 
process. While sampling appears to be a simple concept, the complexity of the 
questions that must be answered about the population or populations necessitates 
that the sampling process be very complex at times. While the notion of sampling 
is discussed in a technical way in Chapter 8, we shall endeavor here to give: some 
common sense notions of sampling, This is a natural transition to a discussion of 
the concept of variability. 

Simple Random Sampling 

The importance of proper sampling revolves around the degree of confidence with 
which the analyst is able to answer the questions being asked. Let us assume that 
only a single population exists in the problem. Recall that in Example 1.2 two 
populations were involved. Simple r andom sampl ing implies that any particular 
sample: of a specified sample size has the same chance of being selected as any 
other sample of the same size. The term sample size simply means the number of 
elements in the sample. Obviously, a table of random numbers can be utilized in 
sample selection in many instances. The virtue of simple random sampling is that 
it aids in the elimination of the problem of having the sample reflect a different 
(possibly more confined) population than the one about which inferences need to be 
made. For example, a sample is to be chosen to answer certain questions regarding 
political preferences in a. certain state in the United States. The sample involves 
the choice of, say, 1000 families and a survey is to be conducted. Now, suppose it 
turns out that random sampling is not used. Rather, all or nearly all of the 1000 
families chosen live in an urban setting. It is believed that political preferences 
in rural areas differ from those in urban areas. In other words, the sample drawn 
actually confined the population and thus the inferences need to be confined to the 
"limited population," and in this case confining may be undesirable. If, indeed, 
the inferences need to be made about the state as a whole, the sample of size 1000 
described here is often referred to as a. biased sample. 
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As we hinted earlier, simple random sampling is not always appropriate. Which 
alternative approach is used depends on the complexity of the problem. Often, for 
example, the sampling units are not homogeneous and naturally divide themselves 
into nonoverlapping groups that are homogeneous. These groups are called strata, 
and a procedure called stratified random sampling involves random selection of a 
sample within each stratum. The purpose is to be sure that each of the strata 
is neither over- or undcrrepresented. For example, suppose a sample survey is 
conducted in order to gather preliminary opinions regarding a bond referendum 
that is being considered in a certain city. The city is subdivided into several ethnic 
groups which represent natural strata. In order not to disregard or overrepreseut 
any group, separate random samples of families could be chosen from each group. 

Experimental Design 

The concept of randomness or random assignment plays a huge role in the area of 
experimental design, which was introduced very briefly in Section 1.1 and is an 
important staple in almost any area of engineering or experimental science. This 
will be discussed at length in Chapters 13 through 15. However, it is instructive to 
give a brief presentation here in the context of random sampling. A set of so-called 
treatments or treatment combinations becomes the populations to be studied 
or compared in some sense. An example: is the "nitrogen" versus "no-nitrogen" 
treatments in Example 1.2. Another simple example would be "placebo" versus 
"active drug," or in a corrosion fatigue study we might have treatment combina
tions that involve specimen that are coated or uncoated as well as conditions of low 
or high humidity to which the specimen are exposed. In fact, there are four treat
ment or factor combinations (i.e., 4 populations), and many scientific questions 
may be asked and answered through statistical and inferential methods. Consider 
first the situation in Example 1.2. There arc 20 diseased seedlings involved in 
the experiment. It. is easy to see from the data themselves that the seedlings arc 
different from each other. Within the nitrogen group (or the no-nitrogen group) 
there is considerable variability in the stem weights. This variability is due to 
what is generally called the experimental unit. This is a very important concept 
in inferential statistics, in fact one whose description will not end in this chapter. 
The nature of the variability is very important. If it is too large, stemming from a 
condition of excessive non-homogeneity in experimental units, the variability will 
"wash out" any detectable difference between the two populations. Recall that in 
this case that did not occur. 

The dot plot in Figure 1.1 and P-value indicated a clear distinction between 
these two conditions. What role do those experimental units play in the data-
taking process itself? The common-sense and, indeed, quite standard approach is 
to assign the 20 seedlings or experimental units randomly to the two treat
ments or conditions. In the drug study we may decide to use a total of 200 
available patients, patients that clearly will be different in some sense. They are 
the experimental units. However, they all may have the same chronic condition 
for which the drug is a potential treatment. Then in a so-called completely ran
domized design 100 patients are assigned randomly to placebo and 100 to the 
active drug. Again, it is these experimental units within a group or treatment that 
produce the variability in data results (i.e., variability in the measured result). 
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say blood pressure, or whatever drug efficacy value is important. In the corrosion 
fatigue study the experimental units are the specimen that are the subjects of the 
corrosion. 

Why Assign Experimental Units Randomly? 

What is the possible negative impact of not randomly assigning experimental units 
to the treatments or treatment combinations? This is seen most clearly in the 
case of the drug study. Among the characteristics of the patients that produce 
variability in the results are age, gender, weight, and others. Suppose merely 
by chance the placebo group contains a sample of people that are predominately 
heavier than those in the treatment group. Perhaps heavier individuals have a 
tendency to have a higher blood pressure. This clearly biases the result and, 
indeed, any result obtained through the application of statistical inference may 
have little to do with the drug but more to do with differences in weights among 
the two samples of patients. 

We should emphasize the attachment of importance to the term variability. 
Excessive variability among experimental units "camouflages" scientific findings. 
In future sections we attempt to characterize and quantify measures of variability. 
In sections that follow we introduce and discuss specific quantities that can be 
computed in samples; the quantities give a sense of the nature of the sample with 
respect to center of location of the data and variability in the data, A discussion 
of several of these single number measures serves to provide a preview of wdiat 
statistical information will be important components of the statistical methods 
that are used in Chapters 8 through 15. These measures that help characterize 
the nature of the data set fall into the category of descriptive statistics. This 
material is a prelude to a brief presentation of pictorial and graphical methods that 
go even further in characterization of the data set. The reader should understand 
that the statistical methods illustrated here will be used throughout the text. In 
order to offer the reader a clearer picture of what is involved in experimental design 
studies, we offer Example 1.3. 

Example 1.3:1 A corrosion study was made in order to determine whether corrosion of an alu
minum metal coated with a corrosion retardation substance reduced the amount 
of corrosion. The coating is a protectant that is advertised to minimize fatigue 
damage in this type of material. Also of interest is the influence of humidity on the 
amount of corrosion. A corrosion measurement can be expressed in thousands of 
cycles to failure. Two levels of coating, no coating and chemical corrosion coating, 
were used. In addition, the two relative humidity levels are 20% relative humidity 
and 80% relative humidity. 

The experiment involves four treatment combinations that axe listed in the 
table that follows. There are eight experimental units to be used and they are alu
minum specimens prepared, with two assigned randomly to each of four treatment 
combinations. The data are presented in Table 1.2. 

The corrosion data are averages of 2 specimens. A plot of the averages is 
pictured in Figure 1.3. A relatively large value of cycles to failure represents a 
small amount of corrosion. As one might expect, an increase in humidity appears 

\ 
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Table 1.2: Data for Example 1.3 

Average Corrosion in 
Coating Humidity Thousands of Cycles to Failure 

Uncoated 

Chemical Corrosion 

20% 
80% 
20% 

80% 

975 

350 
1750 

1550 

2000 

O 1000 
<D 

I 

Chemical Corrosion Coating 

Uncoated 

20% 80% 
Humidity 

Figure 1.3: Corrosion results for Example 1.3. 

to make the corrosion worse. The use of the chemical corrosion coating procedure 
appears to reduce corrosion. J 

In this experimental design illustration, the engineer has systematically selected 
the four treatment combinations. In order to tie this situation to concepts with 
which the reader has been exposed to this point, it should be assumed that the 
conditions representing the four treatment combinations are four separate popula
tions and that the two corrosion values observed at each population are important 
pieces of information. The importance of the average in capturing and summa
rizing certain features in the population will be highlighted in Section 1.4. While 
we might draw conclusions about the role of humidity and the impact of coating 
the specimen from the figure, we cannot truly evaluate the results from an analyt
ical point of view without taking into account the variability around the average. 
Again, as we indicated earlier, if the two corrosion values at each treatment combi
nation are close together, the picture in Figure 1.3 may be an accurate depiction. 
But if each corrosion value in the figure is an average of two values that are widely 
dispersed, then this variability may, indeed, truly "wash away" any information 
that appears to come through when one observes averages only. The foregoing 
example illustrates the concepts: 
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(1) random assignment of treatment combinations (coating/humidity) to experi
mental units (specimens) 

(2) the use of sample averages (average corrosion values) in summarizing sample 
information 

(3) the need for consideration of measures of variability in the analysis of any 
sample or sets of samples 

This example suggests the need for what follows in Sections 1.4 and 1.5, namely, 
descriptive statistics that indicate measures of center of location in a set of data, 
and those that measure variability. 

1.4 Measures of Location: The Sample Mean and Median 

Location measures in a data set are designed to provide the analyst some quantita
tive measure of where the data center is in a sample. In Example 1.2 it appears as 
if the center of the nitrogen sample clearly exceeds that of the no-nitrogen sample. 
One obvious and very useful measure is the sample mean. The mean is simply a 
numerical average. 

Definition 1.1: Suppose that the observations in a sample are x 

denoted by x is 

_ _ v^ x% _ an + %i + • 
f-i n. n 

I . . - C 2 , . . 

• + X„ 

, xn. The sample mean, 

There are other measures of central tendency that are discussed in detail in 
future chapters. One important measure is the sample median. The purpose of 
the sample median is to reflect the central tendency of the sample in such a way 
that it is uninfluenced by extreme values or outliers. Given that the observations in 
a sample are xj, X2> • • •, xn, arranged in increasing order of magnitude, the sample 
median is 

- _ J •r("+i)/2: if n is odd, 
X = 

$(xn/2 + En/2+l)5
 n n i s c v c n -

For example, suppose the data set is the following: 1.7, 2.2, 3.9, 3.11, and 14.7. 
The sample mean and median are, respectively, 

£ = 5.12, £ = 3.9. 

Clearly, the mean is influenced considerably by the presence of the extreme obser
vation, 14.7, whereas the median places emphasis on the true "center" of the data 
set. In the case of the two-sample data set of Example 1.2, the two measures of 
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central tendency for the individual samples are 

X (no nitrogen) = 0.399 gram, 
. , . , 0.38 + 0.42 
x (no nitrogen) — = 0.400 gram, 

X (nitrogen) = 0.5G5 gram, 
0,19 + 0.52 

x (nitrogen) = = 0.505 gram. 

Clearly there is a difference in concept between the mean and median. It may 
be of interest to the reader with an engineering background that the sample mean 
is the centroid of the da ta in a sample. In a sense it is the point at which a 
fulcrum can be placed to balance a system of "weights" which are the locations of 
the individual data. This is shown in Figure 1.4 with regard to the "with nitrogen" 
sample. 

x = 0.565 

i • • - • + - • — H H » — I 1 • •+-
0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 

Figure 1.4: Sample mean as a centroid of the "with nitrogen" stem weight. 

In future chapters, the basis for the computation of x is that of an es t imate 
of the populat ion mean. As we indicated earlier, the purpose of statistical infer
ence is to draw conclusions about population characteristics or pa ramete r s and 
es t imat ion is a very important feature of statistical inference. 

The median and mean can be quite different from each other. Note, however, 
that in the case of the stem weight data the sample mean value for no-nitrogen is 
quite similar to the median value. 

Other Measures of Locations 

There are several other methods of quantifying the center of location of the data 
in the sample. We will not deal with them at this point. For the most part, 
alternatives to the sample mean are designed to produce values that represent 
compromises between the mean and the median. Rarely do we make use of these 
other measures. However, it is instructive to discuss one class of estimators, namely 
the class of t r immed means. A trimmed mean is computed by "trimming away" 
a certain percent of both the largest and smallest set of values. For example, the 
10% trimmed mean is found by eliminating the largest 10% and smallest 10% and 
computing the average of the remaining values. For example, in the case of the 
stem weight data we would eliminate the largest and smallest since the sample size 
is 10 for each sample. So for the without-nitrogen group the 10% trimmed mean 
is given by 

0.32 + 0.37 + 0.47 + 0.36 + 0.42 + 0.38 + 0.43 
xtr(10) = 5 = 0.39(50. 
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Exercises 

and for the 10% trimmed mean for the with-nitrogen group we have 

0.43 + 0.47 + 0.49 + 0.52 + 0.75 + 0.79 + 0.62 + 0.46 
^trcio) — 

8 
= 0.56625. 

Note t h a t in this case, as expected, the t r immed means are close to both the 
mean and median for the individual samples. The t r immed mean approach is, of 
course, more insensitive to outliers than the sample mean but not as insensitive as 
the median. On the other hand the t r immed mean approach makes use of more 
information. Note t ha t the sample median is, indeed, a special case of the tr immed 
mean in which all of the sample da ta are eliminated apar t from the middle one or 
two observations. 

1.1 The following measurements were recorded for 
the drying time, in hours, of a certain brand of latex 
paint. 

3.4 2.5 4.8 2.9 3.6 
2.8 3.3 5.6 3.7 2.8 
4.4 4.0 5.2 3.0 4.8 

Assume that the measurements are a simple random 
sample. 
(a) What is the sample size for the above sample? 

(b) Calculate the sample mean for this data. 
(c) Calculate the sample median. 
(d) Plot the data by way of a dot plot. 
(e) Compute the 20% trimmed mean for the above 

data set. 

1.2 According to the journal Chemical Engineering, 
an important property of a fiber is its water ab-
sorbency. A random sample of 20 pieces of cotton 
fiber is taken and the absorbency on each piece was 
measured. The following are the absorbency values: 

18.71 21.41 20.72 21.81 19.29 22.43 20.17 
23.71 19.44 20.50 18.92 20.33 23.00 22.85 
19.25 21.77 22.11 19.77 18.04 21.12. 

(a) Calculate the sample mean and median for the 
above sample values. 

(b) Compute the 10% trimmed mean. 
(c) Do a dot plot of the absorbency data. 

1.3 A certain polymer is used for evacuation systems 
for aircraft. It is important that the polymer be re
sistant to the aging process. Twenty specimens of the 
polymer were used in an experiment. Ten were as
signed randomly to be exposed to the accelerated batch 
aging process that involved exposure to high tempera
tures for 10 days. Measurements of tensile strength of 

218 
229 
215 
204 

217 
228 
211 
201 

225 
221 
209 
205 

the specimens were made and the following data were 
recorded on tensile strength in psi. 

No aging: 227 222 
218 216 

Aging: 219 214 
218 203 

(a) Do a dot plot of the data. 
(b) From your plot, does it appear as if the aging pro

cess has had an effect on the tensile strength of this 
polymer? Explain. 

(c) Calculate the sample mean tensile strength of the 
two samples. 

(d) Calculate the median for both. Discuss the simi
larity or lack of similarity between the mean and 
median of each group. 

1.4 In a study conducted by the Department of Me> 
chanical Engineering at Virginia Tech, the steel rods 
supplied by two different companies were compared. 
Ten sample springs were made out of the steel rods 
supplied by each company and a measure of flexibility 
was recorded for each. The data are as follows: 

Company A: 9.3 8.8 6.8 8.7 8.5 
6.7 8.0 6.5 9.2 7.0 

Company B: 11.0 9.8 9.9 10.2 10.1 
9.7 11.0 11.1 10.2 9.6 

(a) Calculate the sample mean and median for the data 
for the two companies. 

(b) Plot the data for the two companies on the same 
line and give your impression. 

1.5 Twenty adult males between the ages of 30 and 
40 were involved in a study to evaluate the effect of a 
specific health regimen involving diet and exercise on 
the blood cholesterol. Ten were randomly selected to 
be a control group and ten others were assigned to take 



Control group: 

Treatment group: 

7 
5 

- 6 
12 

3 
22 

5 
37 

- 4 
— 7 

9 
5 

11 
9 
4 
3 

2.07 
2.05 
2.52 
1.99 

2.14 
2.18 
2.15 
2.42 

2.22 
2.09 
2.49 
2.08 

2.03 
2.14 
2.03 
2.42 

2.21 
2.11 
2.37 
2.29 

2.03 
2.02 
2.05 
2.01 
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part in the regimen as the treatment group for a period to be a function of curing temperature. A study was 
of 6 months. The following data show the reduction in carried out in which samples of 12 specimens of the rub-
cholesterol experienced for the time period for the 20 ber were prepared using curing temperatures of 20° C 
subjects: and 45° C. The data below show the tensile strength 

values in megapascals. 

20° C: 

45° C: 

(a) Do a dot plot of the data for both groups on the 
same graph. (a) Show a dot plot of the data with both low and high 

(b) Compute the mean, median, and 10% trimmed temperature tensile strength values. 
means for both groups. (b) Compute sample mean tensile strength for both 

(c) Explain why the difference in the mean suggests samples. 
one conclusion about the effect of the regimen, (c) Docs it appear as if curing temperature has an in-
while the difference in medians or trimmed means fluence on tensile strength based on the plot? Com-
suggests a different conclusion. ment further. 

(d) Does anything else appear to be influenced by an 
1.6 The tensile strength of silicone rubber is thought increase in cure temperature? Explain. 

1.5 Measures of Variability 

Sample variability plays an important role in da t a analysis. Process and product 
variability is a fact of life in engineering and scientific: systems: The control or 
reduction of process variability is often a source of major difficulty. More and more 
process engineers and managers are learning tha t product quality, and as a result, 
profits tha t are derived from manufactured products are very much a function 
of p r o c e s s v a r i a b i l i t y . As a result, much of Chapters 9 through 15 deal with 
da ta analysis and modeling procedures in which sample variability plays a major 
role. Even in small da ta analysis problems, the success of a particular statistical 
method may depend on the magnitude of the variability among the observations in 
the sample. Measures of location in a sample do not provide a proper summary of 
the nature of a da ta set. For instance, in Example 1.2 we cannot conclude tha t the 
use of nitrogen enhances growth without taking sample variability into account. 

While the details of the analysis of this type of da ta set are deferred to Chapter 
9, it should be clear from Figure 1.1 t ha t variability among the "no-nitrogen" 
observations and variability among the "with-nitrogen" observations are certainly 
of some consequence. In fact, it appears that the variability within the nitrogen 
sample is larger than that of the no-nitrogen sample. Perhaps there is something 
about the inclusion of nitrogen that not only increases the stem height (x of 0.565 
gram compared to an x of 0.399 gram for the no-nitrogen sample) but also increases 
the variability in stem height (i.e., renders the stem height more inconsistent). 

As another example, contrast the two da ta sets below. Each contains two 
samples and the difference in the means is roughly the same for the two samples: 
Da ta set B seems to provide a much sharper contrast between the two populations 
from which the samples were taken. If the purpose of such an experiment, is to 
detect distinction between the two populations, the task is accomplished in the 
case of da t a set B. However, in da ta set A the large variability within the two 
samples creates difficulty. In fact, it is not clear tha t there is a distinction bet-ween 
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Data set A: 

Data set B: 

X X X X X X O X X O O X X X O O O O O O O O 
i i 

1 I 
xx x0 

X X X X X X X X X X X 0 0 0 0 0 0 0 0 0 0 0 
1 1 

J. J_ 
*x X0 

the two populations. 

Sample Range and Sample Standard Deviation 

Just as there are many measures of central tendency or location there are many 
measures of spread or variability. Perhaps the simplest one is the sample range 
^ m a x - ^ m i n . The range can be very useful and is discussed at length in Chapter 
17 on statistical quality control. The sample measure of spread that is used most 
often is the sample standard deviation. We again let Xi,X2,...,xn denote 
sample values; 

Definition 1.2: The sample variance, denoted by s2, is given by 

(Xi - x)2 

=£ 
i = i 

n - 1 

The sample standard deviation, denoted by s, is the positive square root of 
s2, that is, 

s = Vs2. 

It should be clear to the reader that the sample standard deviation is, in fact, 
a measure of variability. Large variability in a data set produces relatively large 
values of (x — x)2 and thus a large sample variance. The quantity n — 1 is often 
called the degrees of freedom associated with the variance estimate. In this 
simple example the degrees of freedom depict the number of independent pieces 
of information available for computing variability. For example, suppose that we 
wish to compute the sample variance and standard deviation of the data set (5, 
17, 6, 4). The sample average is x = 8. The computation of the variance involves: 

(5 - 8)2 + (17 - 8)2 + (6 - 8)2 + (4 - 8)2 = ( -3 ) 2 + 92 + ( -2) 2 + ( -4 ) 2 . 

The quantities inside parentheses sum to zero. In general, Yl (xi ~ &) = 0 (see 
t=t 

Exercise 1.16 on page 28). Then the computation of a sample variance does not 
involve n independent squared deviations from the mean x. In fact, since the 
last value of x — x is determined by the initial n — 1 of them, we say that these 
are n — 1 "pieces of information" that produce s2. Thus there are n — 1 degrees of 
freedom rather than n degrees of freedom for computing a sample variance. 
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Example 1.4:1 In an example discussed extensively in Chapter 10, an engineer is interested in 
testing the "bias" in a pH meter. Data arc collected on the meter by measuring 
the pH of a neutral substance (pH — 7.0). A sample of size 10 is taken with results 
given by 

7.07 7.00 7.10 6.97 7.00 7.03 7.01 7.01 6.98 7.08. 

The sample mean x is given by 

. = 7 . 0 7 + 7 . 0 0 + 7 . 1 0 + - + 7.08 = ? ^ 

The sample variance s2 is given by 

s2 =I[(7.07 - 7.025)2 + (7.00 - 7.025)2 + (7.10 - 7.025)2 

+ • • • + (7.08 - 7.025)2] = 0.001939. 

As a result, the sample standard deviation is given by 

s = \/0.00193 = 0.044. 

So the sample standard deviation is 0.0440 with n — 1 = 9 degrees of 
freedom. J 

Units for Standard Deviation and Variance 

It should be apparent from Definition 1.2 that the variance is a measure of the 
average squared deviation from the mean x. We use the term average squared 
deviation even though the definition makes use of a division by degrees of freedom 
n — 1 rather than n. Of course, if n is large the difference in the denominator 
is inconsequential. As a result, the sample variance possesses units that are the 
square of the units in the observed data whereas the sample standard deviation 
is found in linear units. As an example, consider the data of Example 1.2. The 
stem weights are measured in grams. As a result, the sample standard deviations 
are in grams and the variances are measured in grams . In fact, the individual 
standard deviations are 0.0728 grams for the no-nitrogen case and 0.1867 grams 
for the nitrogen group. Note that the variability as characterized by the standard 
deviation does indicate considerably larger variability in the nitrogen sample. This 
condition was noted from Figure 1.1. 

Which Variability Measure Is More Important? 

As we indicated earlier the sample range has applications in the area of statistical 
quality control. It may appear to the reader that the use of both the sample 
variance and the sample standard deviation is redundant. Both measures reflect the 
same concept in measuring variability but the sample standard deviation measures 
variability in linear units whereas the sample variance is measured in squared 
units. Both play huge roles in the use of statistical methods. Much of what is 
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accomplished in the context: of statistical inference involves drawing conclusions 
about, characteristics of populations. Among these characteristics arc constants 
which are1 called p o p u l a t i o n p a r a m e t e r s . Two important parameters are the 
p o p u l a t i o n m e a n and the p o p u l a t i o n variance . The sample variance plays an 
explicit role in the statistical methods used to draw inferences about the population 
variance. The sample; s tandard deviation has an impor tant role along with the 
sample mean in inferences tha t are made about the population mean. In general, 
the variance is considered more in inferential theory, while the s tandard deviation 
is used more in applications. 

Exercises 

1.7 Consider the drying time data for Exercise 1.1 1.10 For the data of Exercise 1.4 on page 13. com-
on page 13. Compute the sample-variance and sample pute both the mean and variance in 'flexibility" for 
standard deviation, berth company A and company B. 

1.8 Compute the sample variance: and standard devi- i . n Consider the data in Exercise 1.5 on page 13. 
ation for the water absorbency data of Exercise 1.2 on Compute the sample variance and the sample standard 
page 13. deviation for both the control and treatment groups. 

1.9 Exercise 1.3 on page 13 showed samples of tensile 1.12 Rjr Exercise 1.6 em page 14, compute the sample 
strength data, one for specimens that were exposed to standard deviation in tensile strength for the samples 
an aging process and one in which there was no ag- separately for the two temperatures. Does it. appear as 
ing of the specimens. Calculate the sample variance as if a r , i„ c r c a so in temperature influences the variability 
well as standard deviation in tensile strength for both m (ensile strength? Explain. 
samples. 

1.6 Discrete and Continuous Data 

Statistical inference through the analysis of observational studies or designed ex
periments is used in many scientific areas. T h e data gathered may be d i s c r e t e 
or cont inuous , depending on the area of application. For example1, a chemical 
engineer may be interested in conducting an experiment that will lead to condi
tions where yield is maximized. Here, of course, the yield may be in percent, or 
g rams/pound, measured on a continuum. On the other hand, a toxicologist con
ducting a combination drug experiment may encounter da ta that are binary in 
nature (i.e., the patient either responds or not) . 

Great distinctions arc made between discrete and continuous data in the prob
ability theory tha t allow us to draw statistical inferences. Often applications of 
statistical inference are found when the da ta are count, data. For example, an en
gineer may be interested in studying the number of radioactive particles passing 
through a counter in, say, 1 millisecond. Personnel responsible for the1 efficiency of 
a port facility may be interested in the characteristics of the number of oil tankers 
arriving each day at a certain port: city, In Chapter 5, several distinct scenarios, 
leading to different ways of handling da ta arc discussed for situations with count 
da ta . 

Special a t tent ion even at this early stage of the textbook should be paid to some 
details associated with binary data . Applications requiring statistical analysis of 
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binary data are voluminous. Often the measure that is used in the analysis is 
the sample proportion. Obviously the binary situation involves two categories. 
If there are n units involved in the data and x is defined as the number that 
fall into category 1, then n — x fall into category 2. Thus, x/n is the sample 
proportion in category 1 and 1 — x/n is the sample proportion in category 2. In 
the biomedical application, 50 patients may represent the sample units and if 20 
out of 50 experienced an improvement in a stomach ailment (common to all 50) 
after all were given the drug, then |g = 0.4 is the sample proportion for which 
the drug was a success and 1 — 0.4 = 0.6 is the sample proportion for which the 
drug was not successful. Actually the basic numerical measurement for binary 
data is generally denoted by either 0 or 1. For example, in our medical example, 
a successful result is denoted by a 1 and a nonsuccess a 0. As a result, the sample 
proportion is actually a sample mean of the ones and zeros. For the successful 
category, 

xi + x2 + • • • + x50 _ 1 + 1 + 0 + - - + 0 + 1 _ 20 
50 ~ 50 ~ 50 ~ ' ' 

What Kinds of Problems Are Solved in Binary Data Situations? 

The kinds of problems facing scientists and engineers dealing in binary data are 
not a great deal unlike those seen where continuous measurements are of interest. 
However, different techniques are used since the statistical properties of sample 
proportions are quite different from sample means that result from averages taken 
from continuous populations. Consider the example data in Exercise 1.6 on page 
14. The statistical problem underlying this illustration focuses on whether an in
tervention, say, on increase in cure temperature, will alter the population mean 
tensile strength associated with the silicone rubber process. On the other hand, 
in a quality control area suppose an automobile tire manufacturer reports that a 
shipment of 5000 tires selected randomly from the process results in 100 of them 
showing blemishes. Here the sample proportion is §^§j = 0.02. Following a change 
in the process designed to reduce blemishes, a second sample of 5000 is taken and 
90 tires are blemished. The sample proportion has been reduced to gg§j, = 0.018. 
The question arises, "Is the decrease in the sample proportion from 0.02 to 0.018 
substantial enough to suggest a real improvement in the population proportion?" 
Both of these illustrations require the use of the statistical properties of sample 
averages-one from samples from a continuous population, and the other from sam
ples from a discrete (binary) population. In both cases the sample mean is an 
estimate of a population parameter, a population mean in the first illustration 
(i.e., mean tensile strength), and a population proportion (i.e., proportion of blem
ished tires in the population), in the second case. So here we have sample estimates 
used to draw scientific conclusions regarding population parameters. As we indi
cated in Section 1.4, this is the general theme in many practical problems using 
statistical inference. 
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1.7 Statistical Modeling, Scientific Inspection, and Graphical 
Diagnostics 

Often the end result of a statistical analysis is the estimation of parameters of a 
postulated model. This is natural for scientists and engineers since they often 
deal in modeling. A statistical model is not deterministic but, rather, must entail 
some probabilistic: aspects. A model form is often the foundation of assumpt ions 
that are made by the analyst. For example, in our Example 1.2 the scientist may 
wish to draw some level of distinction between the "nitrogen" and "no-nitrogen" 
populations through the sample information. The analysis may require a certain 
model for the data, for example, that the two samples conic: from normal or 
Gaussian dis t r ibut ions . See Chapter 6 for a discussion of the normal distribu
tion. 

At times the model postulated may take on a somewhat more complicated form. 
Consider, for example, a textile manufacturer who designs an experiment where 
cloth specimens are being produced that contain various percentages of cotton. 
Consider the data in Table 1.3. 

Table 1.3: Tensile Strength 

Cot ton Percentage Tensile S t r eng th 

15 
20 
25 
30 

7, 7, 9, 8, 10 
19, 20, 21, 20, 22 
21, 21, 17, 19, 20 
8, 7, 8, 9, 10 

Five cloth specimens are manufactured for each of the four cotton percentages. 
In this case both the model for the experiment and the type of analysis used 
should take into account the goal of the experiment and important input from 
the textile scientist. Some simple graphics can shed important light, on the clear 
distinction between the samples. Sec Figure 1.5; the sample means and variability 
are depicted nicely in the data plot. One possible goal of this experiment is simply 
to determine whic:h cotton percentages are truly distinct from the others. In other 
words, as in the case of the nitrogen/no-nitrogen data, for which cotton percentages 
are there clear distinctions between the populations or, more specifically, between 
the population means? In this case, perhaps a reasonable: model is that each 
sample comes from a normal distribution. Here the goal is very much like that 
of the nitrogen/iio-iiitrogen data except that more samples are involved. The 
formalism of the analysis involves notions of hypothesis testing discussed in Chapter 
10. Incidentally, this formality is perhaps not necessary in light of the diagnostic 
plot. But does this describe the real goal of the experiment and hence the proper 
approach to data analysis? It is likely that the scientist anticipates the existence of 
a maximum, population mean tensile strength in the range of cotton concentration 
in the experiment. Here the analysis of the data should revolve around a different 
type of model, one that postulates a type of structure relating the population 
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mean tensile strength to the cotton concentration. In other words, a model may 
be written 

»t,c = .3o + faC + i32c
2, 

where fit.c is the population mean tensile strength, which varies with the amount 
of cotton in the product C. The implication of this model is that for a fixed cotton 
level, there is a population of tensile strength measurements and the population 
mean is ut.r.- This type of model, called a regression model, is discussed in 
Chapters 11 and 12. The functional form is chosen by the scientist. At times 
the data analysis may suggest that the model be changed. Then the data analyst 
"entertains" a model that may be altered after some analysis is done. The use 
of an empirical model is accompanied by estimation theory, where 3Q, 8\, and 
P2 are estimated by the data. Further, statistical inference can then be used to 
determine model adequacy. 

25 
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Figure 1.5: Plot of tensile strength and cotton percentages. 

Two points become evident from the two data illustrations here: (1) The type 
of model used to describe the data often depends on the goal of the experiment; 
and (2) the structure of the model should take advantage of nonstatistical scientific 
input. xA selection of a model represents a fundamental assumption upon which 
the resulting statistical inference is based. It will become apparent throughout the 
book how important graphics can be. Often, plots can illustrate information that 
allows the results of the formal statistical inference to be better communicated to 
the scientist or engineer. At times, plots or exploratory data analysis can teach 
the analyst something not retrieved from the formal analysis. Almost any formal 
analysis requires assumptions that evolve from the model of the data. Graphics can 
nicely highlight violation of assumptions that would otherwise go unnoticed. 
Throughout the book, graphics are used extensively to supplement formal data 
analysis. The following sections reveal some useful graphical tools that are used in 
exploratory or descriptive data analysis. 

1.8 Graphical Methods and Data Description 
Obviously, the user of statistical methods cannot generate sufficient information or 
experimental data to characterize the population totally. But sets of data are often 
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used to learn about certain properties of the population. Scientists and engineers 
are accustomed to dealing with data sets. The importance of characterizing or 
summarizing the nature of collections of data should be obvious. Often a summary 
of a collection of data via a graphical display can provide insight regarding the 
system from which the data were taken. 

In this section, the role of sampling and the display of data in order to enhance 
statistical inference about scientific systems is explored in detail. We merely 
introduce some simple but often effective displays that complement the study of 
statistical populations. Statistical data, generated in large masses, can be very 
useful for studying the behavior of the distribution if presented in a combined 
tabular and graphic display called a stem-and-leaf plot. 

To illustrate the construction of a stem-and-leaf plot, consider the data of Table 
1.4, which specifies the "life" of 40 similar car batteries recorded to the nearest tenth 
of a year. The batteries are guaranteed to last 3 years. First, split each observation 
into two parts consisting of a stem and a leaf such that the stem represents the 
digit preceding the decimal and the leaf corresponds to the decimal part of the 
number. In other words, for the number 3.7 the digit 3 is designated the stem and 
the digit 7 is the leaf. The four steins 1, 2, 3, and 4 for our data are listed vertically 
on the left side in Table 1.5; the leaves are recorded on the right side opposite the 
appropriate stem value. Thus the leaf 6 of the number 1.6 is recorded opposite 
the stem 1; the leaf 5 of the number 2.5 is recorded opposite the stem 2; and so 
forth. The number of leaves recorded opposite each stem is summarized under the 
frequency column. 

Table 1.4: Car Battery Life 

2.2 
3.4 
2.5 
3.3 
4.7 

4.1 
1.6 
4.3 
3.1 
3.8 

3.5 
3.1 
3.4 
3.7 
3.2 

4.5 
3.3 
3.6 
4.4 
2.6 

3.2 
3.8 
2.9 
3.2 
3.9 

3.7 
3.1 
3.3 
4.1 
3.0 

3.0 
4.7 
3.9 
1.9 
4.2 

2.6 
3.7 
3.1 
3.4 
3.5 

Table 1.5: Stem-and-Leaf Plot of Battery Life 

Stem Leaf Frequency 
1 
2 
3 
4 

69 
25669 
0011112223334445507778899 
11234577 

2 
5 
25 
8 

The stem-and-leaf plot of Table 1.5 contains only four stems and consequently 
does not provide an adequate picture of the distribution. To remedy this problem, 
we need to increase the number of stems in our plot. One simple way to accomplish 
this is to write each stein value twice and then record the leaves 0, 1, 2, 3, and 4 
opposite the appropriate stem value where it appears for the first time; and the 
leaves 5. 6, 7, 8, and 9 opposite this same stein value wdiere it appears for the second 
time. This modified double-stem-and-leaf plot is illustrated in Table 1.6, where the 
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stems corresponding to leaves 0 through 4 have been coded by the symbol * and 
the stem corresponding to leaves 5 through 9 by the symbol •. 

In any given problem, we must decide on the appropriate stem values. This 
decision is made somewhat arbitrarily, although we are guided by the size of our 
sample. Usually, we choose between 5 and 20 stems. The smaller the number of 
data available, the smaller is our choice for the number of stems. For example, if 
the data consist of numbers from 1 to 21 representing the number of people in a 
cafeteria line on 40 randomly selected workdays and we choose a double-stem-and-
leaf plot, the stems would be 0*, 0-, 1*, 1-, and 2* so that the smallest observation 
1 has stem 0* and leaf 1, the number 18 has stem 1- and leaf 8, and the largest 
observation 21 has stem 2* and leaf 1. On the other hand, if the data consist of 
numbers from $18,800 to $19,600 representing the best possible deals on 100 new 
automobiles from a certain dealership and we choose a single-stem-and-leaf plot, 
the stems would be 188, 189, 190, . . . , and 196 and the leaves would now each 
contain two digits. A car that sold for 819,385 would have a stem value of 193 and 
the two-digit leaf 85. Multiple-digit leaves belonging to the same stem are usually 
separated by commas in the stem-and-leaf plot. Decimal points in the data are 
generally ignored when all the digits to the right of the decimal represent the leaf. 
Such was the case in Tables 1.5 and 1.6. However, if the data consist of numbers 
ranging from 21.8 to 74.9, we might choose the digits 2, 3, 4, 5, 6, and 7 as our 
stems so that a number such as 48.3 would have a stem value of 4 and a leaf of 8.3. 

Table 1.6: Double-Stem-and-Leaf Plot of Battery Life 

Stem 
1-
2* 
2-
3* 
3̂  
4* 
4-

Leaf 
69 
2 
5669 
001111222333444 
5567778899 
11234 
577 

Frequency 
2 
1 
4 
15 
10 
5 
3 

The stem-and-leaf plot represents an effective way to summarize data. Another 
way is through the use of the frequency dis t r ibut ion where the data, grouped 
into different classes or intervals, can be constructed by counting the leaves be
longing to each stem and noting that each stem defines a class interval. In Table 
1.5 the stem 1 with 2 leaves defines the interval 1.0-1.9 containing 2 observations; 
the stem 2 with 5 leaves defines the interval 2.0-2.9 containing 5 observations; the 
stem 3 with 25 leaves defines the interval 3.0-3.9 with 25 observations; and the 
stem 4 with 8 leaves defines the interval 4.0-4.9 containing 8 observations. For the 
double-stem-and-leaf plot of Table 1.6 the steins define the seven class intervals 
1.5-1.9, 2.0-2.4, 2.5-2.9, 3.0-3.4, 3.5-3.9, 4.0-4.4, and 4.5-4.9 with frequencies 2, 
1, 4, 15, 10, 5, and 3, respectively. Dividing each class frequency by the total 
number of observations, we obtain the proportion of the set of observations in each 
of the classes. A table listing relative frequencies is called a relative frequency 
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distribution. The relative frequency distribution for the data of Table 1.4, showing 
the midpoints of each class interval, is given in Table 1.7. 

Table 1.7: Relative Frequency Distribution of Battery Life 

Class 
Interval 

1.5 1.9 
2.0 2.4 
2.5 2.9 
3.0 3.1 
3.5 3.9 
4.0 •1.1 
4.5-4.9 

Class 
Midpoin t 

1.7 
2.2 
2.7 
3.2 
3.7 
4.2 
4.7 

Frequency, 
/ 
2 
1 
4 

15 
10 
5 
3 

Relat ive 
Frequency 

0.050 
0.025 
0.100 
0.375 
0.250 
0.125 
0.075 

.375 

c 
CD 
3 
cr 
to 

a) 
> 

.250 

I -125 
PC 

1.7 2.2 2.7 3.2 3.7 4.2 
Battery Life (years) 

4.7 

Figure 1.6: Relative frequency histogram. 

The information provided by a relative frequency distribution in tabular form 
is easier to grasp if presented graphically. Using the midpoints of each interval 
and the corresponding relative frequencies, we construct a relat ive frequency 
h is togram (Figure: 1.6). 

Many continuous frequency distributions can be represented graphically by the 
characteristic bell-shaped curve of Figure 1.7. Graphical tools such as what we see 
in Figures 1.6 and L.7 aid in the characterization of the nature of the population. In 
Chapters 5 and 6 we discuss a property of the population called its d is t r ibut ion. 
While a more rigorous definition of a distribution or probabi l i ty d is t r ibut ion 
will be given later in the text, at this point one can view it as what, would be seen 
in Figme 1.7 in the limit as the size of the sample becomes larger. 

A distribution is said to be symmet r i c if it can be folded along a vertical axis 
so that, the two sides coincide. A distribution that lacks symmetry with respect to 
a vertical axis is said to be skewed. The distribution illustrated in Figure 1.8(a) is 
said to be skewed to the right since it has a long right tail and a much shorter left 
tail. In Figure 1.8 (b) we sec that the distribution is symmetric, while in Figure 
1.8 (c) it is skewed to the left. 
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2 3 4 
Battery Life (years) 

Figure 1.7: Estimating frequency distribution. 

Figure 1.8: Skewness of data. 

By rotating a stem-and-leaf plot counterclockwise through an angle of 90°, we 
observe that the resulting columns of leaves form a picture that is similar to a 
histogram. Consequently, if our primary purpose: in looking at the data is to deter
mine the general shape or form of the distribution, it will seldom be necessary to 
construct a relative frequency histogram. There are several other types of graphical 
tools and plots that are used. These are discussed in Chapter 8 after we introduce 
additional theoretical details. 

Other Distinguishing Features of a Sample 

There arc features of the distribution or sample other than measures of center 
of location and variability that further define its nature. For example, while the 
median divides the data (or distribution) into two parts, there are other measures 
that divide parts or pieces of the distribution that can be very useful. Separation 
is made into four parts by quartiles, with the third qnartile separating the upper 
quarter of the data from the rest, the second qnartile being the median, and the first 
quartile separating the lower quartile of the data from the rest. The distribution 
can be even more finely divided by computing percentiles of the distribution. These 
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quantities give the analyst a sense of the so-called tails of the distribution (i.e., 
values that are relatively extreme, either small or large). For example, the 95th 
percentile separates the highest 5% from the: bottom 95%. Similar definitions 
prevail for extremes on the: lower side or lower tail of the distribution. The 1st 
percentile separates the bottom 1% from the rest of the distribution. The concept 
of percentiles will play a major role in much that will be covered in future chapters. 

1.9 General Types of Statistical Studies: Designed 
Experiment, Observational Study, and Retrospective Study 

In the foregoing sections we have emphasized the notion of sampling from a pop
ulation and the use of statistical methods to learn or perhaps affirm important 
information about the population. The information sought and learned through 
the use of these statistical methods can often be influential in decision making and 
problem solving in many important scientific and engineering areas. As an illustra
tion. Example 1.3 describes a simple experiment in which the results may provide 
an aid in determining the kinds of conditions under which it is advisable to use a 
particular aluminum alloy that may have a dangerous vulnerability to corrosion. 
The results may be of use not only to those who produce the alloy, but also to the 
customer who may consider using it. This illustration, as well as many more that 
appear in Chapters 13 through 15, highlights the concept of designing or control
ling experimental conditions (combinations of coating conditions and humidity) of 
interest to learn about some characteristic: or measurement (level of corrosion) that 
results from these conditions. Statistical methods that make use of measures of 
central tendency in the corrosion measure, as well as measures of variability, are 
employed. As the reader will observe later in the text, these methods often lead to 
a statistical model like that discussed in Section 1.7. In this case the model may be 
used to estimate (or predict) the corrosion measure as a function of humidity and 
the type of coating employed. Again, in developing this kind of model the use of 
descriptive statistics that highlight central tendency and variability become very 
useful. 

The information supplied in Example 1.3 illustrates nicely the types of engi
neering questions asked and answered by the use of statistical methods that are 
employed through a designed experiment and presented in this text. They are 

(i) What is the nature of the impact of relative humidity on the corrosion of the 
aluminum alloy within the range of relative humidity in this experiment? 

(ii) Does the chemical corrosion coating reduce corrosion levels and can the effect 
be quantified in some fashion? 

(iii) Is there in teract ion between coating type and relative humidity that impacts 
thc:ir influence on corrosion of the alloy? If so, what is its interpretation? 

What Is Interaction? 

The importance: of questions (i) and (ii) should be clear to the reader as they 
deal with issues important to both producers and users of the alloy. But. what 
about question (iii)? The concept of interaction will be discussed at length in 
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Chapters 14 and 15. Consider the plot in Figure 1.3. This is an illustration of 
the detection of interaction between two factors in a simple designed experiment. 
Note that the lines connecting the sample means are not parallel. Parallelism 
would have indicated that the effect (seen as a result of the slope of the lines) 
of relative humidity is the same, namely a negative effect, for both an uncoated 
condition and the chemical corrosion coating. Recall the "negative" slope implies 
that corrosion becomes more pronounced as humidity rises. Lack of parallelism 
implies an interaction between coating type and relative humidity. The nearly 
"flat" line for the corrosion coating as opposed to a steeper slope for the uncoated 
condition suggests that not only is the chemical corrosion coating beneficial (note 
the displacement between the lines), but the presence of the coating renders the 
effect of humidity negligible. Clearly all these questions are very important to the 
effect of the two individual factors and to the interpretation of the interaction, if 
it is present. 

Statistical models are extremely useful in answering questions as those listed in 
(i), (ii), and (iii), where the data come from a designed experiment. But one does 
not always have the luxury or resources that allow the employment of a designed 
experiment. For example, there are many instances in which the conditions of 
interest to the scientist or engineer cannot be implemented simply because the 
important factors cannot be controlled. In Example 1.3, the relative humidity and 
coating type (or lack of coating) are quite easy to control. This of course is the 
defining feature of a designed experiment. In many fields, factors that need to 
be studied cannot be controlled for any one of various reasons. Tight control as 
in Example 1.3 allows the analyst to be confident that any differences found (for 
example, in corrosion levels) are due to the factors under control. As a second 
illustration, consider Exercise 1.6 on page 14. Suppose in this case 24 specimens of 
silicone rubber are selected and 12 assigned to each of the cure temperature levels. 
The temperatures are controlled carefully and thus this is an example of a designed 
experiment with a single factor being cure temperature. Differences found in the 
mean tensile strength would be assumed to be attributed to the different cure 
temperatures. 

What if Factors Are Not Controlled? 

Suppose there are no factors controlled and no random assignment of fixed treat
ments to experimental units and yet there is a need to glean information from a 
data set. As an illustration, a study is done in which interest centers around the 
relationship between blood cholesterol levels and the amount of sodium measured 
in the blood. A group of individuals were monitored over time and both blood 
cholesterol and sodium were monitored. Certainly some useful information can be 
gathered from such a data set. However, it should be clear that there certainly can 
be no strict control of blood sodium levels. Ideally, the subject should be divided 
randomly into two groups with one group assigned a specific "high level" of blood 
sodium and another a specific "low level" of blood sodium. Obviously this cannot 
be done. Clearly changes in cholesterol can be experienced because of changes in 
one of a number of other factors that were not controlled. This kind of study, 
without factor control, is called an observational study. Much of the time it 
involves a situation in which subjects are observed across time. 
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Biological and biomedical studies are often by necessity observational studies. 
However, observational studies are not confined to those areas. For example, con
sider a study that is designed to determine the influence of ambient temperature on 
the electric power consumed by a chemical plant. Clearly, levels of ambient tem
perature cannot be controlled and thus the data structure can only be a monitoring 
of the data from the plant over time, 

It should be apparent that the striking difference between a well designed ex
periment and observational studies is the difficulty in determination of true cause 
and effect with the latter. Also, differences found in the fundamental response 
(e.g., corrosion levels, blood cholesterol, plant electric power consumption) may 
be due to other underlying factors that were not controlled. Ideally in a designed 
experiment the nuisance factors would be equalized via the randomization process. 
Certainly changes in blood cholesterol could be due to fat intake or exercise ac
tivity, and so on. Electric power consumption could be affected by the amount of 
product produced or even the purity of the product produced. 

Another often ignored disadvantage in an observational study when compared 
to carefully designed experiments is that unlike the latter, observational studies 
are at the mercy of nature, environmental or other uncontrolled circumstances 
that impact the ranges of factors of interest. For example, in the biomedical study 
regarding the influence of blood sodium levels on blood cholesterol, it is possible 
that there is indeed a strong influence but the particular data set used did not 
involve enough observed variation in sodium levels because of the nature of the 
subjects chosen. Of course, in a designed experiment, the analyst chooses and 
controls ranges of factors. 

A third type of statistical study which can be very useful but has clear dis
advantages when compared to a designed experiment is a retrospective study. 
This type of study uses strictly historical data, data taken over a specific period 
of time. One obvious advantage with retrospective data is that there is no cost in 
collecting the data. However, as one might expect, there are clear disadvantages. 

(i) Validity and reliability of historical data are often in doubt. 

(ii) If time is an important aspect of the structure of the data, there may be data 
missing. 

(iii) There may be errors in collection of the data that are not known. 

(iv) Again, as is the case of observational data, there is no control on the ranges 
of the measured variables (the factors in a study). Indeed, the ranges found 
in historical data may not be relevant for current studies. 

Studies Not to Derive Relationships among Variables 

In Section 1.7 some attention was given to modeling of relationships among vari
ables. We introduced the notion of regression analysis, which is covered in Chapters 
11 and 12 and is illustrated as a form of data analysis for designed experiments 
discussed in Chapters 14 and 15. In Section 1.7, a model relating population mean 
tensile strength of cloth to percentages of cotton was used for illustration where 
20 specimens of cloth represented the experimental units. In that case, the data 
came from a simple designed experiment where the individual cotton percentages 
were selected by the scientist. 
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Often both observational data and retrospective da ta are used for the purpose 
of observing relationships among variables through model building procedures dis
cussed in Chapters 11 and 12. While the advantages of designed experiments 
certainly apply when the goal is statistical model building, there are many areas 
in which designing of experiments is not possible. Thus, observational or historical 
data must be used. We refer here to a historical data set that is found in Exercise 
12.9 on page 454. The goal is to build a model that will result in an equation 
or relationship that relates monthly electric power consumed to average ambient 
tempera ture Xi, the: number of days in the month SBJ, the average product purity 
x-3, and the tons of product produced :i:,|. The da ta are the past year's historical 
data . 

Exercises 

1.13 A manufacturer of electronic components is in
terested in determining the lifetime of a certain type 
of battery. A sample, in hour's of life, is as follows: 

123,116,122,110,175, 120,125, 111, 118, 117. 

(a) Find the sample mean and median. 
(b) What feature in this data set is responsible for the 

substantial difference between the two? 

1.14 A tire manufacturer wants to determine the in
ner diameter of a certain grade of tire. Ideally, the 
diameter would be 570 mm. The data are as follows: 

572,572,573,568,569,575,565,570. 

(a) Find the sample mean and median. 
(b) Find the sample variance, standard deviation, and 

range. 
(c) Using the calculated statistics in parts (a) and (b), 

can you comment on the quality of the tires? 

1.15 Five independent coin tosses result in 
HIIHHII. It turns out that if the coin is fair the 
probability of this outcome is ( l / 2 ) s = 0.03125. Does 
this produce strong evidence that the coin is not fair? 
Comment and use the concept of P-value discussed in 
Section 1.2. 

1.16 Show that the n pieces of information in £ (i"i — 

x) ai'e n ° t independent: that, is, show that, 

B* 0. 

1.17 A study of the effects of smoking on sleep pat
terns is conducted. The measure observed is the time. 
in minutes, that it takes to fall asleep. These data are 
obtained: 

Smokers: 

Nonsmokers: 

69.3 
53.2 
60.2 
28.6 
29.8 
30.6 
36.0 

56.0 
48.1 
43.8 
25.1 
28.4 
31.8 
37.9 

22.1 
52.7 
23.2 
26.4 
38.5 
41.6 
13.9 

47.6 
34.4 
13.8 
34.9 
30.2 
21.1 

(a) Find the sample mean for each group. 
(b) Find the sample standard deviation for each group. 
(c) Make a dot plot of the data sets A and B on the 

same line. 

(d) Comment on what kind of impact smoking appears 
to have on the time required to fall asleep. 

1.18 The following scores represent the final exami
nation grade for an elementary statistics course: 

23 60 79 32 57 74 52 70 82 
95 41 65 92 85 
64 75 78 25 80 
71 83 54 64 72 
60 78 89 76 84 
79 34 67 17 82 
85 61 

(a) Construct a stem-and-leaf plot for the examhiation 
grades in which the stems are 1, 2, 3 , . . . . 9. 

(b) Set up a relative frequency distribution. 
(c) Construct a relative frequency histogram, draw an 

estimate of the graph of the distribution and dis
cuss the skewness of the distribution. 

(d) Compute the sample mean, sample median, and 
sample standard deviation. 

1.19 The following data represent the length of life in 
years, measured to the nearest tenth, of 39 similar fuel 
pumps: 

36 
55 
98 
88 
48 
69 

80 
76 
81 
62 
84 
74 

77 
52 
67 
74 
90 
i;:; 

81 
10 
41 
43 
15 
80 
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2.0 
0.2 
1.5 
4.5 
1.0 

3.0 
6.0 
4.0 
0.3 
6.0 

0.3 
5.5 
5.9 
1.5 
5.6 

3.3 
6.5 
1.8 
0.5 
6.0 

1.3 
0.2 
4.7 
2.5 
1.2 

0.4 
2.3 
0.7 
5.0 
0.2 

(a) Construct a stem-and-leaf plot for the life in years 
of the fuel pump using the digit to the left of the 
decimal point as the stem for each observation. 

(b) Set up a relative frequency distribution. 
(c) Compute the sample mean, sample range, and sam

ple standard deviation. 

1.20 The following data represent the length of life, 
in seconds, of 50 fruit flies subject to a new spray in a 
controlled laboratory experiment: 

17 20 10 9 23 13 12 19 18 24 
12 14 6 9 13 6 7 10 13 7 
16 18 8 13 3 32 9 7 10 II 
13 7 18 7 10 4 27 19 16 8 
7 10 5 14 15 10 9 6 7 15 

(a) Construct a double-stem-and-leaf plot for the life 
span of the fruit flies using the stems 0*, 0-, 1*, 1-, 
2*, 2-, and 3* such that stems coded by the symbols 
* and • are associated, respectively, with leaves 0 
through 4 and 5 through 9. 

(b) Set up a relative frequency distribution. 
(c) Construct a relative frequency histogram. 
(d) Find the median. 

1.21 The nicotine contents, in milligrams, for 40 
cigarettes of a certain brand were recorded as follows: 

1.09 1.92 2.31 1.79 2.28 
1.74 1.47 1.97 0.85 1.24 
1.58 2.03 1.70 2.17 2.55 
2.11 1.86 1.90 1.68 1.51 
1.64 0.72 1.69 1.85 1.82 
1.79 2.46 1.88 2.08 1.67 
1.37 1.93 1.40 1.64 2.09 
1.75 1.63 2.37 1.75 1.69 

(a) Find the sample mean and sample median. 
(b) Find the sample standard deviation. 

1.22 The following data are the measures of the di
ameters of 36 rivet heads in 1/100 of an inch. 

6.72 6.77 6.82 6.70 6.78 6.70 6.62 6.75 
6.66 6.66 6.64 6.76 6.73 6.80 6.72 6.76 
6.76 6.68 6.66 6.62 6.72 6.76 6.70 6.78 
6.76 6.67 6.70 6.72 6.74 6.81 6.79 6.78 
6.66 6.76 6.76 6.72 

(a) Compute the sample mean and sample standard 
deviation. 

(b) Construct a relative frequency histogram of the 
data. 
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(c) Comment on whether there is any clear indication 
or not that the sample came from a population that 
depicts a bell-shaped distribution. 

1.23 The hydrocarbon emissions at idling speed in 
parts per million (ppm) for automobiles of 1980 and 
1990 are given for 20 randomly selected cars. 

1980 models: 
141 359 247 940 882 494 306 210 105 880 
200 223 188 940 241 190 300 435 241 380 

1990 models: 
140 160 20 20 223 60 20 95 360 70 
220 400 217 58 235 380 200 175 85 65 

(a) Construct a dot plot as in Figure 1.1. 
(b) Compute the sample means for the two years and 

superimpose the two means on the plots. 
(c) Comment on what the dot plot indicates regarding 

whether or not the population emissions changed 
from 1980 to 1990. Use the concept of variability 
in you comments. 

1.24 The following are historical data on staff salaries 
(dollars per pupil on 30 schools sampled in the eastern 
part of the United States in the early 1970s). 

3.79 2.99 2.77 2.91 3.10 1.84 2.52 3.22 
2.45 2.14 2.67 2.52 2.71 2.75 3.57 3.85 
3.36 2.05 2.89 2.83 3.13 2.44 2.10 3.71 
3.14 3.54 2.37 2.68 3.51 3.37 

(a) Compute the sample mean and sample standard 
deviation. 

(b) Construct a relative frequency histogram of the 
data. 

(c) Construct a stem-and-leaf display of the data. 

1.25 The following data set is related to that in Exer
cise 1.24. It gives the percent of the families that are in 
the upper income level at the same individual schools 
in the same order as in Exercise 1.24. 

72.2 31.9 26.5 29.1 27.3 8.6 22.3 26.5 
20.4 12.8 25.1 19.2 24.1 58.2 68.1 89.2 
55.1 9.4 14.5 13.9 20.7 17.9 8.5 55.4 
38.1 54.2 21.5 26.2 59.1 43.3 

(a) Calculate the sample mean. 
(b) Calculate the sample median. 
(c) Construct a relative frequency histogram of the 

data. 
(d) Compute the 10% trimmed mean. Compare with 

the results in (a) and (b) and comment. 

1.26 Suppose it is of interest to use the data sets in 
Exercises 1.24 and 1.25 to derive a model that would 
predict staff salaries as a function of percent of families 
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in a high income level for current school systems. Com
ment on any disadvantage in carrying out this type of 
analysis. 

1.27 A study is done to determine the influence of 
the wear, y, of a bearing as a function of the load, a;, 
on the bearing. A designed experiment is used for this 
study. Three levels of load were used, 700 lb, 1000 lb, 
and 1300 lb. Four specimens were used at each level 
and the sample means were, respectively, 210, 325, and 
375. 

(a) Plot average of wear against load. 

(b) From the plot in (a), does it appear as if a relation
ship exists between wear and load? 

(c) Suppose we look at the individual wear values for 
each of the four specimens at each load level. 

y^ 
3/7 
y* 
Vi 

700 
145 
105 
260 
330 

1000 
250 
195 
375 
480 

1300 
150 
180 
420 
750 

j/i = 210 y2 = 325 ya = 375 
Plot the wear results for all specimens against the 
three load values. 

(d) From your plot in (c), does it appear as if a clear 
relationship exists? If your answer is different from 
that in (b), explain why. 

1.28 Many manufacturing companies in the United 
States and abroad use molded parts as components of 
a process. Shrinkage is often a major problem. Thus 
a molded die for a part is built larger than nominal 
to allow for part shrinkage. In an injection molding 
study it is known that the shrinkage is influenced by 
many factors, among which are the injection velocity 
in ft/sec and mold temperature in °C. The following 
two data sets show the results of a designed experi
ment in which injection velocity held at two levels (say 
"low" and "high") and mold temperature was held con
stant at a "low" level. The shrinkage is measured in 
cm X 104. 

Shrinkage values at low injection velocity: 
72.68 72.62 72.58 72.48 73.07 
72.55 72.42 72.84 72.58 72.92 

Shrinkage values at high injection velocity: 

71.62 71.68 71.74 71.48 71.55 
71.52 71.71 71.56 71.70 71.50 

(a) Construct a dot plot of both data sets on the same 
graph. Indicate on the plot both shrinkage means, 
that for low injection velocity and high injection 
velocity. 

(b) Based on the graphical results in (a), using the lo
cation of the two means and your sense of variabil
ity, what is your conclusion regarding the effect of 
injection velocity on shrinkage at "low" mold tem
perature? 

1.29 Consider the situation of Exercise 1.28. But now 
use the following data set in which shrinkage is mea
sured once again at low injection velocity and high in
jection velocity. However, this time the mold temper
ature is raised to a "high" level and held constant. 

Shrinkage values at low injection velocity: 

76.20 76.09 75.98 76.15 76.17 
75.94 76.12 76.18 76.25 75.82 

Shrinkage values at high injection velocity: 

93.25 93.19 92.87 93.29 93.37 
92.98 93.47 93.75 93.89 91.62 

(a) As in Exercise 1.28, construct a dot plot with both 
data sets on the same graph and identify both 
means (i.e., mean shrinkage for low injection ve
locity and for high injection velocity). 

(b) As in Exercise 1.28, comment on the influence of 
injection velocity on shrinkage for high mold tem
perature. Take into account the position of the two 
means and the variability around each mean. 

(c) Compare your conclusion in (b) with that in (b) 
of Exercise 1.28 in which mold temperature was 
held at a low level. Would you say that there is 
an interaction between injection velocity and mold 
temperature? Explain. 

1.30 Use the results of Exercises 1.28 and 1.29 to cre
ate a plot that illustrates the interaction evident from 
the data. Use the plot in Figure 1.3 in Example 1.3 
as a guide. Could the type of information found in 
Exercises 1.28, 1.29, and 1.30 have been found in an 
observational study in which there was no control on 
injection velocity and mold temperature by the ana
lyst? Explain why or why not. 



Chapter 2 

Probability 

2.1 Sample Space 

In the study of statistics we arc concerned basically with the presentation and 
interpretation of chance outcomes that occur in a planned study or scientific 
investigation. For example, we may record the number of accidents that occur 
monthly at the intersection of Driftwood Lane and Royal Oak Drive, hoping to 
justify the installation of a traffic, light; we might classify items coining off an 
assembly line as "defective" or "nondefective"; or we may be interested in the 
volume of gas released in a chemical reaction when the concentration of an acid 
is varied. Hence, the statistician is often dealing with either experimental data, 
representing counts or measurements, or perhaps with categorical d a t a that can 
be classified according to some criterion. 

We shall refer to any recording of information, whether it be numerical or 
categorical, as an observation. Thus the numbers 2, 0, 1, and 2, representing 
the number of accidents that occurred for each month from January through April 
during the past year at the intersection of Driftwood Lane and Royal Oak Drive, 
constitute a set of observations. Similarly, the categorical data N, D, N, N, and 
D, representing the items found to be defective or nondefective when five items are 
inspected, are recorded as observations. 

Statisticians use the word exper iment to describe any process that generates 
a set of data. A simple example of a statistical experiment is the tossing of a 
coin. In this experiment there are only two possible outcomes, heads or tails. 
Another experiment might be the launching of a missile and observing its velocity 
at specified times. The opinions of voters concerning a new sales tax can also 
be considered as observations of an experiment. We are particularly interested 
in the observations obtained by repeating the experiment several times. In most 
cases the outcomes will depend on chance and, therefore, cannot, be predicted with 
certainty. If a chemist runs an analysis several times under the same conditions, 
he or she will obtain different measurements, indicating an element of chance in 
the experimental procedure. Even when a coin is tossed repeatedly, we cannot be 
certain that a given toss will result in a head. However, we know the entire set of 
possibilities for each toss. 

Given the discussion in Section 1.9, we should deal with the breadth of the term 
experiment Three types of statistical studies were reviewed and several examples 
were given of each. In each of the three cases, designed experiments, observational 
studies, and retrospective studies, the end result was a set of data that of course is 
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subject to uncertainty. Though only one of these has the word experiment, in its 
description, the: process of generating the data or the process of observing the data 
are part of an experiment. The corrosion study discussed in Section 1.3 certainly 
involves an experiment with measures of corrosion representing the: data. The ex
ample given in Section 1.9 in which blood cholesterol and sodium were observed on 
a group of individuals represented an observational study (as opposed to a designed 
experiment) and yet the process generated data and the outcome is subject to un
certainty. Tims it is an experiment. A third example in Section 1.9 represented a 
retrospective study in which historical data on monthly electric power consump
tion and average monthly ambient temperature were observed. Even though the 
data may have been in the files for decades, the process is still referred to as an 
experiment. 

Definition 2.1: The set of all possible outcomes of a statistical experiment is called the sample 
space and is represented by the symbol S. 

Each outcome in a sample space is called an element or a member of the 
sample space, or simply a sample point . If the sample space has a finite number 
of elements, we may list the members separated by commas and enclosed in braces. 
Thus the: sample space 6', of possible outcomes when a coin is tossed, may be written 

S={H,T), 

where H and T correspond to "heads" and "tails," respectively. 

Example 2.1: Consider the experiment of tossing a die. If wc are interested in the number that 
shows on the top face, the sample space would be 

Si = {1,2,3,4,5,6}. 

If we arc interested only in whether the number is even or odd, the sample space 
is simply 

S2 = {even, odd}. 

Example 2.1 illustrates the fact that more than one sample space can be used to 
describe the outcomes of an experiment. In this case Si provides more information 
than S2. If we know which element in S\ occurs, wc can tell which outcome in S2 
occurs; however, a knowledge of what happens in S2 is of little help in determining 
which element in Si occurs. In general, it is desirable to use a sample space that 
gives the most information concerning the outcomes of the experiment. In some 
experiments it is helpful to list the elements of the sample: space systematically by 
means of a t r ee diagram. 

Example 2.2:1 An experiment consists of flipping a coin and then flipping it a second time if a 
head occurs. If a tail occurs on the first, flip, then a die is tossed once. To list 
the elements of the sample space providing the most information, we construct the 
tree diagram of Figure 2.1. The various paths along the branches of the tree give 
the distinct sample points. Starting with the top left branch and moving to the 
right along the first path, we get the sample point HH, indicating the possibility 
that heads occurs on two successive flips of the coin. Likewise, the sample point 
TS indicates the possibility that the coin will show a tail followed by a 3 on the 
toss of the die. By proceeding along all paths, we see that the sample space is 

S= {IIH. HT. T\, T2, T3, TA, T5, T6}. J 
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First 
Outcome 

Second 
Outcome 

Sample 
Point 

HH 

T 

1 

2 

3 

4 

5 

G 

HT 

71 

72 

T3 

74 

75 

76 

Figure 2.1: Tree diagram for Example 2.2. 

Many of the concepts in this chapter arc best illustrated with examples involving 
illustrations such as the use of dice and cards. These are particularly important 
applications to use early in the: learning process. It will allow the use of these new 
concepts to flow more easily into scientific and engineering examples such as the 
following. 

Example 2.3:1 Suppose that three items are selected at random from a manufacturing process. 
Each item is inspected and classified defective, D, or nondefective, N. To list the 
elements of the sample space providing the most information, we construct the tree 
diagram of Figure 2.2. Now, the various paths along the branches of the tree give 
the distinct sample points. Starting with the first path, we get the sample point 
DDD. indicating the possibility that all three items inspected are defective. As we 
proceed along the other paths, we see that the sample space is 

S = {DDD, DDN, DND, DNN, NDD, NDN, NND, NNN}. J 
Sample spaces with a large or infinite number of sample points are best de

scribed by a s t a t emen t or rule. For example, if the possible outcomes of an 
experiment are the set of cities in the world with a. population over 1 million, our 
sample space is written 

S = {x | x is a city with a. population over 1 million}, 

which reads "S is the set of all x such that x is a city with a population over 1 
million." The vertical bar is read "such that." Similarly, if S is the set of all points 
(x,y) on the boundary or the interior of a circle of radius 2 with center at the 
origin, we write the rule 

S={(x,y) [ x2 + y2 < 4}. 
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First 
Item 

Second 
Item 

Third Sample 
Item Point 

D DDD 

DDN 
DND 

DNN 

NDD 

NDN 
NND 

NNN 

Figure 2.2: Tree diagram for Example 2.3. 

Whether we describe: the sample space by the rule method or by listing the ele
ments will depend on the specific problem at hand. The rule method has practical 
advantages, particularly for many experiments where a listing becomes a tedious 
chore. 

Consider the situation of Example 2.3 in which items from a manufacturing 
process are either D, defective or Ar, nondefective. There are many important 
statistical procedures called sampling plans that determine whether or not a "lot" 
of items is considered satisfactory. One such plan involves sampling until /,: defec
tives are observed. Suppose the experiment is to sample items randomly until one 
defective item is observed. The sample space for this case is 

S = {D, ND, NND, NNND,...}. 

2.2 Events 

For any given experiment we may be interested in the occurrence of certain events 
rather than in the outcome of a specific element in the sample space. For instance, 
we may be interested in the event A that the outcome when a die is tossed is 
divisible by 3. This will occur if the outcome is an element of the subset A = {3,6} 
of the sample space Si in Example: 2.1. As a further illustration, we may be 
interested in the event B that the number of defectives is greater than 1 in Example: 
2.3. This will occur if the outcome is an element of the subset 

B = {DDN, DND,NDD,DDD} 

of the sample space S. 
To each event we assign a collection of sample points, which constitute a subset 

of the sample space. That subset represents all of the elements for which the event 
is true. 
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Definition 2.2: An event is a subset of a sample space. 

Example 2.4:1 Given the sample space S = {t | t > 0}, where t is the life in years of a certain 
electronic component, then the event A that the component fails before the end of 
the fifth year is the subset A = {t | 0 < t < 5}. J 

It is conceivable that an event may be a subset that includes the entire sample 
space S, or a subset of S called the null set and denoted by the symbol ©, which 
contains no elements at all. For instance, if we let A be the event of detecting a 
microscopic organism by the naked eye in a biological experiment, then .4 = d>. 
Also, if 

B = {x | x is an even factor of 7}, 

then B must be the null set, since the only possible factors of 7 are the odd numbers 
1 and 7. 

Consider an experiment where the smoking habits of the employees of a man
ufacturing firm arc recorded. A possible sample space might classify an individual 
as a nonsmoker, a light smoker, a moderate smoker, or a heavy smoker. Let the 
subset of smokers be some event. Then all the: nonsmokers correspond to a different 
event, also a subset of S, which is called the complement of the set of smokers. 

Definition 2.3: The complement of an event A with respect to S is the subset of all elements 
of S that are not in A. We denote the complement, of A by the symbol A'. 

Example 2.5:1 Let R be the event that a red card is selected from an ordinary deck of 52 playing 
cards, and let S be the entire: deck. Then R' is the event that the card selected 
from the deck is not a red but a black card. J 

Example 2.6:1 Consider the sample space 

Definition 2.4: 

S = {book, catalyst, cigarette:, precipitate, engineer, rivet}. 

Let A = {catalyst, rivet, book, cigarette}. Then the complement of A is A' = 

{precipitate, engineer}. J 
We now consider certain operations with events that will result in the formation 

of new events. These new events will be subsets of the same sample: space as the 
given events. Suppose that A and B arc two events associated with an experiment. 
In other words, A and B are subsets of the same sample space S. For example, in 
the tossing of a die wc: might let A be the event that an even number occurs and 
B the event that a number greater than 3 shows. Then the subsets A — {2,4,6} 
and B = {4, 5,6} are subsets of the same sample space 

S = {1,2,3,4,5,6}. 

Note that both. A and B will occur on a given toss if the outcome is an element of 
the subset {4,6}, which is just, the intersect ion of A and B. 

The intersect ion of two events A and B, denoted by the symbol A D B, is the 
event containing all elements that are common to A and B. 
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Example 2.7:1 Let C be the event that a person selected at random in an Internet cafe is a college 
student, and let M be the event that the person is a male. Then C D M is the 

event of all male college students in the Internet cafe. J 

Example 2.8:1 Let M = {a.e./i.o,u} and N = {r, s,t}: then it follows that M f\ N = tj>. That 
is, M and N have no elements in common and, therefore, cannot both occur 

simultaneously. J 
For certain statistical experiments it is by no means unusual to define two 

events, A and B, that cannot both occur simultaneously. The events A and B are 
then said to be mutually exclusive. Stated more formally, we have the following 
definition: 

Definition 2.5: Two events A and B are mutually exclusive, or disjoint, if A n B 
is, if A and B have no elements in common. 

<t>, that 

Example 2.9: A cable television company offers programs of eight different channels, three of 
which are affiliated with ABC, two with NBC, and one with CBS. The other 
two are an educational channel and the ESPN sports channel. Suppose that a 
person subscribing to this service turns on a television set without first selecting 
the channel. Let A be the event that the program belongs to the NBC network 
and B the event that it belongs to the CBS network. Since a television program 
cannot belong to more than one network, the events A and B have no programs in 
common. Therefore, the intersection A(~\B contains no programs, and consequently 

the events A and B arc mutually exclusive. J 
Often one is interested in the occurrence of at least one of two events associated 

with an experiment. Thus, in the die-tossing experiment, if 

A = {2,4,6} and B = {4,5,6}, 

we might be interested in either A or B occurring, or both A and B occurring. 
Such an event, called the union of A and B, will occur if the outcome is an element 
of the subset {2,4,5,6}. 

Definition 2.6: The union of the two events A and B, denoted by the symbol AU B, is the event 
containing all the elements that belong to A or B or both. 

Example 2.10:1 Let A = {a,b,c} and B — {b,c,d,e}; then AU B — {a,b,c,d,e}. 

Example 2.11:1 Let P be the event that an employee selected at random from an oil drilling 
company smokes cigarettes. Let Q be the event that the employee selected drinks 
alcoholic beverages. Then the event P U Q is the set of all employees who either 
drink or smoke, or do both. J 

Example 2.12:1 If M = {x | 3 < x < 9} and <V = {y \ 5 < y < 12}, then 

M U N = [z | 3 < z < 12}. J 
The relationship between events and the corresponding sample space can be 

illustrated graphically by means of Venn diagrams. In a Venn diagram we let 
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Figure 2.3: Events represented by various regions. 

the sample space be a rectangle and represent events by circles drawn inside the 
rectangle. Thus, in Figure 2.3, we see that 

A(l B = regions 1 and 2, 
B(lC — regions 1 and 3, 
A U C = regions 1, 2, 3, 4, 5, and 7, 

B' n A = regions 4 and 7, 
AtlBnC = region 1, 

(A U B) DC = regions 2, 6, and 7, 

and so forth. In Figure 2.4 we see that events A, B, and C are all subsets of the 
sample space S. It is also clear that event B is a subset of event .4; event Bf)C has 
no elements and hence B and C are mutually exclusive; event A n C has at least 
one element; and event A U B — A. Figure 2.4 might, therefore, depict a situation 
where we select a card at random from an ordinary deck of 52 playing cards and 
observe whether the following events occur: 

.4: the card is red, 
B: I he card is the jack, queen, or king of diamonds, 

C: the card is an ace-

Clearly, the event Af\C consists of only of the 2 red aces. 
Several results that follow from the foregoing definitions, which may easily be 

verified by means of Venn diagrams, are as follows: 
1. AC\Q = 6. 

2. . l U e j = A. 

3. .4 H A' = (p. 

4. .4 U A' = S. 

5. S' = (p. 

6. <!/ = S. 

7. (AJ = A. 
8. (Ar\B)' = A'UB'. 
9. {A\JB)' = A' C\B'. 
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Figure 2.4: Events of the sample space S. 

Exercises 

2.1 List the elements of each of the following sample 
spaces: 
(a) the set of integers between 1 and 50 divisible by 8: 

(b) the set S = {x | x2 + 4x - 5 = 0}; 
(c) the set of outcomes when a coin is tossed until a 

tail or three heads appear: 
(d) the set S = {x | a; is a continent}; 
(e) the set. S = {x \ 2x - 4 > 0 and X < 1}. 

2.2 Use the rule method to describe the sample space 
S consisting of all points in the first quadrant inside a 
circle of radius 3 with center at the origin. 

2.3 Which of the following events are equal? 

(a) A = {1,3}; 
(b) B = {x | x is a number on a die}: 

(c) C ={x\x2 -4x + 3 = 0}; 
(d) D = {x | x is the number of heads when six coins 

are tossed}. 

2.4 An experiment involves tossing a pair of dice, 1 
green and 1 red. and recording the numbers that come 
up. If ,-r equals the outcome on the green die and y the 
outcome on the red die, describe the sample space S 
(a) by listing the elements {x,y)\ 
(b) by using the rule method. 

2 .5 An experiment, consists of tossing a die and then 
flipping a coin once if the number on the: die is even. If 
the number on the die is odcl, the coin is flipped twice. 
Using the notation 4 / / , for example, to denote the out
come that the die comes up 4 and then the coin comes 

up heads, and 3HT to denote the outcome that the die 
comes up 3 followed by a head and then a tail on the 
coin, construct a tree diagram to show the 18 elements 
of the sample space S. 

2.6 Two jurors are selected from 4 alternates to serve 
at a murder trial. Using ttie notation .4IA;J, for exam
ple, to denote the simple event that alternates 1 and 3 
are selected, list the 0 elements of the sample space S. 

2.7 Four students are selected at random from a 
chemistry class and classified as male or female. List 
the elements of the sample space Si using the letter M 
for "male" and F for "female." Define a second sample 
space S-2 where the elements represent the number of 
females selected. 

2.8 

(a) 

(b) 

(d) 
(«) 
(0 
(g) 

For the sample space of Exercise 2.4: 

list the elements corresponding to the event A that 
the sum is greater than 8; 
list the elements corresponding to the event B that 
a 2 occurs on either die; 
list the elements corresponding to the event C that 
a number greater than 4 comes up on the green die 
list the elements corresponding to the event AnC 
list the elements corresponding to the event AC\B 

list the elements corresponding to the event BC\C 
construct a Venn diagram to illustrate the intersec
tions and unions of the events A. B. and C. 

2.9 For the sample space of Exercise 2.5, 
(a) list the elements corresponding to the event A that 

a number less than :i occurs on the die; 
(b) list the elements corresponding to the event B that 
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2 tails occur; 
(c) list the elements corresponding to the event A'; 

(d) list the elements corresponding to the event A'nB; 

(e) list the elements corresponding to the event A U B. 

2.10 An engineering firm is hired to determine if cer
tain waterways in Virginia are safe for fishing. Samples 
are taken from three rivers. 

(a) List the elements of a sample space S, using the 
letters F for "safe to fish" and N for "not safe to 
fish." 

(b) List the elements of S corresponding to event E 
that at least two of the rivers are safe for fishing. 

(c) Define aii event that has as its elements the points 

{FFF, NFF, FFN, NFN}. 

2.11 The resumes of 2 male applicants for a college 
teaching position in chemistry are placed in the same 
file as the resumes of 2 female applicants. Two po
sitions become available and the first, at the rank of 
assistant professor, is filled by selecting 1 of the 4 ap
plicants at random. The second position, at the rank of 
instructor, is then filled by selecting at random one of 
the remaining 3 applicants. Using the notation M2F1, 
for example, to denote the simple event that the first 
position is filled by the second male applicant and the 
second position is then filled by the first female appli
cant, 

(a) list the elements of a sample space S; 

(b) list the elements of S corresponding to event A that 
the position of assistant professor is filled by a male 
applicant; 

(c) list the elements of S corresponding to event B that 
exactly 1 of the 2 positions was filled by a male ap
plicant; 

(d) list the elements of S corresponding to event C that 
neither position was filled by a male applicant; 

(e) list the elements of S corresponding to the event 
AH 5 ; 

(f) list the elements of S corresponding to the event 
A DC: 

(g) construct a Venn diagram to illustrate the intersec
tions and unions of the events A, B, and C. 

2.12 Exercise and diet are being studied as possi
ble substitutes for medication to lower blood pressure. 
Three groups of subjects will be used to study the ef
fect of exercise. Group one is sedentary while group 
two walks and group three swims for 1 hour a day. 
Half of each of the three exercise groups will be on a 
salt-free diet. An additional group of subjects will not 
exercise nor restrict their salt, but will take the stan

dard medication. Use Z for sedentary, W for walker, 
S for swimmer, Y for salt, JV for no salt, M for medi
cation, and F for medication free. 
(a) Show all of the elements of the sample space S. 

(b) Given that A is the set of nonmedicated subjects 
and B is the set of walkers, list the elements of 
A UB. 

(c) List the elements of A n B. 

2.13 Construct a Venn diagram to illustrate the pos
sible intersections and unions for the following events 
relative to the sample space consisting of all automo
biles made in the United States. 

F: Four door, S: Sun roof, P: Power steering. 

2.14 If S = {0,1,2,3,4,5,6,7,8,9} and A = 
{0,2,4,6,8}, B = {1,3,5,7,9}, C = {2,3,4,5}, and 
D = {1,6, 7}, list the elements of the sets correspond
ing to the following events: 
(a) A U C; 

(b) A n B; 
(c) C; 
(d) (C nD)uB; 
(e)(SnC)'; 
(f) A n C n D'. 

2.15 Consider the sample space S={copper, sodium, 
nitrogen, potassium, uranium, oxygen, zinc}, and the 
events 

A = {copper, sodium, zinc}, 

B = {sodium, nitrogen, potassium}, 

C = {oxygen}. 

List the elements of the sets corresponding to the fol
lowing events: 
(a) A'; 

(b) AUC; 

(c) (A 0 B') U C; 

(d) B' n C"; 
(e) A n B n C; 
(f) (A'uB')n(A'nC). 

2.16 If S = {x I 0 < x < 12}, M = {x I 1 < x < 9}, 
and N = {x | 0 < a: < 5}, find 
(a) M U N; 
(b) M n N; 

(c) M' n N'. 

2.17 Let A. B, and C be events relative to the sam
ple space S. Using Venn diagrams, shade the areas 
representing the following events: 
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(a) (ACBY; 
( b ) ( A u B ) ' ; 
(c) (.4 n C) U B. 

2.18 Which of the following pairs of events are mutu
ally exclusive? 
(a) A golfer scoring the lowest 18-hole round in a 72-

hole tournament and losing the tournament. 
(b) A poker player getting a flush (all cards in the same 

suit) and 3 of a kind on the same 5-card hand. 
(c) A mother giving birth to a baby girl and a set of 

twin daughters on the same day. 
(d) A chess player losing the last game and winning the 

match. 

2.19 Suppose that a family is leaving on a summer 
vacation in their camper and that M is the event that 
they will experience mechanical problems, T is the 
event that they will receive a ticket; for committing a 
traffic violation, and V is the event: that they will ar
rive at a campsite with no vacancies. Referring to the 
Venn diagram of Figure 2.5, state in words the events 

represented by the following regions: 
(a) region 5: 

(b) region 3; 
(c) regions 1 and 2 together: 
(d) regions 4 and 7 together; 
(e) regions 3, (i. 7. and 8 together. 

2.20 Referring to Exercise 2.19 and the Venn diagram 
of Figure 2.5, list the numbers of the regions that rep
resent, the following events: 

(a) The family will experience no mechanical problems 
and commit no traffic violation but will arrive at a 
campsite with no vacancies. 

(b) The family will experience both mechanical prob
lems and trouble in locating a campsite with a va
cancy but will not receive a ticket for a traffic vio
lation. 

(c) The family will either have mechanical trouble or 
arrive at a campsite with no vacancies but will not 
receive a ticket for committing a traffic violation. 

(d) The family will not arrive at a campsite with no 
vacancies. 

Figure 2.5: Venn diagram for Exercises 2.19 and 2.20. 

2.3 Counting Sample Points 

One of the problems tha t the statistician must consider and a t tempt to evaluate 
is the element of chance associated with the occurrence of certain events when 
an experiment is performed. These problems belong in the field of probability, a 
subject to be introduced in Section 2.4. In many cases we shall be able to solve a 
probability problem by counting the number of points in the sample space without 
actually listing each element. The fundamental principle of counting, often referred 
to as the mul t ip l i ca t ion rule, is s ta ted as follows: 
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Example 2.13:1 How many sample points are: there: in the sample: space when a pair of dice is 
thrown once? 

Solution: The first die can land in any one of nj = (i ways. For each of these 6 ways the 
second die can also laud in n% = 6 ways. Therefore, the pair of dice can land in 

iiirio — (6)(6) = 36 possible ways. 

EXTERIOR STYLE FLOOR PLAN 

Figure 2.6: Tree diagram for Example 2.14. 

Example 2.14:1 A developer of a. new subdivision offers prospective home buyers a choice of Tudor, 
rustic:, colonial, and traditional exterior styling in ranch, two-story, and split-level 
iloor plans. In how many different ways can a buyer order one of these homes? 

Solution: Since »i = 4 and n% = 3, a buyer must choose from 

" i"2 = (4)(3) = 12 possible homes. J 
The answers to the two preceding examples can be verified by constructing 

free diagrams and counting the various paths along the branches. For instance, 
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in Example 2.14 there will be m = 4 branches corresponding to the different 
exterior styles, and then there will be «2 = 3 branches extending from each of 
these 4 branches to represent the different floor plans. This tree diagram yields the 
ni«2 = 12 choices of homes given by the paths along the branches as illustrated in 
Figure 2.6. 

The multiplication rule of Theorem 2.1 may be extended to cover any num
ber of operations. Suppose, for instance, that a customer wishes to install an 
AT&T™ telephone and can choose from m = 10 decorator colors, which we 
shall assume are available in any of n? = 3 optional cord lengths with n-j — 2 
types of dialing, namely, rotary or touch-tone. These three classifications result 
in niri2^3 = (10)(3)(2) = 60 different ways for a customer to order one of these 
phones. The generalized mult ipl ication rule covering k operations is stated in 
the following theorem. 

Theorem 2.2: If an operation can be performed in n\ ways, and if for each of these a second 
operation can be performed in n2 ways, and for each of the first two a third 
operation can be performed in n$ ways, and so forth, then the sequence of k 
operations can be performed in n\H2- • -nk ways. 

Example 2.15:1 Sam is going to assemble a computer by himself. He: has the choice of ordering chips 
from two brands, a hard drive from four, memory from three, and an accessory 
bundle from five local stores. How many different, ways can Sam order the parts? 

Solution: Since n\ = 2, n? = 4, n,\ = 3, and m = 5, there are 

n.i x "2 x «3 x 11.4 = 2 x 4 x 3 x 5 = 120 

different ways to order the parts. J! 

Example 2.16:1 How many even four-digit numbers can be formed from the digits 0, 1, 2, 5, 6, and 
9 if each digit can be used only once? 

Solution: Since the number must be even, we have only 7/.1 = 3 choices for the units position. 
However, for a four-digit number the thousands position cannot be 0. Hence we 
consider the units position by two parts, 0 or not 0. If the units position is 0 
(i.e., n\ = 1), we have no — 5 choices for the thousands position, B3 = 4 for the 
hundreds position, and n.4 = 3 for the tens position. Therefore, in this case we 
have a total of 

uln2n;j7?.-i = (l)(5)(4)(3) = 60 

even four-digit numbers. On the other hand, if the units position is not 0 (i.e., 
711 = 2), we have no = 4 choices for the thousands position, rc.3 = 4 for the hundreds 
position, and n\ — 3 for the tens position. In this situation there are a total of 

ninanan4 = (2)(4)(4)(3) = 96 

even four-digit numbers. 
Since the above two cases are mutually exclusive of each other, the total number 

of even four-digit numbers can be calculated by 60 + 96 = 156. J 
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Frequently, we are interested in a sample space that contains elements as all 
possible orders or arrangements of a group of objects. For example, we may want 
to know how many different arrangements are possible for sitting 6 people around 
a table, or we may ask how many different orders are possible for drawing 2 lottery 
tickets from a total of 20. The different arrangements are called pe rmuta t ions . 

Definition 2.7: A permutation is an arrangement of all or part of a set of objects. 

Consider the three letters a, b, and c. The possible permutations are ohc, acb, 
bac, bca, cab, and cba. Thus we see that there are 6 distinct arrangements. Using 
Theorem 2.2 we could arrive at the answer 6 without actually listing the different 
orders. There are ni = 3 choices for the first position, then n2 = 2 for the second, 
leaving only n^ = 1 choice for the last position, giving a total of 

7)in2;»3 = (3)(2)(1) = 6 permutations. 

In general, n distinct objects can be arranged in 

n(n - l)(n - 2) • • • (3)(2)(1) ways. 

We represent this product by the symbol n\, which is read "n factorial." Three 
objects can be arranged in 3! = (3)(2)(1) = 6 ways. By definition, l! = 1. Also we 
define 0! = 1. 

Theorem 2.3: The number of permutations of n objects is n!. 

The number of permutations of the four letters a, b, c, and d will be 4! = 24. 
Now consider the number of permutations that are possible by taking two letters 
at a time from four. These would be ab, ac, ad, ba, be, bd, ca, cb, cd, da, db, and 
dc. Using Theorem 2.1 again, we have two positions to fill with m = 4 choices for 
the first and then m = 3 choices for the second for a total of 

nm-2 = (4) (3) = 12 

permutations. In general, n distinct objects taken r at a time can be arranged in 

n{n- l ) ( n - 2 ) - - - ( n - r + 1) 

ways. We represent this product by the symbol 

1,1 r (n - I - ) ! ' 

As a result we have the theorem that follows. 

Theorem 2.4: The number of permutation of n distinct objects taken r at a time is 

n! 
n* r — (n — r)! ' 
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Example 2.17:1 In one year, three awards (research, teaching, and service) will be given for a class 
of 25 graduate students in a statistics department. If each student can receive at 
most one award, how many possible selections are there? 

Solution: Since the awards are distinguishable, it is a permutation problem. The total 
number of sample points is 

2 ^ - 7 ^ y _ = ^ - ^ m ) ( 2 3 ) = 13,800. j 

Example 2.18:1 A president and a treasurer are to be chosen from a student club consisting of 50 
people. How many different choices of officers are possible if 

(a) there are no restrictions; 

(b) A will serve only if he is president; 

(c) B and C will serve together or not at all: 

(d) D and E will not serve together? 

Solution: (a) The total number of choices of the officers, if there are no restrictions, is 

5C.A = ~ = (50)(49) = 2450. 

(b) Since A will serve only if he is the president, we have two situations here: 
(i) A is selected as the president, wdiich yields 49 possible outcomes; or (ii) 
Officers are selected from the remaining 49 people which has the number of 
choices 49P2 = (49)(48) = 2352. Therefore, the total number of choices is 49 
4- 2352 = 2401. 

(c) The number of selections when B and C serve together is 2. The number of 
selections when both B and C are not chosen is 43^2 = 2256. Therefore, the 
total number of choices in this situation is 2 + 2256 = 2258. 

(d) The number of selections when D serves as an officer but not E is (2) (48) = 
96, where 2 is the number of positions D can take and 48 is the number of 
selections of the other officer from the remaining people in the club except 
E. The number of selections when E serves as an officer but not D is also 
(2)(48) = 96. The number of selections when both D and E are not chosen 
is 4 8 P 2 = 2256. Therefore, the total number of choices is (2)(96) + 2256 = 
2448. This problem also has another short solution: Since D and E can only 
serve together in 2 ways, the answer is 2450 - 2 = 2448. I 

Permutations that occur by arranging objects in a circle are called circular 
pe rmuta t ions . Two circular permutations arc not considered different unless 
corresponding objects in the two arrangements are preceded or followed by a dif
ferent object as we proceed in a clockwise direction. For example, if 4 people are 
playing bridge, we do not have a new permutation if they all move one position in 
a clockwise direction. By considering one person in a fixed position and arranging 
the other three in 3! ways, we find that there are 6 distinct arrangements for the 
bridge game. 
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Theorem 2.5: The number of permutations of n objects arranged in a circle is (n — 1)!. 

So far we have considered permutations of distinct objects. That is, all the 
objects were completely different or distinguishable. Obviously, if the letters 6 and 
c are both equal to x, then the 6 permutations of the letters a, b, and c become 
axx, axx, xax, xax, xxa, and xxa, of which only 3 are distinct. Therefore, with 3 
letters, 2 being the same, we have 3!/2! = 3 distinct permutations. With 4 different 
letters a, b, c, and d, we have 24 distinct permutations. If we let a = b = x and 
c — d = y, we can list only the following distinct permutations: xxyy, xyxy, yxxy, 
yyxx, xyyx, and yxyx. Thus we have 4!/(2! 2!) = 6 distinct permutations. 

Theorem 2.6: The number of distinct permutations of n things of which n\ are of one kind, n2 
of a second kind,. . . , n^ of a fcth kind is 

n< 
n\\U2 Ira,! • • n-k}-

Example 2.19:1 In a college football training session, the defensive coordinator needs to have 
10 players standing in a row. Among these 10 players, there are 1 freshman, 2 
sophomores, 4 juniors, and 3 seniors, respectively. How many different ways can 
they be arranged in a row if only their class level will be distinguished? 

Solution: Directly using Theorem 2.6, the total number of arrangements is 

10! 

1! 2! 4! 3! 
= 12.600. 

Often we are concerned with the number of ways of partitioning a set of n 
objects into r subsets called cells. A partition has been achieved if the intersection 
of every possible pair of the r subsets is the empty set <p and if the union of all 
subsets gives the original set. The order of the elements within a cell is of no 
importance. Consider the set {a, e, i, o, u}. The possible partitions into two cells 
in which the first cell contains 4 elements and the second cell 1 element are 

{(a, e,i. o), (TJ.)}, {(a, i ,o,u), (e)}, {(e, i, o, a), (a)}, {(a, e, o, u), (i)}, {(a,e, i,u), (o)}. 

We see that there are 5 such ways to partition a set of 4 elements into two subsets 
or cells containing 4 elements in the first cell and 1 clement in the second. 

The number of partitions for this illustration is denoted by the symbol 

w 5! 

4 , 1 / 4! 1! 

where the top number represents the total number of elements and the bottom 
numbers represent the number of elements going into each cell, We state this more 
generally in the following theorem. 
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Theorem 2.7: The number of ways of partitioning a set of n objects into r cells with n\ elements 
in the first cell, n2 elements in the second, and so forth, is 

( n \ — n ' 
\n i , r? .2 , . . . ,n r / n i (no

where m + n2 + • • • + nr n. 

Example 2.20:1 In how many ways can 7 graduate students be assigned to one triple and two 
double hotel rooms during a conference? 

Solution: The total number of possible partitions would be 

3,2.2 
7! 

= 210. 
3! 2! 2! " " " J 

In many problems we are interested in the number of ways of selecting r objects 
from n without regard to order. These selections are called combinations. A 
combination is actually a partition with two cells, the one cell containing the r 
objects selected and the other cell containing the (n — r) objects that are left. The 
number of such combinations, denoted by 

1, is usually shortened to ( 
r.n — rj \r 

since the number of elements in the second cell must be n — r. 

Theorem 2.8: The number of combinations of n distinct objects taken r at a time is 

fn\ _ n! 
\rj rl(n — r)\ 

Example 2.21:1 A young boy asks his mother to get five Game-Boy™ cartridges from his collection 
of 10 arcade and 5 sports games. How many ways are there that his mother will 
get 3 arcade and 2 sports games, respectively? 

Solution: The number of ways of selecting 3 cartridges from 10 is 

W 3! 
10! 

= 120. 
( 1 0 - 3 ) ! 

The number of ways of selecting 2 cartridges from 5 is 

' 5 \ 5! 
2! 3! 

= 10. 

Using the multiplication rule of Theorem 2.1 with m = 120 and ri2 — 10, there are 
(120)(10) = 1200 ways. J 
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E x a m p l e 2.22:1 How many different letter arrangements can be made from the letters in the word 
of STATISTICS? 

Solution: Using the same argument as of discussion for Theorem 2.8, in this example we can 
actually apply Theorem 2.7 to obtain 

Exercises 

10 

3 . 3 , 2 , 1 , 1 

10! 

3! 3! 2! 1! 1! 
= 50.400. 

Here we have tota l 10 letters, while 2 letters (S , T) appear 3 times each, letter / 

appears twice, and letters A and C appear once each. J ! 

2.21 Registrants at a large convention are offered 6 
sightseeing tours on each of 3 days. In how many-
ways can a person arrange to go on a sightseeing tour 
planned by this convention? 

2.22 In a medical study patients are classified in 8 
ways according to whether they have blood type AB+, 
AB~, A+, A~, B+, B~, 0+, or 0~, and also accord
ing to whether their blood pressure is low, normal, or 
high. Find the number of ways in which a patient can 
be classified. 

2 .23 If an experiment consists of throwing a die and 
then drawing a letter at random from the English 
alphabet, how many points are there in the sample 
space? 

2.24 Students at a private liberal arts college are clas
sified as being freshmen, sophomores, juniors, or se
niors, and also according to whether they are male or 
female. Find the total number of possible classifica
tions for the students of that college. 

2.25 A certain shoe conies in 5 different styles with 
each style available in 4 distinct colors. If the store 
wishes to display pairs of these shoes showing all of 
its various styles and colors, how many different pairs 
would the store have on display? 

2.26 A California study concluded that by following 
7 simple health rules a man's life can be extended by 
11 years on the average and a woman's life by 7 years. 
These 7 rules are as follows: no smoking, regular exer
cise, use alcohol moderately, get, 7 to 8 hours of sleep, 
maintain proper weight, eat. breakfast, and do not eat 
between meals. In how many ways can a person adopt 
five of these rules to follow 
(a) If the person presently violates all 7 rules? 

(b) If the person never drinks and 
fast? 

always eats break-

2.27 A developer of a new subdivision offers a 
prospective home buyer a choice of 4 designs, 3 differ
ent heating systems, a garage or carport, and a patio or 
screened porch. How many different, plans are available 
to this buyer? 

2.28 A drug for the relief of asthma can be purchased 
from 5 different, manufacturers in liquid, tablet, or 
capsule form, all of which come in regular and extra 
strength. How many different ways can a doctor pre
scribe the drug for a patient suffering from asthma? 

2.29 In a fuel economy study, each of 3 race cars is 
tested using 5 different brands of gasoline at 7 test sites 
located in different regions of the country. If 2 drivers 
are used in the study, and test runs are made once un
der each distinct set of conditions, how many tost, runs 
are needed? 

2.30 In how many different ways can a true-false test 
consisting of 9 questions be answered? 

2.31 If a multiple-choice test consists of 5 questions 
each with 4 possible answers of which only 1 is correct, 
(a) In how many different ways can a student check off 

one answer to each question? 
(b) In how many ways can a student, check off one 

answer to each question and get all the answers 
wrong ? 

(a) How many distinct permutations can be 
lade from the letters of the word columns? 

(b) How many of these permutations start with the let-

2.32 
made 

ter mi 
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2.33 A witness to a hit-and-run accident told the po
lice that the license number contained the letters RLH 
followed by 3 digits, the first of which is a 5. If the wit
ness cannot recall the last 2 digits, but is certain that 
all 3 digits are different, find the maximum number of 
automobile registrations that the police may have to 
check. 

2.34 (a) In how many ways can 6 people be lined up 
to get on a bus? 

(b) If 3 specific persons, among 6, insist on following 
each other, how many ways are possible? 

(c) If 2 specific persons, among 6, refuse to follow each 
other, how many ways are possible? 

2.35 A contractor wishes to build 9 houses, each dif
ferent in design. In how many ways can he place these 
houses on a street if 6 lots are on one side of the street 
and 3 lots are on the opposite side? 

2.36 (a) How many three-digit numbers can be 
formed from the digits 0, 1, 2, 3, 4, 5, and 6, if 
each digit can be used only once? 

(b) How many of these are odd numbers? 
(c) How many are greater than 330? 

2.37 In how many ways can 4 boys and 5 girls sit in 
a row if the boys and girls must alternate? 

2.38 Four married couples have bought 8 scats in the 
same row for a concert. In how many different ways 
can they be seated 
(a) With no restrictions? 
(b) If each couple is to sit together? 
(c) If all the men sit together to the right of all the 

women? 

2.39 In a regional spelling bee, the 8 finalists consist 
of 3 boys and 5 girls. Find the number of sample points 
in the sample space S for the number of possible orders 
at the conclusion of the contest for 
(a) all 8 finalists; 

(b) the first 3 positions. 

2.40 In how many ways can 5 starting positions on a 
basketball team be filled with 8 men who can play any 
of the positions? 

2.41 Find the number of ways that 6 teachers can 
be assigned to 4 sections of an introductory psychol
ogy course if no teacher is assigned to more than one 
section. 

2.42 Three lottery tickets for first, second, and third 
prizes are drawn from a group of 40 tickets. Find the 
number of sample points in S for awarding the 3 prizes 
if each contestant holds only 1 ticket. 

2.43 In how many ways can 5 different trees be 
planted in a circle? 

2.44 In how many ways can a caravan of 8 covered 
wagons from Arizona be arranged in a circle? 

2.45 How many distinct permutations can be made 
from the letters of the word infinity? 

2.46 In how many ways can 3 oaks, 4 pines, and 2 
maples be arranged along a property line if one does 
not distinguish among trees of the same kind? 

2.47 A college plays 12 football games during a sea
son. In how many ways can the team end the season 
with 7 wins, 3 losses, and 2 ties? 

2.48 Nine people are going on a skiing trip in 3 cars 
that hold 2, 4, and 5 passengers, respectively. In how 
many ways is it possible to transport the 9 people to 
the ski lodge, using all cars? 

2.49 How many ways are there to select 3 candidates 
from 8 equally qualified recent graduates for openings 
in an accounting firm? 

2.50 How many ways are there that no two students 
will have the same birth date in a size of 60 class? 

2.4 Probability of an Event 

Perhaps it was humankind's unquenchable thirst for gambling tha t led to the early 
development of probability theory. In an effort to increase their winnings, gam
blers called upon mathematicians to provide opt imum strategies for various games 
of chance. Some of the mathematicians providing these strategies were Pascal, 
Leibniz, Fermat, and James Bernoulli. As a result of this development of prob
ability theory, statistical inference, with all its predictions and generalizations, 
has branched out far beyond games of chance to encompass many other fields as-
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Definition 2.8: 

sociated with chance occurrences, such as politics, business, weather forecasting, 
and scientific research. For these predictions and generalizations to be reasonably 
accurate, an understanding of basic probability theory is essential. 

What clo we mean when we make the statements "John will probably win the 
tennis match," or "I have a fifty-fifty chance: of getting an even number when a die 
is tossed." or "I am not likely to win at bingo tonight." or "Most of our graduating 
class will likely be married within 3 years?" In each case we are expressing an 
outcome of which we are not certain, but owing to past information or from an un
derstanding of the: structure of the experiment, we have some: degree of confidence 
in the validity of the statement. 

Throughout the remainder of this chapter we consider only those experiments 
for which the sample space contains a finite number of elements. The likelihood of 
the occurrence of an event resulting from such a statistical experiment is evaluated 
by means of a set of real numbers called weights or probabil i t ies ranging from 
0 to 1. l b every point in the sample space we assign a. probability such that the 
sum of all probabilities is I. If we have reason to believe that a certain sample 
point is quite likely to occur when the experiment is conducted, the probability 
assigned should be close to 1. On the other hand, a probability closer to zero is 
assigned to a .sample point that is not likely to occur. In many experiments, such 
as tossing a coin or a die, all the sample points have the same chance of occurring 
and arc assigned equal probabilities. For points outside the sample: space, that is, 
for simple events that cannot possibly occur, we assign a probability of zero. 

To find the probability of an event .4, we sum all the probabilities assigned to 
the sample points in A. This sum is called the probability of A and is denoted by 
P(A). 

The probability of an event 
A. Therefore, 

Fm t her more 

P(, 

0 < P(A) < 1 

if A,, A>. A3,.. 
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Example 2.23:1 A coin is tossed twice. What is the probability that at least one head occurs? 
Solution: The sample space; for this experiment is 

S= {IIII, NT. Til, TT}. 

If the coin is balanced, each of these outcomes would be equally likely to occur. 
Therefore, we assign a probability of x1 to each sample point. Then iu = 1, or 
u> — 1/4. If A represents the event of at least one1 head occurring, then 

A = {HILHT,TII} and P(A) = - -f 
I I 
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Example 2.24:1 A die is loaded in such a way that an even number is twice as likely to occur as an 
odd number. If E is the event that a number less than 4 occurs on a single toss of 
the die, find P(E). 

Solution: The sample space is S = {1.2.3.4.5.6}. We assign a probability of w to each 
odd number and a. probability of 2w to each even number. Since the sum of the 
probabilities must be 1, we have 9w = 1 or w = 1/9. Hence probabilities of 1/9 
and 2/9 are assigned to each odd and even number, respectively. Therefore, 

E = {1,2,3} and P(E) = 
2 1 

+ 9 + 9 

Example 2.25:1 In Example 2.24, let A be the event that an even number turns up and let B be 
the event, that, a number divisible by 3 occurs. Find P(A U B) and P{A l~l B). 

Solution: For the events A = {2,4,6} and B = {3,6} we have 

AuB- {2,3,4,6] and A R B = {6}. 

By assigning a probability of 1/9 to each odd number and 2/9 to each even number, 
we have 

P f / l U 6 ) ^ + ^ + ^ and P(AP.B) = 
9 J 

If the sample space Cor an experiment contains N elements, all of which are 
equally likely to occur, we assign a probability equal to l/N to each of the N 
points. The probability of any event A containing n of these Ar sample points is 
then the ratio of the number of elements in A to the number of elements in S. 

Theorem 2.9: If an experiment can result in any one of N different equally likely outcomes, and 
if exactly n of these outcomes correspond to event A, then the probability of event 
A is 

P(A) n 
= N 

Example 2.26:1 A statistics e:lass for engineers consists of 25 industrial, 10 mechanical, 10 elec
trical, and 8 civil engineering students. If a person is randomly selected by the 
instructor to answer a question, find the probability that the student chosen is (a) 
an industrial engineering major, (b) a civil engineering or an electrical engineering 
major. 

Solution: Denote by /. M, E, and C the students majoring in industrial, mechanical, electri
cal, and civil engineering, respectively. The total number of students in the class 
is 53. all of which arc equally likely to be selected. 

(a) Since 25 of the 53 students are majoring in industrial engineering, the prob
ability of the event /, selecting an industrial engineering at random, is 

* < " = § • 
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(b) Since 18 of the 53 students are civil or electrical engineering majors, it follows 
that 

1 Q 

P(CUE) = - . j 

Example 2.27:1 In a poker hand consisting of 5 cards, find the probability of holding 2 aces and 3 
jacks. 

Solution: The number of ways of being dealt 2 aces from 4 is 

' 4 \ 4! 
= 6, ©-/!} 2! 2! 

and the number of ways of being dealt 3 jacks from 4 is 

' 4 \ 4! 
3! 1! 

= 4. 

By the multiplication rule of Theorem 2.1, there are n — (6)(4) = 24 hands with 2 
aces and 3 jacks. The total number of 5-card poker hands, all of which are equally 
likely, is 

/ 5 2 \ 52! 
A r = ( 5 j = 5 T ^ ! = 2 ' 5 9 8 ' 9 6 0 -

Therefore, the probability of event C of getting 2 aces and 3 jacks in a 5-card poker 
hand is 

F ^ = 2 ^ 9 | l l 6 0 = 0 - 9 X l 0 " r ' J 
If the outcomes of an experiment are not equally likely to occur, the probabili

ties must be assigned on the basis of prior knowledge or experimental evidence. For 
example, if a coin is not balanced, we could estimate the probabilities of heads and 
tails by tossing the coin a large number of times and recording the outcomes. Ac
cording to the relative frequency definition of probability, the true probabilities 
would be the fractions of heads and tails that occur in the long run. 

To find a numerical value that represents adequately the probability of winning 
at tennis, we must depend on our past performance at the game as well as that of 
our opponent and, to some extent, in our belief in being able to win. Similarly, to 
find the probability that a horse will win a race, we must arrive at a probability 
based on the previous records of all the horses entered in the race as well as the 
records of the jockeys riding the horses. Intuition would undoubtedly also play a 
part in determining the size of the bet that we might be willing to wager. The 
use of intuition, personal beliefs, and other indirect information in arriving at 
probabilities is referred to as the subject ive definition of probability. 

In most of the applications of probability in this book the relative frequency 
interpretation of probability is the operative one. Its foundation is the statistical 
experiment rather than subjectivity. It is best viewed as the l imiting relat ive 
frequency. As a result, many applications of probability in science and engineer
ing must be based on experiments that can be repeated. Less objective notions of 
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probability are encountered when we assign probabilities based on prior informa
tion and opinions. As an example, "there is a good chance that the Lions will lose 
the Super Bowl." When opinions and prior information differ from individual to 
individual, subjective probability becomes the relevant resource. 

2.5 Additive Rules 

Often it is easier to calculate the probability of some event from known probabilities 
of other events. This may well be true if the event in question can be represented 
as the union of two other events or as the complement of some event. Several 
important laws that frequently simplify the computation of probabilities follow. 
The: first, called the additive rule, applies to unions of events. 

Theorem 2.10: If A and B are two events, then 

P(A UB) = P(A) + P(B) - P(A n B). 

Proof: Consider the Venn diagram in Figure 2.7. The P(A U B) is the sum of the prob
abilities of the sample points in A U B. Now P(A) + P{B) is the stun of all 
the1 probabilities in A plus the sum of all the probabilities in B. Therefore, we 
have added the probabilities in (A fl B) twice:. Since these probabilities add up 
to P(A D B), we must subtract this probability once to obtain the sum of the 
probabilities in A U 13. J 

Figure 2.7: Additive rule of probability. 

Corollary 2.1: If A and B are mi it ually exclusive. 

P(A U B) 

then 

= P(A) + P(B). 

Corollary 2.1 is an immediate result of Theorem 2.10, since if A and B are 
mutually exclusive. A n B = 0 and then P(A fl B) = P((b) = 0. In general,wc 
write: 
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Corollary 2.2: If Ai, A2, • • • •. An are mutually exclusive, then 

P(Aj U A-2 U • • • U An) = P(Ai) + P(y\2) + ••• + P{A„) 

A collection of events [A\, A%,... A„ } of a sample space S is called a par t i t ion 
of S if A], A-2, • • •, A„ arc mutually exclusive and A1 U A2 U • • • U An = S. Thus we1 

have 

Corollary 2.3: If Ai, A2, • • • • An is a partition of sample space S, then 

P{A^ U A2 U • • • U An) = P{A,) + P(A2) + • • • + P(4») = P(S) = 1. 

As one might expect, Theorem 2.10 extends in an analogous fashion. 

Theorem 2.11: For three events A, 

P(A UBuC) 

B, and C. 

= P{A)+P(B)-rP(C) 
- P(A n B) -- P ( A n C ) - - P(B n C) + P{A n B n C). 

Example 2.28:1 John is going to graduate from an industrial engineering department in a university 
by the end of the semester. Alter being interviewed at two companies he likes, he 
assesses that his probability of get ting an offer from company A is 0.8, and the 
probability that he gets an offer from company B is O.C. If. on the other hand, 
he believes that the probability that he will get offers from both companies is 0.5, 
what is the probability that he will get at least one offer from these two companies? 

Solution: Using the additive rule, we have 

P(A U B) = P(A) + P(B) - P(A fl B) = 0.8 + 0.6 - 0.5 = 0.9. J 

Example 2.29:1 What is the probability of getting a total of 7 or 11 when a pair of fair dice are 
tossed? 

Solution: Let A be the event that 7 occurs and B the event that 11 comes up. Now, a total 
of 7 occurs for 6 of the 30 sample points and a total of 11 occurs for only 2 of the 
sample points. Since all sample* points are equally likely, we have P{A) = 1/6 and 
P(B) = 1/18. The events A and B are mutually exclusive, since a total of 7 and 
11 cannot both occur on the same toss. Therefore, 

P(A U B) = P(A) + P(B) = ]- + ± = j . 

This result could also have been obtained by counting the total number of points 
for the event A U B, namely 8, and writing 

™=M4 , 
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Theorem 2.10 and its three corollaries should help the reader gain more insight 
into probability and its interpretation. Corollaries 1 and 2 suggest the very intuitive 
result dealing with the probability of occurrence of at least one of a number of 
events, no two of which can occur simultaneously. The probability that at least 
one occurs is the sum of the probabilities of occurrence of the individual events. 
The third corollary simply states that the highest value of a probability (unity) is 
assigned to the entire sample space S. 

Example 2.30:1 If the probabilities are, respectively, 0.09, 0.15, 0.21, and 0.23 that a person pur
chasing a new automobile will choose the color green, white, red, or blue, what is 
the probability that a given buyer will purchase a new automobile that comes in 
one of those colors? 

Solution: Let G, W, R, and B be the events that a buyer selects, respectively, a green, 
white, red, or blue automobile. Since these four events are mutually exclusive, the 
probability is 

P{G U W U R U B) = P(G) + P(W) + P{R) + P{B) 

= 0.09 + 0.15 + 0.21 + 0.23 = 0.68. J 
Often it is more difficult to calculate the probability that an event occurs than 

it is to calculate the probability that the event does not occur. Should this be the 
case for some event A, wc simply find P(A') first and then, using Theorem 2.10, 
find P(A) by subtraction. 

Theorem 2.12: If A and A' are complementary events, then 

P(A) + P(A') = 1. 

Proof: Since A U A' = S and the sets A and A' are disjoint, then 

1 = P(S) = P(A U A') = P(A) + P(A'). 

Example 2.31:1 If the probabilities that an automobile mechanic will service 3, 4, 5, 6, 7, or 8 or 
more cars on any given workday are, respectively, 0.12, 0.19, 0.28, 0.24, 0.10, and 
0.07, what is the probability that he will service at least 5 cars on his next day at 
work? 

Solution: Let E be the event that at least 5 cars are serviced. Now, P(E) = 1 — P(E'), 
where E' is the event that fewer than 5 cars are serviced. Since 

P ( £ ' ) = 0.12+ 0.19 = 0.31, 

it follows from Theorem 2.12 that 

P(E) = 1 - 0.31 = 0.69. J 

Example 2.32:1 Suppose the manufacturer specifications of the length of a certain type of computer 
cable are 2000 ± 10 millimeters. In this industry, it is known that small cable is 
just as likely to be defective (not meeting specifications) as large cable. That is, the 
probability of randomly producing a cable with length exceeding 2010 millimeters 
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is equal to the probability of producing a cable with length smaller than 1990 
millimeters. The probability that the production procedure meets specifications is 
known to be 0.99. 

(a) What is the probability that a cable selected randomly is too large? 

(b) What is the probability that a randomly selected cable is larger than 1990 
millimeters? 

Solution: Let M be the event that a cable meets specifications. Let S and L be the events 
that the cable is too small and too large, respectively. Then 

(a) P(M) = 0.99 and P{S) = P(L) = ± ^ p = 0.005. 

(b) Denoting by X the length of a randomly selected cable, we have 

P(1990 < X < 2010) = P{M) = 0.99. 

Since P(X > 2010) = P(L) = 0.005 then 

P(X > 1990) = P(M) + P(L) = 0.995. 

This also can be solved by using Theorem 2.12: 

P(X > 1990) + P(X < 1990) = 1. 

Thus, P{X > 1990) = 1 - P{S) = 1 - 0.005 = 0.995. J 

Exercises 

2.51 Find the errors in each of the following state
ments: 
(a) The probabilities that an automobile salesperson 

will sell 0, 1, 2, or 3 cars on any given day in Febru
ary are, respectively, 0.19, 0.38, 0.29, and 0.15. 

(b) The probability that it will rain tomorrow is 0.40 
and the probability that it will not rain tomorrow 
is 0.52. 

(c) The probabilities that a printer will make 0, 1, 2, 
3, or 4 or more mistakes in setting a document are, 
respectively, 0.19,0.34, -0.25,0.43, and 0.29. 

(d) On a single draw from a deck of playing cards the 
probability of selecting a heart is 1/4, the probabil
ity of selecting a black card is 1/2, and the proba
bility of selecting both a heart and a black card is 
1/8.' 

2.52 Assuming that all elements of S in Exercise 2.8 
on page 38 are equally likely to occur, find 
(a) the probability of event A: 
(b) the probability of event C; 
(c) the probability of event A DC. 

2.53 A box contains 500 envelopes of which 75 con
tain $100 in cash, 150 contain $25, and 275 contain 
$10. An envelope may be purchased for $25. What is 
the sample space for the different amounts of money? 
Assign probabilities to the sample points and then find 
the probability that the first envelope purchased con
tains less than $100. 

2.54 Suppose that in a senior college class of 500 stu
dents it is found that 210 smoke, 258 drink alcoholic 
beverages, 216 eat between meals, 122 smoke and drink 
alcoholic beverages, 83 eat between meals and drink 
alcoholic beverages, 97 smoke and eat between meals, 
and 52 engage in all three of these bad health practices. 
If a member of this senior class is selected at random, 
find the probability that the student 
(a) smokes but does not drink alcoholic beverages; 
(b) eats between meals and drinks alcoholic beverages 

but does not smoke; 
(c) neither smokes nor eats between meals. 

2.55 The probability that an American industry will 
locate in Shanghai, China is 0.7, the probability that it 



56 Chapter 2 Probability 

will locate in Beijing, China is 0.4, and the probability 
that it will locate in cither Shanghai or Beijing or both 
is 0.8. What is the probability that the industry will 
locate 
(a) in both cities? 
(b) in neither city? 

2.56 From past experiences a stockbroker believes 
that under present economic conditions a customer will 
invest in tax-free bonds with a probability of 0.6, will 
invest in mutual funds with a probability of 0.3, and 
will invest in both tax-free bonds and mutual funds 
with a probability of 0.15. At this time, find the prob
ability that a customer will invest 

(a) in either tax-free bonds or mutual funds: 
(b) in neither tax-free bonds nor mutual funds. 

2.57 If a letter is chosen at random from the English 
alphabet, find the probability that the letter 
(a) is a vowel exclusive of y; 

(b) is listed somewhere ahead of the letter j \ 

(c) is listed somewhere after the letter g. 

2.58 An automobile manufacturer is concerned about 
a possible recall of its best-selling four-door sedan. If 
there were a recall, there is 0.25 probability that a de
fect is in the brake system, 0.18 in the transmission, 
0.17 in the fuel system, and 0.40 in some other area. 

(a) What is the probability that the defect is the brakes 
or the fueling system if the probability of defects in 
both systems simultaneously is 0.15? 

(b) What is the probability that there are no defects 
in either the brakes or the fueling system? 

2.59 If each coded item in a catalog begins with 3 
distinct letters followed by 4 distinct nonzero digits, 
find the probability of randomly selecting one of these 
coded items with the first letter a vowel and the last 
digit even. 

2.60 A pair of fair dice is tossed. Find the probability 
of getting 
(a) a total of 8; 
(b) at most a total of 5. 

2.61 Two cards are drawn in succession from a deck 
without replacement. What is the probability that 
both cards are greater than 2 and less than 8? 

2.62 If 3 books are picked at random from a shelf con
taining 5 novels, 3 books of poems, and a dictionary, 
what is the probability that 
(a) the dictionary is selected? 

(b) 2 novels and 1 book of poems are selected? 

2.63 In a poker hand consisting of 5 cards, find the 
probability of holding 
(a) 3 aces; 

(b) 4 hearts and 1 club. 

2.64 In a game of Yahtzee, where 5 dice are tossed 
simultaneously, find the probability of getting 4 of a 
kind. 

2.65 In a high school graduating class of 100 stu
dents, 54 studied mathematics, 69 studied history, and 
35 studied both mathematics and history. If one of 
these students is selected at random, find the proba
bility that 

(a) the student took mathematics or history; 

(b) the student did not take either of these subjects; 
(c) the student took history but not mathematics. 

2.66 Dom's Pizza Company uses taste testing and 
statistical analysis of the data prior to marketing any 
new product. Consider a study involving three types 
of crusts (thin, thin with garlic and oregano, and thin 
with bits of cheese). Dom's is also studying three 
sauces, (standard, a new sauce with more garlic, and a 
new sauce with fresh basil). 

(a) How many combinations of crust and sauce are in
volved? 

(b) What is the probability that a judge will get a plain 
thin crust with a standard sauce for his first taste 
test? 

2.67 According to Consumer Digest (July/August 
1996), the. probable location of personal computers 
(PC) in the home is as follows: 

Adult bedroom: 0.03 
Child bedroom: 0.15 
Other bedroom: 0.14 
Office or den: 0.40 
Other rooms: 0.28 

(a) What is the probability that a PC is in a bedroom? 
(b) What is the probability that it is not in a bedroom? 
(c) Suppose a household is selected at random from 

households with a PC; in what room would you 
expect to find a PC? 

2.68 Interest centers around the life of an electronic 
component. Suppose it is known that the probabil
ity that the component survives for more than 6000 
hours is 0.42. Suppose also that the probability that 
the component survives no longer than 4000 hours is 
0.04. 
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(a) What is the probability that the life of the compo
nent is less than or equal to 6000 hours? 

(b) What is the probability that the life is greater than 
4000 hours? 

2.69 Consider the situation of Exercise 2.68. Let A 
be the event that the component fails a particular test 
and B be the event that the component displays strain 
but does not actually fail. Event A occurs with prob
ability 0.20 and event B occurs with probability 0.35. 
(a) What is the probability that the component does 

not fail the test? 
(b) What, is the probability that a component works 

perfectly well (i.e., neither displays strain nor fails 
the test)? 

(c) What is the probability that the component either 
fails or shows strain in the test? 

2.70 Factory workers are constantly encouraged to 
practice zero tolerance when it comes to accidents in 
factories. Accidents can occur because the working en
vironment or conditions themselves are unsafe. On the 
other hand, accidents can occur due to carelessness or 
so-called human error. In addition, the worker's shift 
7:00 A.M.-3:00 P.M. (day shift), 3:00 P.M.-11:00 P.M. 
(evening shift), and 11:00 P.M.-7:00 A.M. (graveyard 
shift) may be a factor. During the last year, 300 acci
dents have occurred. The percentages of the accidents 
for the condition combinations are as follows: 

Unsafe H u m a n 
Shift Cond i t ions E r r o r 
Day 5% 32% 
Evening 6% 25% 
Graveyard 2% 30% 

If an accident report is selected randomly from the 300 
reports, 
(a) What is the probability that the accident occurred 

on the graveyard shift? 
(b) What is the probability that the accident occurred 

due to human error? 
(c) What is the probability that the accident occurred 

due to unsafe conditions? 
(d) What is the probability that the accident occurred 

on either the evening or graveyard shift? 

2.71 Consider the situation of Example 2.31 on page 
54. 
(a) What is the probability that no more than 4 cars 

will be serviced by the mechanic? 
(b) What is the probability that he will service fewer 

than 8 cars? 
(c) What is the probability that lie will service either 

3 or 4 cars? 

2.72 Interest centers around the nature of an oven 
purchased at a particular department store. It can be 
either a gas or electric oven. Consider the decision 
made by six distinct customers. 

(a) Suppose that the probability is 0.40 that at most, 
two of these individuals purchase an electric oven. 
What is the probability that at least three purchase 
the electric oven? 

(b) Suppose it is known that the probability that all 
six purchase the electric oven is 0.007 while 0.104 is 
the probability that all six purchase the gas oven. 
What is the probability that at least one of each 
type is purchased? 

2.73 It is common in many industrial areas to use 
a filling machine to fill boxes full of product. This 
occurs in the food industry as well as other areas in 
which the product is used in the home, for example, 
detergent. These machines are not perfect, and, indeed 
they may A, fill to specification, B, underfill, and C, 
overfill. Generally, the practice of underfilling is that 
which one hopes to avoid. Let P(B) = 0.001 while 
P(A) = 0.990. 

(a) Give P{C). 
(b) What is the probability that the machine does not 

underfill? 

(c) What is the probability that the machine either 
overfills or underfills? 

2.74 Consider the situation of Exercise 2.73. Sup
pose 50,000 boxes of detergent are produced per week 
and suppose also that those underfilled are "sent back" 
with customers requesting reimbursement of purchase 
price. Suppose also that the ''cost" of production is 
known to be $4.00 per box while the purchase price is 
$4.50 per box. 

(a) What is the weekly profit under the condition of no 
defective boxes? 

(b) What is the loss in profit expected due to under
filling? 

2.75 As the situation of Exercise 2.73 might suggest, 
statistical procedures are often used for control of qual
ity (i.e., industrial quality control). At times, the 
weight of a product is an important variable to con
trol. Specifications are given for the weight, of a certain 
packaged product and a package is rejected if it is ei
ther too light or too heavy. Historical data suggest that 
0.95 is the probability that the product meets weight 
specifications whereas 0.002 is the probability that the 
product is too light. For each single packaged product 
the manufacturer invests $20.00 in production and the 
purchase price by the consumer is $25.00. 

(a) What is the probability that a package chosen ran
domly from the production line it too heavy? 
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(b) For each 10,000 packages sold, what profit is re
ceived by the manufacturer if all packages meet 
weight specification? 

(c) Assuming that all "defective" packages are rejected 
and rendered worthless, how much is the profit re
duced on 10,000 packages due to failure to meet 

weight specification? 

2.76 Prove that 

P(A' n B') = 1 + P{A r i f l ) - P(A) - P{B). 

2.6 Conditional Probability 

The probability of an event B occurring wdien it is known that some event A 
has occurred is called a conditional probability and is denoted by P(P|A). The 
symbol P ( P | A) is usually read "the probability that B occurs given that A occurs" 
or simply "the probability of B, given A." 

Consider the event B of getting a perfect square when a die is tossed. The die 
is constructed so that the even numbers are twice as likely to occur as the odd 
numbers. Based on the sample space S = {1,2,3,4,5,6}, with probabilities of 
1/9 and 2/9 assigned, respectively, to the odd and even numbers, the probability 
of B occurring is 1/3. Now suppose that it is known that the toss of the die 
resulted in a number greater than 3. We are now dealing with a reduced sample 
space A = {4,5,6}, wdiich is a subset of S. To find the probability that B occurs, 
relative to the space A, we must first assign new probabilities to the elements of 
A proportional to their original probabilities such that their sum is 1. Assigning a 
probability of w to the odd number in A and a probability of 2w to the two even 
numbers, we have ow = 1 or w = 1 / 5 . Relative to the space A, we find that B 
contains the single element 4. Denoting this event by the symbol P|A, we write 
P|A = {4}, and hence 

P{B\A) = \. 

This example illustrates that events may have different probabilities when consid
ered relative to different sample spaces. 

We can also write 

P,2?IA) 2 2 / 9 P{Af]B) 
P{BlA} ~ 5 ~ 5/9 ~ P(A) ; 

where P(A n B) and P(A) are found from the original sample space S. In other 
words, a conditional probability relative to a subspace A of S may be calculated 
directly from the probabilities assigned to the elements of the original sample space 
S. 

Definition 2.9: The conditional probability of B, given A, denoted by P(P|A) is defined by 

P{A H B) 
P{B\A) 

P{A) 
provided P{A) > 0. 

As an additional illustration, suppose that our sample space S is the population 
of adults in a small town who have completed the requirements for a college degree. 
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Table 2.1: Categorization of the adults in a small town 

Male 
Female 
Total 

Employed 
460 
140 
600 

Unemployed 
40 
260 
300 

Total 
500 
400 
900 

We shall categorize them according to gender and employment status. The data 
are given in Table 2.1. 

One of these individuals is to be selected at random for a tour throughout the 
country to publicize the advantages of establishing new industries in the town. We 
shall be concerned with the following events: 

M: a man is chosen, 

E: the one chosen is employed. 

Using the reduced sample space E, we find that 

P ( A i | £ , ) - 6 0 0 _ 3 0 ' 

Let n(A) denote the number of elements in any set A. Using this notation, we 
can write 

P(M\F\ - <E^M) n(EnM)/n(S) PjEHM) 
K ' ' n(E) n{E)/n{S) P(E) ' 

where P(E n M) and P(E) are found from the original sample space S. To verify 
this result, note that 

„ , „ 600 2 j „ . „ w . 460 23 
P ^ = 9 0 0 = 3 a n d P ^ n M ) = 900 = 45" 

Hence 

p,M\E) = 23/45 = 23 
1 ' ' 2/3 30' 

as before. 

Example 2.33:1 The probability that a regularly scheduled flight departs on time is P{D) = 0.83; 
the probability that it arrives on time is P(A) = 0.82; and the probability that it 
departs and arrives on time is P{D D A) = 0.78. Find the probability that a plane 
(a) arrives on time given that it departed on time, and (b) departed on time given 
that it has arrived on time. 

Solution: (a) The probability that a plane arrives on time given that it departed on time is 
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(b) The probability that a plane departed on time given that it has arrived on 
time is 

In the die-tossing experiment discussed on page 58 we note that P{B\A) = 2/5 
whereas P{B) = 1/3. That is, P(B\A) ^ P{B), indicating that B depends on 
A. Now consider an experiment in which 2 cards are drawn in succession from an 
ordinary deck, with replacement. The events are defined as 

A: the first card is an ace, 

B: the second card is a spade. 

Since the first card is replaced, our sample space for both the first and second 
draws consists of 52 cards, containing 4 aces and 13 spades. Hence 

13 1 13 1 

P{B\A) = ~ = 4 and P(B) = ~ = ^ 
v ' ' 52 4 v ; 52 4 

4' 

That is, P(i?|A) = P(B). When this is true, the events A and B are said to be 
independent. 

The notion of conditional probability provides the capability of reevaluating the 
idea of probability of an event in light, of additional information, that is, when it is 
known that another event has occurred. The probability P(A|P) is an "updating" 
of P{A) based on the knowledge that event B has occurred. In Example 2.33 it 
is important to know the probability that the flight arrives on time. One is given 
the information that the flight did not depart on time. Armed with this additional 
information, the more pertinent probability is P(A|D'), that is, the probability 
that it arrives on time, given that it did not depart on time. In many situations 
the conclusions drawn from observing the more important conditional probability 
change the picture entirely. In this example the computation of P(A|£>') is 

As a result, the probability of an on-time arrival is diminished severely in the 
presence of the additional information. 

Example 2.34:1 The concept of conditional probability has countless applications in both industrial 
and biomedical applications. Consider an industrial process in the textile industry 
in which strips of a particular type of cloth are being produced. These strips can be 
defective in two ways, length and nature of texture. For the case of the latter, the 
process of identification is very complicated. It is known from historical information 
on the process that 10% of strips fail the length test, 5% fail the texture test, and 
only 0.8% fail both tests. If a strip is selected randomly from the process and a 
quick measurement identifies it as failing the length test, what is the probability 
that it is texture defective? 

Solution: Consider the events 

L : length defective, T : texture defective 
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Thus, given that the strip is length defective:, the probability that this strip is 
texture defective is given by 

n m l r . P{TC\L) 0.008 
P(T\L) = „ , , , ' TTT- = 0.08. 

P(L) 0, 

Thus, the knowledge given by the conditional probability provides considerably 
more information than merely knowing P{T). J 

Independent Events 

Definition 2.10: 

Although conditional probability allows for an alteration of the probability of an 
event in the light of additional material, it also enables us to understand better the 
very important concept of independence or, in the present context, independent 
events. In the airport illustration in Example 2.33, P(A\D) differs from P{A). 
This suggests that the occurrence of D influenced A and this is certainly expected 
in this illustration. However, consider the situation where we have events A and 
B and 

P{A\B) = P(A). 

In other words, the occurrence of B had no impact on the odds of occurrence of A. 
Here the occurrence of A is independent of the occurrence of B. The importance 
of the concept of independence cannot be overemphasized. It plays a vital role in 
material in virtually all chapters in this book and in all areas of applied statistics. 

Two events A and B are- independent if and only if 

P(B\A) = P(B) or P(A\B) - P{A), 

provided the existences of the conditional probabilities. Otherwise. A and B are 
dependent . 

The condition P{B\A) = P{B) implies that P{A\B) = P(A), and conversely. 
For the card-drawing experiments, where we showed that P(B\A) = P(B) = 1/4, 
we also can see that P{A\B) = P{A) = 1/13. 

2.7 Multiplicative Rules 

Multiplying the formula of Definition 2.9 by P(A), wc obtain the following impor
tant multiplicative rule, which enables us to calculate the probability that two 
events will both occur. 

Theorem 2.13: If in an experiment the events A and B can both occur, then 

P(Anfl) = P(A)P(B\A). provided P(A) > 0. 

Thus the probability that both A and B occur is equal to the probability that 
A occurs multiplied by the conditional probability that B occurs, given that A 
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occurs. Since the events AC\B and BCiA are equivalent, it follows from Theorem 
2.13 that we can also write 

P{A n B) = P{B n A) = P(5)P(A|B) . 

In other words, it does not matter which event is referred to as A and which event 
is referred to as B. 

Example 2.35:1 Suppose that we have a fuse box containing 20 fuses, of which 5 are defective. If 
2 fuses are selected at random and removed from the box in succession without 
replacing the first, what is the probability that both fuses are defective? 

Solution: We shall let A be the event that the first fuse is defective and B the event that the 
second fuse is defective; then we interpret A fl B as the event that A occurs, and 
then B occurs after A has occurred. The probability of first removing a defective 
fuse is 1/4; then the probability of removing a second defective fuse from the 
remaining 4 is 4/19. Hence 

™-(;)Gi>H-
Example 2.36:1 One bag contains 4 white balls and 3 black balls, and a second bag contains 3 white 

balls and 5 black balls. One ball is drawn from the first bag and placed unseen in 
the second bag. What is the probability that a ball now drawn from the second 
bag is black? 

Solution: Let Bi, B2, and W\ represent, respectively, the drawing of a black ball from bag 1, 
a black ball from bag 2, and a white ball from bag 1. We are interested in the union 
of the mutually exclusive events B\ n B2 and W\ <~\ Bi- The various possibilities 
and their probabilities are illustrated in Figure 2.8. Now 

P[(Bi n Bo) or (Wi n B2)\ = P{B1 n B2) + P(Wi H B2) 

= P(Bl)P(B2\Bl) + P(Wl)P(B2\W1) 

j) (I)+ (I) (i)= I- J 
If, in Example 2.35, the first fuse is replaced and the fuses thoroughly rear

ranged before the second is removed, then the probability of a defective fuse on the 
second selection is still 1/4; that is, P(i?|A) = P(B) and the events A and B are 
independent. When this is true, we can substitute P(B) for P(P |A) in Theorem 
2.13 to obtain the following special multiplicative rule. 

Theorem 2.14: Two events A and B are independent if and only if 

P{A n B) = P(A)P(B). 

Therefore, to obtain the probability that two independent events will both occur, 
we simply find the product of their individual probabilities. 

Example 2.37:1 A small town has one fire engine and one ambulance available for emergencies. 
The probability that the fire engine is available when needed is 0.98, and the 
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Figure 2.8: Tree diagram for Example 2.36. 

probability that the ambulance is available when called is 0.92. In the event of 
an injury resulting from a burning building, find the probability that both the 
ambulance and the fire engine will be available. 

Solution: Let A and B represent the respective events that the fire engine and the ambulance 
are available. Then, 

P ( A n B ) = P(A)P(B) = (0.98)(0.92) = 0.9016. 

Example 2.38:1 An electrical system consists of four components as illustrated in Figure 2.9. The 
system works if components A and B work and either of the components C or 
D work. The reliability (probability of working) of each component is also shown 
in Figure 2.9. Find the probability that (a) the entire system works, and (b) the 
component C does not work, given that the entire system works. Assume that four 
components work independently. 

0.9 

A 

0.9 

R 

0.9 

r. 

0.9 

Figure 2.9: An electrical system for Example 2.38. 

Solution: In this configuration of the system, A, B, and the subsystem C and D constitute 
a serial circuit system, whereas the subsystem C and D itself is a parallel circuit 
system. 
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(a) Clearly the probability that the entire system works can be calculated as the 
following: 

P(A n Bn(C U D)) = P(A)P(B)P(C U D) 

= P(A)P(J3)[1 - P ( C ' n D ' ) ] 

= F(A)P(B)[1 - P(C')P(D')} 

= ( 0 . 9 ) ( 0 . 9 ) [ l - ( l - 0 . 8 ) ( l - 0 . 8 ) ] 

- 0.7776. 

The equalities above hold because of the independence among the four com
ponents. 

(b) To calculate the conditional probability in this case, notice that 

P(the system works but C docs not work) P = P(the system works) 

P(A DBnC'nD) (0.9)(0.9)( 1 - 0.8)(0.8) 

P(the system works) 0.7770 
= 0.1667. 

Theorem 2.15: If, in an experiment, the events Ai, A2,... ,Ak can occur, then 

P(Ai n A2 n • ••••• n A*.) 

= P(A1)P(A2 |Ai)P(A ; i |Ai n A2) • • • P(Ak\Ai n A2 n • • 

If the events A\, A2, • • • ,Ak are independent, then 

P(AI n A2 n • • • n Ak) = P(A,)P(A2) • • • P(Ak). 

•nAA._i). 

Example 2.39:1 Three cards arc drawn in succession, without replacement, from an ordinary deck 
of playing cards. Find the probability that the event A\C\ A2C\ A3 occurs, where 
Ai is the event that the first card is a red ace, A2 is the event that the second card 
is a 10 or a jack, and A3 is the event that the third card is greater than 3 but less 
than 7. 

Solution: First we define: the events 

A\\ the first card is a red ace, 

A2: the. second card is a 10 or a jack, 

A-y. the third card is greater than 3 but less than 7. 

Now 

P{AX 
52 

2 , P(A2 |Ai) = ~ , P( Aa I Ai n A,) = ^ , 
51 50 

and hence, by Theorem 2.15, 

P(Ai n A, n A3) = P(A,)P(A2 |A1)P(A3|A ] n A2) 

- ) ( - ) ( - ) = — • 
52) V 5 1 / \ 5 0 / 5525 
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E x a m p l e 2.40:1 A coin is biased so tha t a head is twice as likely to occur as a tail. If the coin is 
tossed 3 t imes, what is the probability of get t ing 2 tails and 1 head? 

Solution: The sample space for the experiment consists of the 8 elements, 

S = {HHH, HHT, HTH, THE, HTT, THT, TTH, TTT). 

However, with an unbalanced coin it is no longer possible to assign equal probabil
ities to each sample point. It is easy to see t h a t P(H) = 2 / 3 and P(T) = 1/3 for 
one toss since a head is twice as likely to occur as a tail . Now let A be the event 
of gett ing 2 tails and 1 head in the 3 tosses of the coin. Then, 

A = {TTH,THT, HTT}, 

and since the outcomes on each of the 3 tosses are independent, it follows from 
Theorem 2.15 tha t 

P{TTH) = P(T)P(T)P{H) = ( I ) ( I ) ( | ) = 2. 

Similarly, P{THT) = P{HTT) = 2/27, and hence P(A) = 2 /27 + 2 /27 + 2 /27 = 

2/9. J 

Exercises 

2.77 If R is the event that a convict committed armed 
robbery and D is the event that the convict pushed 
dope, state in words what probabilities are expressed 
by 
(a) P(R\D); 
(b) P(D'\R); 

(c) P(R'\D'). 

2.78 A class in advanced physics is comprised of 10 
juniors, 30 seniors, and 10 graduate students. The final 
grades show that 3 of the juniors, 10 of the seniors, and 
5 of the graduate students received an A for the course. 
If a student is chosen at random from this class and is 
found to have earned an .4, what is the probability that 
he or she is a senior? 

2.79 A random sample of 200 adults are classified be
low by sex and their level of education attained. 

Education Male Female 
Elementary 38 4!) 
Secondary 28 50 
College " 22 17 

If a person is picked at random from this group, find 
the probability that 
(a) the person is a male, given that the person has a 

secondary education; 
(b) the person does not have a college degree, given 

that the person is a female. 

2.80 In an experiment to study the relationship of hy
pertension and smoking habits, the following data are 
collected for 180 individuals: 

Moderate Heavy 
Nonsmokers Smokers Smokers 

H 21 36 30 
NH 48 26 19 

where H and NH in the table stand for Hypertension 
and Nonhypertension, respectively. If one of these indi
viduals is selected at random, find the probability that 
the person is 
(a) experiencing hypertension, given that the person is 

a heavy smoker; 
(b) a nonsmoker, given that the person is experiencing 

no hypertension. 

2.81 In the senior year of a high school graduating 
class of 100 students, 42 studied mathematics, 68 stud
ied psychology, 54 studied history, 22 studied both 
mathematics and history, 25 studied both mathematics 
and psychology, 7 studied history but neither mathe-
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matics nor psychology, 10 studied all three subjects, 
and 8 did not take any of the three. If a student is 
selected at random, find the probability that 
(a) a person enrolled in psychology takes all three sub

jects; 
(b) a person not taking psychology is taking both his

tory and mathematics. 

2.82 A manufacturer of a flu vaccine is concerned 
about the quality of its flu serum. Batches of serum are 
processed by three different departments having rejec
tion rates of 0.10, 0.08, and 0.12, respectively. The in
spections by the three departments are sequential and 
independent. 

(a) What is the probability that a batch of serum sur
vives the first departmental inspection but is re
jected by the second department? 

(b) What is the probability that a batch of serum is 
rejected by the third department? 

2.83 In USA Today (Sept. 5, 1996) the results of a 
survey involving the use of sleepwear while traveling 
were listed as follows: 

Male Female Total 
Underwear 
Nightgown 
Nothing 
Pajamas 
T-shirt 
Other 

0.220 
0.002 
0.160 
0.102 
0.046 
0.084 

0.024 
0.180 
0.018 
0.073 
0.088 
0.003 

0.244 
0.182 
0.178 
0.175 
0.134 
0.087 

(a) What is the probability that a traveler is a female 
who sleeps in the nude? 

(b) What is the probability that a traveler is male? 
(c) Assuming the traveler is a male, what is the prob

ability that he sleeps in pajamas? 
(d) What is the probability that a traveler is male if he 

sleeps in pajamas or a T-shirt? 

2.84 The probability that an automobile being filled 
with gasoline will also need an oil change is 0.25; the 
probability that it needs a new oil filter is 0.40; and the 
probability that both the oil and filter need changing 
is 0.14. 

(a) If the oil had to be changed, what is the probability 
that a new oil filter is needed? 

(b) If a new oil filter is needed, what is the probability 
that the oil has to be changed? 

2.85 The probability that a married man watches a 
certain television show is 0.4 and the probability that 
a married woman watches the show is 0.5. The proba
bility that a man watches the show, given that his wife 
does, is 0.7. Find the probability that 

(a) a married couple watches the show; 
(b) a wife watches the show given that her husband 

does; 
(c) at least 1 person of a married couple will watch the 

show. 

2.86 For married couples living in a certain suburb, 
the probability that the husband will vote on a bond 
referendum is 0.21, the probability that his wife will 
vote in the referendum is 0.28, and the probability that 
both the husband and wife will vote is 0.15. What is 
the probability that 
(a) at least one member of a married couple will vote? 
(b) a wife will vote, given that her husband will vote? 
(c) a husband will vote, given that his wife does not 

vote? 

2.87 The probability that a vehicle entering the Lu-
ray Caverns has Canadian license plates is 0.12; the 
probability that it is a camper is 0.28; and the proba
bility that it is a camper with Canadian license plates 
is 0.09. What is the probability that 

(a) a camper entering the Luray Caverns has Canadian 
license plates? 

(b) a vehicle with Canadian license plates entering the 
Luray Caverns is a camper? 

(c) a vehicle entering the Luray Caverns does not have 
Canadian plates or is not a camper? 

2.88 The probability that the head of a household is 
home when a telemarketing representative calls is 0.4. 
Given that the head of the house is home, the proba
bility that goods will be bought from the company is 
0.3. Find the probability that the head of the house is 
home and goods being bought from the company. 

2.89 The probability that a doctor correctly diag
noses a particular illness is 0.7. Given that the doctor 
makes an incorrect diagnosis, the probability that the 
patient enters a law suit is 0.9. What is the probability 
that the doctor makes an incorrect diagnosis and the 
patient sues? 

2.90 In 1970, 11% of Americans completed four years 
of college; 43% of them were woman. In 1990, 22% of 
Americans completed four years of college; 53% of them 
were women (Time, Jan. 19, 1996). 
(a) Given that a person completed four years of college 

in 1970, what is the probability that the person was 
a women? 

(b) What is the probability that a woman would finish 
four years of college in 1990? 

(c) What is the probability that in 1990 a man would 
not finish college? 
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2.91 A real estate agent has 8 master keys to open 
several new homes. Only 1 master key will open any 
given house. If 40% of these homes are usually left 
unlocked, what is the probability that the real estate 
agent can get into a specific home if the agent selects 
15 master keys at random before leaving the office'' 

2.92 Before the distribution of certain statistical soft
ware every fourth compact disk (CD) is tested for ac
curacy. The testing process consists of running four 
independent programs and checking the results. The 
failure rate for the 4 testing programs are. respectively, 
0.01, 0.03, 0.02, and 0.01. 

(a) What is the probability that a CD was tested and 
failed any test? 

(b) Given that a CD was tested, what is the probability 
that it failed program 2 or 3? 

(c) In a sample of 100, how many CDs would you ex
pect to bo rejected? 

(d) Given a CD was defective, what is the probability 
that it. was tested? 

2.93 A town has 2 fire engines operating indepen
dently. The probability that a specific engine is avail
able when needed is 0.96. 

(a) What is the probability that neither is available 
when needed? 

(Ii) What is the probability that a fire: engine is avail
able when needed? 

2.94 The probability that Tom will be alive in 20 
years is 0.7, and the probability that Nancy will be 
alive in 20 years is 0.9. If we assume independence for 
both, what is the probability that neither will be alive 
hi 20 years? 

2.95 One overnight case contains 2 bottles of aspirin 
and 3 bottles of thyroid tablets. A second tote bag con
tains 3 bottles of aspirin, 2 bottles of thyroid tablets, 

and I bottle of laxative tablets. If 1 bottle of tablets is 
taken at random from each piece of luggage, find the 
probability that 

(a) both bottles contain thyroid tablets: 
(b) neither bottle contains thyroid tablets; 
(c) the 2 bottles contain different tablets. 

2.96 The probability that a person visiting his den
tist will have an X-ray is 0.6; the probability that a 
person who has an X-ray will also have a cavity filled 
is 0.3; and the probability that a person who has had 
an X-ray and a cavity filled will also have a tooth ex
tracted is 0.1. What is the probability that a person 
visiting his dentist, will have an X-ray, a cavity filled, 
and a tooth extracted? 

2.97 Find the probability of randomly selecting 4 
good quarts of milk in succession from a cooler con
taining 20 quarts of which 5 have spoiled, by using 
(a) the first formula of Theorem 2.15 on page 64; 
(b) the formulas of Theorems 2.8 and 2.9 on pages 46' 

and 50, respectively. 

2.98 Suppose the diagram of an electrical system is 
given in Figure 2.10. What is the probability that the 
system works? Assume the components fail indepen
dently. 

2.99 A circuit system is given in Figure 2.11. Assume 
the components fail independently. 

(a) What is the probability that the entire system 
works? 

(b) Given that the system works, what is the probabil
ity that the component A is not working? 

2.100 In the situation of Exercise 2.99, it is known 
that the system does not work. What is the probabil
ity that the component A also floes not work? 

0.95 

A 

0-7 

^H 
R 

0.8 

0.9 

n 

0.7 0.7; 

0.B 0.8 "bin 

Figure 2.10: Diagram for Exercise 2.98. Figure 2.11: Diagram for Exercise 2.99. 
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2.8 Bayes ' Rule 

Let us now return to the illustration of Section 2.C, where an individual is being 
selected at random from the adults of a small town to tour the country and publicize 
the advantages of establishing new industries in the town. Suppose that we are 
now given the additional information that 36 of those employed and 12 of those 
unemployed are members of the Rotary Club. Wc wish to find the probability of 
the event A that the individual selected is a member of the Rotary Club. Referring 
to Figure 2.12, we can write A as the union of the two mutually exclusive events 
EDA and E ' f l A Hence A = {EnA)U{E'r\A), and by Corollary 2.1 of Theorem 
2.10, and then Theorem 2.13. wc: can write1 

P{A) = P[(E n A) u(E'n A)] = P(E n A) 
= P(E)P(A\E) + P(E')r(A\E'}. 

P(E' n A) 

E /-^A~ 

j EDA 

£' n A J 

e 

Figure 2.12: Venn diagram for the events A, E, and E'. 

The: data of Section 2.6, together with the additional data given above for the set 
A, enable us to compute 

„ , „ , 600 2 „ , . . „ . 36 3 
P ^ = 900 = 3 ' PiAE) - 600 = 50' 

and 

1 12 1 
P(E') = -, P(A|J5') = = —. 

k ' 3 ' v ' ' 300 25 
If we display these probabilities by means of the tree diagram of Figure 2.13. where 
the first branch yields the probability P(E)P{A\E) and the second branch yields 
the probability P(E')P{A\E'), if follows that 

P(A) = \M 4_ 

75' 

A generalization of the foregoing illustration to the case where the sample space 
is partitioned into k subsets is covered by the following theorem, sometimes called 
the theorem of total probability or the rule of elimination. 
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E P(AjE) = 3/50 A 
tfj- — P{E)P(A(E) 

E' P(AIE') = 1/25 A' 
• P(E')P{A}E') 

Figure 2.13: Tree diagram for the data on page 59 and using additional information 
on Page 68. 

Theorem 2.16: If the events B\, B2,.. • ,Bk constitute a partition of the sample space S such that 
P(Bi) ^ 0 for 7 = 1,2,. . . , k, then for any event A of S, 

A: k 

P(A) = Y, P(B> n -4) = E P(Bi)P{A\Bt). 
i = i j = i 

Proof: Consider the Venn diagram of Figure 2.14. The event A is seen to be the union of 

the mutually exclusive events 

Pi DA, B2<lA, . . . , Bk fl A: 

that is. 

A = (Pi n A) u(B2nA)u---u(Bkn A). 

Using Corollary 2.2 of Theorem 2.10 and Theorem 2.13, we have 

p(A) = P[(P, n A) u (£2 n A) u • • • u (Bk n A)] 
= P(P, n A) + P{B2 n A) + • • • + P(Bk n A) 

ft 
= ^ P ( / i ; n A ) 

V^r> 
1 = 1 

P(Bi)P{A\Bi). 

Example 2.41:1 In a certain assembly plant, three machines, Bi, B2, and P3, make 30%:, 45%, and 
25%, respectively, of the products. It is known from past, experience that 2%, 3%, 
and 2% of the products made by each machine, respectively, arc defective. Now, 
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01 

s * / . 

K Bz 

J A 

• • ^̂  

BJ 

\ S e 

s4 

1 B5 

Figure 2.14: Partitioning the sample space S. 

suppose that a finished product is randomly selected. What is the probability that 
if is defective? 

Solution: Consider the following events: 

A: the product, is defective, 

P i : the product is made by machine P i , 

B2: the product is made by machine B2, 

B$: the product is made by machine: P3. 

Applying the rule of elimination, we can write 

P(A) = P(Pi )P(A|Pi ) + P (P 2 )P (A |P , ) + P(B3)P(AjP : t). 

Referring to the tree diagram of Figure 2,15, we find that the three branches give 
the probabilities 

P(Bl)P(A\Bl) = (0.3) (0.02) = 0.006. 

P{B2)P(A\B2) = (0.45)(0.03) = 0.0135, 

P{B3)P(A\B3) = (0.25)(0.02) = 0.005, 

and hence 

P(A) = 0.006 + 0.0135 + 0.005 = 0.0245. J 

Instead of asking for P(A), by the rule of elimination, suppose that we now 
consider the problem of finding the conditional probability P(Pj|A) in Example 
2.41. In other words, suppose that a product was randomly selected and it is 
defective. What is the probability that, this product was made by machine P,? 
Questions of this type can lie answered by using the following theorem, called 
Bayes ' rule: 
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B, P(A\B,) = 0.02 A 
«b * • 

P(B2) = 0.45 P(A\B2) = 0.03 A 

P(A|B3) = 0.02 

Figure 2.15: Tree diagram for Example 2.41. 

Theorem 2.17: (Bayes' Rule) If the events B\,B2,...,Bk constitute a partition of the sample 
space S such that P(Pi) ^ 0 for i = 1, 2 , . . . , k, then for any event A in S such 
that P(A) £ 0, 

E W n . e ) E i>(B,)P(4|B() 
1 = 1 2 = 1 

Proof: By the: definition of conditional probability, 

P(Br n A) 
P(P, |A) 

P(A) 

and then using Theorem 2.16 in the denominator, we have 

P ( P , O A ) P(P, .)P(A|B r) 
P(P,.|A) = -

\ZP{Bif)A) £ P(Bi)P(A\Bi) 
i = i i'=i 

which completes the proof. 

Example 2.42:1 With reference to Example 2.41, if a product were chosen randomly and found to 
be defective, what is the probability that it was made by machine £3? 

Solution: Using Bayes' rule to write 

P(B:i|A) = 
P(B-,)P(A\B:i 

P(B} )P(A|P,) + P(B2)P(A\B2) + P(P3)P(A|P,3) ; 

and them substituting the: probabilities calculated in Example 2.41, we have 

0.005 0.005 10 
P(P.l|A) = 

0.006 + 0.0135 + 0.005 0.0245 49 ' 
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In view of the fact that a defective product was selected, this result suggests that 

it probably was not made by machine B3. J 

E x a m p l e 2.43:1 A manufacturing firm employs three analytical plans for the design and devel
opment of a particular product. For cost reasons, all three are used at varying 
times. In fact, plans 1, 2, and 3 are used for 30%,, 20%, and 50% of the products 
respectively. The "defect rate:" is different for the three procedures as follows: 

P(D\Pi)=0M, P{D\P2) = 0.03. P ( D | P 3 ) = 0.02, 

where P(D\Pj) is the probability of a, defective product, given plan j. If a random 
product was observed and found to be defective, which plan was most likely used 
and thus responsible? 

Solution: From the statement, of the problem 

PiPi) = 0.30. P(P2) = 0.20, and P(P:i) = 0.50, 

we must find P(Pj\D) for j = 1,2,3. Bayes' rule from Theorem 2.17 shows 

P ( P ! ) P ( D | P l ) 

Exercises 

P(Pi\D) P(Pi)P(D|P,) + P(P2)P(D\P2) + P(P3)P(D\P3) 
(0.30)(0.01) 0.003 _ 

(0.3)(0.01) + (0.20)(0.03) + (0.50)(0.02) ~~ 0.019 " 
0.158. 

Similarly, 

w ) = ( 0 ! 3 £ - 2 0 ) = Q - 3 1 6 - I P(P3\D) = m m . = 
0.019 0.019 

The conditional probability of a defect given plan 3 is the largest of the three; thus 
a defective for a random product is most, likely the result of the use of plan 3. J 

Using Bayes' rule, a statistical methodology, called the Bayesian method, has 
attracted a lot of attention in applications. An introduction to Bayesian method 
will be discussed in Chapter 18. 

2.101 In a certain region of the country it is known 
from (last, experience that the: probability of selecting 
an adult over 40 years of age: with cancer is 0.05, If 
the probability of a doctor correctly diagnosing a per
son with cancer as having the disease is 0.78 and the: 
probability of incorrectly diagnosing a person without 
cancer as having the disease is 0.1)6, what is the prob
ability that, a person is diagnosed as having cancer? 

2.102 Police plan to enforce speed limits by using 
radar traps at 4 different locations within the city lim
its. The radar traps at each of the locations L\, E>, 

L:u and L4 are operated 40%, 30%, 20%, and 30% of 
the time, and if a person who is speeding on his way 
to work has probabilities of 0.2, 0.1, 0.5, and 0.2, re
spectively, of passing through these locations, what is 
the probability that he will receive a spcuxling ticket? 

2.103 Referring to Exercise 2.101, what, is the proba
bility that a person diagnosed as having cancer actually 
has the disease? 

2.104 If in Exercise 2.102 the person received a speed
ing ticket on his way to work, what is the probability 
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that he passed through the radar trap located at Li? 

2.105 Suppose that the four inspectors at a film fac
tory are supposed to stamp the expiration date on each 
package of film at the end of the assembly line. John, 
who stamps 20% of the packages, fails to stamp the 
expiration date once in every 200 packages: Tom, who 
stamps 60% of the packages, fails to stamp the expira
tion date once in every 100 packages; Jeff, who stamps 
15% of the packages, fails to stamp the expiration date 
once in every 90 packages; and Pat, who stamps 5% of 
the packages, fails to stamp the expiration date once 
in every 200 packages. If a customer complains that 
her package of film does not show the expiration date, 
what is the probability that it was inspected by John? 

2.106 A regional telephone company operates three 
identical relay stations at different locations. During a 
one year period, the number of malfunctions reported 
by each station and the causes are shown below. 

Station A B C 
Problems with electricity supplied 
Computer malfunction 
Malfunctioning electrical equipment 
Caused by other human errors 

Suppose that a malfunction was reported and it was 
found to be caused by other human errors. What is 
the probability that it came from station C? 

2 
4 
5 
7 

1 
3 
4 
7 

1 
2 
2 
5 

2.107 Pollution of the rivers in the United States has 
been a problem for many years. Consider the following 
events: 

A= (The river is polluted.} 

B— {A sample of water tested detects pollution.} 

C= {Fishing permitted.} 

Assume P(A) = 0.3. P(B|A) = 0.75, P (P |A ' ) = 0.20, 
P ( q A n P ) = 0.20, P(C|A'nP) = 0.15, P(C|Ans ' ) = 
0.80, and P(C|A' n B') = 0.90. 
(a) Find P ( A n B n C ) . 
(b) Find P (B 'nC) . 
(c) Find P(C). 
(d) Find the probability that the river is polluted, given 

that fishing is permitted and the sample tested did 
not detect pollution. 

2.108 A paint-store chain produces and sells latex 
and semigloss paint. Based on long-range sales, the 
probability that a customer will purchase latex paint is 
0.75. Of those that purchase latex paint, 60% also pur
chase rollers. But only 30% of semigloss paint buyers 
purchase rollers. A randomly selected buyer purchases 
a roller and a can of paint. What is the probability 
that the paint is latex? 

Review Exercises 

2.109 A truth serum has the property that 90% of 
the guilty suspects are properly judged while, of course, 
10% of guilty suspects are improperly found innocent. 
On the other hand, innocent suspects are misjudged 
1% of the time. If the suspect was selected from a 
group of suspects of which only 5% have ever commit
ted a crime, and the serum indicates that he is guilty, 
what is the probability that he is innocent? 

2.110 An allergist, claims that 50% of the patients 
she tests are allergic to some type of weed. What, is 
the probability that 

(a) exactly 3 of her next 4 patients are allergic to 
weeds? 

(b) none of her next 4 patients is allergic to weeds? 

2.111 By comparing appropriate regions of Venn di
agrams, verify that 
(a) (AD B) LI (An B') = A; 
(b) A' n (B' uC) = (A' n B') u (A' n C). 

2.112 The probabilities that a service station will 
pump gas into 0, 1, 2, 3, 4, or 5 or more cars during 
a certain 30-minute period are 0.03, 0.18, 0.24, 0.28, 
0.10, and 0.17, respectively. Find the probability that 
in this 30-minute period 

(a) more than 2 cars receive gas; 

(b) at most 4 cars receive gas; 
(c) 4 or more cars receive gas. 

2.113 How many bridge hands are possible contain
ing 4 spades, 6 diamonds, 1 club, and 2 hearts? 

2.114 If the probability is 0.1 that a person will make 
a mistake on his or her state income tax return, find 
the probability that 
(a) four totally unrelated persons each make a mistake; 
(b) Mr. Jones and Ms. Clark both make a mistake, 

and Mr. Roberts and Ms. Williams do not make a 
mistake. 

2.115 A large industrial firm uses 3 local motels to 
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provide overnight accommodations for its clients. From 
past experience it is known that 20%: of the clients are 
assigned rooms at the Ramada Inn, 50% at. the Sher
aton, and 30% at the Lake view Motor Lodge. If the 
plumbing is faulty in 5% of the rooms at the Ramada 
Inn, in 4% of the rooms at the Sheraton, and in 8% of 
the rooms at the Lakeview Motor Lodge, what, is the 
probability that 

(a) a client will be assigned a room with faulty plumb
ing? 

(b) a person with a room having faulty plumbing was 
assigned accommodations at the Lakeview Motor 
Lodge? 

2.116 From a group of 4 men and 5 women, how 
many committees of size 3 are possible 

(a) with no restrictions? 
(b) with 1 man and 2 women? 
(c) with 2 men and I woman if a certain man must be 

on the committee? 

2.117 The probability that a patient recovers from a 
delicate heart operation is 0.8. What is the probability 
that 
(a) exactly 2 of the next 3 patients who have this op

eration survive? 
(b) all of the next 3 patients who have this operation 

survive? 

2.118 In a certain federal prison it is known that 2/3 
of the inmates are under 25 years of age. It is also 
known that 3/5 of the inmates are male and that 5/8 
of the inmates are female or 25 years of age or older. 
What is the probability that a prisoner selected at ran
dom from this prison is female and at least 25 years 
old? 

2.119 From 4 red, 5 green, and 6 yellow apples, how 
many selections of 9 apples are possible if 3 of each 
color are to be selected? 

2.120 From a box containing 6 black balls and 4 green 
balls, 3 balls are drawn in succession, each ball being re
placed in the box before the next draw is made. What 
is the probability that 

(a) all 3 are the same color? 
(b) each color is represented? 

2.121 A shipment of 12 television sets contains 3 de
fective sets. In how many ways can a hotel purchase 
5 of these sets and receive at least 2 of the defective 
sets? 

2.122 Electrical, chemical, industrial, and mechani
cal engineering curricula were studied. It was found 

that some students took no statistics, some took one 
semester, and others took two semesters. Consider the 
following events: 

A: Some statistics is taken 
B: Electrical and industrial engineers 
C: Chemical engineers 

Use Venn diagrams and shade the areas representing 
the following events: 

( a ) ( A n P ) ' ; 

(b) (A u BY; 
(c) (AHC)UB. 

2.123 A certain federal agency employs three con
sulting firms (A, B, and C) with probabilities 0.40, 
0.35, and 0.25, respectively. From past experience it 
is known that the probability of cost overruns for the 
firms are 0.05, 0.03, and 0.15, respectively. Suppose a 
cost overrun is experienced by the agency. 

(a) What, is the probability that the consulting firm 
involved is company C? 

(b) What is the probability that it is company A? 

2.124 A manufacturer is studying the effects of cook
ing temperature, cooking time, and type of cooking oil 
for making potato chips. Three different temperatures, 
4 different cooking times, and 3 different oils are to be 
used. 

(a) What is the total number of combinations to be 
studied? 

(b) How many combinations will be used for each type 
of oil? 

(c) Discuss why permutations are not an issue in this 
exercise. 

2.125 Consider the situation in Exercise 2.124, and 
suppose that the manufacturer can try only two com
binations in a day. 
(a) What is the probability that any given set of 2 runs 

is chosen? 
(b) What is the probability that the highest tempera

ture is used in either of these 2 combinations? 

2.126 A certain form of cancer is known to be found 
in women over 60 with probability 0.07. A blood test 
exists for the detection of the disease but the test is 
not infallible. In fact, it is known that 10% of the time 
the test gives a false negative (i.e., the test incorrectly 
gives a negative result) and 5% of the time the test, 
gives a false positive (i.e., incorrectly gives a positive 
result). If a woman over 60 is known to have taken the 
test and received a favorable (i.e., a negative result), 
what is the probability that she has the disease? 
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2.127 A producer of a certain type of electronic com
ponent ships to suppliers in lots of twenty. Suppose 
that 60% of all such lots contain no defective compo
nents, 30% contain one defective component, and 10% 
contain two defective components. A lot is selected and 
two components from the lot are randomly selected and 
tested and neither is defective. 

(a) What is the probability that zero defective compo
nents exist in the lot? 

(b) What is the probability that one defective exists in 
the lot? 

(c) What is the probability that two defectives exist in 
the lot? 

2.128 A rare disease exists in which only 1 in 500 are 
affected. A test for the disease exists but of course it 
is not infallible. A correct positive result (patient ac
tually has the disease) occurs 95% of the time while 
a false positive result (patient does not have the dis
ease) occurs 1% of the time. If a randomly selected 
individual is tested and the result is positive, what is 
the probability that the individual has the disease? 

2.129 A construction company employs 2 sales engi
neers. Engineer 1 does the work in estimating cost for 
70% of jobs bid by the company. Engineer 2 does the 
work for 30% of jobs bid by the company. It is known 
that the error rate for engineer 1 is such that 0.02 is the 
probability of an error when he does the work, whereas 
the probability of an error in the work of engineer 2 is 
0.04. Suppose a bid arrives and a serious error occurs 
in estimating cost. Which engineer would you guess 
did the work? Explain and show all work. 

2.130 In the field of quality control the science of 
statistics is often used to determine if a process is "out 
of control." Suppose the process is, indeed, out of con
trol and 20% of items produced are defective. 

(a) If three items arrive off the process line in succes
sion, what is the probability that all three are de
fective? 

(b) If four items arrive in succession, what is the prob
ability that three are defective? 

2.131 An industrial plant is conducting a study to 
determine how quickly injured workers are back on the 
job following injury. Records show that 10% of all in
jured workers are admitted to the hospital for treat
ment and 15% are back on the job the next day. In 
addition, studies show that 2% are both admitted for 
hospital treatment and back on the job the next day. 
If a worker is injured, what is the probability that the 
worker will either be admitted to a hospital or back on 

the job the next day or both? 

2.132 A firm is accustomed to training operators who 
do certain tasks on a production line. Those operators 
who attend the training course are known to be able to 
meet their production quotas 90% of the time. New op
erators who do not take the training course only meet 
their quotas 65%. of the time. Fifty percent of new 
operators attend the course. Given that a new opera
tor meets his production quota, what is the probability 
that he (or she) attended the program? 

2.133 A survey of those using a particular statisti
cal software system indicated that 10% were dissatis
fied. Half of those dissatisfied purchased the system 
from vender A. It is also known that 20%> of those 
surveyed purchased from vendor A. Given that the 
software package was purchased from vendor ,4, what 
is the probability that that particular user is dissatis
fied? 

2.134 During bad economic times, industrial workers 
are dismissed and are often replaced by machines. The 
history of 100 workers whose loss of employment is at
tributable to technological advances is reviewed. For 
each of these individuals, it was determined if he or she 
was given an alternative job within the same company, 
found a job with another company but is working in 
the same field, found a job in a new field, or has been 
unemployed for 1 year. In addition, the union status 
of each worker is recorded. The following table sum
marizes the results. 

Union Nonunion 
Same Company 
New Company (same field) 
New Field 
Unemployed 

(a) If the selected workers found a job with a new com
pany in the same field, what is the probability that 
the worker is a union member? 

(b) If the worker is a union member, what is the prob
ability that the worker has been unemployed for a 

2.135 There is a 50-50 chance that the queen carries 
the gene of hemophilia. If she is a carrier, then each 
prince has a 50-50 chance of having hemophilia inde
pendently. If the queen is not a carrier, the prince will 
not have the disease. Suppose the queen has had three 
princes without the disease, what is the probability the 
queen is a carrier? 

2.136 What is the probability that no two students 
will have the same birth date in a size of 60 class? (See 
Exercise 2.50.) 
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Chapter 3 

Random Variables and Probability 
Distributions 

3.1 Concept of a Random Variable 

Definition 3.1: 

Statistics is concerned with making inferences about populations and population 
characteristics. Experiments are conducted with results that are subject to chance. 
The testing' of a number of electronic components is an example of a s tat is t ical 
exper iment , a term that is used to describe any process by which several chance 
observations arc generated. It is often important to allocate a numerical description 
to the outcome. For example, the sample space giving a. detailed description of each 
possible outcome when three electronic components are tested may be written 

S = {NNN, NND, NDN, DNN, NDD, DND, DDN, DDD}, 

where AT denotes "nondefective" and D denotes "defective." One is naturally con
cerned with the: number of defectives that occur. Thus each point in the sample 
space will be assigned a numerical value of 0, 1, 2, or 3. These values are, of course, 
random quantities determined by the outcome of the experiment. They may be 
viewed as values assumed by the random variable X, the number of defective items 
when three electronic components are tested. 

A random variable is a function that associates a. real number with each element 
in the sample space. 

We shall use a capital letter, say X, to denote a random variable and its correspond
ing small letter, x in this case, for one of its values. In the electronic: component 
testing illustration above, we notice that the random variable X assumes the value 
2 for all elements in the subset 

E = {DDN, DND, NDD} 

of the sample space S. That is. each possible value of A' represents an event that 
is a subset of the sample space for the given experiment. 
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Example 3.1:1 Two balls are drawn in succession without replacement from an urn containing 4 
reel balls and 3 black balls. The possible outcomes and the values y of the random 
variable: Y, where V is the number of red balls, are 

Sample Space y 
RR 
RB 
BR 
BB 

2 
1 
1 
0 

Example 3.2:1 A stockroom clerk returns three safety helmets at random to three steel mill 
employees who had previously checked them. If Smith, Jones, and Brown, in that 
order, receive one of the three hats, list the sample points for the possible orders 
of returning the helmets, and find the value in of the random variable M that 
represents the number of correct matches. 

Solution: If 5, J, and B stand for Smith's, Jones's, and Brown's helmets, respectively, then 
the possible arrangements in which the helmets may be returned and the number 
of correct mat dies are 

Sample Space 
SJB 
SB.I 
HIS 
JSB 
JUS 
BSJ 

rn 
3 
1 
1 
1 
(i 

0 

In each of the two preceding examples the sample space contains a finite number 
of elements. On the other hand, when a die is thrown until a 5 occurs, we obtain 
a sample space with an unending sequence of elements, 

S = {F. NF, NNF, NNNF,...}, 

where F and Ar represent, respectively, the occurrence and nonoccurrence of a 5. 
But even in this experiment, the number of elements can Vic equated to the number 
of whole numbers so that there is a first element, a second element, a third clement, 
and so on, and in this sense can be counted. 

There are cases where the random variable is categorical in nature:. Variables, 
often called dummy variables, are used. A good illustration is the case in which 
the random variable is binary in nature, as shown in the following example. 

Example 3.3:1 Consider the simple condition in which components are arriving from the produc
tion line and they are stipulated to be defective or not defective. Define the random 
variable X by 

J 1, if the component is defective, 

1 0, if the component is not defective. 
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Clearly the assignment of 1 or 0 is arbitrary though quite convenient. This will 
become clear in later chapters. The random variable in which 0 and 1 arc chosen 
to describe the two possible values is called a Bernoull i r andom variable. J 

Further illustrations of random variables are revealed in the following four ex
amples. 

Example 3.4:1 Statisticians use sampling plans to either accept or reject batches or lots of 
material. Suppose one of these sampling plans involves sampling independently 10 
items from a lot of 100 items in which 12 are defective. 

Let X be the random variable defined as the number of items found defec
tive in the sample of 10. In this case, the random variable takes on the values 
0,1,2, . . . ,9 ,10 . J 

Example 3.5:1 Suppose a sampling plan involves sampling items from a process until a defective is 
observed. The evaluation of the process will depend on how many consecutive items 
are observed. In that regard, let X be; a random variable defined by the number 
of items observed before a defective is observed. Labeling Ar a non-defective and 
D a defective, sample spaces are S = (D) given X = 1, S = (ND) given X = 2. 
S = (NND) given X = 3, and so on. J 

Example 3.6:1 Interest centers around the proportion of people who respond to a certain mail 
order solicitation. Let X be that proportion. X is a random variable that takes 
on all values x for which 0 < x < 1. J 

Example 3.7:1 Let X be the random variable defined by the: waiting time, in hours, between 
successive speeders spotted by a radar unit. The random variable X takes on all 
values x for which z > 0. J 

Definition 3.2: If a sample space contains a finite number of possibilities or an unending sequence 
with as many elements as there are whole numbers, it is called a discrete sample 
space. 

The outcomes of some statistical experiments may be neither finite nor countable. 
Such is the case, for example, when one conducts an investigation measuring the 
distances that a certain make of automobile will travel over a prescribed test course 
on 5 liters of gasoline. Assuming distance to be a variable measured to any degree 
of accuracy, then clearly we have an infinite number of possible distances in the 
sample space that cannot be. equated to the number of whole numbers. Also, if one-
were to record the length of time for a chemical reaction to take place, once again 
the possible time intervals making up our sample space are infinite in number and 
uncountable. We see now that all sample spaces need not be discrete. 

Definition 3.3: If a sample space contains an infinite number of possibilities equal to the number 
of points on a line segment, it is called a cont inuous sample space. 

A random variable: is called a discrete r a n d o m variable if its set. of possible 
outcomes is countable. The random variables in Examples 3.1 to 3.5 are discrete 
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random variables. But a random variable whose set of possible values is an entire 
interval of numbers is not discrete. When a random variable can take on values on a 
continuous scale, it, is called a continuous random valuable. Often the possible 
values of a continuous random variable are precisely the same values that are 
contained in the continuous sample space. Obviously, random variables described 
in Examples 3.6 and 3.7 are continuous random variables. 

In most practical problems, continuous random variables represent measured 
data, such as all possible heights, weights, temperatures, distance, or life periods, 
whereas discrete random variables represent count data, such as the number of 
defectives in a sample of A: items or the; number of highway fatalities per year in 
a given state. Note that the random variables 1' and M of Examples 3.1 and 3.2 
both represent count data, Y the number of red balls and M the number of correct 
hat matches. 

3.2 Discrete Probability Distributions 

A discrete random variable assumes each of its values with a certain probability. 
In the case of tossing a coin three times, the variable X, representing the number 
of heads, assumes the value 2 with probability 3/8, since 3 of the 8 equally likely 
sample points result in two heads and one tail. If one assumes equal weights for 
the simple events in Example 3.2, the probability that no employee gets back his 
right helmet, that is, the probability that M assumes the value zero, is 1/3. The 
possible values rn of M and their probabilities are 

m | 0 I 3 

P(M = m) | ~ m 
Note that the values of in exhaust all possible cases and hence the probabilities 
add to 1. 

Frequently, it is convenient to represent all the probabilities of a random variable 
X by a formula. Such a formula would necessarily be a function of the numerical 
values x that we shall denote by f(x), g(x), r(x). and so forth. Therefore, we write 
/(:<:) = P(X = x); that is, /(3) = P(X = 3). The set of ordered pairs (x,f(x)) 
is called the probability function or probability distribution of the discrete 
random variable X. 

Definition 3.4: The set of ordered pairs (aJ,/(a:)) is a probability function, probability mass 
function, or probability distribution of the discrete random variable X if, for 
each possible outcome x, 

1. f(x) > 0, 

2- £ / (* ) = !> 

3. P(X = x) = /(.r). 

Example 3.8:1 A shipment of 8 similar microcomputers to a. retail outlet contains 3 that are 
defective. If a school makes a random purchase of 2 of these computers, find the 
probability distribution for the number of defectives. 
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Solution: Let X be a random variable whose values x are the possible numbers of defective 
computers purchased by the school. Then x can be any of the numbers 0, 1, and 
2. Now, 

/ (0) = P(X = 0) = 

f(l) = P(X = l) = 

(g)(5) _"> 
® 28' 

( t)( t) _ 15 

© 28' 
/(2) = P(X = 2) = S | ) = | . 

Thus the probability distribution of X is 
0 

/ (*) 10 15 3 
28 28 28 

Example 3.9:1 If a car agency sells 50% of its inventory of a certain foreign car equipped with 
airbags. find a formula for the probability distribution of the number of cars with 
airbags among the next 4 cars sold by the agency. 

Solution: Since the probability of selling an automobile with airbags is 0.5, the 24 = 16 
points in the sample space are equally likely to occur. Therefore, the denominator 
for all probabilities, and also for our function, is 16. To obtain the number of 
ways of selling 3 models with air bags, we need to consider the number of ways 
of partitioning 4 outcomes into two cells with 3 models with air bags assigned to 
one cell, and the model without air bags assigned to the other. This can be done 
in (4)= 4 ways. In general, the event of selling x models with air bags and 4 — x 
models without air bags can occur in ( r) ways, where x can be 0, 1. 2, 3, or 4. 
Thus the probability distribution f(x) = P(X = x) is 

/(*)=» 0 for x = 0,1,2,3,4. 1 6 ' '""" - » - ' - ' • " - • J 

There are many problems where we may wish to compute the probability that 
the observed value of a random variable X will be less than or equal to some real 
number x. Writing F(x) = P(X < x) for every real number x, we define F(x) to 
be the cumulative distribution function of the random variable X. 

Definition 3.5: The cumulative distribution function F(x) of a discrete random variable X 
with probability distribution f(x) is 

F(x) = P(X < x) = Y /(*). for - 00 < x < 00. 
«<a; 

For the random variable M, the number of correct matches in Example 3.2, we 
have 

F(2) = P(M < 2) = /(0) + /(l) = 1 + 1='^. 
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The cumulative distribution function of M is 

for rn < 0, 

, ;r, for 0 < rn < 1, 
F(m.) = < i 1 §, for 1 < m < 3, 

1, for rn > 3. 

One should pay particular notice to the fact that the cumulative distribution func
tion is a monotone nonclecreasing function defined not only for the values assumed 
by the given random variable but for all real numbers. 

Example 3.10:1 Find the cumulative distribution function of the random variable X in Example 
3.9. Using F(x), verify that /(2) = 3/8. 

Solution: Direct calculations of the probability distribution of Example 3.9 give / (0 )= 1/16, 
/ ( l ) = 1/4, / (2 )= 3/8, / (3 )= 1/4, and / (4 )= 1/16. Therefore, 

F(0) = /(0) = 
16' 

F(l) = f(0) + /(!) = 
16 : 

11 
i r(2) = /(0) + / ( l ) + /(2) = ~ , 

F(3) = /(0) + / ( l ) + / (2) + /(3) = | | , 

F(4) = /(0) + / ( l ) + /(2) + /(3) + /(4) = 1. 

Hence 

F(x) = { 

10' 
_5_ 
16' 
n 
l!i ' 
15 
16' 

1 

for x < 0, 

for 0 < x < 1, 

for 1 < ,-r < 2, 

for 2 < ,T < 3, 

for 3 < x < 4, 

for :r > 4. 

Now, 

/(2) = F(2) F(1) = ii_A = 3. 
w 16 16 8 

It is often helpful to look at a probability distribution in graphic form. One 
might plot the points (x, f(x)) of Example 3.9 to obtain Figure 3.1. By joining the 
points to the x axis either with a dashed or solid line, we obtain what is commonly 
called a bar chart. Figure 3.1 makes it easy to see what values of X are most 
likely to occur, and it also indicates a perfectly symmetric situation in this case. 

Instead of plotting the points (x, f(x)), we more frequently construct rectangles, 
as in Figure 3.2. Here the rectangles are constructed so that their bases of equal 
width are centered at each value x and their heights are equal to the corresponding 
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f'x) 

6/16 

5/16 

4/16 

3/16 

2/16 

1/16 

Figure 3.1: Bar chart. 

0 1 2 3 4 

Figure 3.2: Probability histogram. 

probabilities given by f(x). The liases are constructed so as to leave no space 
between the rectangles. Figure 3.2 is called a probability histogram. 

Since each base in Figure 3.2 has unit width, the P(X = x) is equal to the area, 
of the rectangle centered at x. Even if the bases were not of unit width, we could 
adjust the heights of the rectangles to give areas that would still equal the proba
bilities of X assuming any of its values x. This concept of using areas to represent 
probabilities is necessary for our consideration of the probability distribution of a 
continuous random variable. 

The graph of the cumulative distribution function of Example 3.9, which ap
pears as a step function in Figure 3.3, is obtained by plotting the points (x, F(x)). 

Certain probability distributions arc applicable to more than one physical situ
ation. The probability distribution of Example 3.9, for example, also applies to the 
random variable Y, where Y is the number of heads when a coin is tossed 4 times. 
or to the random variable W, where W is the number of red cards that occur when 
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F(x) 

1 

3/4 

1/2 

1/4 

. • 

• ' 

f ' 
i 
i 

. 1 

0 1 2 3 4 

Figure 3.3: Discrete cumulative distribution function. 

4 cards arc drawn at random from a deck in succession with each card replaced and 
the deck shuffled before the next drawing. Special discrete distributions that can 
be applied to many different experimental situations will be considered in Chapter 
5. 

3.3 Continuous Probability Distributions 

A continuous random variable has a probability of zero of assuming exactly any 
of its values. Consequently, its probability distribution cannot be given in tabular 
form. At first this may seem startling, but it, becomes more plausible when we 
consider a particular example. Let us discuss a random variable whose values are 
the heights of all people over 21 years of age. Between any two values, say 163.5 
and 164.5 centimeters, or even 163.99 and 164.01 centimeters, there are an infinite 
number of heights, one of which is 164 centimeters. The probability of selecting a 
person at random who is exactly 164 centimeters tall and not one of the infinitely 
large set of heights so close to 164 centimeters that you cannot humanly measure 
the difference is remote, and thus we assign a probability of zero to the event. This 
is not the case, however, if we talk about the probability of selecting a person who 
is at least 163 centimeters but not more than 165 centimeters tall. Now we are 
dealing with an interval rather than a point value of our random variable. 

We shall concern ourselves with computing probabilities for various intervals of 
continuous random variables such as P(a < X < b), P(W > c), and so forth. Note 
that when X is continuous, 

P(a < X < b) = P(a < X < b) + P(X = b) = P(a < X < b). 
That is, it does not matter whether we include an endpoint of the interval or not. 
This is not true, though, when X is discrete. 

Although the probability distribution of a continuous random variable cannot 
be presented in tabular form, it can be stated as a formula. Such a formula would 
necessarily be a function of the numerical values of the continuous random variable 
X and as such will be represented by the functional notation f(x). In dealing with 
continuous variables, f(x) is usually called the probability density function, or 
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(a) (b) (c) (d) 

Figure 3.4: Typical density functions. 

simply the densi ty function of A'. Since X is defined over a continuous sample 
space, it is possible for f(x) to have a finite number of discontinuities. However, 
most density functions that have practical applications in the analysis of statistical 
data are continuous and their graphs may take any of several forms, some of which 
are shown in Figure 3.4. Because areas will be used to represent probabilities and 
probabilities arc positive numerical values, the density function must lie entirely 
above the x axis. 

A probability density function is constructed so that the area under its curve 
bounded by the x axis is equal to 1 when computed over the range of X for which 
f(x) is defined. Should this range of X be a finite interval, it is always possible 
to extend the interval to include the entire sot of real numbers by defining f(x) to 
be zero at all points in the extended portions of the interval. In Figure 3.5, the 
probability that X assumes a value between a and /; is equal to the shaded area 
under the density function between the ordinatcs at. x = a and x = b, and from 
integral calculus is given by 

P(a < X < b) = I f(x) dx. 
J a 

Figure 3.5: P(a < X < b). 
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Definition 3.6: The: funct 
variable A 

1. 

2, 

3. 

/(a?) 

J—OC 

PU> 

on /(.r) is 
", defined 

> 0, for i 

f{x) dx = 

< X < b) 

a probability density function 
over the set of real numbers R, if 

ill x € R 

= 1. 

-£/& :) (fe. 

for the continuous i andoni 

Example 3.11:1 Suppose that the error in the reaction temperature, in °C, for a controlled labora
tory experiment is a continuous random variable X having the probability density 
function 

(). elsewhere, 

(a) Verify condition 2 of Definition 3.6. 

(b) Find P(Q < X < 1). 

Solution: (a) [^ f(x) dx = £ f c/.r = ^ = § + } 
i 

(b) P(0 < A' < 1) = ./;,' Jf da; = £ 

Definition 3.7: The 
A' w 

cumulative distribution function F(a:) of a continuous random 
ith density function f(x) is 

F(a) = PLX < a) = I / ( / ) eft. for -
— oo 

- 00 < : : < co. 

variable 

As an immediate consequence of Definition 3.7 one: can write the two results, 

dF(x) 
P(a < X < b) = F(b) - F(a), and fix 

if the derivative exists. 

da 

Example 3.12:! For the density function of Example 3.11 find F(x), and use it to evaluate F(0 < 
X < 1). 

Solution: For — 1 < x < 2, 

r /••' /,- t3 x3 + 1 

Therefore, 

F(x) = { 
0, x < - 1 , 

- 1 < J 

x > 2. 
* # * , - l < a r < 2 , 

l. 
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The cumulative: distribution function F(x) is expressed graphically in Figure 3.6. 
Now. 

P(0<X < 1) = F ( l ) - F ( 0 ) = 
2 1 1 

9 9 9 
which agrees with the result obtained by using the density function in Example 

3.11. J 

- 1 0 1 2 

Figure 3.6: Continuous cumulative distribution function. 

Example 3.13:1 The Department of Energy (DOE) puts projects out. on bid and generally estimates 
what a reasonable bid should be. Call the estimate b. The DOE has determined 
that the density function of the winning (low) bid is 

f(y) 
gfc, \b<y<2b, 
0. elsewhere. 

Find F(y) and use it to determine the probability that the winning bid is less than 
the DOE's preliminary estimate /;. 

Solution: For fb < g < 2b, 

v ru r} r^ 
F[V) = U »* = §6 2b/5 

5y _ 1 
86 ~ 4 ' 

Thus 

f 0. y < lb. 

{ I • ))> 2b. 

To determine the probability that the winning bid is less than the preliminary bid 
estimate b, we: have: 

P(Y<b) = F(b) = 5--1- = l j 
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Exercises 

3.1 Classify the following random variables as dis
crete or continuous: 

X: the number of automobile accidents per year 
in Virginia. 

Y: the length of time to play 18 holes of golf. 

M: the amount of milk produced yearly by a par
ticular cow. 

N: the number of eggs laid each month by a hen. 

P: the number of building permits issued each 
month in a certain city. 

Q: the weight of grain produced per acre. 

3.7 The total number of hours, measured in units of 
100 hours, that a family runs a vacuum cleaner over a 
period of one year is a continuous random variable X 
that has the density function 

/(*) 
0 < x < 1 , 

x, 1 < x < 2, 
elsewhere. 

Find the probability that over a period of one year, a 
family runs their vacuum cleaner 
(a) less than 120 hours; 
(b) between 50 and 100 hours, 

3.2 An overseas shipment of 5 foreign automobiles 
contains 2 that have slight paint blemishes. If an 
agency receives 3 of these automobiles at random, list 
the elements of the sample space S using the letters B 
and Ar for blemished and nonblemished, respectively; 
then to each sample point assign a value x of the ran
dom variable X representing the number of automo
biles purchased by the agency with paint blemishes. 

3.3 Let W be a random variable giving the number 
of heads minus the number of tails in three tosses of a 
coin. List the elements of the sample space S for the 
three tosses of the coin and to each sample point assign 
a value w of W. 

3.4 A coin is flipped until 3 heads in succession oc
cur. List only those elements of the sample space that 
require 6 or less tosses. Is this a discrete sample space? 
Explain. 

3.5 Determine the value c so that each of the follow
ing functions can serve as a probability distribution of 
the discrete random variable X: 

(a) f(x) = c(x2 + 4), for a: = 0,1,2,3; 

(b)f(x) = c(l)(3*x),Iorx - 0 , 1 , 2 . 

3.6 The shelf life, in days, for bottles of a certain 
prescribed medicine is a random variable having the 
density function 

f{*) 
f 20,1)00 

i (aT+Toop 
10, 

a : > 0 , 

elsewhere. 

Find the probability that a bottle of this medicine will 
have a shell life of 
(a) at least 200 days; 
(b) anywhere from 80 to 120 days. 

3.8 Find the probability distribution of the random 
variable W in Exercise 3.3. assuming that the coin is 
biased so that a head is twice as likely to occur as a 
tail. 

3.9 The proportion of people who respond to a certain 
mail-order solicitation is a continuous random variable 
X that has the density function 

/(*) = 
^ , 0 < x < l , 
0, elsewhere. 

(a) Show that P(0 < X < 1) = 1. 
(b) Find the probability that more than 1/4 but fewer 

than 1/2 of the people contacted will respond to 
this type of solicitation. 

3.10 Find a formula for the probability distribution of 
the random variable X representing the outcome when 
a single die is rolled once. 

3.11 A shipment of 7 television sets contains 2 de
fective sets. A hotel makes a random purchase of; 3 
of the sets. If x is the number of defective sets pur
chased by the hotel, find the probability distribution 
of X. Express the results graphically as a probability 
histogram. 

3.12 An investment firm offers its customers munici
pal bonds that mature after varying numbers of years. 
Given that the cumulative distribution function of T, 
the number of years to maturity for a randomly se
lected bond, is, 

F(t) = 

t< 1, 
1 < t < 3, 
3 < t <5 , 
5 < t < 7, 
t>7, 
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find 
( a ) P ( T = 5); 
(b) P(T > 3); 
(c) P(1.4 < T < 6). 

3.13 The probability distribution of A, the number 
of imperfections per 10 meters of a synthetic fabric in 
continuous rolls of uniform width, is given by 

0 1 2 3 4 
~J{~x) 0.41 0.37 0.16 0.05 0.01 

Construct the cumulative distribution function of X. 

3.14 The waiting time, in hours, between successive 
speeders spotted by a radar unit is a continuous ran
dom variable with cumulative distribution function 

F(x) 
x < 0, 
x > 0. 

Find the probability of waiting less than 12 minutes 
between successive speeders 

(a) using the cumulative distribution function of X; 

(b) using the probability density function of X. 

3.15 Find the cumulative distribution function of the 
random variable X representing the number of defec
tives in Exercise 3.11. Then using F(x), find 

(a) P(X = 1); 
(b) P(0 < X < 2). 

3.16 Construct a graph of the cumulative distribution 
function of Exercise 3.15. 

3.17 A continuous random variable X that can as
sume values between x = 1 and x = 3 has a density 
function given by f(x) = 1/2. 
(a) Show that the area under the curve is equal to 1. 
(b) Find P(2 < X < 2.5). 
(c) Find P(X < 1.6). 

3.18 A continuous random variable X that can as
sume values between x = 2 and x = 5 has a density 
function given by f(x) = 2(1 + a;)/27. Find 
(a) P(X < 4); 

(b) P(3 < X < 4). 

3.19 For the density function of Exercise 3.17, find 
F(x). Use it to evaluate P(2 < X < 2.5). 

3.20 For the density function of Exercise 3.18, find 
F(x), and use it to evaluate P(3 < X < 4). 

3.21 Consider the density function 

< X < 1, 

elsewhere. 

(a) Evaluate k. 

(b) Find F(x) and use it to evaluate 

P(0.3 < X < 0.6). 

3.22 Three cards are drawn in succession from a deck 
without replacement. Find the probability distribution 
for the number of spades. 

3.23 Find the cumulative distribution function of the 
random variable W in Exercise 3.8. Using F(w), find 
(a) P(W > 0); 
(b) P ( - l < W < 3 ) . 

3.24 Find the probability distribution for the number 
of jazz CDs when 4 CDs are selected at random from 
a collection consisting of 5 jazz CDs, 2 classical CDs, 
and 3 rock CDs. Express your results by means of a 
formula. 

3.25 From a box containing 4 dimes and 2 nickels, 
3 coins are selected at random without replacement. 
Find the probability distribution for the total T of the 
3 coins. Express the probability distribution graphi
cally as a probability histogram. 

3.26 From a box containing 4 black balls and 2 green 
balls, 3 balls are drawn in succession, each ball being 
replaced in the box before the next draw is made. Find 
the probability distribution for the number of green 
balls. 

3.27 The time to failure in hours of an important 
piece of electronic equipment used in a manufactured 
DVD player has the density function 

/ ( , ) = jsoc 2000 e X P t " •a:/2000), x > 0, 
x < 0 . 

(a) Find F(x). 
(b) Determine the probability that the component (and 

thus the DVD player) lasts more than 1000 hours 
before the component needs to be replaced. 

(c) Determine the probability that the component fails 
before 2000 hours. 

3.28 A cereal manufacturer is aware that the weight 
of the product in the box varies slightly from box 
to box. In fact, considerable historical data has al
lowed the determination of the density function that 
describes the probability structure for the weight (in 
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ounces). In fact, letting X be the random variable 
weight, in ounces, the density function can be described 
as 

/ ( Ho1, 23.75 < x < 26.25, 
elsewhere. 

(a) Verify that this is a valid density function. 
(b) Determine the probability that the weight is 

smaller than 24 ounces. 
(c) The company desires that the weight exceeding 26 

ounces is an extremely rare occurrence. What is the 
probability that this "rare occurrence" does actu
ally occur? 

3.29 An important factor in solid missile fuel is the 
particle size distribution. Significant problems occur if 
the particle sizes are too large. From production data 
in the past, it has been determined that the particle 
size (in micrometers) distribution is characterized by 

/ ( ] 10, e) 
> 1, 

elsewhere. 

(a) Verify that this is a valid density function. 

(b) Evaluate F(x). 

(c) What is the probability that a random particle 
from the manufactured fuel exceeds 4 micrometers? 

3.30 Measurements of scientific systems are always 
subject to variation, some more than others. There 
are many structures for measurement error and statis
ticians spend a great deal of time modeling these errors. 
Suppose the measurement error X of a certain physical 
quantity is decided by the density function 

/(• x) = { fc(3 
0. 

x2), - 1 < x < 1, 
elsewhere. 

(a) Determine k that renders f(x) a valid density func
tion. 

(b) Find the probability that a random error in mea
surement is less than 1/2. 

(c) For this particular measurement, it is undesirable 
if the magnitude of the error (i.e., |a:|), exceeds 0.8. 
What is the probability that this occurs? 

3.31 Based on extensive testing, it is determined by 
the manufacturer of a washing machine that the time 
Y (in years) before a major repair is required is char
acterized by the probability density function 

fix) lo, 
-»/•! y > 0 , 

elsewhere. 

(a) Critics would certainly consider the product a bar
gain if it is unlikely to require a major repair before 
the sixth year. Comment on this by determining 
P(Y > 6). 

(b) What is the probability that a major repair occurs 
in the first year? 

3.32 The proportion of the budgets for a certain type 
of industrial company that is allotted to environmental 
and pollution control is coming under scrutiny. A data 
collection project determines that the distribution of 
these proportions is given by 

/ (») 
• < > = r 

y)\ 0 < y < l , 
elsewhere. 

(a) Verify that the above is a valid density. 
(b) What is the probability that a company chosen at 

random expends less than 10% of its budget on en
vironmental and pollution controls? 

(c) What is the probability that a company selected at 
random spends more than 50% on environmental 
and pollution control? 

3.33 Suppose a special type of small data processing 
firm is so specialized that some have difficulty making 
a profit in their first year of operation. The pdf that 
characterizes the proportion Y that make a profit is 
given by 

/ («) 
( i - ? / ) 3 0 < y < 1, 

elsewhere. 

(a) What is the value of k that renders the above a 
valid density function? 

(b) Find the probability that at most 50% of the firms 
make a profit in the first year. 

(c) Find the probability that at least 80% of the firms 
make a profit in the first year. 

3.34 Magnetron tubejs are produced from an auto
mated assembly line. A sampling plan is used periodi
cally to assess quality on the lengths of the tubes. This 
measurement is subject to uncertainty. It is thought 
that the probability that a random tube meets length 
specification is 0.99. A sampling plan is used in which 
the lengths of 5 random tubes are measured. 
(a) Show that the probability function of Y, the num

ber out of 5 that meet length specification, is given 
by the following discrete probability function 

/(?/) = ^ h ^ ! ( 0 - 9 9 ) y ( a o i ) 5 _ v ' 
for y = 0.1,2,3,4,5. 
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(b) Suppose random selections arc made off the line section. 
and 3 are outside specifications. Use /(•</) above (b) F i n d t h e probability that only 2 cars arrive, 
either to support or refute the conjecture that the 
probability is 0.99 that a single tube meets specifi- „ „_ ^ , , . ., , 
cations ^ n a laboratory assignment, if the equipment is 

working, the density function of the observed outcome, 
X is 

3.35 Suppose it is known from large amounts of his
torical data that X, the number of cars that arrive at 
a specific intersection during a 20 second time period, ,/ •, _ f 2(1 — x), 0 < x < 1, 
is characterized by the following discrete probability J\ ) — ^Q_ otherwise, 
function 

/(x) = e " 6 - , x = 0,1.2, . . . . (a) Calculate P(A < 1/3). 
x\ (b) What is the probability that X will exceed 0.5? 

(a) Find the probability that in a specific 20-second (c) Given that X > 0.5, what is the probability that 
time period, more than 8 cars arrive at the inter- X will be less than 0.75? 

3.4 Joint Probability Distributions 

Our study of random variables and their probability distributions in the preced
ing sections is restricted to one-dimensional sample spaces, in that we recorded 
outcomes of an experiment as values assumed by a single random variable. There 
will be situations, however, where we may find it desirable to record the simulta
neous outcomes of several random variables. For example, we might measure the 
amount of precipitate P and volume V of gas released from a controlled chemical 
experiment, giving rise to a two-dimensional sample space consisting of the out
comes (p, ?;), or we might be interested in the hardness H and tensile strength T 
of cold-drawn copper resulting in the outcomes (h, t). In a study to determine the 
likelihood of success in college, based on high school data, we might use a three-
dimensional sample space and record for each individual his or her aptitude test 
score, high school rank in class, and grade-point average at the end of the freshman 
year in college. 

If X and Y are two discrete random variables, the probability distribution for 
their simultaneous occurrence can be represented by a function with values f(x,y) 
for any pair of values (x, y) within the range of the random variables X and Y. It 
is customary to refer to this function as the joint probability distribution of 
X and Y. 

Hence, in the discrete case, 

f(x,y) = P(X = x,Y = yy, 

that is, the values f(x, y) give the probability that outcomes x and y occur at the 
same time. For example, if a television set is to be serviced and X represents the 
age to the nearest year of the set and Y represents the number of defective tubes 
in the set, then / (5,3) is the probability that the television set is 5 years old and 
needs 3 new tubes. 
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Definition 3.8: The function f(x,y) is a 
function of the discrete 

1. / ( . r , y ) > 0 f o r 

2. ZZf (*-.») = 
x y 

3. P(X = x. Y = 

For any region A in 

all ( 

1, 

v) = 
the 

joint probability distribution or 
random variables X and Y if 

•T.y), 

-f{x,y). 

ry plane. P\(X, Y) e A] = 
A 

probability 

• y). 

mass 

Example 3.14:1 Two refills for a ballpoint pen are selected at random from a box that contains 3 
blue refills, 2 red refills, and 3 green refills. If X is the number of blue refills and 
Y is the number of red refills selected, find 

(a) the joint probability function f(x,y), 

(b) P[(X,Y) 6 A], where A is the region {(x,y)\x + y < 1}. 

Solution: (a) The possible pairs of values (x,y) are (0, 0), (0,1), (1, 0), (1, 1), (0, 2), and 
(2, 0). Now, /(0,1) , for example, represents the probability that a red and a 
greem refill are selected. The total number of equally likely ways of selecting 
any 2 refills from the 8 is LI = 28. The number of ways of selecting 1 red 
from 2 red refills and 1 green from 3 green refills is (̂ ) (j) = 6. Hence /(0,1) 
= 6/28 = 3/14. Similar calculations yield the probabilities for the other cases, 
which are presented in Table 3.1. Note that the probabilities sum to 1. In 
Chapter 5 it. will become clear that the joint probability distribution of Table 
3.1 can be represented by the formula 

\.x) \y) \2-x-y) 
f(x,y) = © 

(b) 

for .7: = 0, 1, 2; y = 0, 1, 2; and 0 < x + y < 2. 

P[(X, Y) e A] = P(X +Y < 1) = /(0,0) + /(0,1) + /(1,0) 
3 

= 28 + 

3 9 
L — 

14 28 

9 

14 

Table 3.1: Joint Probability Distribution for Example 3.14 

y 

0 
1 
2 

Column Totals 

X 

0 
3 

28 
3 
14 
1 

28 

5 
14 

1 
9 
28 
3 
14 

0 

18 
28 

2 
3 
28 

0 
0 
3 
28 

Row 
Totals 

in 
28 
3 

1 
28 

1 

When X and Y are continuous random variables, the joint density function 
f(x,y) is a surface lying above the xy plane, and P[(X,Y) € A], where A is any 

file:///2-x-y
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region in the xy plane, is equal to the volume of the right cylinder bounded by the 
base A and the surface. 

Definition 3.9: The function f(x,y) is a joint density function of the continuous random 
variables X and Y if 

1- / ( * , » ) > 0, for all (x,y), 

2. f?00JZ0Hx,y)dxdy = l, 

3. P[(X, Y) £ A] = / JA f(x, y) dx dy, 

for any region A in the xy plane. 

Example 3.15:1 A candy company distributes boxes of chocolates with a mixture of creams, toffees, 
and nuts coated in both light and dark chocolate. For a randomly selected box, 
let X and Y, respectively, be the proportions of the light and dark chocolates that 
are creams and suppose that the joint density function is 

ftz . ) = ( § ( 2 a f + 3»). 0 < x < 1,0 < ?y < 1, 
10, elsewhere. 

(a) Verify condition 2 of Definition 3.9. 

(b) Find P[(X, Y £ A], where A = {{x,y)\0 < x < ±, ± < y < ±}. 

Solution: (a) f f f(x,y)dxdy= I f \{2x + 3y) dx dy 
J-oc J-oo JO JO ° 

2 3 , 
= 5 + 5 = L 

(b) P[(X,Y)eA] = P(0<X<l-,±<Y<1-) 

= //4 (To + f) dy = {TO
 + % 

10 [ \ 2 + 4 

:c=l/2 

dy 
x=0 

1/2 

11/4 

1 _3_ 
4 + 16 

13 
Too' 

Given the joint probability distribution f(x,y) of the discrete random variables 
X and Y, the probability distribution </(x) of X alone is obtained by summing 
f(x, y) over the values of Y. Similarly, the probability distribution h(y) of Y alone 
is obtained by summing f(x,y) over the values of X. We define g(x) and h(y) to 
be the marginal distributions of X and Y, respectively. When X and Y are 
continuous random variables, summations are replaced by integrals. Wre can now 
make the following general definition. 
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Definition 3.10: The marginal distributions of X alone and of Y alone 

9(x) = ^2f(x,y) 
V 

for the discrete case, and 

/•OO 

.</(» = / f(x, y) dy 
J — oc 

for the continuous case. 

and 

and 

h(y) 

h(y) •• 

X 

= r /(< 
J —oc 

are 

2/), 

,y) dx, 

The term marginal is used here because, in the discrete case, the values of g(x) 
and h(y) are just the marginal totals of the respective columns and rows when the 
values of /(.r, y) are displayed in a rectangular table. 

Example 3.16:1 Show that the column and row totals of Table 3.1 give the marginal distribution 
of X alone and of Y alone. 

Solution: For the random variable X, we see that 

ff(0) = /(0,0) + / ( 0 , l ) + / (0,2) = | + A + l = A 

f f(l) = / ( l , 0 ) + / ( l , l ) + / ( l , 2 ) = ! + ^ - r O = ! , 

and 

g(2) = f(2,0) + f(2,1) + /(2,2) = 1 + 0 + 0 = 1 , 

which are just the column totals of Table 3.1. In a similar manner we could show-
that the values of h(y) are given by the row totals. In tabular form, these marginal 
distributions may be written as follows: 

$(x) 
1 V 

14 28 28 h(y) 
0 1 2 

15—3—Z~~ • 
28 7 28 J 

Example 3.17:1 Find g(x) and h(y) for the joint density function of Example 3.15. 
Solution: By definition, 

4x + 3 

y=0 

for 0 < i < 1, and .g(.r) = 0 elsewhere. Similarly, 

%) = r ° /(*, y) dx = / |(2x + 3y) dx = 2 (1t3?V) 

J-oc JO O ° 

for 0 < y < 1, and ft(t/) = 0 elsewhere. J 
The fact that the marginal distributions g(x) and h(y) are indeed the proba

bility distributions of the individual variables X and Y alone can be verified by 
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showing that the conditions of Definition 3.4 or Definition 3.6 are satisfied. For 
example, in the continuous case 

Definition 3.11: 

/

OC /»00 l>OC 

g(x) dx = / f(x,y) dy dx = l, 
•CO •' — oo ./ —oo and 

P(a<X <b) = P(a<X < b, - o c < Y < oo) 
rb poc rb 

= f(x> v) dydx - / s(x) dx. 
Jo. 'I—oo Ja 

In Section 3.1 we state that the value x of the random variable X represents an 
event that is a subset of the sample space. If we use the definition of conditional 
probability as stated in Chapter 2, 

P ( A n S ) 
P(B\A) = 

P(A) 
P(A) > 0, 

where A and B are now the events defined by X = x and Y = y, respectively, then 

P(X = x,Y = y) f(x,y) 
P(Y = y\X = x) 

P(X = x) ff(x) 
g(x) > 0, 

where X and Y are discrete random variables. 
It is not difficult to show that the function f(x, y)/g{x), which is strictly a func

tion of y with x fixed, satisfies all the conditions of a probability distribution. This 
is also true when f(x, y) and g(x) are the joint density and marginal distribution, 
respectively, of continuous random variables. As a result, it is extremely important 
that we make use of the special type of distribution of the form f(x,y)/g(x) in 
order to be able to effectively compute conditional probabilities. This type of dis
tribution is called a conditional probability distribution; the formal definition 
follows. 

Let X and Y be two random variables, discrete or continuous. The conditional 
distribution of the random variable Y given that X = x is 

f{y\x) = / (x ,y) 
g(x) > 0. 

Similarly the conditional distribution of the random variable X given that Y = y 
is 

f(x\y) = 
f(x,y) 

h(y) ' 
h(y) > 0. 

If we wish to find the probability that the discrete random variable X falls 
between a and b when it is known that the discrete variable Y = y, we evaluate 

P(a<X<b\Y = y)= ] T f(x\y), 

where the summation extends over all values'<8TC^ between a and b. When X and 
Y are continuous, we evaluate 

P(a <X<b\Y = y)= f f(x\y) dx. 
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Example 3.18:1 Referring to Example 3.14, find the conditional distribution of A", given that Y =\, 
and use it to determine P(X = 0|V = 1). 

Solution: We need to find ((x\y), where y — 1. First, we find that 

Now, 

Therefore, 

x=0 

/ W « - ^ - £ / < « . » . "0,1.2-

f(2\l)={j\f(2,l)=(J\(0) = 0, 

and the conditional distribution of X, given that Y = 1, is 
0 1 2 
"T r 0 7Ni) 

Finally, 

P(x = o|r=i) = /(o|i) = i. 
Therefore, if it is known that 1 of the 2 pen refills selected is red, we have a 
probability equal to 1/2 that the other refill is not blue. J 

Example 3.19:1 The joint density for the random variables (X, Y), where X is the unit temperature 
change and Y is the proportion of spectrum shift that a certain atomic particle 
produces, is 

/(x,y) 
flOxt/2, 0 <x < y < 1, 

10, elsewhere. 

(a) Find the marginal densities g(x), h.(y), and the conditional density f(y\x). 

(b) Find the probability that the spectrum shifts more than half of the total 
observations, given that the temperature is increased to 0.25 unit. 

Solution: (a) By definition, 

9(x) = / f{x,y) dy= lOxy2 dy 
J — oo J X 

= — x(l - x J ) , 0 < X < 1, 
10 o 
-^-xyJ 

3 y 
y=X 

h(y) = f f(x, y) dx = fJ lOxy2 dx = ox^2^ = 5y\ 0 < y < 1. 
J-oo JO 
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Now 

f(y\x) = 
f{x..y) _ lOxy2 

9{x) 

3;V2 

fx(l -x*) 1-x* 
0 <x <y <1. 

(b) Therefore, 

P ( y > 2 
X = 0.2o) = / f(y\x = 0.25)dy 

7i/2 1 - 0.25 253 dy = 9' 

Example 3.20:1 Given the joint density function 

f(x,y) 
^ 2 L i , 0 < x- < 2, 0 < y < 1, 

0, elsewhere, 

find g(x), h(y), f(x\y), and evaluate P(\ < X < \\Y = 1). 
Solution: By definition, 

9(x) = / /(a-', y)dy= — 
./-oo Jo 

_ (xy_ xy 
~~ \ 4 4 

+ 3y2) 
dy 

. , , 3 \ i J / = 1 

0 < a: < 2, 

and 

= f°° f(x,y)dx= f 
./-oo ^0 

/:r2 3x 2 y 2 \ 

2 i ( l + 3 y 2 ) 
cirr. 

1 + 3y 2 

, 0 < y < l . 

Therefore, 

and 

A I W /i,(y) ( l + 3y2)/2 2' u < x < 2 ' 

/ l 1 1 \ / , 1 / 2a; _3_ 
64' 

Statistical Independence 
If f(x\y) does not depend on y, as is the case for Example 3.20, then f(x\y) = g(x) 
and / (x , y) = g(x)h(y). The proof follows by substituting 

/(a;, y) = /(x|y)/*(y) 
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into the marginal distribution of X. That is, 

/

oo rx.. 

f{x,y)dy= / f(x\y)h{y) dy. 
-OO */ —OO 

If f{x\y) does not, depend on ;;, wc may write 

.</(•<•) = f(x\!l) f h(y) dy. 
J — oo 

Now 

/ h(y) dy = 1, 
J — oc 

since h(y) is the probability density function of Y. Therefore:. 

.</(•'•) = /(x|y) and then f(x,y) = g(x)h(y). 

Definition 3.12: 

It should make sense to the reader that if f(x\y) does not depend on y, then of 
course the outcome of the random variable Y has no impact, on the outcome of the 
random variable X. In other words, we say that X and Y are independent random 
variables. We now offer the following formal definition of statistical independence. 

Let X and Y be two random variables, discrete or continuous, with joint proba
bility distribution f(x,y) and marginal distributions g(x) and h(y), respectively. 
The random variables X and Y are said to be statist ically independent if and 
only if 

f(x,y) = g(x)h(y) 

for all (x, y) within their range. 

The continuous random variables of Example 3.20 arc statistically indepen
dent, since the product of the two marginal distributions gives the joint density 
function. This is obviously not the case, however, for the continuous variables of 
Example 3.19. Checking for statistical independence of discrete random variables 
requires a more thorough investigation, since it is possible to have the product of 
the marginal distributions equal to the joint probability distribution for some but 
not all combinations of (x.y). If you can find any point (x,y) for which f(x,y) 
is defined such that f(x,y) r1 g(x)h(y), the discrete variables X and Y are not 
statistically independent. 

Example 3.21:1 Show that the random variables of Example 3.14 are not statistically independent. 

Proof: Let us consider the point (0, I). From Table 3.1 we find the three probabilities 
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/ (0 ,1) , y(0), andh ( l ) to be 

mu-£. 
3 3 1 

»(o) = E / ( M - ^ + S + s - S 
;y=o 

2 

28 14 28 14' 

Clearly, 

fc<i)=£/(*.i>-n+n+0-|-
x=0 

/ ( 0 , l ) ^ y ( 0 ) M l ) , 

and therefore X and y are not statistically independent. J 
All the preceding definitions concerning two random variables can be generalized 
to the case of n random variables. Let f(xi,x2,.. • ,xn) be the joint probability 
function of the random variables X\,X2,..., X„. The marginal distribution of X\, 
for example, is 

9{xi) = E " E / ( X 1 . X 2 , • • •,Xn) 
J:? X„ 

for the discrete case, and 

/

OC rOC 

•• f(xi,x2,..., xn) dx2 dx3 • • • dxn 

•OC- J—OO 
for the continuous case. We can now obtain joint marginal distributions such 
as g(x\,x2), where 

{52 "' 52 /(a'i»X2, • • •. xn), (discrete case), 

/-oo ' ' ' I^oc / ( x i , a;2,... ,x n ) da^ da;4 • • • dx„, (continuous case). 
We could consider numerous conditional distributions. For example, the joint con
ditional distribution of X\, X2, and X-$, given that X.\ = x4, X5 = x 5 , . . . , Xn = 
xn , is written 

,, , x / ( x i , x 2 , . . . , x „ ) 
J\,X\,X2,X-s\X4.X5, ... ,xn) = — -, 

y(x4 ,x5 , ...,xn) 

where g(x4,x&,... ,xn) is the joint marginal distribution of the random variables 
X4,Xr,,. .., Xn. 

A generalization of Definition 3.12 leads to the following definition for the mu
tual statistical independence of the variables Xi,X2,..., Xn. 

file:///X4.X5
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Definition 3.13: Let X\, X2,..., Xn be n random variables, discrete or continuous, with 
joint probability distribution f(x\.x2.... .xu) and marginal distribution 
/i( : , :i )i /2(x2), • • •, fn(•>'„), respectively, The random variables X\,X2,..., Xu are 
said to be mutually statistically independent if and only if 

/(a'!, X2, ..., Xn) = /l O'-'l )/a(X2) ' ' ' fn (x„ ) 

for all (xi, x2,..., xa) within their range. 

Example 3.22:1 Suppose that the shelf life, in years, of a certain perishable: food product packaged 
in cardboard containers is a random variable whose probability density function is 
given by 

fix) = 
e~x, x > 0, 

0, elsewhere. 

Let Xi, X2, and A3 represent the shelf lives for three of these containers selected 
independently and find P(X^ < 2.1 < X2 < 3,X3 > 2). 

Solution: Since the containers were selected independently, we can assume that the random 
variables Ari, X2, and X^ are statistically independent, having the joint probability 
density 

/ (x i , x 2 , x 3 ) = f(xi)f(x2)f(x3) = e - * e - » e - » —Xl— X3-X3 

for Xi > 0, :).'2 > 0, x-.i > 0, and f(x.\,x2,x3) = 0 elsewhere. Hence 

.3 ,.2 

P(Xi < 2, 1 < X2 < 3, A':, > 2) = / / / e ^ 1 - * 2 - * 3 dxi dx2 dx:i 

= (1 - e.-2)(e.-1 - e~3)e-'- = 0.0372. 

What Are Important Characteristics of Probability Distributions 
and Where Do They Come From? 

This is an important point in the text to provide the reader a transition into the 
next three; chapters. We: have given illustrations in both examples and exercises 
of practical scientific and engineering situations in which probability distributions 
and their properties are used to solve important problems. These probability dis
tributions, either discrete or continuous, were introduced through phrases like "it 
is known that" or "suppose that" or even in some cases "historical evidence sug
gests that." These arc situations in which the nature of the distribution and even 
a good estimate of the probability structure can be determined through histor
ical data, data from long-term studies, or even large amounts of planned data. 
The reader should remember the discussion of the use of histograms in Chapter 
1 and from that recall how frequency distributions arc: estimated from the his
tograms. However, not all probability functions and probability density functions 
are derived from large amounts of historical data. There are a substantial number 
of situations in which the nature of the scientific scenario suggests a distribution 
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type. Indeed many of these are reflected in exercises in bo th Chapters 2 and 3. 
When independent repeated observations are binary in na ture (e.g., "defective or 
not," "survive or not," "allergic or not") with observations 0 or 1, the distribution 
covering this situation is called the b i n o m i a l d i s t r i b u t i o n and the probability 
function is known and will be demonstrated in its generality in Chapter 5. Ex
ercise 3.34 in Section 3.3 and Review Exercise 3.82 are examples and there are 
others tha t the reader should recognize. The scenario of a continuous distribution 
in "time to failure" as in Review Exercise 3.71 or Exercise 3.27 on page 89 often 
suggests a distribution type called the e x p o n e n t i a l d i s t r ibut ion . These types of 
illustrations are merely two of many so-called s t andard distributions tha t are used 
extensively in real world problems because the scientific scenario that gives rise to 
each of them is recognizable and occurs often in practice. Chapters 5 and 6 cover 
many of these types along with some underlying theory concerning their use. 

A second part, of this transition to material in future chapters deals with the 
notion of p o p u l a t i o n p a r a m e t e r s or d i s t r i b u t i o n a l p a r a m e t e r s . Recall in 
Chapter 1 we discussed the need to use data to provide information about these 
parameters . We went to lengths in discussing the notion of a m e a n and variance 
and provided a vision for the concepts in the context of a population. Indeed the 
population mean and variance are easily found from the probability function for 
the discrete case or probability density function for the continuous case. These pa
rameters and their importance in the solution of many types of real world problems 
will provide much of the material in Chapters 8 through 17. 

Exercises 

3.37 Determine the values of c so that the follow
ing functions represent joint probability distributions 
of the random variables A" and Y: 

(a) f(x, y) — cxy, for x = 1, 2, 3; y = 1, 2,3; 
(b) f(x, y) = c\x - y\, for a: = - 2 , 0 , 2 ; y = - 2 , 3 . 

3.38 If the joint probability distribution of X and Y 
is given by 

f(x, y) = 2 ± E , for ,.. = o, 1, 2,3; y = (1, 1, 2, 

find 
(a) P(X <2,Y = 1); 
(b) P(X > 2,Y < 1); 

(c) P(X > Y); 
(d) P(X + Y = 4). 

3.39 From a sack of fruit containing 3 oranges, 2 ap
ples, and 3 bananas, a random sample of 4 pieces of 
fruit is selected. If X is the number of oranges and Y 
is the number of apples in the sample:, find 

(a) the joint probability distribution of A' and Y; 
(b) P[(X, Y) € .4], where A is the region that is given 

by {(x,y) h r + y < 2 } . 

3.40 A privately owned liquor store operates both a 
drive-in facility and a walk-in facility. On a randomly 
selected day, let A" and Y, respectively, be the propor
tions of the time that the drive-in and walk-in facilities 
are in use, and suppose that the joint density function 
of these random variables is 

f(x,y) l o , 
+ 2y), 0 < : c < 1, 0 < y < 1, 

elsewhere. 

(a) Find the marginal density of X. 

(b) Find the marginal density of Y. 
(c) Find the probability that the drive-in facility is 

busy less than one-half of the time. 

3.41 A candy company distributes boxes of choco
lates with a mixture of creams, toffees, and cordials. 
Suppose that the weight of each box is 1 kilogram, but 
the individual weights of the creams, toffees, and cor
dials vary from box to box. For a randomly selected 
box, let X and Y represent the weights of the creams 
and the toffees, respectively, and suppose that, the joint 
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density function of these variables is 

(24xy, 0 < a ; < l , 0 < y < l , 
x+y < 1, 
elsewhere. 

(a) Find the probability that in a given box the cordials 
account for more than 1/2 of the weight. 

(b) Find the marginal density for the weight of the 
creams. 

(c) Find the probability that the weight of the toffees 
in a box is less than 1/8 of a kilogram if it is known 
that creams constitute 3/4 of the weight. 

3.42 Let X and Y denote the lengths of life, in years, 
of two components in an electronic system. If the joint 
density function of these variables is 

-O+v) 
f(x,y) = {l 

findP(0<X< 1 \Y = 2). 

x > 0, y > 
elsewhere. 

0, 

3.43 Let X denote the reaction time, in seconds, to 
a certain stimulus and Y denote the temperature (°F) 
at which a certain reaction starts to take place. Sup
pose that two random variables X and Y have the joint 
density 

f(x 

Find 

(a) P(0 
(b) P(X 

Hr 
< X < i and 

<Y). 

0<x< 1, 
elsewhere. 

4 — ' — 2 

0<y< 

); 

l 

3.44 Each rear tire on an experimental airplane is 
supposed to be filled to a pressure of 40 pound per 
square inch (psi). Let X denote the actual air pressure 
for the right tire and Y denote the actual air pressure 
for the left tire. Suppose that X and Y are random 
variables with the joint density 

f{x,y) = 

'k(x2+y2), 

c0, 

30 < a: < 50; 
30 < y < 50, 
elsewhere. 

(a) Find k. 

(b) Find P(30 < X < 40 and 40 < Y < 50). 
(c) Find the probability that both tires are underfilled. 

3.45 Let X denote the diameter of an armored elec
tric cable and V denote the diameter of the ceramic 
mold that makes the cable. Both X and Y are scaled 

so that they range between 0 and 1. Suppose that X 
and Y have the joint density 

1 0, elsewhere. 

Find P(X + Y> 1/2). 

3.46 Referring to Exercise 3.38, find 
(a) the marginal distribution of X; 
(b) the marginal distribution of Y. 

3.47 The amount of kerosene, in thousands of liters, 
in a tank at the beginning of any day is a random 
amount Y from which a random amount X is sold dur
ing that day. Suppose that the tank is not resupplied 
during the day so that x < y, and assume that the 
joint density function of these variables is 

f(xy) = l2' Q<x<y 
n 'V> \ 0 , elsewhere. 

< 1 , 

(a) Determine if X and Y are independent. 
(b) Find P ( l / 4 < X < 1/2 | Y = 3/4). 

3.48 Referring to Exercise 3.39, find 
(a) f(y\2) for all values of y; 

(b) P(Y = 0 | X = 2). 

3.49 Let X denote the number of times a certain nu
merical control machine will malfunction: 1, 2, or 3 
times on any given day. Let Y denote the number of 
times a technician is called on an emergency call. Their 
joint probability distribution is given as 

/ (« ,» ) 
1 

y 2 
3 

1 
0.05 
0.05 

0 

x 
2 

0.05 
0.1 
0.2 

3 
0.1 
0.35 
0.1 

(a) Evaluate the marginal distribution of X. 
(b) Evaluate the marginal distribution of V. 
(c) Find P(Y = 3 | X = 2). 

3.50 Suppose that X and Y have the following joint 
probability distribution: 

x 
f(x,y) 2 4 

0.10 
0.20 
0.10 

0.15 
0.30 
0.15 

(a) Find the marginal distribution of A. 
(b) Find the marginal distribution of Y. 
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3.51 Consider an experiment that consists of 2 rolls 
of a balanced die. If X is the number of 4s and Y is 
the number of os obtained in the 2 rolls of the die, find 
(a) the joint probability distribution of A and V; 
(b) P[(X, Y) € A], where A is the region {(x,y) \ 2x + 

V < 3}. 

3.52 Let X denote the: number of heads and Y the 
number of heads minus the number of tails when 3 
coins are tossed. Find the joint probability distribu
tion of X and Y. 

3.53 Three cards are drawn without replacement 
from the 12 face cards (jacks, queens, and kings) of 
an ordinary deck of 52 playing cards. Let X be the 
number of kings selected and Y the number of jacks. 
Find 

(a) the joint probability distribution of X and Y; 

(b) P[(X,Y) e A), where A is the region given by 
{(x,y) \x + y>2}. 

3.54 A coin is tossed twice. Let Z denote the number 
of heads on the first toss and W the total number of 
heads on the 2 tosses. If the coin is unbalanced and a 
head has a 40% chance of occurring, find 
(a) the joint probability distribution of W and Z; 
(b) the marginal distribution of W\ 
(c) the marginal distribution of Z; 

(d) the probability that at least 1 head occurs. 

3.55 Given the joint density function 

' ^ p , 0 < z < 2 , 2 < ? ; < 4 , 
f(x, y) {cT elsewhere, 

find P ( l < Y < 3 | X = 1). 

3.56 Determine whether the two random variables of 
Exercise 3.49 are dependent or independent. 

3.57 Determine whether the two random variables of 
Exercise 3.50 are dependent or independent. 

3.58 The joint density function of the random vari
ables X and Y is 

fix, y) 
(6x, 

"to, 
0 < x < 1, 0 < y < 1 
elsewhere. 

x, 

(a) Show that X and V are not independent. 
(b) Find P(X > 0.3 | Y = 0.5). 

3.59 Let X, Y, and Z have the joint probability den
sity function 

f(x, y, z) { kxy2z, 

0 , ' 

0<x,y< 1; 0< z <2, 
elsewhere. 

(a) Find k. 

(b) F i n d P ( A < } , y > | , l < 2 < 2 ) . 

3.60 Determine whether the two random variables of 
Exercise 3.43 are dependent or independent. 

3.61 Determine whether the two random variables of 
Exercise 3.44 are dependent or independent. 

3.62 The joint probability density function of the ran
dom variables X, Y, and Z is 

ixyz* 
f(x,y,z)=i a 

Find 

0 <x,y< 1; 0< z < 3, 
elsewhere. 

(a) the joint marginal density function of Y and Z: 
(b) the marginal density of Y; 

(c) P ( i < A < i , V > A, KZ<2); 

( d ) P ( 0 < A < i | y = i , 2 = 2). 

Review Exercises 

3.63 A tobacco company produces blends of tobacco 
with each blend containing various proportions of 
Turkish, domestic, and other tobaccos. The propor
tions of Turkish and domestic in a blend are random 
variables with joint density function (X = Turkish and 
Y = domestic) 

fix.y) 
_ (24xy, 0 < x,y < 1: x + y < 1, 

\ 0 , elsewhere. 

(a) Find the probability that in a given box the Turkish 
tobacco accounts for over half the blend. 

(b) Find the marginal density function for the propor
tion of the domestic tobacco. 

(c) Find the probability that the proportion of Turk
ish tobacco is less than 1/8 if it is known that the 
blend contains 3/4 domestic tobacco. 

3.64 An insurance company offers its policyholders a 
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number of different premium payment options. For a 
randomly selected policyholder, let X be the number of 
months between successive payments. The cumulative 
distribution function of X is 

F(x) = { 

0, i f x < l , 
0.4, if 1 < x < 3, 
0.6, if 3 < x < 5, 
0.8, if 5 < x < 7, 
1.0, if x > 7. 

(a) What is the probability mass function of X? 

(b) Compute P(4 < X < 7). 

3.65 Two electronic components of a missile system 
work in harmony for the success of the total system. 
Let X and Y denote the life in hours of the two com
ponents. The joint density of X and Y is 

fix,y) -{ 
ye-yll+*)t x,y>0, 

0, elsewhere. 

(a) Give the marginal density functions for both ran
dom variables. 

(b) What is the probability that both components will 
exceed 2 hours? 

3.66 A service facility operates with two service lines. 
On a randomly selected day, let X be the proportion of 
time that the first line is in use whereas Y is the pro
portion of time that the second line is in use. Suppose 
that the joint probability density function for (A, V) is 

fix •»>-r §(.t:2 + i/2), 0<x,y<\, 
elsewhere. 

(a) Compute the probability that neither line is busy 
more than half the time. 

(b) Find the probability that the first line is busy more 
than 75% of the time. 

3.67 Let the number of phone calls received by a 
switchboard during a 5-minute interval be a random 
variable X with probability function 

/ ( * )« 
e - 2 2 x 

for x = 0 ,1,2, . 

(a) Determine the probability that X equals 0, 1, 2, 3, 
4, 5, and 6. 

(b) Graph the probability mass function for these val
ues of x. 

(c) Determine the cumulative distribution function for 
these values of X. 

3.68 Consider the random variables X and Y with 
joint density function 

fix, y) {o 
x + y, 0 < x,y < 1, 

elsewhere. 

(a) Find the marginal distributions of X and Y. 

(b) F i n d P ( A > 0 . 5 , y >0.5) . 

3.69 An industrial process manufactures items that 
can be classified as either defective or not defective. 
The probability that an item is defective is 0.1. An 
experiment is conducted in which 5 items are drawn 
randomly from the process. Let the random variable X 
be the number of defectives in this sample of 5. What 
is the probability mass function of X? 

3.70 Consider the following joint probability density 
function of the random variables X and Y: 

f{x,y) { -jx-u 

0 , " 

1 < x < 3, 1 < y < 2, 
elsewhere. 

(a) Find the marginal density functions of X and Y. 

(b) Are X and Y independent? 
(c) Find P(X > 2). 

3.71 The life span in hours of an electrical compo
nent is a random variable with cumulative distribution 
function 

F(x) {;-
x > 0, 
eleswhere. 

(a) Determine its probability density function. 
(b) Determine the probability that the life span of such 

a component will exceexl 70 hours. 

3.72 Pairs of pants are being produced by a particu
lar outlet facility. The pants are "checked" by a group 
of 10 workers. The workers inspect pairs of pants taken 
randomly from the production line. Each inspector is 
assigned a number from 1 through 10. A buyer selects 
a pair of pants for purchase. Let the random variable 
X be the inspector number. 

(a) Give a reasonable probability mass function for X. 

(b) Plot the cumulative distribution function for X. 

3.73 The shelf life of a product is a random variable 
that is related to consumer acceptance. It turns out 
that the shelf life Y in days of a certain type of bakery 
product has a density function 

fiv) 
- » / 2 0 < y < oc, 

elsewhere. 
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What fraction of the loaves of this product, stocked to
day would you expect to be sellable 3 days from now? 

3.74 Passenger congestion is a service problem in air
ports. Trains are installed within the airport to reduce 
the congestion. With the use of the train, the time X 
that it takes in minutes to travel from the main termi
nal to a particular concourse has density function 

fix) 10, 
0 < -T < 10, 
elsewhere. 

(a) Show that the pdf above is a valid density function. 

(b) Find the probability that the time it takes a pas
senger to travel from the main terminal to the con
course will not exceed 7 minutes. 

3.75 Impurities in the batch of final product of a 
chemical process often reflect a serious problem. From 
considerable plant data gathered, it is known that the 
proportion Y of impurities in a batch has a density 
function given by 

Aw-fr-"1 0 < y < 1, 
elsewhere. 

(a) Verify that the above is a valid density function. 
(b) A batch is considered not sellable and then not-

acceptable if the percentage of impurities exceeds 
60%. With the current quality of the process, what 
is the percentage of batches that are not accept
able? 

3.76 The time Z in minutes between calls to an elec
trical supply system has the probability density func
tion 

/(*) \ 0 , 

-z/10 0 < z < oo, 
elsewhere. 

(a) What is the probability that there are no calls 
within a 20-minute time interval? 

(b) What is the probability that the first call comes 
within 10 minutes of opening? 

3.77 A chemical system that results from a chemical 
reaction has two important components among others 
in a blend. The joint distribution describing the pro
portion A'i and X2 of these two components is given 
by 

, , , / 2 , 0 < an < x2 < 1, 
f(xi,x2)=< 

(0, elsewhere. 

(a) Give the marginal distribution of Ai . 
(b) Give the marginal distribution of X2. 

(c) What, is the probability that component propor
tions produce the results Ai < 0.2 and X2 > 0.5? 

(d) Give the conditional distribution fXl | X , (x i \ x 2 ) . 

3.78 Consider the situation of Review Exercise 3.77. 
But suppose the joint distribution of the two propor
tions is given by 

f(x. T a ) = /6:r2 , 0 < x X2 < Xl < 1, 
here. 

(a) Give the marginal distribution / * , (xi) of the pro
portion Xi and verify that it is a valid density func
tion. 

(b) What is the probability that proportion X2 is less 
than 0.5 given that Xi" is 0.7? 

3.79 Consider the random variables X and Y that 
represent the number of vehicles that arrive at 2 sep
arate street corners during a certain 2-tninute period. 
These street corners arc fairly close together so it is im
portant that traffic engineers deal with them jointly if 
necessary. The joint distribution of X and Y is known 
to be 

ft \ - JL _ ! _ 
J\.x,y) - l g • A{x+yY. 

for x = 0 , 1 , 2 , . . . , and y = 0 , 1 , 2 , . . . . 
(a) Are the two random variables X and Y indepen

dent? Explain why or why not. 
(b) What is the probability that during the time pe

riod in question less than 4 vehicles arrive at the 
two street corners? 

3.80 The behavior of series of components play a huge 
role in scientific and engineering reliability problems. 
The reliability of the entire system is certainly no bet
ter than the weakest component in the series. In a 
series system, the components operate independently 
of each other. In a particular system containing three 
components the probability of meeting specification for 
components 1, 2, and 3, respectively, are 0.95, 0.99, and 
0.92. What is the probability that the entire system 
works? 

3.81 Another type of system that is employed in en
gineering work is a group of parallel components or a 
parallel system. In this more conservative approach, 
the probability that the system operates is larger than 
the probability that any component operates. The sys
tem fails only when all systems fail. Consider a situa
tion in which there are 4 independent components in a 
parallel system with probability of operation given by 

Component 1: 0.95; Component 2: 0.94: 

Component 3: 0.90; Component 4: 0.97. 

What is the probability that the system does not fail? 
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3.82 Consider a system of components in which there does have a redundancy built in such that it does not 
;ire five independent components, each of which pos- fail if 3 out of the 5 components are operational. What 
sesses an operational probability of 0.92. The system is the probability that the total system is operational? 

3.5 Potential Misconceptions and Hazards; 
Relationship to Material in Other Chapters 

In future chapters it will become apparent that probability distributions represent 
the: structure through which probabilities that are computed aid in the evalua
tion and understanding of a process. For example, in Review Exercise 3.67, the 
probability distribution that quantifies the probability of a heavy load during cer
tain time periods can be very useful in planning for any changes in the system. 
Review Exercise 3.71 describes a scenario in which the life span of an electronic: 
component is studied. Knowledge of the probability structure for the component 
will contribute significantly toward an understanding of the reliability of a large 
system of which the component is a part. In addition, an understanding of the 
general nature of probability distributions will enhance the understanding of the 
concept of a P-value which was introduced briefly in Chapter 1 and will play a 
major role: beginning in Chapter 10 and extending throughout the balance of the 
text. 

Chapters 4, 5, and 6 depend heavily on the material in this chapter. In Chapter 
4 we discuss the meaning of important pa rame te r s in probability distributions. 
These important parameters quantify notions of central tendency and variabil
ity in a system. In fact, knowledge of these quantities themselves, quite apart 
from the complete distribution, can provide insight into the nature of the system. 
Chapters 5 and 6 will deal with engineering, biological, or general scientific scenar
ios that, identify special types of distributions. For example, the structure of the 
probability function in Review Exercise 3.67 will easily be identified under certain 
assumptions discussed in Chapter 5. The same holds for the scenario of Review 
Exercise 3.71. This is a special type of t ime to failure problem for which the 
probability density function will be diseaissed in Chapter 6. 

As far as potential hazards with the use of material in this chapter, the "warn
ing" to the reader is not to read more into the material than is evident. The 
general nature of the probability distribution for a specific scientific: phenomenon 
is not obvious from what is learned in this chapter. The purpose of this chapter is 
to learn how to manipulate a probability distribution, not to learn how to identify 
a specific type. Chapters 5 and 6 go a long way toward identification according to 
the general nature of the scientific system. 



Chapter 4 

Mathematical Expectation 

4.1 Mean of a Random Variable 

If two coins are tossed 16 times and X is the number of heads that occur per toss, 
then the values of X can be 0, 1. and 2. Suppose that the experiment yields no 
heads, one: head, and two heads a total of 4, 7, and 5 times, respectively. The 
average number of heads per toss of the two coins is then 

(0)(4) + Q)(7) + (2)(5) = l M 

Hi 

This is an average value and is not necessarily a possible outcome for the experi
ment. For instance, a salesman's average monthly income is not likely to be equal 
to any of his monthly paychecks. 

Let us now restructure our computation for the average number of heads so as 
to have the following equivalent form: 

< o > ( T 9 + ( i ) G y + ( 2 ) G 9 = i m 

The numbers 4/16, 7/16, and 5/16 arc the fractions of the total tosses resulting 
in 0, 1. and 2 heads, respectively. These fractions are also the relative frequencies 
for the different values of X in our experiment. In fact, then, we can calculate the 
mean or average of a set. of data by knowing the distinct values that occur and their 
relative frequencies, without any knowledge of the-: total number of observations in 
our set of data. Therefore, if 1/16 or 1/4 of the tosses result in no heads. 7/16 of 
the tosses result in one head, and 5/16 of the tosses result in two heads, the mean 
number of heads per toss would be 1.06 no matter whether the total number of 
tosses was 16, 1000, or even 10,000. 

Let us now use this method of relative: frequencies to calculate the average 
number of heads per toss of two coins that we might expect in the long run. We 
shall refer to this average value as the m e a n of t h e r a n d o m variable X or the 
mean of the probabi l i ty d is t r ibut ion of X and write it as a.,- or simply as 
p. when it is clear to which random variable we refer. It is also common among 
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statisticians to refer to this mean as the mathematical expectation or the expected 
value of the random variable X and denote it as E(X). 

Assuming that two fair coins were tossed, we find that the sample space for our 
experiment is 

S = {HH,HT,TH,TT}. 

Since the 4 sample points are all equally likely, it follows that 

P(X = 0) = P(TT) = -, P(X = 1) = P(TH) + P(HT) = ^, 
T: /• 

and 

Definition 4.1: 

P(X = 2) = P(HH) = -, 

where a typical element, say TH, indicates that the first toss resulted in a tail 
followed by a head on the second toss. Now, these probabilities are just the relative 
frequencies for the given events in the long run. Therefore, 

, t - / ' ; ( X ) ^ ( G ) ( i ) 4 (!) GM8-
This result means that a person who tosses 2 coins over and over again will, on the 
average, get 1 head per toss. 

The method described above for calculating the expected number of heads per 
toss of 2 coins suggests that the mean or expected value of any discrete random 
variable may be obtained by multiplying each of the values Xi,x2,. • • ,xn of the 
random variable X by its corresponding probability /(xi),/(a;2),.. • , / (^n) and 
summing the products. This is true, however, only if the random variable is dis
crete. In the case of continuous random variables, the definition of an expected 
value is essentially the same with summations replaced by integrations. 

Let X be a random variable with probability distribution f(x). The mean or 
expected value of X is 

u = £(X) = 5>/(*) 

if X is discrete, and 

if X is continuous. 

/

oo 
xf(x) dx 

-oo 

Example 4.1:1 A lot containing 7 components is sampled by a quality inspector; the lot contains 
4 good components and 3 defective components. A sample of 3 is taken by the 
inspector. Find the expected value of the number of good components in this 
sample. 
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Solution: Let X represent the number of good components in the sample. The probability 
distribution of X is 

Of :! ) 
/(•'') = — T = T — , •'• = 0,1,2,3. 

A few simple calculations yield /(0) = 1/35, f(l) = 12/35, ,/'(2) = 18/35, and 
,/'(3) = 4/35. Therefore. 

-w-m(i) + w(S)+(«(i)+m(A)-H_,, 
Thus, if a sample of size 3 is selected at random over and over again from a lot of 
4 good components and 3 defective components, it would contain, on average, 1.7 
good components. J 

Example 4.2:1 In a gambling game a man is paid $5 if he gets all heads or all tails when three 
coins are tossed, and he will pay out $3 if cither one or two heads show. What, is 
his expected gain? 

Solution: The sample space for the possible outcomes when three coins are tossed simulta
neously, or, equivalently, if 1 coin is tossed three times, is 

S = {IIHII, HUT, IVTIl, THH, HTT, THT, TTII. TTT}. 

One can argue that each of these possibilities is equally likely and occurs with prob
ability equal to 1/8. An alternative approach would be to apply flic multiplicative 
rule of probability for independent events to each element of S. For example, 

P(IIHT) = P(H)P(H)P(T) = (jj Q ) (~\ = \. 

The random variable of interest is Y, the amount the gambler can win; and the 
possible values of 1' are $5 if event E\ = {HHH,TTT} occurs and —$3 if event. 

E2 = {HUT. IITII, THH, HTT, THT, TTH} 

occurs. Since E\ and E% occur with probabilities 1/4 and 3/4, respectively, it 
follows that 

u = E(Y) = (5)(j\+(-3)(jj = - 1 . 

In this game the gambler will, on average, lose $1 per toss of the: three coins. A 
game is considered "fair" if the gambler will, on average, come out even. Therefore, 
an expected gain of zero defines a. fair game. J 

Examples 4.1 and 4.2 arc designed to allow the reader to gain some insight 
info what we mean by the expected value of a random variable. In both cases 
the random variables are discrete. We follow with an example of a continuous 
random variable where an engineer is interested in the mean life of a certain type 
of electronic device. This is an illustration of a time to failure problem that occurs 
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often in practice. The expected value of the life of the device is an important 
parameter for its evaluation. 

Example 4.3:1 Let X be the random variable that denotes the life in hours of a certain electronic 
device. The probability density function is 

(20.000 ^ , . i n n 

0, elsewhere. 

Find the expected life of this type of device. 
Solution: Using Definition 4.1, we have 

„ , „ . r ° 20,000, f00 20,000 J u = E(X) = / x ' dx = / 2 dx = 200. 
J100 X JM) X 

Therefore, we can expect this type of device to last, on average, 200 hours. J 
Now let us consider a new random variable g(X), which depends on X; that is, 

each value of g(X) is determined by knowing the values of X. For instance, g(X) 
might be X2 or 3X - 1, so that whenever X assumes the value 2, g(X) assumes 
the value g(2). In particular, if X is a discrete random variable with probability 
distribution f(x), for x = —1,0,1,2, and g(X) = X2 then 

P[g(X) . 0] - P(X = 0) = /(0) , 

P[g(X) - 1] = P(X = - 1 ) + P(X = 1) = / ( - l ) + / ( l ) , 

P[ff(X) = 4] = P(X = 2) = / (2) , 

so that the probability distribution of g(X) may be written 
9ix) 

P[g(X) = g(x)] 
0 1 4 

/(0) / ( - ! ) + /(!) /(2) 
By the definition of an expected value of a random variable, we obtain 

ug(x) = E[g(x)} = 0/(0) + l [ / ( - l ) + / ( l ) ] + 4/(2) 

= (-l)V(-l) + (0)2/(0) + (1)2/(1) + (2)2/(2) = 52g(x)f(x). 
X 

This result is generalized in Theorem 4.1 for both discrete and continuous random 
variables. 

Theorem 4 .1 : Let X be a random variable with probability distribution f(x). The expected 
value of the random variable g(X) is 

ug{x)=E[g(X)} = £ g(x)f(x) 
X 

if X is discrete, and 

/

oo 
g(x)f(x) dx 

-oo 

if X is continuous. 
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Example 4.4:1 Suppose that the number of cars X that pass through a car wash between 4:00 
P.M. and 5:00 P.M. on any sunny Friday has the following probability distribution: 

P(X = x) 
4 6 8 9 

"X X I 1 1 T~ 
12 12 1 4 6 CI 

Let g(X) = 2X - 1 represent the amount of money in dollars, paid to the attendant 
by the manager. Find the attendant's expected earnings for this particular time 
period. 

Solution: By The:orcin 4.1, the attendant can expect to receive 

E\g(X)] =E(2X - 1 ) = £ ( 2 x - I)./'(:. 
X = 'l 

+ (15) (j\ + (17) f~ ) I" . ' , 

Example 4.5:1 Let X be a random variable with density function 

fix) 
- 1 <x < 2, 

elsewhere:. 

Find the expected value of g(X) = 4X + 3. 
Solution: By Theorem 4.1, wc have 

Definition 4.2: 

E(4X + 3) 
(4.r + 3):c:2 

l.r (4a;3 + 3:r2) dx = 8. 
-i 3 3./_, J 

We shall now extend our concept of mathematical expectation to the case of 
two random variables X and Y with joint probability distribution f(x,y). 

Let X and Y bo random variables with joint probability distribution f(x, y). The 
mean or expected value of the random variable g(X, Y) is 

ug(XiY) = E[g(X,Y)} =Y,T,9ix>V)f(x,v) 

if X and Y are discrete, and 

/'v(-v.v) 

if X and Y are continuous. 

E[g(X,Y)}= j j g 
J — oc J — oc 

(x,y)f(x,y) dx dy 

Generalization of Definition 4.2 for the calculation of mathematical expectations 
of functions of several random variables is straightforward. 
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Example 4.6:1 Let X and Y be the random variables with joint probability distribution indicated 
in Table 3.1 on page 92. Find the expected value of g(X, Y) = XY. The table is 
reprinted here for convenience. 

fix, y) 

y 

0 
1 
2 

Column Totals 

X 

0 
3 

28 
3 
14 
1 

28 

5 
14 

1 
9 

28 
3 
14 

0 

15 
28 

2 
3 

28 

0 
0 

3 
28 

Row 
Totals 

15 
28 
3 
7 
1 

28 

1 

Solution: By Definition 4.2, we write 

2 2 

E(XY) = £ £ xyf(x, y) = (0)(0)/(0,0) + (0)(1)/(0,1) 

+ (1)(0)/(1,0) + (1)(1)/(1,1) + (2)(0)/(2,0) 

-/<u>-£. 
Example 4.7:1 Find E(Y/X) for the density function 

10, elsewhere. 

Solution: We have 

Y -ff 
Jo Jo 

•1/(1 + 3y2) 
dx dy 

Jo XJ JQ J0 4 

Note that if g(X. Y) = X in Definition 4.2, we have 

'.V + 3J/3 , 5 
— d v = o-

E(X) 
J2T,xf(x,ij) = T,xg(x), (discrete case), 
x y x 

•f-oo I^L xfix, y) dy dx = JTX xg(x) dx, (continuous cases), 

where g(x) is the marginal distribution of A'. Therefore, in calculating E(X) over 
a two-dimensional space, one may use either the joint probability distribution of 
X and Y or the marginal distribution of X. Similarly, we define 

Y,Y.yfix^j) = Y,vHy), (discrete case), 
E(Y) = { V^x y 

I^oo S~x yf(x>y} dx dy - J-X yhiy) d-y-. (continuous cases), 

where h(y) is the marginal distribution of the random variable Y. 
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4 .1 Assume that two random variables (X, V) arc 
uniformly distributed on a circle with radius a. Then 
the joint probability density function is 

Jy J> \ o , otherwise. 

Find the expected value of X, fix-

4.2 The probability distribution of the discrete ran
dom variable X is 

/(:'•! 
« 

0.1,2,3. 

Find the mean of X. 

4 .3 Find the mean of the random variable T repre
senting the total of the three coins of Exercise 3.25 on 
page 89. 

4.4 A coin is biased so that a bead is three time:s as 
likely to occur as a tail. Find the expected number of 
tails when this coin is tossed twice. 

4 .5 The probability distribution of X, the number of 
imperfections per 10 meters of a synthetic fabric in con
tinuous rolls of uniform width, is given in Exercise 3.13 
on page 89 as 

x I 0 1 2 3 4 
f(x) | 0.41 1137 016 (TOE 0.01 

Find the average number of imperfections per 10 me
ters of this fabric. 

4.6 An attendant at a car wash is paid according to 
the number of cars that pass through. Suppose the 
probabilities are 1/12, 1/12, 1/4, 1/4, 1/6, and 1/6, 
respectively, that the attendant receives $7, $9, $11, 
$13, $15, or $17 between 4:00 P.M. and 5:00 P.M. on 
any sunny Friday. Find the attendant's expected earn
ings for this particular period. 

4.7 By investing in a particular stock, a person can 
make a profit in one year of $4000 with probability 0.3 
or take a loss of $1000 with probability 0.7. What is 
this person's expected gain? 

4 .8 Suppose that an antique jewelry dealer is inter
ested in purchasing a gold necklace for which the prob
abilities are 0.22, 0.36, 0.28, and 0.14. respectively, that 
she will be able to sell it, for a profit of $250, sell it for 
a profit of $150, break even, or sell it for a loss of $150. 
What is her expected profit? 

4.9 In a gambling game a woman is paid $3 if she 
draws a jack eir a queen and $5 if she draws a king or 
an ace from an ordinary deck of 52 playing cards. If 
she draws any other card, she loses. How much should 
she pay to play if the game is fair? 

4.10 Two tire-quality experts examine stacks of tires 
and assign quality ratings to each tire on a 3-point 
scale. Let X denote the grade given by expert A and 
Y denote the grade given by B. The following table 
gives the joint, distribution for A' and Y. 

f(*,v) 
1 

.7.' 2 
3 

l 
o.to 
0.10 
0.03 

y 
2 

0.05 
0.35 
0.10 

3 
0.02 
0.05 
0.20 

Find fix a n d fiy. 

4.11 A private pilot wishes to insure his airplane for 
$200,000. The insurance company estimates that a to
tal loss may occur with probability 0.002, a 50% loss 
with probability 0.01, and a 25% loss with probability 
0.1. Ignoring all other partial losses, what premium 
should the insurance company charge each year to re
alize an average profit of $500? 

4.12 If a dealer's profit, in units of $5000, on a new 
automobile can bo looked upon as a random variable 
X having the density function 

fix] 
f2( 2(1 - x ) , 0<sr < 1, 

elsewhere, 

find the average profit per automobile. 

4 .13 The density function of coded measurements of 
pitch diameter of threads of a fitting is 

\o 
(Xx < 1, 
elsewhere. 

Find the expected value of X. 

4.14 What, proportion of individuals can be expected 
to respond to a certain mail-order solicitation if the 
proportion X has the density function 

fix) p̂ , 0 <x < 1. 
elsewhere. 
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4.15 The density function of the continuous random 
variable X, the total number of hours, in units of 100 
hours, that a family runs a vacuum cleaner over a pe
riod of one year, is given in Exercise 3.7 on page 88 
as 

( x, 0 < x < 1, 

2-x, 1 < x < 2, 
0, elsewhere. 

Find the average number of hours per year that families 
run their vacuum cleaners. 

4.16 Suppose that you are inspecting a lot of 1000 
light bulbs, among which 20 are defectives. Choose 
two light bulbs randomly from the lot without replace
ment. Let 

X 
f the 1st light bulb is defective, 

otherwise, \ 0 , c 

v f 1, if the 2nd light bulb is defective. 
X2

 = \ 
1̂ 0, otherwise, 

Find the probability that at least one light bulb chosen 
is defective. [Hint: Compute P(Xi + X2 — 1).] 

4.17 Let X be a random variable with the following 
probability distribution: 

TfrT 
- 3 6 9 
1/6 1 / 2 T J S 

Find na{x), where g(X) = (2X + l ) 2 . 

4.18 Find the expected value of the random variable 
g(X) = X 2 , where X has the probability distribution 
of Exercise 4.2. 

4.19 A large industrial firm purchases several new 
word processors at the end of each year, the exact num
ber depending on the frequency of repairs in the pre
vious year. Suppose that the number of word proces
sors, X, that are purchased each year has the following 
probability distribution: 

0 1 2 3 
3/10 

x 
7£5 

T/TO 3/10 2/5 I/o 

If the cost of the desired model will remain fixed at 
$1200 throughout this year and a discount of 50X2 

dollars is credited toward any purchase, how much can 
this firm expect to spend on new word processors at 
the end of this year? 

4.20 A continuous random variable X has the density 
function 

Find the expected value of g(X) = e 2 X / 3 . 

x>0, 
elsewhere. 

4.21 What is the dealer's average profit per auto
mobile if the profit on each automobile is given by 
g(X) = X 2 , where X is a random variable having the 
density function of Exercise 4.12? 

4.22 The hospital period, in days, for patients follow
ing treatment for a certain typo of kidney disorder is a 
random variable Y = X + 4, where X has the density 
function 

x>0, 

10, elsewhere. 

Find the average number of days that a person is hos
pitalized following treatment for this disorder. 

4.23 Suppose that X and Y have the following joint 
probability function: 

fix,y) 
1 

y 3 
5 

X 

2 4 
0.10 0.15 
0.20 0.30 
0.10 0.15 

(a) Find the expected value of g(X,Y) = XY2. 

(b) Find ux and iiy. 

4.24 Referring to the random variables whose joint 
probability distribution is given in Exercise 3.39 on 
page 101, 
(a) nnd E(X2Y - 2XY); 

(b) find ux - ay. 

4.25 Referring to the random variables whose joint 
probability distribution is given in Exercise 3.53 on 
page 103, find the mean for the total number of jacks 
and kings when 3 cards are drawn without replacement 
from the 12 face cards of an ordinary deck of 52 playing 
cards. 

4.26 Let X and Y be random variables with joint 
densitv function 

f(x,y) 
(4xy, 0 < x, y < 1, 
(0, elsewhere. 

Find the expected value of Z = y/X2 + Y2. 

4.27 In Exercise 3.27 on page 89, a density function 
is given for the time to failure of an important compo
nent of a DVD player. Find the mean number of hours 
to failure of the component and thus the DVD. 
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4.28 Consider the information of Exercise 3.28 on 
page 89. The problem deals with the weight in ounces 
of the product in a, cereal box with 

/ ( 
H . 23.75 < . T 
(0, elsewhere. 

< 26.25, 

(a) Plot, the density function. 

(b) Compute the expected value or mean weight in 
oune:e:s. 

(c) Are you surprised at your answers in (b)? Explain 
why or why not.. 

4.29 In Exercise 3.29 on page 90, we were dealing 
with an important particle size distribution with the 
distribution of the particle size characterized by 

fix) 
f"3x-4, z > 1. 
\ o . elsewhere. 

(a) Plot the density function. 
(b) Give the mean particle size. 

4.30 In Exercise 3.31 on page 90, the distribution of 
time before a major repair of a washing machine was 

-»/4 

M = {f 
What is the population mean "time to repair?" 

.'/ > 0. 
elsewhere:. 

4.31 Consider Exercise 3.32 on page 90. 

(a) What is the mean proportion of the budget, allo
cated to environmental and pollution control? 

(b) What is the probability that a company selected 
at random will have a proportion allocated to en
vironmental and pollution control that exceeds the 
population mean given in (a)? 

4.32 In Exercise 3.13 on page 89, the distribution of 
the number of imperfections per 10 meters of synthetic 
fabric is given by 

x 1 0 I 2 3 4 
Q.().r 0.01 f(x) I 0.41 037 016 

(a) Plot the probability function. 
(b) Find the expected number of imperfections. 

E(X) = /,.. 

(c) Find E(X2). 

4.2 Variance and Covariance of Random Variables 
The mean or expected value of a random variable X is of special importance 
in statistics because it describes where the probability distribution is centered. 
By itself, however, the mean does not give adequate description of the shape of 
the distr ibution. Wc need to characterize the variability in the distribution. In 
Figure 4.1 we have the histograms of two discrete probability distr ibutions with 
the same moan /;. = 2 that differ considerably in the variability or dispersion of 
their observations about the mean. 

2 

(a) 

2 

(b) 

Figure 4 .1: Distributions with equal means and unequal dispersions. 
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The most important measure of variability of a random variable X is obtained 
by applying Theorem 4.1 with g(X) = (X — ft)2. Because of its importance in 
statistics, it is referred to as the variance of the random variable X or the 
variance of the probability distribution of X and is denoted by Var(X) or 
the symbol ax, or simply by a2 when it is clear to which random variable we refer. 

Definition 4.3: Let X be a random 
variance of X is 

CT2 = E[(X -

o-2 = E[(X -

The positive square 
X. 

variable with 

-li?\ 

-l>)2] 

-B" 
X 

= ( 

J —OO 

probability 

-V-ffix), 

X-(lff(x) 

fistribution f(x) and mean u. 

if X is discrete, and 

dx, if X is continuous. 

The 

root of the variance, er, is called the standard deviation of 

The quantity x — u in Definition 4.3 is called the deviation of an observation 
from its mean. Since these deviations are being squared and then averaged, a2 will 
be much smaller for a set of x values that are close to fi than it would be for a set 
of values that vary considerably from u. 

Example 4.8:1 Let the random variable X represent the number of automobiles that are used for 
official business purposes on any given workday. The probability distribution for 
company A [Figure 4.1(a)] is 

1 2 3 
f(x) | 0.3 0.4 0.3 

and for company B [Figure 4.1(b)] is 

0 1 2 3 

HxJ 0.2 0.1 0.3 0.3 0.1 

Show that the variance of the probability distribution for company B is greater 
than that of company A. 

Solution: For company A, we find that 

uA = E(X) = (1)(0.3) + (2)(0.4) + (3)(0.3) = 2.0, 

and then 

a\ = YJKX - 2)2 = (1 - 2)2(0.3) + (2 - 2)2(0.4) + (3 - 2)2(0.3) = 0.6. 
r = l 

For company B, we have 

uB = E(X) = (0)(0.2) + (1)(0.1) + (2)(0.3) + (3)(0.3) + (4)(0.1) = 2.0, 

and then 

er2B = £ > - 2?f{x) = (0 - 2)2(0.2) + (1 - 2)2(0.1) + (2 - 2)2(0.3) 
x=Q 

+ (3 - 2)2(0.3) + (4 - 2)2(0.1) = 1.6. 
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Clearly, the variance of the number of automobiles that are used for official business 

purposes is greater for company B than for company A. J 
An alternative and preferred formula for finding a2, which often simplifies the 

calculations, is stated in the following theorem. 

Theorem 4.2: The variance of a random variable X is 

a2 = E(X2) - ,i2. 

Proof: For the discrete case we can write 

o1 = ^ix-tx)*f(x) = Y,(x*-2ux + tj?)f(x) 
X X 

= Y, ,'2/(,') - 2/, £ xf(x) + „2 Y, fix). 
x x X 

Since p. = Ylxfix) by definition, and ]C/( X ) = 1 f° r an.Y discrete probability 
X X 

distribution, it follows that 

e x 2 = £ : r V M - , r = £ ( X 2 ) - , r . , 
x —* 

For the continuous case the proof is step by step the same, with summations 
replaced by integrations. 

Example 4.9:1 Let the random variable X represent the number of defective parts for a machine 
when 3 parts are sampled from a production line and tested. The following is the 
probability distribution of X, 

0 1 2 3 
fix) 

Using Theorem 4.2, calculate a 
Solution: First, we compute 

0.51 0.38 0.10 0.01 
2 

u = (0)(0.51) + (1)(0.38) - (2)(0.10) + (3)(0.01) = 0.61. 

Now 

E(X2) = (0)(0.51) - (1)(0.38) - (4)(0.10) J- (9)(0.01) = 0.87. 

Therefore, 

a2 = 0 . 8 7 - (0.61)2 = 0.4979. J 

Example 4.10:1 The weekly demand for Pepsi, in thousands of liters, from a local chain of efficiency 
stores, is a continuous random variable X having the probability density 

. f 2 ( , - - l ) , X<x<2, 
n ' [0, elsewhere. 

Find the mean and variance of X. 
Solution: r / r . „ f , . . . 5 

/i = E(X) = 2 j x(x- I) dx = - , 
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Theorem 4.3: 

and 

Therefore, 

E(X ! ) = 2 / 2 x (x l)dx=j. 

6 V 3 / 18 
At this point the variance or standard deviation only has meaning when we com

pare two or more distributions that have the same units of measurement. Therefore, 
we could compare the variances of the distributions of contents, measured in liters, 
for two companies bottling orange juice, and the larger value would indicate the 
company whose product is more variable or less uniform. It would not be mean
ingful to compare the variance of a distribution of heights to the variance of a 
distribution of aptitude scores. In Section 4.4 we show how the standard deviation 
can be used to describe a single distribution of observations. 

We shall now extend our concept of the variance of a random variable X to also 
include random variables related to X. For the random variable fir(X), the variance 
will be denoted by er2,A-, and is calculated by means of the following theorem. 

Let X be a random variable with probability distribution fix). The variance of 
the random variable giX) is 

oi(x) = E{[g(X) - ug{X)}
2} = 5 > ( z ) - ug{x))

2f(x) 
X 

if X is discrete, and 

/

oo 
\ffix) - ug{x)]

2f(x) dx 
•oo 

if X is continuous. 

Proof: Since giX) is itself a random variable with mean Mg(X) a s defined in Theorem 4.1, 
it follows from Definition 4.3 that 

°%(X) =E{\9{X)-fia(X))}' 

Now, applying Theorem 4.1 again to the random variable [g(X) — ug(Xy\2, the proof 

is complete. J 

Example 4.11:1 Calculate the variance of g(X) = 2X + 3, where X is a random variable with 
probability distribution 

a: 1 0 1 2 3 
f(x) I I I I -

J W I 4 8 2 8 
Solution: First let us find the mean of the random variable 2X + 3. According to Theorem 

4.1. 

M2X+3 - E(2X + 3) = Yi2x + 3 ) / ( x ) = 6-
x=0 

file:///ffix
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Now, using Theorem 4.3, we have 

4 v + a = E{[(2X + 3) - Wx+z]2} = E[(2X + 3 - 6)2] 
:i 

= E(4X2 - 12X + 9) = ]T(4ar2 - 12a: - 0)/(x) 
2?=() 

Example 4.12:1 Let X be a random variable having the density function given in Example 4.5 on 
page 111. Find the variance of the random variable g(X) = 4X + 3. 

Solution: In Example 4.5 we found that IM.\+3 = 8. Now, using Theorem 4.3, 

4 v + 3 = E{[(4X - 3) - 8]2} = E[(4X - 5)2] 

" (4s - 5)2^-ob: = - l (16a:4 - 40.-r3 + 25x2) da: = —. 
i 3 3 ,/-i 5 

If g(X.Y) = (X-(ix)(Y-uY). where /cA- = E(X) and / i v = E(Y), Definition 
4.2 yields an expected value called the covariance of X and Y, which we denote by 
(Txy or Cov(X, Y). 

Definition 4.4: Let X and Y be random variables with joint probability distribution f(x, y). The 
covariance of X and Y is 

trXY = E[(X - fi.x)(Y - uY)\ = Y X> ~ Mx)(|/ - %)/(*, v) 
x y 

if X and Y are discrete, and 

er.vv- = E[{X - us)(Y - fly)) = / / (;r - fix)(y - /%)/(£, y) dx dy 
.1 — oo J —oc 

if X and Y arc continuous. 

The covariance between two random variables is a measurement of the nature of 
the association between the two. If large values of X often result in large values of 
Y or small values of X result in small values of Y. positive X — fix will often result-
in positive Y — //.,- and negative A' — fi.x will often result in negative Y — fiY. Thus 
the product (X — fix)(Y — fiY) will tend to be positive. On the other hand, if large 
A' values often result in small Y values, the product (X — fi\)(Y — fiY) will tend 
to be negative. Thus the sign of the covariance indicates whether the relationship 
between two dependent random variables is positive or negative. When X and 
Y are statistically independent, it can be shown that the covariance is zero (see 
Corollary 4.5). The converse, however, is not generally true. Two variables may 
have zero covariance and still not be statistically independent. Note that the 
covariance only describes the linear relationship between two random variabilis. 
Therefore, if a covariance between X and Y is zero, X and Y may have a nonlinear 
relationship, which means that they are not necessarily independent. 

The alternative and preferred formula for aXY is stated by Theorem 4.4. 
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Theorem 4.4: The covariance of two random variables X and Y with means ux and uY, respec
tively, is given by 

O-XY =E(XY)- flXflY. 

Proof: For the discrete case we can write 

VXY -Y,12(x ~ flx^y ~ ^-)fix-- y) 
x y 

= Y YSxy ~ VxV - l'yx + MxMv)f(x, y) 
x y 

= YY xyfix> y) - /x-v Y Y vf(x>y) 
x y x y 

- Mv Y Y xffay}+iixfw Y Y f(x-- y)' 
x y x y 

Since 

ux = ^ .T/(a: , j / ) and uY = ^ 2 / / ( x . y ) 
X y 

by definition, and in addition 

x y 

for any joint discrete distribution, it follows that, 

aw- = E(XY) - fixuY - uYux + uxuY - E(XY) - uxuY. 

For the continuous case the proof is identical with summations replaced by inte
grals. J 

Example 4.13:1 Example 3.14 on page 92 describes a situation involving the number of blue refills 
X and the number of red refills Y. Two refills for a ballpoint pen are selected at 
random from a certain box, the following is the joint probability distributions. 

fix,y) 
0 

V i 
2 

gix) 

0 

28 
3 
14 
1 
28 
5 
14 

X 

1 
9 
28 
3 
14 

0 
15 
28 

2 
3 
28 

0 
0 
3 
28 

Kv) 
15 
28 
3 
7 
1 
28 1 

Find the covariance of X and Y. 
Solution: From Example 4.6, we see that E(XY) = 3/14. Now 

" « - 1 > < * > - <•» ( n ) + ( 1 ) (I)+<2> ( 1 ) 4 
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and 

p.Y = Y!M.'i) = (a) 
w=o 

+ (1) + (2) 
•2s 

Therefore, 

E(XY)-uxur = 
II 

9_ 

56' 

Example 4.14:1 The fraction X of male runners and the fraction Y of female runners who compete 
in marathon races arc described by the joint density function 

fix,!)) 
Sxy, 0 < y < x < 1, 
0, elsewhere1. 

Find the covariance of X and Y. 
Solution: We first compute the marginal density functions. They are 

4:r3, 0 < x < 1, 
0. elsewhere, 

and 

Hy 

9ix) 

_ / 4 y ( I - r ) , ( ) < / / < ! , 
(I. elsewhere. 

From the marginal density functions given above, wc compute 

ux = E(X] 4s dx = - , and (iy = / 4 y ( l - y ) dy = 
n Jo 15 

From the joint density functions given, we have 
-1 /• I 

E(XY) 8x'y dx dy= -. 

Then 

rXY = E(XY)-uxuY=-
8_\ _ _4_ 

•'V \15J ~ 225' J 
Although the covariance between two random variables does provide informa

tion regarding the nature of the relationship, the magnitude of Cxy does not indi
cate anything regarding the strength, of the relationship, since <TXY is not scale-free. 
Its magnitude will depend on the units measured for both X and Y. There is a 
scale-free version of the covariance called the correlat ion coefficient that is used 
widely in statistics. 

Definition 4.5: Let 
ox 

X and Y be ra 
and aY, respect. 

ldom 
vely. 

variables 
The corrc 

wii 
lat 

h covariance crvv ; 
ion coefficient of X 

0-X Y 

axaY 

md sta 
and Y 

ndai 
is 

d deviations 

It should be clear to the reader that pXY is free of the units of X and Y. The 
correlation coefficient satisfies the inequality — 1 < pXY < 1. It assumes a value of 
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Exercises 

zero when <TVV = 0. Where there is an exact linear dependency, say Y = a + bX, 
pxy ss 1 if I) > 0 and pxy = —1 if b < 0. (See Exercise 4.48.) The correlation 
coefficient is the subject of more discussion in Chapter 12, where we deal with 
linear regression. 

4 .33 L"se Definition 4.3 on page 116 to find the vari
ance of the random variable X of Exercise 4.7 on page 
113. 

4 .34 Let X be a random variable with the following 
probability distribution: 

a; 

fix) 
—2 
0.3 

3 
0.2 

5 
0.5 

Find the standard deviation of X. 

4.35 The random variable X, representing the num
ber of errors per 100 lines of software code, has the 
following probability distribution: 

2 3 4 5 6 

1W 0.01 0.25 0.4 0.3 0.04 

Using Theorem 4.2, find the variance of X. 

4.36 Suppose that the probabilities are 0.4. 0.3, 0.2, 
and 0.1, respectively, that 0, 1, 2. or 3 power failures 
will strike a certain subdivision in any given year. Find 
the mean and variance of the random variable X repre
senting the number of power failures striking this sub
division. 

4.37 A dealer's profit, in units of S5000, on a new 
automobile is a random variable X having the density 
function given in Exercise 4.12 on page 113. Find the 
variance of A". 

4.38 The proportion of people who respond to a cer
tain mail-order solicitation is a random variable X hav
ing the density function given in Exercise 4.14 on page 
113. Find the variance of X. 

4.39 The total number of hours, in units of 100 hours, 
that a family runs a vacuum cleaner over a period of 
one year is a random variable X having the density 
function given in Exercise 4.15 on page 114. Find the 
variance of X. 

4.40 Referring to Exercise 4.14 on page 113, find 
Ta(X) for the function g(X) = 3A2 + 4. 

4 .41 Find the standard deviation of the random vari
able g(X) = (2X + l ) 2 in Exercise 4.17 on page 114. 

4.42 Using the results of Exercise 4.21 on page 114, 

find the variance of g(X) = A'2, where X is a random 
variable having the density function given in Exercise: 
4.12 on page 113, 

4.43 The length of time, in minutes, for an airplane 
to obtain clearance for take off at a certain airport is a 
random variable Y = 3X — 2, where X has the density 
function 

/(*) - {J 
-x/4 x > 0 

elsewhere. 

Find the mean and variance of the random variable Y. 

4.44 Find the covariance of the random variables A' 
and Y of Exercise 3.39 on page 101. 

4.45 Find the covariance of the random variables X 
and Y of Exercise 3.49 on page 102. 

4.46 Find the covariance of the random variables A' 
and Y of Exercise 3.44 on page 102. 

4.47 Referring to the random variables whose joint 
density function is given in Exercise 3.40 on page 101, 
find the covariance of X and Y. 

4.48 Given a random variable A, with standard de
viation <T,Y and a random variable Y = a + bX, show 
that if b < 0, the correlation coefficient pXY = —1, and 
if b > 0, f>xv = 1. 

4.49 Consider the situation in Exercise 4.32 on page 
115. The distribution of the number of imperfections 
per 10 meters of synthetic failure is given by 

x 1 0 1 2 3 4 
f{x) I 0.41 037 0T6 (105 OuT~ 

Find the variance and standard deviation of the num
ber of imperfections. 

4.50 On a laboratory assignment, if the equipment is 
working, the density function of the observed outcome, 
X. is 

Find the variance and standard deviation of X. 

(2(1 -x), 0 < x < 1, 
otherwise. 
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4.3 Means and Variances of Linear Combinations of 
Random Variables 

We now develop some useful properties that will simplify the calculations of means 
and variances of random variables that appear in later chapters. These properties 
will permit us to deal with expectations in terms of other parameters that are 
either known or are easily computed. All the results that we present here are valid 
for both discrete and continuous random variables. Proofs are given only for the 
continuous case. We begin with a theorem and two corollaries that should be, 
intuitively, reasonable to the reader. 

Theorem 4.5: If a and b are constants, then 

E(aX + b) = aEiX) + b. 

Proof: By the definition of an expected value, 

/

OO /-OC i>00 

(ax + b)f(x) dx = a xf(x) dx + b I f(x) dx. 
-oo J—oc J—oo 

The first integral on the right is E(X) and the second integral equals 1. Therefore, 
we have 

E(aX + b) = aE(X) + b. J 

Corollary 4 .1 : Setting a = 0, we see that E(b) = b. 

Corollary 4.2: Setting 6 = 0, we see that E(aX) = aE(X). 

Example 4.15:1 Applying Theorem 4.5 to the discrete random variable f(X) = 2X — 1, rework 
Example 4.4. 

Solution: According to Theorem 4.5, we can write 

E(2X - 1) = 2E(X) - 1. 

Now 

fi = E(X) = Yxf{x) 

= (4)(iL) + ( 5 )(l) + (6)(l)+(r)(l) + ( 8 )Q)+ ( 9 )( i ) . 41_ 
6 ' 

Therefore, 

as before. 

M2X-1 = (2) (j) - 1 = $12.67, 
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Example 4.16:1 Applying Theorem 4.5 to the continuous random variable g(X) = 4X + 3, rework 
Example 4.5. 

Solution: In Example 4.5 we may use Theorem 4.5 to write 

Now 

Therefore, 

£(4X + 3) = 4E(X) + 3. 

"^-/!'(£)*-£ J*-i 

E(4X + S) = (4)| j ] + 3 = S, 

as before. 

Thmrsm 4.fi: The expected value of the sum or difference of two or more functions of a random 
variable X is the sum or difference of the expected values of the functions. That 
is, 

E[g(X) ± h(X)} = E[g(X)\ ± E[h(X)\. 

Proof: By definition, 

/

oo 
[g(x) ± h(x)]f(x) dx 

-OO 

/

OO fOG 

g(x)f(x)dx± h(x)f(x)dx 
•OO J — DC 

= E\g(X)} ± E[h(X)}. 

Example 4.17:1 Let X be a random variable with probability distribution as follows: 
0 l " 2 3 

~i r fix) 0 
Find the expected value of Y = (X — l)2. 

Solution: Applying Theorem 4.6 to the function Y = (X — l)2 , we can write 

E\(X - l)2] = E(X2 - 2X + 1) = E(X2) - 2E(X) + E(l). 

From Corollary 4.1, E(l) = 1, and by direct computation, 

EiX) = (0) ( - (1) { - ) +(2)(0) + (3) 

and 

E(X2) = (0){ ^)-i(i) G) + (4)(0) + (9) 

© = '' 



4.3 Means and Variances of Linear Combinations of Random Variables 12? 

Hence 

£ [ ( X - 1 ) 2 ] = 2 - (2 ) (1 ) + 1 = 1. 

Example 4.18:1 The weekly demand for a certain drink, in thousands of liters, at a chain of 
convenience stores is a continuous random variable g(X) = X + X — 2, where X 
has the density function 

/ ( * : 
2 ( 1 - 1 } , 1 < x < 2, 
0, elsewhere. 

Find the expected value for the weekly demand of the drink. 
Solution: By Theorem 4.6. we write 

E(X2 + X - 2) = E(X2) + E(X) - E(2). 

From Corollary 4.1. .£7(2) = 2. and by direct integration, 

E(X\ 2 s { s - l ) d.:> 
- > ! > -

'•') dx = -, 

and 

Now 

E(X2) = I 2.r'(x - 1) dx = 2 / ( s 3 - .r2) ds = y . 

so that the average weekly demand for the drink from this chain of eflic:iency stores 
is 2500 lifers. J 

Suppose that we have two random variables X and Y with joint probability dis
tribution f(x,y). Two additional properties that will be very useful in succeeding 
chapters involve the expected values of the sum, difference, and product of these 
two random variables. First, however, let us prove a theorem on the expected 
value of the sum or difference of functions of the given variables. This, of course, 
is merely an extension of Theorem 4.6, 

Theorem 4.7: The expected value of the sum or difference of two or more functions of the 
random variables X and Y is the sum or difference of the expected values of the 
functions. That is, 

E[g(X, Y) ± h(X, Y)] = E[g(X, Y)} ± E\h(X, Y)}. 

Proof: By Definition 4.2. 

E[g(X, Y) ± h(X, Y)]= f j [g(x. y) ± h(x, y)]f{x, y) dx dy 

/

OC /*00 /'OC if*OG 

/ g{x,y)f{x,y) dx dy± I Ii.(x,y)f(x,y)dxdy 
•OC >i — CO iZ-flOt/-

=E[g(X,Y)]±E[h(X,Y)}. 
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Corollary 4.3: Setting g(X, Y) = g(X) and h(X, Y) = h(Y), we see that 

E[g(X) ±h(Y)) = E[g(X)} ± E{h(Y)}. 

Corollary 4.4: Setting g(X, Y) = X and h[X, Y) - Y, we see that 

E[X ± Y] = E[X] ± E[Y\. 

If X represents the daily production of some item from machine A and Y the 
daily production of the same kind of item from machine B, then X + Y represents 
the total number of items produced daily by both machines. Corollary 4.4 states 
that the average daily production for both machines is equal to the sum of the 
average daily production of each machine. 

Theorem 4.8: Let X and Y be two independent random variables. Then 

E(XY) m E(X)E(Y). 

Proof: By Definition 4.2, 

/

OO /"OO 
/ xyf(x,y) dx dy. 

•oc J—oc 

Since X and Y are independent, we may write 

f(x,y) =g(x)h(y), 

where g(x) and h(y) are the marginal distributions of X and Y, respectively. Hence 

/

OO /-OO /"OO /.so 

/ xyg(x)h(y) dx dy = / xg(x) dx I yh(y) 
•oo J—oo J—oc J—oc 

dy 

= E(X)E(Y). J 

Theorem 4.8 can be illustrated for discrete variables by considering the exper
iment of tossing a green die and a red die. Let the random variable X represent 
the outcome on the green die and the random variable Y represent the outcome 
on the red die. Then XY represents the product of the numbers that occur on the 
pair of dice. In the long run, the average of the products of the numbers is equal 
to the product of the average number that occurs on the green die and the average 
number that occurs on the red die. 

Corollary 4.5: Let X and Y be two independent random variables. Then crXY = 0. 

Proof: The proof can be seen by using Theorems 4.4 and 4.8. 

Example 4.19:1 In producing gallium-arsenide microchips, it is known that the ratio between 
gallium and arsenide is independent of producing a high percentage of workable 
wafers, which are the main components of microchips. Let X denote the ratio of 
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gallium to arsenide and Y denote the percentage of workable microwafers retrieved 
during a 1-hour period. X and Y are independent random variables with the joint 
density being known as 

/ ( a , , ) = J * ^ r A 0 < x < 2 , 0 < y < l , 
10, elsewhere. 

Illustrate that E(XY) = E(X)E(Y), as Theorem 4.8 suggests. 
Solution: By definition. 

E(XY) = [ f xyf(x,y) dx dy = f f X y ( 1 + 3 y 1 dx dy 
Jo Jo Jo Jo 4 

Jo i z ;c=o JO 

n l 2 y ( l + 3ya) 5 
3 V 6 ! 

E(X) = f [ xf(x,y) dxdy= f f ^ ^ ^ dx dy 
Jo Jo Jo Jo 4 

Jo L* x = 0 JO 

"l2(l + 3y2)A 4 

~ " 5 — d y = s ' 

E(Y) = f !\fix,y) dx dy = f1 f s ^ + V ) dx dy 
Jo Jo Jo Jo 4 

fl x2-> x2y(l + 3y2) 
8 

dy= / 
x=0 JO 

,y{14^*v-l 
Hence 

«xwn-(J)(|)-|-«xy). _, 
We conclude this section by proving two theorems that are useful for calculating 

variances or standard deviations. 

Theorem 4.9: If a and b are constants, then 

°lx+b = «2** = <*2*2. 

Proof: By definition, 

Now 

TaX+6 = £?{[(aJC + b) - uaX+b}
2}. 

P-aX+b = E(aX + b) = ap + b 

by Theorem 4.5. Therefore, 

o-lx+b = E[(aX +b-au- b)2} = a2E[(X - p)2) = a2cr2. 
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Corollary 4.fi: Setting a = 1, we see that 

2. . _ „i = ni 
°~x+b = at = a* 

Corollary 4.7: Setting b = 0, we see that 

°lx = «M ~ a2<72. 

Corollary 4.6 states that the variance is unchanged if a constant is added to 
or subtracted from a random variable. The addition or subtraction of a constant 
simply shifts the values of X to the right or to the left but does not change their 
variability. However, if a random variable is multiplied or divided by a constant, 
then Corollary 4.7 states that the variance is multiplied or divided by the square 
of the constant. 

Theorem 4.10: If X and Y are random variables with joint probability distribution f(x, y), then 

alx+bY = «2<7x + h2(Tl + 2abaXY. 

Proof: By definition, 

Now 

°lx+bY = E{[(aX + bY) - p.ax+l>Y}2}. 

PaX+bY = E(oX + bY) = aE(X) + bE(Y) = apx + bpY, 

by using Corollary 4.4 followed by Corollary 4.2. Therefore, 

°lx+bY = E{[a(X -px)+ b(Y - py)}
2} 

= a2E[(X - px)
2\ + b2E[(Y - pYf] + 2abE[(X - px)(Y - pY)} 

= a2 a2 + b2al + 2abaXY. 

Corollary 4.8; If X and Y are independent random variables, then 

<r2x+6y = a 2 4 + &2<4-

The result stated in Corollary 4.8 is obtained from Theorem 4.10 by invoking 
Corollarv 4.5. 

Corollary 4.9: If X and Y are independent random variables, then 
2 2 2 

°~aX-bY = ° <*x 
,2 _ „ 2 _ 2 + b 2 ( r 2 

Corollary 4.9 follows by replacing b by —b in Corollary 4.8. Generalizing to a 
linear combination of n independent random variables, we write 
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Corollary 4.10: If X i , X 2 , . . . , X n are independent random variables, then 

<41Xi+a2X2+..+anXn = 01*4, + al°X3 + ••• + <lloXn 

Example 4.20:1 If A' and Y are random variables with variances ox = 2, o2 = 4, and covariance 
CT.VV = - 2 , find the variance of the random variable Z = 3X - 4Y + 8. 

Solution: 
°"z ~ ffzx-4Y+e = °3X-4V (by Theorem 4.9) 

= 9er2 + 16c72 - 24o\x-v (by Theorem 4.10) 

= (9) (2)+( lG)(4) - (24) ( -2) = 130. 

Example 4.21:1 Let A' and Y denote the amount of two different types of impurities in a batch 
of a certain chemical product. Suppose that X and Y are independent random 
variables with variances a\ = 2 arid aY = 3. Find the variance of the random 
variable Z = 3X - 21' + 5. 

Solution: 
= °fx-2Y+5 = °3X-2Y ihY Theorem 4.9) 

= 9cr2 + Aa'l (by Corollary 4.9) 

= (9)(2) + (4)(3)=30. 

What if the Function Is Nonlinear? 
In that which has preceded this section, we deal with properties of linear functions 
of random variables for very important reasons. From Chapter 8 through 15, 
much of what, is discussed and illustrated are practical and real world problems 
in which the analyst is constructing a linear mode l to describe a data set and 
thus to describe or explain the behavior of a certain scientific phenomenon. Thus, 
it is natural that expected values and variances of linear combinations of random 
variables are encountered. However, there are situations in which properties of 
nonlinear functions of random variables become important. Certainly there are 
many scientific: phenomena that are nonlinear and certainly statistical modeling 
using nonlinear functions is very important. In fact, in Chapter 12, we deal with 
the modeling of what have become certain standard nonlinear models. Indeed, 
even a simple function of random variables, say Z = X/Y, occurs quite frequently 
in practice and yet unlike the rules given earlier in this section for the expected 
value of linear combinations of random variables, there is no simple general rule. 
For example, 

E{Z) = E(X/Y) * E(X)/E(Y), 

except in very special circumstances. 
The material provided by Theorem 4.5 through Theorem 4.10 and the various 

corollaries are extremely useful in that there are no restrictions on the form of the 
density or probability functions, apart from the property of independence when 
it is required as in the corollaries following Theorem 4.10. To illustrate, consider 
Example 4.21; the variance of Z = 3A' - 2Y -f- 5 does not require restrictions on 
the distributions of the amounts X and Y of the two types of impurities. Only 
independence between X and Y is required. Now, we do have at our disposal 
the capacity to find pg{x) a n c ' al(X) ^or a m / f u n c t i o n <?(") fr°m m ' s t principles 
established in Theorem 4.1 and 4.3, where it, is assumed that the corresponding 
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distribution f(x) is known. Exercises 4.40, 4.41, and 4.42, among others, illustrate 
the use of these theorems. Thus, if the function g(x) is nonlinear and the density 
function (or probability function in the discrete case) is known, pg(X) a n d o~2

g(X) 
can be evaluated exactly. But, like the rules given for linear combinations, are there 
rules for nonlinear functions that can be used when the form of the distribution of 
the pertinent random variables is not known? 

In general, suppose X is a random variable and Y = gix). The general solu
tion for E(Y) or Var(Y) can be difficult and depends on the complexity of the 
function g(-). However, there are approximations available that depend on a linear 
approximation of the function g(x). For example, suppose we denote E(X) as p 
and Var(X) = o2. Then a Taylor series approximation of g(x) around X = px 

gives 

9ix)=9iux)-r
d-3{x) 

dx 
[x-px) + 

d2gix) 

x=nx 
dx2 

ix-Px)2 

+ •• 
=Mx 

As a result, if we truncate with the linear term and take the expected value of both 
sides, we obtain E[g(X)] « gipx), which is certainly intuitive and in some cases 
gives a reasonable approximation. However, if we include the second-order term 
of the Taylor series, then we have a second order adjustment for this first-order 
approximation as 

Approximation of 
E[9iX)} E{g(X)}K9(px) + 

02g(x) 
dx2 

=fx 
2 

Example 4.22:1 Given the random variable X with mean px and variance o\, give the second-order 
approximation to E(ex). 

Solution: Since %• = ex and ^ = ex, we obtain E(ex) « e>lx (1 + a2.(2). J 

Similarly, we can develop an approximation for Var[ej(s)] by taking the variance 
of both sides of the first order Taylor series expansion of g(x). 

Approximation of 
Var[g(x)\ Var[g(X)\ 

dx 
=Mx 

Example 4.23:1 Given the random variable X as in Example 4.22, give an approximate formula for 
Var[g(x)]. 

Solution: Again %- = ex; thus Var(X) « e2"-vc72 . J 
These approximations can be extended to nonlinear functions of more than one 

random variable. 
Given a set of independent random variables Xi, X 2 , . . . , X/t with means px,p2,...,pk 

and variances o\,G2,...,a\, respectively, let 

Y = h(XuX2,...,Xk) 

be a nonlinear function; then the following are approximations for E(Y) and 
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Var(Y): 

E(Y)tok(pup2,...,pk) + YT 

Var(Y) ^Yr 

i=\ 

02h(xi,x2,...,xk) 
Ox2 

'x,=Hi. l<i<k 

rdli(xl.x2,...,xk)~" 

; = 1 
dx, 0-7 • 

x,=;t i , l<i<fc 

Example 4.24:1 Consider two independent random variables, X and Z. with means px, pz. and 
variances a2 and of,, respectively. Consider a random variable 

Y = X/Z. 

Give approximations for E(Y) and Var(Y). 
Solution: For E(Y), we must use §f = \ and §f = - f i - Thus 

e92</ c92jr 2.x-
- - ^ = 0, and —— = — 
ox1 oz1 zA 

As a result, 

E(Y) Its , Mx Mx 

Uz l4 l*z V Ml/ 

and the approximation for the variance of Y is given by 

1 ,4 1 

Mi /4 Ml V Ml 

4.4 Chebyshev 's T h e o r e m 

In Section 4.2 we stated that the variance of a random variable tells us something 
about the variability of the observations about the mean. If a random variable 
has a small variance or standard deviation, we would expect most of the values to 
be grouped around the mean. Therefore, the probability' that a random variable 
assumes a value within a certain interval about the mean is greater than for a 
similar random variable with a larger standard deviation. If we think of probability 
in terms of area, we would expect a continuous distribution with a large value of 
a to indicate a greater variability, and therefore we should expect the area to be 
more spread out, as in Figure 4.2(a). However, a small standard deviation should 
have most of its area close to p, as in Figure 4.2(b). 

Wc can argue the same way for a discrete distribution. The area in the proba
bility histogram in Figure 4.3(b) is spread out much more than that Figure 4.3(a) 
indicating a more variable distribution of measurements or outcomes. 

The Russian mathematician P. L. Chebyshev (1821-1894) discovered that the 
fraction of the area between any two values symmetric about the mean is related 
to the standard deviation. Since the area under a probability distribution curve 
or in a probability histogram adds to 1, the area between any two numbers is the 
probability of the random variable assuming a value between these numbers. 
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M 
(b) 

Figure 4.2: Variability of continuous observations about the mean. 

The following theorem, due to Chebyshev, gives a conservative estimate of the 
probability that a, random variable assumes a value within /,: standard deviations of 
its mean for any real number /.:. We shall provide: the proof only for the continuous 
case, leaving the discrete case as an exercise. 

-Theorem 4,11; (Chebyshev 's Theorem) The probability that any random variable X will 
assume a value within k standard deviations of the mean is at least 1 — 1/fc2. 
That is, 

P(p - ko < X < \i + ko) > 1 -
1 

(a) 
M 
(b) 

Figure 4.3: Variability of discrete observations about the: mean. 
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Proof: By our previous definition of the variance of A', we can write 

a2=E[(X-p)2]= f ° ( s - M ) V ( s ) d s 
J — OC 

/•// —fc<7 /•/!-)-riTT 
= / {x - p)2f(x) dx + / (s - ,y)2/(s) ds 

J — OC .I/i — krT 

+ I (x - pff(x) dx 
J/,+ 1.(7 

(x - p)2f(x) dx + (x- u)2f(x) dx, 
•oc J/i + kir 

since the second of the three integrals is nonnegative. Now, since |s — fi\ > ka 
wherever s > p + ka or x < p - ka, we have (x - p)2 > k2a2 in both remaining 
integrals. It follows that 

/

'fi — ktr />oo 

A-V/(.r) dx + / k2a2f{x) dx, 
-oo Jfi+ko and that 

Hence 

/ 

fi — ka rOC -t 

f(x)dx+ f(x)dx<-, 
J/i+ka '> 

r/t+ko | 
P(p - ka < X < p. + ka) = / f(x) dx > 1 

A : 2 ' 

and the theorem is established. J 
For A: = 2 the theorem states that the random variable X has a probability of 

at least 1 — 1/22 = 3/4 of falling within two standard deviations of the mean. That 
is, three-fourths or more of the observations of any distribution lie in the interval 
p ± 2a. Similarly, the theorem says that at least eight-ninths of the observations 
of any distribution fall in the interval p ± 3a. 

Solution: 

Example 4.25:1 A random variable A' has a mean p = 8, a variance CT2 = 9, and an unknown 
probability distribution, Find 

(a) P(-4 < X < 20). 

(b) P ( ] X - 8 | > 6 ) . 

(a) P ( - 4 < X < 20) = P[8 - (4) (3) < X < 8 + (4)(3)] > if. 

(b) P( |X - 8| > 6) = 1 - P(\X ~ 8 | < 6) « 1 - P ( - 6 < X - 8 < (i) 

= I - P[8 - (2)(3) < X < 8 + (2)(3)] < j . 

Chebyshev's theorem holds for any distribution of observations and, for this 
reason, the results are usually weak. The value given by the theorem is a lower 
bound only. That is, wc know that the probability of a random variable falling 
within two standard deviations of the mean can be no less than 3/4, but we never 
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Exercises 

know how much more it might actually be. Only when the probability distribution 
is known can we determine exact probabilities. For this reason we call the theorem 
a distribution-free result. When specific: distributions are assumed as in future 
chapters, the results will be less conservative. The use of Chebyshevs theorem is 
relegated to situations where the form of the distribution is unknown. 

4.51 Referring to Exercise 4.35 on page 122, find the 
mean and variance of the discrete random variable 
Z = 3X — 2, when X represents the number of errors 
per 100 lines of code. 

4.52 Using Theorems 4.5 and 4.9, find the mean and 
variance of the random variable Z = 5A + 3, where 
X has the probability distribution of Exercise 4.30 on 
page 122. 

4.53 Suppose that a grocery store purchases 5 car
tons of skim milk at the wholesale price of $1.20 per 
carton and retails the milk at $1.65 per carton. After 
the expiration date, the unsold milk is removed from 
the shelf and the grocer receives a credit from the dis
tributor equal to three-fourths of the wholesale price. 
If the probability distribution of the random variable 
X, the number of cartons that are sold from this lot, 
is 

x 

fix) 
0 
l 

IS 

1 
-2. 
15 

2 
•2 
15 

3 
a 

"ir> 

4 
4 
IS 

5 

15 

find the expected profit. 

4.54 Repeat Exercise 4.43 on page 122 by applying 
Theorems 4.5 and 4.9. 

4.55 Let X be a random variable with the following 
probability distribution: 

/(«) 
- 3 

Find E(X) and E(X2) and then, 
evaluate £((2X + 1)2]. 

using these values, 

4.57 If a random variable X is defined such that 

E[(X - I)2] = 10, E[(X - 2)2] = 6, 

find p, and a . 

4.58 Suppose that X and Y are independent random 
variables having the joint probability distribution 

fix,y) 
l 

V 3 
5 

X 

2 4 
0.10 0.15 
0.20 0.30 
0.10 0.15 

Find 

(a) E(2X - ZY); 

(b) E(XY). 

4.59 Use Theorem 4.7 to evaluate £ (2XY 2 - X 2 K) 
for the joint probability distribution shown in Table 
3.1 on page 92. 

4.60 Seventy new jobs are opening up at an automo
bile manufacturing plant, but 1000 applicants show up 
for the 70 positions. To select the best 70 from among 
the applicants, the company gives a test that covers 
mechanical skill, manual dexterity, and mathematical 
ability. The mean grade on this test turns out to be 
60, and the scores have a standard deviation 6. Can a 
person who has an 84 score count on getting one of the 
jobs? [Hint Use Chebyshev's theorem.] Assume that 
the distribution is symmetric about the mean. 

4.56 The total time, measured in units of 100 hours, 
that a teenager runs her stereo set over a period of one 
year is a continuous random variable A that has the 
density function 

!

x, 0 < x < 1, 

2 - x, 1 < x < 2, 
0, elsewhere. 

Use Theorem 4.6 to evaluate the mean of the random 
variable Y = 60X~ -f- 39X, where Y is equal to the 
number of kilowatt hours expended annually. 

4.61 An electrical firm manufactures a 100-watt light 
bulb, which, according to specifications written on the 
package, has a mean life of 900 hours with a standard 
deviation of 50 hours. At most, what percentage of 
tfie bulbs fail to last even 700 hours? Assume that the 
distribution is symmetric about the mean. 

4.62 A local company manufactures telephone wire. 
The average length of the wire is 52 inches with a stan
dard deviation of 6.5 inches. At most, what percent
age of the: telephone wire from this company exceeds 
71.5 inches? Assume that the distribution is symmetric 
about the mean. 
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4.63 Suppose that you roll a fair 10-sided die 
( 0 , 1 , 2 , . . . , 9) 500 times. Using Chebyshev's theorem, 
compute the probability that the sample mean, X, is 
between 4 and 5. 

4.64 If X and Y are independent random variables 
with variances a 5 and at = 3. find the variance 
of the random variable Z = - 2 X + 4Y - 3. 

4 .65 Repeat Exercise 4.64 if X and Y are not inde
pendent and aXy = 1. 

4.66 A random variable X has a mean p ~ 12, a vari
ance a2 = 9, and an unknown probability distribution. 
Using Chebyshev's theorem, estimate 
(a) P(6 < X < 18); 
(b) P(3 < X < 21). 

4.67 A random variable X has a mean p = 10 and a 
variance a2 = 4. Using Chebyshev's theorem, find 
(a) P(\X - 10| > 3); 
( b ) P ( | X - 1 0 | < 3 ) ; 
(c) P(b < X < 15); 
(d) the value of the constant c such that 

P(\X - 10| > c) < 0.04. 

4.68 Compute P(p - 2er < X < p, + 2a), where X 
has the density function 

fix) 
f6:r(l -x), 0 < a ; < l , 

elsewhere 

and compare with the result given in Chebyshev's the
orem. 

4.69 Let X represent the number that occurs when a 
red die is tossed and Y the number that occurs when 
a green die is tossed. Find 
(a)E(X + Y); 
(b) E(X - Y); 
(c) E(XY). 

4.70 Suppose that X and Y are independent random 
variables with probability densities and 

9{x) = / £ . x>2 
\ 0 , elsew! elsewhere, 

and 

Find the expected value of Z = XY 

< 2 / < 1, 
elsewhere. 

4.71 
by 

If the joint density function of X and Y is given 

fix,y) 
ix + 2y), 0<x < 1, 

elsewhere. 
K V < 2, 

find the expected value of g(X, Y) = ys + X2Y. 

4.72 Let X represent the number that occurs when a 
green die is tossed and Y the number that occurs when 
a red die is tossed. Find the variance of the random 
variable 
(a) 2X - Y; 

(b) X + 3 F - 5. 

4.73 Consider a random variable X with density 
function 

10, elsewhere. 

(a) Find p = E(X) and a2 = E[(X - p)2]. 

(b) Demonstrate that Chebyshev's theorem holds for 
k = 2 and k = 3. 

4 .74 The power P in watts which is dissipated in an 
electric circuit with resistance R is known to be given 
by P = I2R, where / is current in amperes and R is a 
fixed constant at 50 ohms. However, / is a random vari
able with pj = 15 amperes and a2 = 0.03 amperes2. 
Give numerical approximations to the mean and vari
ance of the power P. 

4.75 Consider Review Exercise 3.79 on page 105. The 
random variables X and V represent the number of ve
hicles that arrive at two separate street corners during 
a certain 2-minute period in the day. The joint distri
bution is 

fix,y) - 4{x+y) • 1 6 , 

for x = 0 , 1 , 2 , . . . , and y = 0 , 1 , 2 , . . . . 
(a) Give E(X), E(Y), Var(X), and Var(Y). 
(b) Consider Z = X + Y, the sum of the two. 

E(Z) and Var(Z). 
Find 

4.76 Consider Review Exercise 3.66 on page 104. 
There are two service lines. The random variables X 
and Y are the proportion of time that line 1 and line 
2 are in use respectively. The joint probability density 
function for (X, Y) is given by 

fiz,y) \o 
Ux2 + y2), 0<x,y< 1, 

elsewhere. 
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(a) Determine whether or not X and Y are indepen
dent. 

(b) It is of interest to know something about, the pro
portion of Z = X 4- Y. the sum of the two propor
tions. Find E(X-rY). Also find E(XY). 

(c) Find Var(X) , Var(Y), and Cov(X.Y). 

(d) Find Var(X + Y). 

4.77 The length of time Y in minutes required to gen
erate a human reflex to tear gas has density function 

fiy) '{I 
-v/4 0 < y < oc, 

elsewhere. 

(a) What is the mean time to reflex? 

(b) Find E(Y2) and Var(Y). 

4.78 A manufacturing company has developed a fuel-
efficient machine for cleaning carpet because it delivers 
carpet cleaner so rapidly. Of interest is a random vari
able Y, the amount in gallons per minute delivered. It 
is known that the density function is given by 

fiy) - J 1 - 7 

\ 0 , el 

< >J < 8, 
elsewhere. 

(a) Sketch the density function. 

(b) Give E(Y), E(Y2), and Var(Y). 

4.79 For the situation in Exercise 4.78, compute 
E(e' ) using Theorem 4.1, that is, by using 

E(eY)= j\*f(y)dy. 

Then compute £(eY ) by not using f(y), but rather by 
using the second-order adjustment to the first-order 
approximation of E(eY). Comment. 

4.80 Consider again the situation of Exercise 4.78. It 
is required to find Var(eY). Use Theorems 4.2 and 
4.3 and define Z = eY. Thus, use the conditions of 
Exercise 4.79 to find 

Var(Z) E(Z2) [E(Z)f 

Then do it by not using f(y) but rather use the first 
order Taylor series approximation to Var(e'1 ). Com
ment! 

Review Exercises 

4.81 Prove Chebyshev's theorem when X is a discrete 
random variable. 

4.82 Find the covariance of the random variables X 
and Y having the joint, probability density function. 

f(xv)-tx + y' °<x<hO<y 
nX,y,~\Q, elsewhere. 

< 1, 

4.83 Referring to the random variables whose joint 
probability density function is given in Exercise 3.47 
on page 102, find the average amount of kerosene left 
in the tank at the end of the day. 

4.84 Assume the length X in minutes of a particu
lar type of telephone conversation is a random variable 
with probability density function 

/(.)-{£ . I / 5 x > 0, 
elsewhere. 

(a) Determine the mean length JE(X) of this type of 
telephone conversation. 

(b) Find the variance and standard deviation of X. 

(c) Find E[(X + 5)2]. 

4.85 Referring to the random variables whose joint 
density function is given in Exercise 3.41 on page 101, 
find the covariance between the weight of the creams 
and the weight of the toffees in these boxes of choco
lates. 

4.86 Referring to the random variables whose joint 
probability density function is given in Exercise 3.41 
on page 101, find the expected weight for the sum of 
the creams and toffees if one purchased a box of these 
chocolates. 

4.87 Suppose it is known that the life X of a partic
ular compressor in hours has the density function 

fix) {uoo 
0, 

' ^ 9 0 0 , a : > 0 , 
elsewhere. 

(a) Find the mean life of the compressor. 

(b) F i n d £ ( X 2 ) . 
(c) Find the variance and standard deviation of the 

random variable X. 
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4.88 Referring to the random variables whose joint 
density function is given in Exercise 3.40 on page 101, 
(a) find px and fiy; 

(b) find E[(X 4- V)/2], 

4.89 Show that Cov(aX,by) = ab Cov(X,V). 

4.90 Consider the density function of the Review Ex
ercise 4.87. Demonstrate that Chebyshev's theorem 
holds for k. = 2 and k = 3. 

4.91 Consider the joint density function 

'm, x>2,0<y<l, 
f(x,y) {? elsewhere. 

Compute the correlation coefficient pXY. 

4.92 Consider random variables X and Y of Exercise 
4.65 on page 135. Compute pXY. 

4.93 A dealer's profit in units of $5000 on a new auto
mobile is a random variable A" having density function 

fix {I 
2(1 -x), 0 < . T < 1 , 

elsewhere. 

(a) Find the variance of the dealer's profit. 
(b) Demonstrate that Chebyshev's inequality holds for 

k = 2 with the density function above. 
(c) What is the probability that the profit exceeds 

$500? 

4.94 Consider Exercise 4.10 page 113. Can it, be said 
that the grades given by the two experts are indepen
dent? Explain why or why not. 

4 .95 A company's marketing and accounting depart
ments have determined that if the company markets 
its newly developed product, the contribution of the 
product to the firm's profit during the next 6 months 
is described by the following: 

Profit Contribution Probability 
-85,000 (loss) 0.2 
$10,000 0.5 
$30,000 0.3 

What is the company's expected profit? 

4.96 An important system acts in support of a vehi
cle in our space program. A single crucial component 
works only 85% of the time. In order to enhance the 
reliability of the system, it is decided that 3 compo
nents will be installed in parallel such that the system 
fails only if they all fail. Assume the components act 
independently and that they are equivalent in the sense 

that all 3 of them have an 85% success rate. Consider 
the random variable X as the number of components 
out of 3 that fail. 
(a) Write out a probability function for the random 

variable X. 
(b) What is E(X) (i.e., the mean number of compo

nents out of 3 that fail)? 
(c) What is Var(X)? 

(d) What is the probability that the entire system is 
successful? 

(e) What is the probability that the system fails? 

(f) If the desire is to have the system be successful 
with probability 0.99, are three components suffi
cient? If not, how many are required? 

4.97 In business it is important to plan and carry on 
research in order to anticipate what will occur at the 
end of the year. Research suggests that the profit (loss) 
spectrum is as follows with corresponding probabilities. 

Profit Probability 
-$15,000 

SO 
$15,000 
S25,000 
$40,000 
$50,000 

$100,000 
8150,000 
$200,000 

0.05 
0.15 
0.15 
0.30 
0.15 
0.10 
0.05 
0.03 
0.02 

(a) What is the expected profit? 
(b) Give the standard deviation of the profit. 

4.98 It is known through data collection and consid
erable research that the amount of time in seconds that. 
a certain employee of a company is late for work is a 
random variable X with density function 

fix) = lf^ (502 - x2), - 5 0 < x < 50, 

elsewhere. 

In other words, he is not only slightly late at times, 
but also can be early to work. 
(a) Find the expected value of the time in seconds that 

he: is late. 
(b) Find E(X2). 

(c) What, is the standard deviation of the time he is 
late? 

4.99 A delivery truck travels from point A to point B 
and back using the same route each clay. There are four 
traffic lights on the route. Let Xi denote the number 
of red lights the truck encounters going from A to B 
and X2 denote the number encountered on the return 
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trip. Data collected over a long period suggest that the 
given by joint probability 

XL 

0 
1 
2 
3 
4 

disl 

0 
.01 
.03 
.03 
.02 
.01 

ribution for 

1 
.01 
.05 
.11 
.07 
.06 

X2 

2 

.03 

.08 

.15 

.10 

.(),'! 

( X i . A , ) is. 

3 4 
.07 .01 
.03 .02 
.01 .01 
.03 .01 
.01 .01 

(a) Give the marginal density of A'i. 
(b) Give the marginal density of X2. 
(c) Give the conditional density distribution of A'i 

given A'J = 3. 

(d) Give E(Xi). 
fc) Give E(X2). 

(f) Give E(X\\Xz = 3 ) . 
(g) Give the standard deviation of Xt. 

4.100 A convenience store has two separate locations 
in the store where customers can be: checked out as 
they leave. These locations both have: two cash regis
ters and have two employees that check out customers. 
Let X be the number of cash registers being used at a 
particular time for location L and Y the number being 
used at the same: time period for location 2. The joint 
probability function is given by 

0 1 

0 
1 
2 

0.12 
0.08 
0.06 

0.04 
0.19 
0.12 

0.04 
0.05 
0.30 

(a) Give the marginal density of both X and Y as well 
as the probability distribution of A" given V = 2. 

(b) Give E(X) and Var(X). 
(c) Give E(X\Y = 2) and Var(X[Y = 2). 

he joint distribution of X and V is given by 
x 

y 
0 
l 
2 
3 
4 
5 

Compute the expec 

0 
0.01 
0.03 
0.03 
0.07 
0.12 
0.08 

•ted pi 

1 
0.01 
0.08 
0.06 
0.07 
0.04 
0.06 

ofit for 

2 
0.03 
0.07 
0.06 
0.13 
0.03 
0.02 

the fen 

4.102 As we shall illustrate in Chapter 12, statistical 
methods associated with linear and nonlinear models 
are very important. In fact, exponential functions are 
often used in a wide variety of scientific and engineering 
problems. Consider a model that is fit to a set of data 
involving measured values k\ and k2 and a certain re?-
sponse Y to the measurements. The model postulated 
is 

Y = Jio+iikl+Ms 

where Y denotes e s t ima ted value of Y. ki and k,2 are 
fixed values and &o, l>\, and b2 are e s t ima tes of con
stants and hence are random variables. Assume that 
these random variables are independent and use the 
approximate formula. For the variance of a non-linear 
function of more than one variable. Give an expression 
for Var(Y). Assume that the means of bo, bi, and bo 
are known and are tio, 0i< and <32 and assume that the 
variances of bo, bi and b> are known and are OQ, a2, 
and (Tj. 

4.103 Consider Review Exercise 3.75 on page 105. It 
involved Y, the proportion of impurities in a batch and 
the density function is given by 

fiy) {I 0(1 -yf, 0 <-u < l. 
0. elsewhere. 

Find the- expected percentage of impurities. 4 .101 Consider a ferry that can carry both buses and 
cars on a trip across a waterway. Each trip costs the ( b ) Find the expected value of the proportion of quality 
owner approximately 810. The fee for cars is $3 and 
the fee for buses is $8. Let X and Y denote the number 
of buses and cars, respectively, carried on a given trip. * ' 

material (i.e., find E(l — Y)). 
Find the' variance of the random variable Z = 1 — Y. 

4.5 Potential Misconceptions and Hazards; 
Relationship to Material in Other Chapters 

The material in this chapter is extremely fundamental in nature, much like that in 
Chapter 3. Whereas in Chapter 3 we a t tempted to feature general characteristics 
of a probability distribution, in this chapter we define important quantities or 
parameters tha t characterize the general nature of the system. The m e a n of a 
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distribution reflects central tendency, and the variance or standard deviation 
reflects variability in the system. In addition, a covariance reflects the tendency for 
two random variables to "move together" in a system. These important parameters 
will remain fundamental to all that follows in this text. 

The reader should understand that the distribution type is often dictated by 
the scientific scenario. However, the parameter values need to be estimated from 
scientific data. For example, in the case of Review Exercise 4.87 the manufacturer 
of the compressor may know (material that will be presented in Chapter 6) from 
experience gained through the knowledge of the type of compressor that the nature 
of the distribution is as indicated in the exercise. But the mean p = 900 would be 
estimated from experimentation on the machine. Though the parameter value of 
900 is given as known here it will not be known in real-life situations without the 
use of experimental data. Chapter 9 is dedicated to estimation. 



Chapter 5 

Some Discrete Probability 
Distributions 

5.1 Introduction and Motivation 

No matter whether a discrete probability distribution is represented graphically by 
a histogram, in tabular form, or by means of a formula, the behavior of a random 
variable is described. Often, the observations generated by different statistical ex
periments have the same general type of behavior, Consequently, discrete random 
variables associated with these experiments can be described by essentially the 
same probability distribution and therefore: can be represented by a single formula. 
In fact, one needs only a handful of important probability distributions to describe 
many of the: discrete random variables encountered in practice. 

Such a handful of distributions actually describe several real life random phe
nomena. For instance, in a study involving testing the: effectiveness of a new drug, 
the number of cured patients among all the patients who use such a drug approx
imately follows a binomial distribution (Section 5.3). In an industrial example, 
when a sample of items selected from a. batch of production is tested, the num
ber of defective items in the sample usually can be modeled as a. hypergeometric 
random variable (Section 5.4). In a statistical quality control problem, the ex
perimenter will signal a shift of the process mean when observational data exceed 
certain limits. The number of samples required to produce: a false alarm follows a. 
geometric distribution which is a special case of the negative binomial distribution 
(Section 5.5). On the other hand, the number of white cells from a fixed amount of 
an individual's blood sample is usually random and may be: described by a Poisson 
distribution (Section 5.6). In this chapter, we are going to present these commonly 
used distributions with various examples. 

5.2 Discrete Uniform Distribution 

The simplest of all discrete probability distributions is one where the random vari
able assumes each of its values with an equal probability. Such a probability 
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distribution is called a discrete uniform dis t r ibut ion. 

Discrete Uniform If the random variable X assumes the values xi,x2.- •. • SEfc, with equal proba-
Distribution bilities, them the discrete unil'orni distribution is given by 

I 
f{.r;k) = -, x = Xi,X2,-.-,Xk-

We have used the notation f(x;k) instead of f(x) to indicate: that the uniform 
distribution depends on the parameter k. 

Example 5.1:1 When a light bulb is selected at random from a box that contains a 40-watt bulb, 
a 60-watt bulb, a 75-watt bulb, and a 100-watt bulb, each element of the sample1 

space S = {40, 60, 75, 100} occurs with probability 1/4. Therefore, we have a 
uniform distribution, with 

f(x;4) = j , x = 40,60,75,100. j 

Example 5.2:1 When a fair die is tossed, each element of the sample space S = {1,2,3,4,5,6} 
occurs with probability 1/6. Therefore, we have a uniform distribution, with 

/(.r;6) = -, £ = 1,2,3,4,5,6. j 

The graphic representation of the uniform distribution by means of a histogram 
always turns out to be a set of rectangles with equal heights. The histogram for 
Example 5.2 is shown in Figure 5.1. 

Theorem 5.1: 

f(x;6) 

1 2 3 4 5 6 

Figure 5.1: Histogram for the tossing of a die. 
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Proof: By definition 

P = E(X) = £ *</fa;*) = E f = £l>« 
i=i ;=i i=\ 

k k 

a2 = E\(X - p.)2} = Yixi - H?fiXi;k) = i J > , - '̂)2' I 
i = l i = l - * 

Example 5.3:1 Referring to Example 5.2, we find that 

1 + 24-3 + 4 + 5 + 6 
p = = 3.5 

<r2 = i [ ( l - 3 . 5 ) 2 + ( 2 - 3 . 5 ) 2 + . - . + ( 6 - 3 . 5 ) 2 ] = = i ^ = | = 2.92. j 

5.3 Binomial and Multinomial Distributions 

An experiment often consists of repeated trials, each with two possible outcomes 
that may be labeled success or failure. The most obvious application deals with 
the testing of items as they come off an assembly line, where each test or trial may 
indicate a defective or a nondefective item. We may choose to define either outcome 
as a success. The process is referred to as a Bernoul l i process. Each trial is called 
a Bernoull i trial . Observe, for example, if one were drawing cards from a deck, 
the probabilities for repeated trials change if the cards are not replaced. That, is, 
the probability of selecting a heart, on the first draw is 1/4, but on the second 
draw it is a conditional probability having a value of 13/51 or 12/51, depending 
on whether a heart appeared on the first draw: this, then, would no longer be 
considered a set of Bernoulli trials. 

The Bernoulli Process 

Strictly speaking, the Bernoulli process must possess the following properties: 

1. The experiment consists of n repeated trials. 

2. Each trial results in an outcome that may be classified as a. success or a failure. 

3. The probability of success, denoted by p, remains constant from trial to trial. 

4. The repeated trials arc independent. 

Consider the set of Bernoulli trials where three items are selected at random 
from a manufacturing process, inspected, and classified as defective or nondefective. 
A defective item is designated a success. The number of successes is a random vari
able X assuming integral values from zero through 3. The eight possible outcomes 
and the corresponding values of X are 
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Outcome 
NNN 
NDN 
NND 
DNN 
NDD 
DND 
DDN 
DDD 

X 

0 
1 
1 
1 
2 
2 
2 
3 

Since the items are selected independently from a process that we shall assume 
produces 25% defectives, 

P(NDN) = P(N)P(D)P(N) = (?) ( J ) (f ) = 1. 

Similar calculations yield the probabilities for the other possible outcomes. The 
probability distribution of X is therefore 

0 1 2 3 
27 27 JL J_ 
64 64 64 64 

The number X of successes in n Bernoulli trials is called a binomial random 
variable. The probability distribution of this discrete random variable is called 
the binomial distribution, and its values will be denoted by b(x; n, p) since they 
depend on the number of trials and the probability of a success on a given trial. 
Thus, for the probability distribution of X, the number of defectives is 

P ( * - 2 ) - / ( 2 ) - 6 ( 2 ; 3 , i ) - £ . 

Let us now generalize the above illustration to yield a formula for b(x;n,p). 
That is, we wish to find a formula that gives the probability of x successes in 
n trials for a binomial experiment. First, consider the probability of x successes 
and n — x failures in a specified order. Since the trials are independent, we can 
multiply all the probabilities corresponding to the different outcomes. Each success 
occurs with probability p and each failure with probability q = 1 — p. Therefore, 
the probability for the specified order is pxqn~x. We must now determine the total 
number of sample points in the experiment that have x successes and n — x failures. 
This number is equal to the number of partitions of n outcomes into two groups 
with x in one group and n—x in the other and is written (") as introduced in Section 
2.3. Because these partitions are mutually exclusive, we add the probabilities of all 
the different partitions to obtain the general formula, or simplv multiply pxqn~x 

by(" ) -

Binomial A Bernoulli trial can result in a success with probability p and a failure with 
Distribution probability q = 1 — p. Then the probability distribution of the binomial random 

variable X, the number of successes in n independent trials, is 

b(x; n,p) - (]pxqn~x, x = 0,1,2,. . . ,n. 
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Note that when n = 3 and p = 1/1, the probability distribution of X, the number 
of defectives, may be written as 

M*;3.41=$ a m r , «-o...«. 
rather than in the tabular form on page 144. 

Example 5.4:1 The probability that a certain kind of component will survive a shoe:k test is 3/4. 
Find the probability that exactly 2 of the next. 4 components tested survive. 

Solution: Assuming that the: tests are independent and -p = 3/4 for each of the 4 tests, we 
obtain 

2 1 4 / \ 4 / V2! 2! / \4.4J 128 

Where Does the Name Binomial Come From? 

The binomial distribution derives its name from the fact that, the u + 1 terms in 
the binomial expansion of (q+p)n correspond to the various values of b(x;n, p) for 
ar = 0 , l , 2 , . . . , n . That is, 

= b[(): n, p) + b( I; n, p) + b(2; n, p) + • • • + (>(n: n, p). 

Sinc:c: p -|- q = 1, we sec that 

Tl 

Ybix\n,p)= I. 
1 = 0 

a condition that must hold for any probability distribution. 
Frequently, we are interested in problems where it is necessary to find P(X < r) 

or P(a < X < b). Fortunately, binomial sums 

/• 
B(i-,n,p) = Ybi:'"-n-P) 

.r=(J 

are available and are given Table A.l of the Appendix for n = 1,2,..., 20, and 
selected values of/; from 0.1 to 0.9. We illustrate the use of Table A.l with the 
following example. 

Example 5.5:1 The probability that a. patient recovers from a rare blood disease is 0.4. If 15 
people are known to have contracted this disease, what is the probability that (a) 
at least 10 survive, (b) from 3 to 8 survive, and (c) exactly 5 survive? 
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Solution: Let X be the number of people that survive. 

9 

(a) P(X > 10) = 1 - P(X < 10) = 1 - Y bix' 15> °-4) = l ~ ° '9 6 6 2 

x=0 

= 0.0338 
8 8 2 

(b) P(3 < X < 8) = Y bix>15< °-4) = Y, 6(x; 15' °'4) ~ S *(*'15' °'4) 
x=3 *=() x=0 

= 0.9050 - 0.0271 = 0.8779 
5 4 

(c) P(X = 5) = 6(5; 15,0.4) = ]T] b(x\ 15,0.4) - ^ b(x\ 15,0.4) 
x=0 x=0 

= 0.4032-0.2173 = 0.1859 J 

Example 5.6:1 A large chain retailer purchases a certain kind of electronic device from a manu
facturer. The manufacturer indicates that the defective rate of the device is 3%. 

(a) The inspector of the retailer randomly picks 20 items from a shipment. What 
is the probability that there will be at least one defective item among these 
20? 

(b) Suppose that the retailer receives 10 shipments in a month and the inspector 
randomly tests 20 devices per shipment. What is the probability that there 
will be 3 shipments containing at least one defective device? 

Solution: (a) Denote by X the number of defective devices among the 20. This X follows 
a 6(x;20,0.03) distribution. Hence 

P(X > 1) = 1 - P(X = 0) = 1 - 6(0; 20,0.03) 

= 1 - 0.03°(1 - 0.03)20-0 = 0.4562. 

(b) In this case, each shipment can either contain at least one defective item or 
not. Hence, testing the result of each shipment can be viewed as a Bernoulli 
trial with p = 0.4562 from part (a). Assuming the independence from ship
ment to shipment and denoting by Y the number of shipments containing at 
least one defective item Y follows another binomial distribution b(y; 10,0.4562). 
Therefore, the answer to this question is 

= » = ( > 
P(Y = 3) = 0.4562J(1 - 0.4562)7 = 0.1602 

Areas of Application 

From Examples 5.4, 5.5, and 5.6, it should be clear that the binomial distribu
tion finds applications in many scientific fields. An industrial engineer is keenly 
interested in the "proportion defective" in an industrial process. Often, quality 
control measures and sampling schemes for processes are based on the binomial 
distribution. The binomial applies for any industrial situation where an outcome 
of a process is dichotomous and the results of the process are independent, with 
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the probability of a success being constant from trial to trial. The binomial dis
tribution is also used extensively for medical and military applications. In both 
cases, a success or failure result is important. For example, "cure" or "no cure" is 
important in pharmaceutical work, while "hit" or "miss" is often the interpretation 
of the result of firing a guided missile. 

Since the probability distribution of any binomial random variable depends only 
on the values assumed by the parameters n, p, and q, it would seem reasonable to 
assume that the mean and variance of a binomial random variable also depend on 
the values assumed by these parameters. Indeed, this is true, and in Theorem 5.2 
we derive general formulas as functions of n, p. and q that can be used to compute 
the mean and variance of any binomial random variable. 

Theorem 5.2: The mean and variance of the binomial distribution b(x;n,p) are 

p — np, and a2 = npq. 

Proof: Let the outcome on the j th trial be represented by a Bernoulli random variable 
Ij, which assumes the values 0 and 1 with probabilities q and p, respectively. 
Therefore, in a binomial experiment the number of successes can be written as the 
sum of the n independent indicator variables. Hence 

X = h+h + ••• + / „ . 

The mean of any Ij is E(Ij) = (0)(ey) + (l)(p) = P- Therefore, using Corollary 4.4, 
the mean of the binomial distribution is 

p = E(X) = E(h) + E(I2) + ••• + E(In ) = p + p + - - - + p = np. 

n terms 

The variance of any Ij is 

o\ = EKlj - p)2} = E(I2) -p2 = (0)2(q) + (l)2(p) - p2 = p(l - p ) = pq. 

By extending Corollary 4.10 to the case of n independent variables, the variance 
of the binomial distribution is 

ax - °"2, + °~\ + • • • + CT/„ =pq + pq + ---+pq= npq. 

n terms J 

Example 5.7:1 Find the mean and variance of the binomial random variable of Example 5.5, and 
then use Chebyshev's theorem (on page 132) to interpret the interval p ± 2o. 

Solution: Since Example 5.5 was a binomial experiment with n = 15 and p = 0.4, by Theorem 
5.2, we have 

p = (15)(0.4) = 6, and er2 = (15)(0.4)(0.6) = 3.6. 

Taking the square root of 3.6, we find that a — 1.897. Hence the required interval is 
6±(2)(1.897), or from 2.206 to 9.794. Chebyshev's theorem states that the number 
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of recoveries among 15 patients subjected to the given disease has a probability of 
at least 3/4 of falling between 2.206 and 9.794, or, because the data are discrete, 
between 3 and 9 inclusive. J 

Example 5.8:1 It is conjectured that an impurity exists in 30% of all drinking wells in a certain 
rural community. In order to gain some insight on this problem, it is determined 
that some tests should be made. It is too expensive to test all of the many wells 
in the area, so 10 were randomly selected for testing. 

(a) Using the binomial distribution, what is the probability that exactly three 
wells have the impurity assuming that the conjecture is correct? 

(b) What is the probability that more than three wells are impure? 

Solution: (a) We require 

6(3; 10,0.3) = P(X = 3) = Y bix-10' °-3) ~ £ bix'10^ °-3) 
•i.—O x=0 

= 0.6496 - 0.3828 = 0.2668. 

(b) In this case wc need P(X > 3) = 1 - 0.6496 = 0.3504. J 

There are solutions in which the computation of binomial probabilities may 
allow us to draw inference about a scientific population after data are collected. 
An illustration is given in the next example. 

Example 5.9:1 Consider the situation of Example 5.8. The "30% arc impure" is merely a conjecture 
put forth by the area water board. Suppose 10 wells are randomly selected and 
6 are found to contain the impurity. What does this imply about the conjecture? 
Use a probability statement. 

Solution: We must first ask: "If the conjecture is correct, is it likely that we could have found 
6 or more impure wells?" 

10 5 

P(X > 6) = Y bix> 10< °'3) ~ £ 2 b(:,;; 10' °'3) = 1 ~ ° ' 9 5 2 7 = °-0473-
:r=0 X=0 

As a result, it is very unlikely (4.7% chance) that 6 or more wells would be found 
impure if only 30% of all are impure. This casts considerable doubt on the conjec
ture and suggests that the impurity problem is much more severe. J 

As the reader should realize by now, in many applications there are more than 
two possible outcomes. To borrow an example from the field of genetics, the color of 
guinea pigs produced as offspring may be red. black, or white. Often the "defective" 
or "not defective" dichotomy in engineering situations is truly an oversimplification. 
Indeed, there are often more than two categories that characterize items or parts 
coming off an assembly line. 

Multinomial Experiments 

The binomial experiment becomes a multinomial experiment if we let each trial 
have more than 2 possible outcomes. Hence the classification of a manufactured 
product as being light, heavy, or acceptable and the recording of accidents at a 
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certain intersection according to the day of the week constitute multinomial exper
iments. The drawing of a card from a deck with replacement is also a multinomial 
experiment if the 4 suits are the outcomes of interest. 

In general, if a given trial can result in any one of k possible outcomes E\, E2, •. •, 
Ek with probabilities p\,p2-,- • • -.Pk, then the multinomial distribution will give 
the probability that E\ occurs x\ times, E2 occurs x2 times, . . . , and Ek occurs 
2,-fc times in n independent trials, where 

X\ + x2 -\ + Xk = n. 

We shall denote this joint probability distribution by 

f(xi, x2, ...,xk;pi,p2,...,pk, n). 

Clearly, p\ + p2 + • • • + Pk = 1 > since the result of each trial must be one of the k 
possible outcomes. 

General Form for Multinomial Probabilities 

To derive the general formula, we proceed as in the binomial case. Since the 
trials are independent, any specified order yielding x\ outcomes for E\, x2 for 
E2,. ..,Xk for Ek will occur with probability pXlp2

2 • • -p^". The total number of 
orders yielding similar outcomes for the n trials is equal to the number of partitions 
of n items into k groups with X\ in the first group; x2 in the second group,.. . ; and 
Xk in the Arth group. This can be done in 

n 

vTi, X2, .... XkJ XX\ X2\ • • • .Tfc! 
ways. Since all the partitions are mutually exclusive and occur with equal proba
bility, we obtain the multinomial distribution by multiplying the probability for a 
specified order by the total number of partitions. 

Multinomial If a given trial can result in the k outcomes Ei,E2,... ,Ek with probabili-
Distribution ties p\,p2,... ,pk, then the probability distribution of the random variables 

X\,X2, • • •,Xk, representing the number of occurrences for E\,E2,..., Ek in 
n independent trials is 

f(x1,x2,...,xk\Pi,P2,...,Pk,n) - f ' jPi'pf2•••?**> 
\Xl,X2,...,XkJ 

with 

k k 

/]xj = n, and / J Pi = 1. 
i=l t = l 

The multinomial distribution derives its name from the fact that the terms of the 
multinomial expansion of (pi +p2+ • • •+Pfc)n correspond to all the possible values 
Of f(x\,X2, . . . ,Xk\P\,P2: • • • ,Pk,n). 

Example 5.10:1 The complexity of arrivals and departures into an airport are such that computer 
simulation is often used to model the "ideal" conditions. For a certain airport 
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containing three runways it is known that in the ideal setting the following are 
the: probabilities that the individual runways arc accessed by a randomly arriving 
commercial jet: 

Runway 1: p\ = 2 /9 , 
Runway 2: p2 = 1/6, 
Runway 3: y;;j = 11/18. 

Wha t is the probability that 6 randomly arriving airplanes arc distributed in the 
following fashion? 

Runway 1: 2 airplanes, 
Runway 2: 1 airplane, 
Runway 3: 3 airplanes 

Solution: Using the multinomial distribution, we have 

fl 2,1,3^,1,^6 
9 ' 6 18 ' 

Exercises 

A' -) -
2,\,3) \9J \GJ \IS 

6! 22 1 l l 3 
2!1!3! 92 6 183 = 0.1127. 

5.1 An employee is selected from a staff of 10 to super
vise a certain project by selecting a tag at random from 
a box containing 10 tags numbered from 1 to 10. Find 
the formula for the probability distribution of X repre
senting the number on the tag that, is drawn. What is 
the probability that the number drawn is less than 4? 

5.2 Twelve people: are given two identical speakers 
to listen to for differences, if any. Suppose that these 
people answered by guessing only. Find the probabil
ity that three people claim to have heard a difference 
between the two speakers. 

5.3 Find the mean and variance of the random vari
able A' of Exercise 5.1. 

5.4 In a certain city district the need for money to 
buy drugs is stated as the: reason for 75% of all thefts. 
Find the probability that among the next 5 theft cases 
reported in this district, 
(a) exactly 2 resulted from the need for money to buy 

drugs; 
(b) at most 3 resulled from the need for money to buy 

drugs. 

5.5 According to Chemical Engineermi/ Progress 
(Nov. 1990), approximately 30% of all pipework fail
ures in chemical plants are caused by operator error. 
(a) What is the probability that out of the next 20 

pipework failures at least 10 are due to operator 
error? 

(b) What is the probability that no more than 4 out of 
20 such failures are due to operator error? 

(c) Suppose, for a particular plant, that, out of the ran
dom sample of 20 such failures, exactly 5 are op
erational errors. Do you feel that the 30% figure 
stated above applies to this plant? Comment. 

5.6 .According to a survey by the Administrative 
Management Society, one-half of U.S. companies give 
employees 4 weeks of vacation after they have been 
with the company for 15 years. Find the probabil
ity that among G companies surveyed at random, the 
number that give employees 4 weeks of vacation after 
15 years of employment is 

(a) anywhere from 2 to 5; 
(b) fewer than 3. 

5.7 One prominent physician claims that 70% of those 
with lung cancer are chain smokers. If his assertion is 
correct, 
(a) find the: probability that of 10 such patients re

cently admitted to a hospital, fewer than half are 
chain smokers: 

(b) find the probability that of 20 such patients re
cently admitted to a hospital, fewer than half are 
chain smokers. 

5.8 According to a study published by a group of Uni
versity of Massachusetts sociologists, approximately 
60% of the Valium users in the state of Massachusetts 
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first took Valium for psychological problems. Find the 
probability that among the next 8 users interviewed 
from this state, 

(a) exactly 3 began taking Valium for psychological 
problems; 

(b) at least 5 began taking Valium for problems that 
were not psychological. 

5.9 In testing a certain kind of truck tire over a rugged 
terrain, it is found that 25% of the trucks fail to com
plete the test run without a blowout. Of the next 15 
trucks tested, find the probability that 

(a) from 3 to 6 have blowouts; 
(b) fewer than 4 have blowouts: 
(c) more than 5 have blowouts. 

5.10 A nationwide survey of seniors by the Univer
sity of Michigan reveals that almost 70% disapprove 
of daily pot smoking, according to a report in Parade. 
If 12 seniors are selected at random and asked their 
opinion, find the probability that the number who dis
approve of smoking pot daily is 

(a) anywhere from 7 to 9: 
(b) at most 5; 
(c) not less than 8. 

5.11 The probability that a patient recovers from a 
delicate heart operation is 0.9. What is the probabil
ity that exactly 5 of the next 7 patients having this 
operation survive? 

5.12 A traffic control engineer reports that. 75% of the 
vehicles passing through a checkpoint are from within 
the state. What is the probability that fewer than 4 of 
the next 9 vehicles arc from out of state? 

5.13 A study examined national attitudes about an
tidepressants. The study revealed that approximately 
70% believe "antidepressants do not really cure any
thing, they just cover up the real trouble." According 
to this study, what is the probability that at least 3 
of the next 5 people selected at random will be of this 
opinion? 

5.14 It is known that the percentage of wins for the 
Chicago Bulls basketball team going into the playoffs 
for the 1996-97 season was 87.7. Round the 87.7 to 90 
in order to use Table A.l. 

(a) What is the probability that the Bulls will sweep 
(4-0) in the initial best-of-7 playoff series? 

(b) What is the probability that the Bulls would tain 
the initial best-of-7 playoff series? 

(c) What very important assumption is made for an
swering parts (a) and (b)? 

5.15 It is known that 60% of mice inoculated with a 
serum are protected from a certain disease. If 5 mice 
are inoculated, find the probability that 
(a) none contracts the disease; 

(b) fewer than 2 contract the disease; 
(c) more than 3 contract the disease. 

5.16 Suppose that airplane engines operate indepen
dently and fail with probability equal to 0.4. Assuming 
that a plane makes a safe flight if at least one-half of its 
engines run, determine whether a 4-engine plane or a 2-
engine plane has the higher probability- for a successful 
flight. 

5.17 If X represents the number of people in Exercise 
5.13 who believe that antidepressants do not cure but 
only cover up the real problem, find the mean and vari
ance of X when 5 people are selected at random and 
then use Chebyshev's theorem to interpret the interval 
/j. ±2 a. 

5.18 (a) In Exercise 5.9, how many of the 15 trucks 
would you expect to have blowouts? 

(b) According to Chebyshev's theorem, there is a prob
ability of at least 3/4 that the number of trucks 
among the next 15 that have blowouts will fall in 
what interval? 

5.19 As a student drives to school, he encounters a 
traffic signal. This traffic signal stays green for 35 sec
onds, yellow for 5 seconds, and red for 60 seconds. As
sume that the student goes to school each weekday 
between 8:00 and 8:30. Let A'i be the number of times 
he encounters a green light, X2 be the number of times 
he encounters a yellow light, and X;i be the number of 
times he encounters a red light. Find the joint distri
bution of Xi , Xa, and X3. 

5.20 According to USA Today (March 18,1997), of 4 
million workers in the general workforce, 0.8% tested 
positive for drugs. Of those testing positive, 22.5% 
were cocaine users and 54.4% marijuana users. 

(a) What is the probability that of 10 workers testing 
positive, 2 are cocaine users, 0 marijuana users, and 
3 users of other drugs? 

(b) What is the probability that of 10 workers testing 
positive, all are marijuana users? 

(c) What is the probability that of 10 workers testing 
positive, none are cocaine users? 

5.21 The surface of a circular dart board has a small 
center circle called the bull's-eye and 20 pie-shaped re
gions numbered from 1 to 20. Each of the pioshaped 
regions is further divided into three parts such that a 
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person throwing a dart that lands on a specified num
ber scores the value of the number, double the number, 
or triple the number, depending on which of the three 
parts the dart falls. If a pe:rson hits the bull's-eye with 
probability 0.01. hits a double with probability 0.10, 
hits a triple with probability 0.05, and misses the dart, 
board with probability 0.02, what is the probability 
that 7 throws will result in no bull's-eyes, no triples, a 
double twice, and a complete miss once? 

5.22 According to a genetics theory, a certain cross of 
guinea pigs will result in red, black, and white offspring 
in the ratio 8:4:4. Find the probability that among 8 
offspring 5 will be red, 2 black, and I white. 

5.23 The probabilities are 0.4, 0.2, 0.3, and 0.1, re
spectively, that a delegate to a certain convention ar
rived by air, bus. automobile, or train. What is the 
probability that among 9 delegates randomly selected 
at this convention, 3 arrived by air, 3 arrived by bus, 
1 arrived by automobile, and 2 arrived by train? 

5.24 A safety engineer claims that only 40% of all 
workers wear safety helmets when they eat lunch at 
the workplace. Assuming that his claim is right, find 
the probability that 4 of 6 workers randomly chosen 
will be wearing their helmets while having lunch at the 
workplace. 

5.25 Suppose that for a very large shipment of 
integrated-circuit chips, the probability of failure for 
any one chip is 0.10. Assuming that the assumptions 

underlying the binomial distributions are met, find the 
probability that at most 3 chips fail in a random sample1 

of 20. 

5.26 Assuming that 6 in 10 automobile accidents are 
due mainly to a speed violation, find the probability 
that, among 8 automobile accidents 6 will be due mainly 
to a speed violation 

(a) by using the formula for the binomial distribution; 

(b) by using the binomial table. 

5.27 If the probability that a fluorescent light has a 
useful life of at least 800 hours is 0.9, find the proba
bilities that among 20 such lights 

(a) exactly 18 will have a useful life of at least 800 
hours; 

(b) at. least 15 will have a useful life of at least 800 
hours; 

(c) at least 2 will not have a useful life of at least 800 
hours. 

5.28 A manufacturer knows that on the average 20% 
of the elect ric toasters which lie makes will require re
pairs within 1 year after they are sold. When 20 toast
ers are randomly selected, find appropriate numbers x 
and y such that 

(a) the probability that at least x of them will require 
repairs is less than 0.5; 

(b) the probability that at least y of them will not re
quire repairs is greater than 0.8. 

5.4 Hypergeometric Distribution 

The simplest way to view the distinction between the binomial distribution of 
Section 5.3 and the hypergeometric distribution lies in the way the sampling is 
clone. The types of applications of the hypergeometric arc very similar to those 
of the binomial distribution. We are interested in computing probabilities for the 
number of observations that fall into a particular category. But in the case of the 
binomial, independence among trials is required. As a result, if the binomial is 
applied to. say, sampling from a lot of items (deck of cards, batch of production 
items), the sampling must be clone w i t h r e p l a c e m e n t of each item after it is 
observed. On the other hand, flic hypergeometric distribution does not require 
independence and is based on the: sampling done w i t h o u t r e p l a c e m e n t . 

Applications for the hypergeometric distribution are found in many areas, with 
heavy uses in acceptance sampling, electronic testing, and quality assurance. Ob
viously, for many of these fields testing is done at the expense of the item being 
tested. That is, the item is destroyed and hence cannot be replaced in the sample. 
Thus sampling without replacement is necessary. A simple example: with playing 
cards will serve as our first illustration. 

If we wish to find the: probability of observing 3 red cards in 5 draws from an 
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ordinary deck of 52 playing cards, the binomial distribution of Section 5.3 does not 
apply unless each card is replaced and the deck reshuffled before the next drawing-
is made. To solve the problem of sampling without replacement, let. us restate the 
problem. If 5 cards are drawn at random, we are interested in the probability of 
selecting 3 red cards from the 26 available and 2 black cards from the 26 black 
cards available in the deck. There are (23

<i) ways of selecting 3 red cards, and for 
each of these ways wc can choose 2 black cards in (2

2
6) ways. Therefore, the total 

number of ways to select 3 red and 2 black cards in 5 draws is the product (2
3
e) (2^). 

The total number of ways to select any 5 cards from the 52 that are available is 
(°5

2). Hence the probability of selecting 5 cards without replacement of which 3 are 
red and 2 are black is given by 

(23i)(2
2'

i) _ (261/3123!)(26!/2! 24!) = Q ^ 
(<*) 521/5! 47! 

In general, we are interested in the probability of selecting x successes from 
the A" items labeled successes and n — x failures from the Ar — k items labeled 
failures when a random sample of size n is selected from AT items. This is known 
as a hypergeometric experiment, that is, one that possesses the following two 
properties: 

1. A random sample of size n is selected without replacement from N items. 

2. k of the Ar items may be classified as successes and N — k are classified as 
failures. 

The number X of successes of a hypergeometric experiment is called a hyper
geometric random variable. Accordingly, the probability distribution of the 
hypergeometric variable is called the hypergeometric distribution, and its val
ues will be denoted by h(x; N, n, A:), since they depend on the number of successes 
k in the set N from which we select n items. 

Hypergeometric Distribution In Acceptance Sampling 

As in the case of the binomial distribution, the hypergeometric distribution finds 
applications in acceptance sampling where lots of material or parts are sampled in 
order to determine whether or not the entire lot is accepted. 

Example 5.11:1 A particular part that is used as an injection device is sold in lots of 10. The 
producer feels that the lot is deemed acceptable if no more than one defective is in 
the lot. Some lots are sampled and the sampling plan involves random sampling 
and testing 3 of the parts out of 10. If none of the 3 is defective, the lot is accepted. 
Comment on the utility of this plan. 

Solution: Let us assume that the lot is truly unacceptable (i.e., that 2 out of 10 are 
defective). The probability that our sampling plan finds the lot acceptable is 

(olffl P(X = 0) = - ^ f - = 0.467. 
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Thus, if the lot is truly unacceptable with 2 defective parts, this sampling plan 
will allow acceptance roughly 47% of the time. As a result, this plan should be 
considered faulty. J 

Let us now generalize in order to find a formula for h(x;N,ti,k). The total 
number of samples of size n chosen from A7 items is (*J(). These samples are 
assumed to be equally likely. There are (£) ways of selecting x successes from the 
A* that are available, and for each of these ways we can choose the n — x failures in 
(*V-*) w ay s > Thus the total number of favorable samples among the (*') possible 
samples is given by (*) ( „ r* ) ' Hence we have the following definition. 

Hypergeometric The probability distribution of the hypergeometric random variable X, the 
Distribution number of successes in a random sample of size n selected from Ar items of 

which k are labeled success and N — k labeled failure, is 

h(x; N, n, k) = )£~x , max{0, n - (N - k)} <x< min{n, k}. 
\n) 

The range of x can be determined by the three binomial coefficients in the defini
tion, where x and n — x are no more than k and AT — A:, respectively; and both of 
them cannot be less than 0. Usually, when both k (the number of successes) and 
Ar - k (the number of failures) are larger than the sample size n, the range of a 
hypergeometric random variable will be x = 0 , 1 , . . . ,n. 

Example 5.12:1 Lots of 40 components each are called unacceptable if they contain as many as 3 
defectives or more. The procedure for sampling the lot is to select 5 components 
at random and to reject the lot if a defective is found. What is the probability that 
exactly 1 defective is found in the sample if there are 3 defectives in the entire lot? 

Solution: Using the hypergeometric distribution with n = 5, N = 40, k — 3, and x = 1, we 
find the probability of obtaining one defective to be 

(DCY) 
(?) / i ( l ;40,5,3)= V.IQX =0.3011. 

Once again this plan is likely not desirable since it detects a bad lot (3 defectives) 

only about 30% of the time. -I 

Theorem 5.3: The mean and variance of the hypergeometric distribution h(x; N, n, A;) are 

nk , 9 N — n k / k\ 
p = - , and ex = J^-J • n • - ( l - - j . 

The proof for the mean is shown in Appendix A.25. 

Example 5.13:1 Let us now reinvestigate Example 3.9. The purpose of this example was to il
lustrate the notion of a random variable and the corresponding sample space. In 
the example, we have a lot of 100 items of which 12 are defective. What is the 
probability that in a sample of 10, 3 are defective? 
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Solution: Using the hypergeometric probability function we have 

/i(3; 100,10,12) = ±% ($(7) 
C) 

0.08. 

Example 5.14:1 Find the mean and variance of the random variable of Example 5.12 and then use 
Chebyshev's theorem to interpret the interval //. ± 2er. 

Solution: Since Example 5.12 was a hypergeometric experiment, with Ar = 40, u = 5, and 
k = 3, then by Theorem 5.3 we have 

• ( 5 ) ( 3 ) = ? =0.375. 
40 

and 

er2 = 
40 

39 v l v - h ) " " • 

Taking the square root of 0.3113, we find that a = 0.558. Hence the required 
interval is 0.375 ± (2)(0.558), or from -0.741 to 1.491. Chebyshev's theorem 
states that the number of defectives obtained when 5 components are selected at 
random from a lot of 40 components of which 3 are defective has a probability of 
at least 3/4 of falling between —0.741 and 1.491. That is, at, least three-fourths of 

the time, the 5 components include: less than 2 defectives. J 

Relationship to the Binomial Distribution 

In this chapter wc discuss several important discrete distributions that have wide 
applicability. Many of these distributions relate nicely to each other. The beginning 
student should gain a clear understanding of these relationships. There is an 
interesting relationship between the: hypergeometric and the binomial distribution. 
As one might expect, if n is small compared to N, the nature of the N items changes 
very little in each draw. So a binomial distribution can be used to approximate 
the hypergeometric distribution when n is small, compared to N. In fact, as a rule 
of thumb the approximation is good when jq < 0.05. 

Thus the quantity £ plays the role of the binomial parameter p. As a re
sult, the binomial distribution may be viewed as a large population edition of the 
hypergeometric: distributions. The mean and variance then come from the formulas 

n-p 
nk k 

C T - = ? ? w = n . _ M _ _ 

Comparing those formulas with those of Theorem 5.3, we see that the mean is the 
same whereas the variance differs by a correction factor of (N — n)/(N — 1), which 
is negligible when n is small relative to AT. 

Example 5.15:1 A manufacturer of automobile tires reports that among a shipment of 5000 sent to 
a local distributor, 1000 are slightly blemished. If one purchases 10 of these tires at 
random from the distributor, what, is the probability that exactly 3 are blemished? 
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Solution: Since N = 5000 is large relative to the sample size n = 10, we shall approximate the 
desired probability by using the binomial distribution. The probability of obtaining 
a blemished tire is 0.2. Therefore, the probability of obtaining exactly 3 blemished 
tires is 

3 2 

h(3; 5000,10,1000) « &(3; 10.0.2) = Y b(x\ 1[}
; °-

2) - Y b^x'-10' °'2) 
x=0 x=0 

= 0.8791-0.6778 = 0.2013. 

On the other hand, the exact probability is /?(3; 5000,10.1000) = 0.2015. J 
The hypergeometric distribution can be extended to treat the case where the 

N items can be partitioned into A: cells A\, A2, ...,Ak with ciy elements in the 
first cell, a2 elements in the second cell Uk elements in the feth cell. We are 
now interested in the: probability that a random sample of size n yields Xi elements 
from A\, X2 elements from A2, . . . , and Xk elements from Ak- Let us represent 
this probability by 

f(xi. x-2, Xk: fl] ,fto Ofc, N, n). 

To obtain a general formula, we note that the total number of samples that 
can be chosen of size n from N items is still f ). There are (f

(
M) ways of selecting 

X\ items from the items in A\, and for each of these we can choose x2 items from 
the items in Ai in (°a) ways. Therefore, we can select x\ items from A\ and x2 

items from A<> in ("')("2,) ways. Continuing in this way, we can select all n items 
consisting of X\ from Ax, x2 from A2,. . . , and Xk from Ai, in 

ei] \ a2 

xj \X2 ways. 

The required probability distribution is now defined as follows. 

Multivariate: If N items can be partitioned into the A: cells A], A2,..., Afc with at, a.2,..., ak 

Hypergeometric elements, respectively, then the probability distribution of the random variables 
Distribution A*i,X2,..., X ,̂, representing the number of elements selected from A] ,A2,. • •, Ak 

in a random sample' of size n, is 

f(xi ,x2,.... Xk;ai , 02 , . . . ,Ofe,iV, n) = oc:)-!::) 

k k 
with J2 xi = n and J^ a,- = A'. 

1 = 1 ( = 1 

Example 5.16:1 A group of 10 individuals is used for a biological case study. The group contains 
3 people with blood type O, 4 with blood type A, and 3 with blood type B. What 
is the probability that a random sample of 5 will contain I person with blood type 
O, 2 people with blood type A, and 2 people with blood type 13? 
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Solution: Using the extension of the hypergeometric distribution with x\ = 1, x2 = 2, £3 = 2, 
aI = 3. (7,2 = 4, «3 = 3, iV = 10, and n = 5, we find t h a t the desired probabili ty is 

/ ( l , 2 ,2 ; 3 , 4 , 3 , 1 0 , 5 ) : 
('5°) 

14 

Exercises 

5.29 If 7 cards are dealt from an ordinary deck of 52 
playing cards, what is the probability that 
(a) exactly 2 of them will be face cards? 

(b) at least 1 of them will be a queen? 

5.30 To avoid detection at customs, a traveler places 
6 narcotic tablets in a bottle containing 9 vitamin pills 
that are similar in appearance. If the customs official 
selects 3 of the tablets at random for analysis, what 
is the probability that the traveler will be arrested for 
illegal possession of narcotics? 

5.31 A homeowner plants 6 bulbs selected at ran
dom from a box containing 5 tulip bulbs and 4 daf
fodil bulbs. What is the probability that he planted 2 
daffodil bulbs and 4 tulip bulbs? 

5.32 From a lot of 10 missiles, 4 are selected at ran
dom and fired. If the lot contains 3 defective missiles 
that will not fire, what is the probability that 
(a) all 4 will fire? 

(b) at most 2 will not. fire? 

5.33 A random committee of size 3 is selected from 
4 doctors and 2 nurses. Write a formula for the prob
ability distribution of the random variable X repre
senting the number of doctors on the committee. Find 
P(2 < X < 3). 

5.34 What is the probability that a waitress will 
refuse to serve alcoholic beverages to only 2 minors if 
she randomly checks the IDs of 5 students from among 
9 students of which 4 arc not of legal age? 

5.35 A company is interested in evaluating its cur
rent inspection procedure on shipments of 50 identical 
items. The procedure is to take a sample of 5 and pass 
the shipment if no more than 2 are found to be defec
tive. What proportion of 20% defective shipments will 
be accepted? 

5.36 A manufacturing company uses an acceptance 
scheme on production items before they are shipped. 
The plan is a two-stage one. Boxes of 25 are readied 

for shipment and a sample of 3 is tested for defectives. 
If any defectives are found, the entire box is sent back 
for 100% screening. If no defectives are found, the box 
is shipped. 

(a) What is the probability that a box containing 3 
defectives will be shipped? 

(b) What is the probability that a box containing only 
1 defective will be sent back for screening? 

5.37 Suppose that the manufacturing company of Ex
ercise 5.36 decides to change its acceptance scheme. 
Under the new scheme an inspector takes one at ran
dom, inspects it, and then replaces it in the box; a 
second inspector does likewise. Finally, a third inspec
tor goes through the same procedure. The box is not 
shipped if any of the three find a defective. Answer 
Exercise 5.36 under this new plan. 

5.38 In Exercise 5.32, how many defective missiles 
might we expect to be included among the 4 that are 
selected? Use Chebyshev's theorem to describe the 
variability of the number of defective missiles included 
when 4 are selected from several lots each of size 10 
containing 3 defective missiles. 

5.39 If a person is dealt 13 cards from an ordinary 
deck of 52 playing cards several times, how many hearts 
per hand can he expect? Between what two values 
would you expect the number of hearts to fall at least 
75% of the time? 

5.40 It is estimated that 4000 of the 10,000 voting 
residents of a town are against a new sales tax. If 15 
eligible voters are selected at random and asked their 
opinion, what is the probability that at most 7 favor 
the new tax? 

5.41 An annexation suit is being considered against a 
county subdivision of 1200 residences by a neighboring 
city. If the occupants of half the residences object to 
being annexed, what is the probability that in a ran
dom sample of 10 at least 3 favor the annexation suit? 

5.42 Among 150 IRS employees in a large city, only 
30 are women. If 10 of the applicants are chosen at ran-
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elom to provide free: fax assistance for the residents of 
this city, use the binomial approximation to the hyper
geometric to find the probability that at. least 3 women 
arc selected. 

5.43 A nationwide survey of 17,000 seniors by the 
University of Michigan revealed that almost 70% dis
approve of daily pot smoking. If 18 of these seniors 
are selected at random and asked their opinions, what 
is the probability that more than 9 but less than 14 
disapprove of smoking pot? 

5.44 Find the probability of being dealt a bridge hand 
of 13 cards containing 5 spades, 2 hearts. 3 diamonds, 
and 3 clubs. 

5.45 A foreign student club lists as its members 2 
Canadians, 3 Japanese, 5 Italians, and 2 Germans. If 
a committee of 4 is selected at random, find the prob
ability that 

(a) all nationalities are represented; 

(b) all nationalities except the Italians are represented. 

5.46 An urn contains 3 green balls, 2 blue balls, and 
4 red balls. In a random sample: of 5 balls, find the 
probability that both bine balls and at. least 1 reel ball 
are selected. 

5.47 Population studies of biology and the environ
ment often tag and release subjects in order to esti
mate size and degree: of certain features in the popula
tion. Ten animals of a certain population thought to 
be extinct (or near extinction) are caught, tagged and 
released in a certain region. After a period of time a 
random sample of 15 of this type of animal is selected 

in the region. What is the probability that 5 of those 
selected are tagged animals if there are 25 animals of 
this type in the region? 

5.48 A large company has an inspection system for 
the batches of small compressors purchased from ven
dors. A batch typically contains 15 compressors. In the 
inspection system a random sample of 5 is selected and 
all are tested. Suppose there arc 2 faulty compressors 
in the batch of 15. 

(a) What, is the probability that for a given sample 
there will be I faulty compressor? 

(b) What, is the probability that inspection will dis
cover both faulty compressors? 

5.49 A government task force suspects that some 
manufacturing companies are in violation of federal 
pollution regulations with regard to dumping a certain 
type of product. Twenty firms are under suspicion but 
all cannot be inspected. Suppose that 3 of the firms 
are; in violation. 

(a) What is the probability that inspection of 5 firms 
finds no violations? 

(b) What is the probability that the plan above will 
find two violations? 

5.50 Every hour, 10,000 cans of soda are filled by a 
machine, among which 300 underfilled cans are pro
duced. Each hour a sample of 30 cans is randomly 
selected and the number of ounces of soda per can is 
checked. Denote: by A' the number of cans selected that 
are underfilled. Find the probability that at, least one 
underfilled can will be among those sampled. 

5.5 Negative Binomial and Geometric Distributions 

Let us consider an experiment where the properties are the same as those listed 
for a binomial experiment, with the exception that the trials will be repeated until 
a fixed number of successes occur. Therefore, instead of finding the probability of 
x successes in n trials, where n is fixed, we are now interested in the probability 
that, the A'th success occurs on the- .rth trial. Experiments of this kind are called 
n e g a t i v e b i n o m i a l e x p e r i m e n t s . 

As an illustration, consider the use of a drug that is known to be effective in 
60% of the cases where it is used. The use of the drug will be considered a success 
if it is effective in bringing some degree of relief to the patient. We are interested 
in finding the probability that, the fifth patient to experience relief is the seventh 
patient, to receive the drug during a given week. Designating a success by S and a 
failure by F, a possible order of achieving the desired result is SFSSSFS, which 
occurs with probability 

(0.6)(0.4)(0.6)(0.6)(0.6)(0.4)(0.6) = (0.6)r)(0,l) 
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Wc could list all possible orders by rearranging the F's and S's except for the last 
outcome, which must be the fifth success. The total number of possible orders 
is equal to the number of partitions of the first six trials into two groups with 2 
failures assigned to the one group and the 4 successes assigned to the other group. 
This can be done in (®) = 15 mutually exclusive ways. Hence, if X represents the 
outcome on which the fifth success occurs, then 

P(X = 7) - (J J (0.6)5(0.4)2 = 0.1866. 

Wha t Is the Negative Binomial Random Variable? 

The number X of trials to produce k successes in a negative binomial experiment 
is called a negative binomial random variable, and its probability distribution 
is called the negative binomial distribution. Since its probabilities depend on 
the number of successes desired and the probability of a success on a given trial, 
we shall denote them by the symbol b*(x;k,p). To obtain the general formula 
for b*(x;k,p), consider the probability of a success on the xtn trial preceded by 
A: — 1 successes and x — k failures in some specified order. Since the trials are 
independent, we can multiply all the probabilities corresponding to each desired 
outcome. Each success occurs with probability p and each failure with probability 
q = 1 — p. Therefore, the probability for the specified order ending in success is 

pk~1qx~kp = pkqx~k. 

The total number of sample points in the experiment ending in a success, after the 
occurrence of A: — 1 successes and x — k failures in any order, is equal to the number 
of partitions of a;— 1 trials into two groups with A:— 1 successes corresponding to one 
group and x — k failures corresponding to the other group. This number is specified 
by the term i^l\)-, each mutually exclusive and occurring with equal probability 
pkgX-k yre obtain the general formula by multiplying pkqx~k by (lZ])-

Negative If repeated independent trials can result in a success with probability p and a 
Binomial failure with probability ej —1—p, then the probability distribution of the random 

Distribution variable X, the number of the trial on which the A:th success occurs, is 

b*(x;k,p)= U I p V - * , x = k,k+l,k + 2,.... 

Example 5.17:1 In an NBA (National Basketball Association) championship series, the team who 
wins four games out. of seven will be the winner. Suppose that team A has proba
bility 0.55 of winning over team B and both teams A and B face each other in the 
championship games. 

(a) What is the probability that team A will win the series in six games? 

(b) What is the probability that team A will win the series? 

(c) If both teams face each other in a regional playoff series and the winner is 
decided by winning three out of five games, what is the probability that team 
A will win a playoff? 
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Solution: (a) 6*(6;4,0.55) = (g)0.554(l - 0.55)G~4 = 0.1853. 

(b) P(team A wins the championship series) is 

b* (4; 4,0.55) + b* (5; 4,0.55) + b*(6; 4,0.55) + b"(7; 4,0.55) 

= 0.0915 + 0.1647 + 0.1853 + 0.1668 = 0.6083. 

(c) P(team A wins the playoff) is 

b* (3; 3.0.55) + b" (4; 3,0.55) + b* (5; 3,0.55) 

= 0.1664 + 0.2246 + 0.2021 = 0.5931. J 

The negative binomial distribution derives its name from the fact that each 
term in the expansion of pk(l — q)~k corresponds to the values of b*(x;k,p) for 
x = A:, k + 1, k + 2, . . . . If we consider the special case of the negative binomial 
distribution where k — 1, we have a probability distribution for the number of 
trials required for a single success. An example would be the tossing of a coin until 
a head occurs. We might be interested in the probability that the first head occurs 
on the fourth toss. The negative binomial distribution reduces to the form 

b*(x:l,p) = pqx-1, x= 1 ,2,3, . . . . 

Since the successive terms constitute a geometric progression, it is customary to 
refer to this special case as the geometric distribution and denote its values by 
9ix\p). 

Geometric If repeated independent trials can result in a success with probability p and 
Distribution a failure with probability q = 1 — p, then the probability distribution of the 

random variable X, the number of the trial on which the first success occurs, is 

g(x;p)=pqx~\ x = 1,2,3,.... 

Example 5.18:1 In a certain manufacturing process it is known that, on the average, 1 in every 100 
items is defective. What is the probability that the fifth item inspected is the first 
defective item found? 

Solution: Using the geometric distribution with x — 5 and p — 0.01, we have 

fl(5;0.01) = (0.01)(0.99)' = 0.0096. J 

Example 5.19:1 At "busy time" a telephone exchange is very near capacity, so callers have difficulty 
placing their calls. It may be of interest to know the number of attempts necessary 
in order to gain a connection. Suppose that we let p = 0.05 be the probability of 
a connection during busy time. We are interested in knowing the probability that 
5 attempts are necessary for a successful call. 

Solution: Using the geometric distribution with x = 5 and p = 0.05 yields 

P(X = x)= g(5:0.05) = (0.05)(0.95)4 = 0.041. J 

Quite often, in applications dealing with the geometric distribution, the mean 
and variance are important. For example, in Example 5.19 the expected number 



5.6 Poisson Distribution and the Poisson Process 161 

of calls necessary to make a connection is quite important. The following states 
without proof the mean and variance of the geometric distribution. 

Theorem 5.4: The 
are 

mean and variance of a random variable following the geometric distribution 

' 1 2 1 - P 
P P2 

Applications of Negative Binomial and Geometric Distributions 

Areas of application for the negative binomial and geometric distributions become 
obvious when one focuses on the examples in this section and the exercises devoted 
to these distributions at the end of Section 5.6. In the case of the geometric 
distribution, Example 5.19 depicts a situation where engineers or managers are 
attempting to determine how inefficient a telephone exchange system is during busy 
periods of time. Clearly in this case, trials occurring prior to a success represent a 
cost. If there is a high probability of several attempts prior to a connection, then 
plans should be made to redesign the system. 

Applications of the negative binomial are similar in nature. Attempts are costly 
in some sense and they are occurring in sequence. A high probability of requiring 
a "large" number of attempts to experience a fixed number of successes is not ben
eficial to the scientist or engineer. Consider the scenarios of the Review Exercises 
5.94 and 5.95. In Exercise 5.95 the oil driller defines a certain level of success 
from sequentially drilling locations for oil. If only six attempts have been made at 
the point where the second success is experienced, the profits appear to dominate 
substantially the investment incurred by the drilling. 

5.6 Poisson Distribution and the Poisson Process 

Experiments yielding numerical values of a random variable X, the number of 
outcomes occurring during a given time interval or in a specified region, are called 
Poisson experiments. The given time interval may be of any length, such as 
a minute, a day, a week, a month, or even a year. Hence a Poisson experiment 
can generate observations for the random variable X representing the number of 
telephone calls per hour received by an office, the number of days school is closed 
due to snow during the winter, or the number of postponed games due to rain 
during a baseball season. The specified region could be a line segment, an area, 
a volume, or perhaps a piece of material. In such instances X might represent 
the number of field mice per acre, the number of bacteria in a given culture, or 
the number of typing errors per page. A Poisson experiment is derived from the 
Poisson process and possesses the following properties: 

Properties of Poisson Process 
1. The number of outcomes occurring in one time interval or specified region is 

independent of the number that occurs in any other disjoint time interval or 
region of space. In this way wc say that the Poisson process has no memory. 
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2. The probability that a single outcome will occur during a very short time 
interval or in a small region is proportional to the length of the time interval 
or the size of the region and does not depend on the number of outcomes 
occurring outside this time interval or region. 

3. The probability that more than one outcome will occur in such a short time 
interval or fall in such a small region is negligible. 

The number X of outcomes occurring during a Poisson experiment is called a 
Poisson random variable, and its probability distribution is called the Poisson 
distribution. The mean number of outcomes is computed from p = Xt, where 
t is the specific "time," "distance," "area," or "volume" of interest. Since its 
probabilities depend on A, the rate of occurrence of outcomes, we shall denote 
them by the symbol p(x; Xt). The derivation of the formula for p(x; Xt), based on 
the three properties of a Poisson process listed above, is beyond the scope of this 
book. The following concept is used for computing Poisson probabilities. 

Poisson The probability distribution of the Poisson random variable X, representing 
Distribution the number of outcomes occurring in a given time interval or specified region 

denoted by t, is 
e~Xt(Xt)x 

p(x;Xt) = 
x< 

-, a: = 0,1,2,. 

where A is the average number of outcomes per unit time, distance, area, or 
volume, and e = 2.71828 • • •. 

Table A.2 contains Poisson probability sums 

r 

P(r;Xt) = Ypix'Xt)-
x=0 

for a few selected values of At ranging from 0.1 to 18. We illustrate the use of this 
table with the following two examples. 

Example 5.20:1 During a laboratory experiment the average number of radioactive particles passing 
through a counter in 1 millisecond is 4. What is the probability that 6 particles 
enter the counter in a given millisecond? 

Solution: Using the Poisson distribution with x = 6 and Xt = 4 and Table A.2, we have 

e _ 44 6 6 5 

p(6;4) = — — = Ypix'4) ~ Yp(x'-4^ = 0.8893-0.7851 = 0.1042. 
x=0 x=0 

Example 5.21:1 Ten is the average number of oil tankers arriving each day at a certain port city. 
The facilities at the port can handle at most 15 tankers per day. What is the 
probability that on a given day tankers have to be turned away? 

Solution: Let X be the number of tankers arriving each day. Then, using Table A.2, we have 

ID 

P(X > 15) = 1 - P(X < 15) = 1 - Ypix'> 10) = 1 - 0.9513 = 0.0487. 
x = 0 
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Like the binomial distribution, the Poisson distribution is used for quality con
trol, quality assurance, and acceptance sampling. In addition, certain important 
continuous distributions used in reliability theory and queuing theory depend on 
the Poisson process. Some of these distributions arc discussed and developed in 
Chapter 6. 

Theorem 5.5: Both the mean and variance of the Poisson distribution p(x; Xt) are Xt. 

The proof of this Theorem is found in Appendix A.26. 
In Example 5.20, where Xt — 4, we also have a2 — 4 and hence a = 2. Using 

Chebyshev's theorem, we can state that our random variable has a probability of at 
least 3/4 of falling in the interval p±2a = 4± (2)(2), or from 0 to 8. Therefore, we 
conclude that at least three-fourths of the time the number of radioactive particles 
entering the counter will be anywhere from 0 to 8 during a given millisecond. 

The Poisson Distribution as a Limiting Form of the Binomial 

It should be evident from the three principles of the Poisson process that the 
Poisson distribution relates to the binomial distribution. Although the Poisson 
usually finds applications in space and time problems as illustrated by Examples 
5.20 and 5.21, it can be viewed as a limiting form of the binomial distribution. 
In the case of the binomial, if n is quite large and p is small, the conditions 
begin to simulate the continuous space or time region implications of the Poisson 
process. The independence among Bernoulli trials in the binomial case is consistent 
with property 2 of the Poisson process. Allowing the parameter p to be close to 
zero relates to property 3 of the Poisson process. Indeed, if n is large and p is 
close to 0, the Poisson distribution can be used, with p = np, to approximate 
binomial probabilities. If p is close to 1, we can still use the Poisson distribution 
to approximate binomial probabilities by interchanging what we have defined to 
be a success and a failure, thereby changing p to a value close to 0. 

Theorem 5.6: Let X be a binomial random variable with probability distribution b(x;n,p). 
When n —> oc, p —> 0, and np "—* p remains constant, 

b(x\n,p) n=^>p(x;p). 

The proof of this theorem is found in Appendix A.27. 

Nature of the Poisson Probability Function 
Like so many discrete and continuous distributions, the form of the distribution 
becomes more and more symmetric, even bell shaped as the mean grows large. 
Figure 5.2 illustrates this. We have plots of the probability function for p = 0.1, 
p = 2, and finally p — 5. Note the nearness to symmetry as p becomes as large as 
5. A similar condition exists for the binomial distribution as will be illustrated at 
an appropriate place later in the text. 
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Figure 5.2: Poisson density functions for different means. 

Example 5.22:1 In a certain industrial facility accidents occur infrequently. It is known that the 
probability of an accident on any given day is 0.005 and accidents are independent 
of each other. 

(a) What, is the probability that in any given period of 400 days there will be an 
accident on one day? 

(b) What is the probability that there are at most three days with an accident? 

Solution: Let. X be a binomial random variable with n = 400 and p = 0.005. Thus np = 2. 
Using the Poisson approximation, 

(a) P(X = 1) = c—21 = 0.271. and 
3 

(b) P{X < 3) = £ c-'J2'7;c! = 0.857. . 
i=o J 

Example 5.23:1 In a manufacturing process where glass products arc produced, defects or bubbles 
occur, occasionally rendering the piece undesirable: for marketing. It is known 
that, on average, 1 in every 1000 of these items produced has one or more bubbles. 
What is the probability that a random sample of 8000 will yield fewer than 7 items 
possessing bubbles? 

Solution: This is essentially a binomial experiment with n = 8000 and /; = 0.001. Since p 
is very close to zero and n is quite large, we shall approximate with the Poisson 
distribution using 

p= (800Q)(0.001) = 8. 

Hence, if X represents the number of bubbles, we have 

P(X < 7) = V & ( s ; 8000,0.001) «p(x ;8) = 0.3134 
x=0 
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5.51 The probability that a person, living in a certain 
city, owns a dog is estimated to be 0.3. Find the prob
ability that the tenth person randomly interviewed in 
that city is the fifth one to own a dog. 

5.52 A scientist inoculates several mice, one at a time, 
with a disease germ until he finds 2 that have con
tracted the disease. If the probability of contracting 
the disease is 1/6, what is the probability that 8 mice 
are required? 

5.53 An inventory study determines that, on aver
age, demands for a particular item at a warehouse are 
made 5 times per day. What is the probability that on 
a given day this item is requested 
(a) more than 5 times? 

(b) not at all? 

5.54 Find the probability that a person flipping a coin 
gets 
(a) the third head on the seventh flip; 

(b) the first head on the fourth flip. 

5.55 Three people toss a fair coin and the odd man 
pays for coffee. If the coins all turn up the same, they 
are tossed again. Find the probability that fewer than 
4 tosses are needed. 

5.56 According to a study published by a group of 
University of Massachusetts sociologists, about two-
thirds of the 20 million persons in this country who 
take Valium are women. Assuming this figure to be a 
valid estimate, find the probability that on a given day 
the fifth prescription written by a doctor for Valium is 

(a) the first prescribing Valium for a woman; 

(b) the third prescribing Valium for a woman. 

5.57 The probability that a student pilot passes the 
written test for a private pilot's license is 0.7. Find the 
probability that the student will pass the test 
(a) on the third try; 
(b) before the fourth try. 

5.58 On average a certain intersection results in 3 
traffic accidents per month. What is the probability 
that for any given month at this intersection 
(a) exactly 5 accidents will occur? 
(b) less than 3 accidents will occur? 
(c) at least 2 accidents will occur? 

5.59 A secretary makes 2 errors per page, on average. 
What is the probability that on the next page he or she 
will make 

(a) 4 or more errors? 
(b) no errors? 

5.60 A certain area of the eastern United States is, 
on average, hit by 6 hurricanes a year. Find the prob
ability that for a given year that area will be hit by 

(a) fewer than 4 hurricanes; 

(b) anywhere from 6 to 8 hurricanes. 

5.61 Suppose the probability is 0.8 that any given 
person will believe a tale about the transgressions of a 
famous actress. What is the probability that 
(a) the sixth person to hear this tale is the fourth one 

to believe it? 
(b) the third person to hear this tale is the first one to 

believe it? 

5.62 The average number of field mice per acre in 
a 5-acre wheat field is estimated to be 12. Find the 
probability that fewer than 7 field mice are found 
(a) on a given acre; 
(b) on 2 of the next 3 acres inspected. 

5.63 A restaurant chef prepares a tossed salad con
taining, on average, 5 vegetables. Find the probability 
that the salad contains more than 5 vegetables 
(a) on a given day; 
(b) on 3 of the next 4 days; 

(c) for the first time in April on April 5. 

5.64 The probability that a person will die from a 
certain respiratory infection is 0.002. Find the prob
ability that fewer than 5 of the next 2000 so infected 
will die. 

5.65 Suppose that, on average, 1 person in 1000 
makes a numerical error in preparing his or her income 
tax return. If 10,000 forms are selected at random and 
examined, find the probability that 6, 7, or 8 of the 
forms contain an error. 

5.66 The probability that a student fails the screen
ing test for scoliosis (curvature of the spine) at a local 
high school is known to be 0.004. Of the next 1875 
students who are screened for scoliosis, find the prob
ability that 

(a) fewer than 5 fail the test; 
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(b) 8, 9, or 10 fail the test. 

5.67 (a) Find the mean and variance in Exercise 5.64 
of the random variable X representing the number 
of persons among 2000 that die from the respira
tory infection. 

(b) According to Chebyshev's theorem, there is a prob
ability of at least 3/4 that the number of persons 
to die among 2000 persons infected will fall within 
what interval? 

5.68 (a) Find the mean and variance in Exercise 5.65 
of the random variable X representing the num
ber of persons among 10,000 who make an error in 
preparing their income tax returns. 

(b) According to Chebyshev's theorem, there is a prob
ability of at least 8/9 that the number of persons 
who make errors in preparing their income tax re
turns among 10,000 returns will be within what 
interval? 

5.69 An automobile manufacturer is concerned about 
a fault in the braking mechanism of a particular model. 
The fault can, on rare occasions, cause a catastrophe at 
high speed. The distribution of the number of cars per 
year that will experience the fault is a Poisson random 
variable with A = 5. 

(a) What is the probability that at most 3 cars per year 
will experience a catastrophe? 

(b) What is the probability that more than 1 car per 
year will experience a catastrophe? 

5.70 Changes in airport procedures require consider
able planning. Arrival rates of aircraft are important 
factors that must be taken into account. Suppose small 
aircraft arrive at a certain airport, according to a Pois
son process, at the rate of 6 per hour. Thus the Poisson 
parameter for arrivals for a period of hours is p. = 6t. 

(a) What is the probability that exactly 4 small air
craft arrive during a 1-hour period? 

(b) What is the probability that at least 4 arrive during 
a 1-hour period? 

(c) If we define a working day as 12 hours, what is 
the probability that at least 75 small aircraft ar
rive during a day? 

5.71 The number of customers arriving per hour at a 
certain automobile service facility is assumed to follow 
a Poisson distribution with mean A = 7. 
(a) Compute the probability that more than 10 cus

tomers will arrive in a 2-hour period. 
(b) What is the mean number of arrivals during a 2-

hour period? 

5.72 Consider Exercise 5.66. What is the mean num
ber of students who fail the test? 

5.73 The probability that a person dies when he con
tracts a virus infection is 0.001. Of the next 4000 so 
infected, what is the mean number that will die? 

5.74 A company purchases large lots of a certain kind 
of electronic device. A method is used that rejects a 
lot if 2 or more defective units are found in a random 
sample of 100 units. 

(a) What is the mean number of defective units found 
in a sample of 100 units if the lot is 1% defective? 

(b) What is the variance? 

5.75 In the case of a certain type of copper wire, it 
is known that, on the average, 1.5 flaws occur per mil
limeter. Assuming that the number of flaws is a Pois
son random variable, what is the probability that no 
flaws occur in a certain portion of wire of length 5 
millimeters? What is the mean number of flaws in a 
portion of length 5 millimeters? 

5.76 Potholes on a highway can be a serious problem 
and are in constant need of repair. With a particular 
type of terrain and make of concrete, past experience 
suggests that there are, on the average, 2 potholes per 
mile after a certain amount of usage. It is assumed 
that the Poisson process applies to the random vari
able "number of potholes." 

(a) What is the probability that no more than one pot
hole will appear in a section of one mile? 

(b) What is the probability that no more than 4 pot 
holes will occur in a given section of 5 miles? 

5.77 Hospital administrators in large cities anguish 
about problems with traffic in emergency rooms in hos
pitals. For a particular hospital in a large city, the 
staff on hand cannot accommodate the patient traffic 
if there are more than 10 emergency cases in a given 
hour. It is assumed that patient arrival follows a Pois
son process and historical data suggest that, on the 
average, 5 emergencies arrive per hour. 
(a) What is the probability that in a given hour the 

staff can no longer accommodate the traffic? 
(b) What is the probability that more than 20 emer

gencies arrive during a 3-hour shift of personnel? 

5.78 In airport luggage screening it is known that 3% 
of people screened have questionable objects in their 
luggage. What is the probability that a string of 15 
people pass through successfully before an individual 
is caught with a questionable object? What is the ex
pected number in a row that pass through before an 
individual is stopped? 
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5.79 Computer technology has produced an environ
ment in which "robots" operate with the use of micro
processors. The probability that a robot fails during 
any 6 hour shift is 0.10. What is the probability that 
a robot will operate at most 5 shifts before it fails? 

5.80 Refusal rate in telephone polls is known to be ap

proximately 20%. A newspaper report indicates that 
50 people were interviewed before the first refusal. 
(a) Comment, on the validity of the report. Use a prob

ability in your argument. 
(b) What is the expected number of people interviewed 

before a refusal? 

Review Exercises 

5.81 During a manufacturing process 15 units are 
randomly selected each day from the production line 
to check the percent defective. From historical infor
mation it is known that the probability of a defective 
unit is 0.05. Any time that two or more defectives 
are found in the sample of 15, the process is stopped. 
This procedure is used to provide a signal in case the 
probability of a defective has increased. 

(a) What is the probability that on any given day the 
production process will be stopped? (Assume 5% 
defective.) 

(b) Suppose that the probability of a defective has in
creased to 0.07. What is the probability that on 
any given day the production process will not be 
stopped? 

5.82 An automatic welding machine is being consid
ered for production. It will be considered for purchase 
if it is successful for 99% of its welds. Otherwise, it will 
not be considered efficient. A test is conducted on a 
prototype that is to perform 100 welds. The machine 
will be accepted for manufacture if it misses no more 
than 3 welds. 

(a) What is the probability that a good machine will 
be rejected? 

(b) What is the probability that an inefficient machine 
with 95% welding success will be accepted? 

5.83 A car rental agency at a local airport has avail
able 5 Fords, 7 Chcvrolets, 4 Dodges, 3 Hondas, and 4 
Toyotas. If the agency randomly selects 9 of these cars 
to chauffeur delegates from the airport to the down
town convention center, find the probability that 2 
Fords. 3 Chevrolets, 1 Dodge, 1 Honda, and 2 Toy
otas are used. 

5.84 Service calls come to a maintenance center ac-
cording to a Poisson process and, on the average, 2.7 
calls come per minute. Find the probability that 
(a) no more than 4 calls come in any minute; 
(b) fewer than 2 calls come in any minute; 
(c) more than 10 calls come in a 5-minute period. 

5.85 An electronics firm claims that the proportion of 
defective units of a certain process is 5%. A buyer has 
a standard procedure of inspecting 15 units selected 
randomly from a large lot. On a particular occasion, 
the buyer found 5 items defective. 

(a) What is the probability of this occurrence, given 
that the claim of 5% defective is correct? 

(b) What would be your reaction if you were the buyer? 

5.86 An electronic switching device occasionally mal
functions and may need to be replaced. It is known 
that the device is satisfactory if it makes, on the av
erage, no more than 0.20 error per hour. A particular 
5-hour period is chosen as a "test" on the device. If 
no more than 1 error occurs, the device is considered 
satisfactory. 

(a) What is the probability that a satisfactory device 
will be considered unsatisfactory on the basis of the 
rest? Assume that a Poisson process exists. 

(b) What is the probability that a device will be ac
cepted as satisfactory when, in fact, the mean num
ber of errors is 0.25? Again, assume that a Poisson 
process exists. 

5.87 A company generally purchases large lots of a 
certain kind of electronic device. A method is used 
that rejects a lot if two or more defective units are 
found in a random sample of 100 units. 
(a) What is the probability of rejecting a lot that is 1%. 

defective? 
(b) What is the probability of accepting a lot that is 

5% defective? 

5.88 A local drugstore owner knows that, on average, 
100 people per hour stop by his store. 
(a) Find the probability that in a given 3-minutc pe

riod nobody enters the store. 
(b) Find the probability that in a given 3-minute pe

riod more than 5 people enter the store. 

5.89 (a) Suppose that you throw 4 dice, 
probability that you get at least one 1. 

Find the 
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(b) Suppose that you throw 2 dice 24 times. Find the 
probability that you get at least one (1, 1), that is, 
you roll "snake;-eyes." 
[Note: The probability of part (a) is greater than 
the probability of part (b).] 

5.90 Suppose that 500 lottery tickets are sold. 
Among them, 200 tickets pay off at least the cost of 
the ticket. Now suppose that you buy 5 tickets. Find 
the probability that you will win back at least the cost 
of 3 tickets. 

5.91 Imperfections in computer circuit boards and 
computer chips lend themselves to statistical treat
ment. For a particular type of board the probability of 
a diode failure is 0.03. Suppose a circuit board contains 
200 diodes. 
(a) What is the mean number of failures among the 

diodes? 
(b) What is the variance? 
(c) The board will work if there are no defective diodes. 

What is the probability that a board will work? 

5.92 The potential buyer of a particular engine re-
quires (among other things) that the engine start suc
cessfully 10 consecutive times. Suppose the probability 
of a successful start is 0.990. Let us assume that the 
outcomes of attempted starts are independent. 

(a) What is the probability that the engine is accepted 
after only 10 starts? 

(b) What is the probability that 12 attempted starts 
are made during the acceptance process? 

5.93 The acceptance scheme for purchasing lots con
taining a large number of batteries is to test no more 
than 75 randomly selected batteries and to reject a lot 
if a single battery fails. Suppose the probability of a 
failure is 0.001. 

(a) What is the probability that a lot is accepted? 
(b) What is the probability that a lot is rejected on the 

20th test? 
(c) What is the probability that it is rejected in 10 or 

less trials? 

5.94 An oil drilling company ventures into various lo
cations, and its success or failure is independent from 
one location to another. Suppose the probability of a 
success at any specific location is 0.25. 
(a) What is the probability that a driller drills 10 lo

cations and finds 1 success? 
(b) The driller feels that he will go bankrupt if he drills 

10 times before the first success occurs. What are 
the driller's prospects for bankruptcy? 

5.95 Consider the information of Review Exercise 
5.94. The driller feels that he will "hit it big" if the 
second success occurs on or before the sixth attempt. 
What is the probability that the driller will "hit it big?" 

5.96 A couple decides they will continue to have 
children until they have two males. Assuming that 
P(male) = 0.5, what is the probability that their sec
ond male is their fourth child? 

5.97 It is known by researchers that 1 in 100 people 
carry a gene that leads to the inheritance of a certain 
chronic disease. From a random sample of 1000 in
dividuals, what is the probability that fewer than 7 
individuals carry the gene? Use a Poisson approxima
tion. Using the approximation, what is the approxi
mate mean number of people out of 1000 carrying the 
gene? 

5.98 A production process produces electronic com
ponent, parts. It has presumably been established that 
the probability of a defective part is 0.01. During a test 
of this presumption, 500 items are sampled randomly 
and 15 defective out of the 500 were observed. 

(a) What is your response to the presumption that the 
process is 1% defective? Be sure that a computed 
probability accompanies your comment. 

(b) Under the presumption of a 1% defective process, 
what is the probability that only 3 would be found 
defective? 

(c) Do (a) and (b) again using the Poisson approxima
tion. 

5.99 A production process produces items in lots of 
50. Sampling plans exist in which lots are pulled aside 
periodically and exposed to a certain type of inspec
tion. It is usually assumed that the proportion defec
tive in the process is very small. It is also important 
to the company that lots containing defects be a rare 
event. Currently the inspection plan by the company 
is to periodically sample randomly 10 out of the 50 in 
a lot and if none are defective, no intervention into the 
process is done. 

(a) Suppose in a lot chosen at random, 2 out of 50 are 
defective. What is the probability that at least 1 
in the sample of 10 from the lot is defective? 

(b) From your answer in (a), comment about the qual
ity of this sampling plan. 

(c) What is the mean number of defects found out of 
10? 

5.100 Consider the situation of Review Exercise 5.99. 
It has been determined that the sampling plan should 
be extensive enough so that there is a high probabil
ity, say 0.9, that if as many as 2 defects exist in the 
lot of 50 being sampled, at least. 1 will be found in the 
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.sampling. With these restrictions, how many of the 50 
should be sampled? 

5.101 Homeland Security and missile defense tech
nology make it paramount that we be able to detect 
incoming projectiles or missiles. To make the defense 
successful, multiple radar screens are: required. Sup
pose it is determined that three independent screens 
are to be operated and the probability that, any one 
screen will detect an incoming missile is 0.8. Obvi
ously, if no screens detect an incoming projectile, the 
system is unworthy and must be improved. 

(a) What is the probability that an incoming missile 
will not be detected by any of the three screens? 

(b) What is the probability that the missile will be de
tected by only one screen? 

(e:) What is the probability that it. will lie detected by 
at least two out of throe screens? 

5.102 Consider Review Exercise 5.101. Suppose if is 
important, that the overall system be as near perfect 
as possible. Assuming the: quality of the screens are: as 
indicated in Review Exercise 5.101, 

(a) how many are needed to insure that the probability 
that the missile gets through undetected is 0.0001? 

(b) Suppose it is decided to stay with only 3 screens 
and attempt to improve the screen detection abil
ity. What must be the individual screen effec
tiveness (i.e.- probability of detection), in order to 
achieve the effectiveness required from (a)? 

5.103 Co back to Review Exercise 5.99(a). Re
compute the probability using the binomial distribu
tion. Comment. 

5.104 There are two vacancies in a certain statistics 
department in the United States. Five individuals ap
ply. Two have expertise in linear models and one has 
expertise in applied probability. The search committee 
is instructed to choose the two members randomly. 

(a) What is the probability that the two e:liosen are 
those with expertise in linear models? 

(b) What is the probability that from the two chosen, 
one: has expertise: in linear models and one has ex
pertise in applied probability? 

5.105 The manufacturer of a tricycle for children has 
received complaints about defective: brakes in the prod
uct. According to the design of the product and consid
erable: preliminary testing, it had been determined that 
the probability of the kind of defect in the complaint 
was 1 in 10000 (i.e., .0001). After a thorough investiga
tion of the complaints, it was determined that, during 
a certain period of time, 200 products were randomly 
chosen from production and 5 experienced defective 
brakes. 

(a) Comment on the "1 in 10,000" claim by the man
ufacturer. Use a probabilistic argument. Use the 
binomial distribution for your calculations. 

(b) Do the work using the Poisson approximation. 

5.7 Potential Misconceptions and Hazards; 
Relationship to Material in Other Chapters 

The discrete distributions discussed in this chapter occur with great frequency in 
engineering and the biological and physical sciences. The exercises and examples 
certainly suggest this. In the case of the binomial and Poisson distributions, in
dustrial sampling plans and much engineering judgment arc made based on these 
two distributions. This is also the case for the hypergeometric distribution. While 
the geometric and negative: binomial distr ibutions are used to a somewhat lesser 
extent, they also find applications. In particular, a negative binomial random vari
able can be viewed as a mixture of Poisson and gamma random variables (gamma 
distribution will be discussed in Chapter 6). 

Despite the rich heritage tha t these distr ibutions find in real-life applications, 
they can be misused unless the scientific practit ioner is prudent and cautious. Of 
course, any probability calculation for the distr ibutions discussed in this chapter 
are made under the assumption that the parameter value: is known. Real-world 
applications often result in a parameter value tha t may "move around" clue to 
factors tha t arc: difficult to control in the process or because of interventions in 
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the process that are not taken into account. For example, in Review Exercise 
5.81, "historical information" is used. But is the process that exists now the 
same process as that under which the historical data were collected? The use of 
the Poisson distribution can suffer even more from this difficulty. For example, 
consider Review Exercise 5.84. The questions on (a), (b), and (c) are based on the 
use of p = 2.7 calls per minute. Based on historical records, this is the number of 
calls that occur "on the average." But in this and many other applications of the 
Poisson distribution there are "slow times" and "busy times" so it is expected that 
there are times in which the conditions for the Poisson process may appear to hold 
when in fact they do not. Thus the probability calculations may be incorrect. In 
the case of the binomial the assumption that may fail in certain applications (in 
addition to nonconstancy of p) is the independence assumption, stating that the 
Bernoulli trials must be independent. 

One of the most famous misuses of the binomial distribution occurred in the 
1961 baseball season, when Mickey Mantle and Roger Maris were engaged in a 
friendly battle to break Babe Ruth's all time record of 60 home runs, A famous 
magazine article made a prediction based on probability theory and predicted that 
Mantle would break the record based on a higher probability calculation with 
the use of the binomial distribution. The classic error made was the choice of 
estimations of the parameter p (one for each player) based on relative historical 
frequency of home runs throughout their careers. Maris, unlike Mantle, had not 
been a prodigious home run hitter prior to 1961. As a result, his "estimate" of p 
was quite low. As a result the calculated probability of breaking the record was 
quite high for Mantle and low for Maris. The end result: Mantle failed to break 
the record and Maris succeeded. 



Chapter 6 

Some Continuous Probability 
Distributions 

6.1 Continuous Uniform Distribution 

One of the simplest continuous distributions in all of statistics is the continuous 
uniform distribution. This distribution is characterized by a density function 
that is "flat," and thus the probability is uniform in a closed interval, say [A, B]. 
Although applications of the continuous uniform distribution are not as abundant 
as they are for other distributions discussed in this chapter, it is appropriate for 
the novice to begin this introduction to continuous distributions with the uniform 
distribution. 

Uniform The density function of the continuous uniform random variable X on the 
Distribution interval [A, B] is 

A < x < B, 
f(x-A.B) = { B~ 

10, elsewhere. 
It should be emphasized to the reader that the density function forms a rectangle 
with base B — A and constant height -g^j- As a result, the uniform distribution 
is often called the rectangular distribution. The density function for a uniform 
random variable on the interval [1, 3] is shown in Figure 6.1. 

Probabilities are simple to calculate for the uniform distribution due to the 
simple nature of the density function. However, note that the application of this 
distribution is based on the assumption that the probability of falling in an interval 
of fixed length within [A, B] is constant. 

Example 6.1:1 Suppose that a large conference room for a certain company can be reserved for no 
more than 4 hours. However, the use of the conference room is such that both long 
and short conferences occur quite often. In fact, it can be assumed that length X 
of a conference has a uniform distribution on the interval [0, 4]. 

(a) What is the probability density function? 
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0 1 3 

Figure 6.1: The density function for a random variable on the interval [1,3]. 

(b) What is the probability that any given conference lasts at least 3 hours? 
Solution: (a) The appropriate density function for the uniformly distributed random vari

able X in this situation is 

fix) = 
j , 0 < ; r < 4 . 

0, elsewhere. 

Theorem 6.1: 

(b) P[X>3]=f^dx = \. 

The mean and variance of the uniform distribution are 

A-rB 2 (B~A)2 

p = — - — . and o = — . 
' 2 12 

The proofs of the: theorems are left to the reader. See Exercise 6.20 on page 187. 

6.2 Normal Distribution 
The most important, continuous probability distribution in the entire field of statis
tics is the normal distr ibution. Its graph, called the normal curve, is the bell-
shaped curve: of Figure 6.2, which describes approximately many phenomena that 
occur in nature, industry, and research. Physical measurements in areas such as 
meteorological experiments, rainfall studies, and measurements of manufactured 
parts are often more than adequately explained with a normal distribution. In 
addition, errors in scientific measurements are extremely well approximated by a 
normal distribution. In 1733, Abraham DeMoivre developed the mathematical 
equation of the normal curve. It provided a basis for which much of the theory of 
inductive statistics is founded. The normal distribution is often referred to as the 
Gaussian dis tr ibut ion, in honor of Karl Fricdrich Gauss (1777-1855), who also 
derived its equation from a study of errors in repeated measurements of the same 
quantity. 
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Figure 6.2: The normal curve. 

A continuous random variable X having the bell-shaped distribution of Figure 
6.2 is called a normal random variable. The mathematical equation for the 
probability distribution of the normal variable depends upon the two parameters p 
and a, its mean and standard deviation. Hence we denote the values of the density 
of AT by n(x;p,a). 

Normal The density of the normal random variable X, with mean p and variance a2, is 
Distribution 

, , 1 krix—ut3 

n(x;u,a) = ,— e 2̂ »* , — co < re < oo, 
s/2na 

where n = 3.14159..., and e = 2.71828.... 

Once p and a are specified, the normal curve is completely determined. For ex
ample, if p = 50 and a = 5, then the ordinates n(x; 50,5) can be computed for 
various values of a: and the curve drawn. In Figure 6.3 we have sketched two normal 
curves having the same standard deviation but different means. The two curves 
are identical in form but are centered at different positions along the horizontal 
axis. 

In Figure 6.4 wc have sketched two normal curves with the same mean but 
different standard deviations. This time we see that the two curves are centered 
at. exactly the same position on the horizontal axis, but the curve with the larger 
standard deviation is lower and spreads out farther. Remember that the area under 
a probability curve must be equal to 1, and therefore the more variable the set of 
observations the lower and wider the corresponding curve will be. 

Figure 6.5 shows the results of sketching two normal curves having different 
means and different standard deviations. Clearly, they are centered at different 
positions on the horizontal axis and their shapes reflect the two different values of 
a. 

From an inspection of Figures 6.2 through 6.5 and by examination of the first 
and second derivatives of n(x:p, a), we list the following properties of the normal 
curve: 

1. The mode, which is the point on the horizontal axis where the curve is a 



174 Chapter 6 Some Continuous Probability Distributions 

Mi Ma 

Figure 6.3: Normal curves with pi < p2 and a\ = a2. 

P>\ = M2 

Figure: 6.4: Normal curves with p.\ ~ p2 and 0\ < a2 

AM M2 

Figure 6.5: Normal curves with p.\ <p2 and a^ <a2 



6.2 Normal Distribution 175 

maximum, occurs at x = p. 

2. The curve is symmetric about a vertical axis through the mean p. 

3. The curve has its points of inflection at x = p ± a, is concave downward if 
p — a < X < p + a, and is concave upward otherwise. 

4. The normal curve approaches the horizontal axis asymptotically as we proceed 
in either direction away from the mean. 

5. The total area under the curve and above the horizontal axis is equal to 1. 

We shall now show that the parameters p and a2 are indeed the mean and the 
variance of the normal distribution. To evaluate the mean, we write 

E(X) = -=L- P Xe-^x-ri/°f dx. 
s/2na J-oo 

Setting z = (x — p)/a and dx = a dz, we obtain 

E(X) = -j=J (p, + oz)e-^dz 
1 fx _ ^ , a /,oc _ ^ J 

= p~~/= / e * dz + —j= j ze 2 dz. 
\j2lt '-oc V 2lt J-oc 

The first term on the right is p times the area under a normal curve with mean 
zero and variance 1, and hence equal to p. By straightforward integration, the 
second term is equal to 0. Hence 

E(X) = u. 

The variance of the normal distribution is given by 

E[(X - p)2] = -jL- fX (x - M)2
e-5i(--">/-]2 dx. 

V2TTCT J-X 
Again setting z = (x — p)/a and dx = a dz, we obtain 

E[(X-p)2] = -?L ^ z2e-^ dz. 

Integrating by parts with u = z and dv = ze~z I2 dz so that du = dz and v = 
—e~z I2, we find that 

2 / oc r°° \ 
E[(X - p)2\ = -j= ( -Ze-zl/2\_x + I c-*2'2 dz) = a2(0 + 1) - a2. 

Many random variables have probability distributions that can be described 
adequately by the normal curve once p and a2 are specified. In this chapter we shall 
assume that these two parameters are known, perhaps from previous investigations. 
Later we shall make statistical inferences when p and a2 are unknown and have 
been estimated from the available experimental data. 

We pointed out earlier the role that the normal distribution plays as a reason
able approximation of scientific variables in real-life experiments. There are other 
applications of the normal distribution that the reader will appreciate as he or she 
moves on in the book. The normal distribution finds enormous application as a 
limiting distribution. Under certain conditions the normal distribution provides a 
good continuous approximation to the binomial and hypergeometric distributions. 
The case of the approximation to the binomial is covered in Section 6.5. In Chap
ter 8 the reader will learn about sampling distributions. It turns out that the 

file:///j2lt
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limiting distribution of sample averages is normal. This provides a broad base 
for statistical inference that proves very valuable to the data analyst interested 
in estimation and hypothesis testing. The important areas of analysis of variance 
(Chapters 13, 14, and 15) and quality control (Chapter 17) have their theory based 
on assumptions that make use of the normal distribution. 

In much of what follows in Section 6.3, examples are given which demonstrate 
the use of tables of the normal distribution. Section 6.4 follows with examples of 
applications of the normal distribution. 

6.3 Areas under the Normal Curve 

The curve of any continuous probability distribution or density function is con
structed so that the area under the curve bounded by the two ordinatos x — x\ 
and x — x2 equals the probability that the random variable X assumes a value 
between x = x\ and x = x2. Thus, for the normal curve in Figure 6.6, 

P(x\ < X < x2) = / n(x;p.o)dx = / • 
Jx, \l2ixa JXl 

is represented by the area of the shaded region. 

r<B-*> dx, 

Figure 6.6: P(x.\ < X < x2) = area of the shaded region. 

In Figures 6.3, 6.4, and 6.5 we saw how the normal curve is dependent on the 
mean and the standard deviation of the distribution under investigation. The area 
under the curve between any two ordinates must then also depend on the values p 
and a. This is evident in Figure 6.7, where we have shaded regions corresponding 
to P(xi < X < x-2) for two curves with different means and variances. The P{x\ < 
X < x2), where X is the random variable describing distribution A, is indicated 
by the darker shaded area. If X is the random variable describing distribution B, 
then P(x.\ < X < x2) is given by the entire shaded region. Obviously, the two 
shaded regions are different in size; therefore, the probability associated with each 
distribution will be different for the two given values ol X. 

The difficulty encountered in solving integrals of normal density functions ne
cessitates the tabulation of normal curve areas for quick reference. However, it 

file:///l2ixa
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x, x2 

Figure 6.7: P(.V] < X < x2) for different normal curves. 

Definition 6.1: 

would be a hopeless task to attempt to set up separate tables for every conceivable 
values of p and er. Fortunately, we are able to transform all the observations of any 
normal random variable X to a new set of observations of a normal random variable 
Z with mean 0 and variance 1. This can be done bv means of the transformation 

Z = ^ » . 
o 

Whenever X assumes a value x, the corresponding value of Z is given by z = 
(x — p)/o. Therefore, if A' falls between the values x — x\ and x = x2, the 
random variable Z will fall between the corresponding values z\ = (xi — p)jo and 
z2 — (x2 — p)/o. Consequently, we may write 

P(xi < X <x2) = 
1 f 

Jx, 

d*~H) dx = 
1 

2TT 

-L 
V^OJX, 

n(2;0, l) dz = P(z\ < Z < z2) 

f dz 

where Z is seen to be a normal random variable with mean 0 and variance 1. 

The distribution of a normal random variable with mean 0 and variance 1 is called 
a standard normal distribution. 

The original and transformed distributions are illustrated in Figure 6.8. Since 
all the values of X falling between x\ and x2 have corresponding z values between 
z\ and z2, the area under the X-curve between the ordinates x = x\ and x = x2 in 
Figure 6.8 equals the area under the Z-curve between the transformed ordinates 
z = z\ and z — z2. 

We have now reduced the required number of tables of normal-curve areas to 
one, that of the standard normal distribution. Table A.3 indicates the area under 
the standard normal curve corresponding to P(Z < z) for values of z ranging from 
—3.49 to 3.49. To illustrate the use of this table, let us find the probability that Z 
is less than 1.74. First, we locate a value of z equal to 1.7 in the left column, then 
move across the row to the column under 0.04, where we read 0.9591. Therefore, 
P(Z < 1.74) = 0.9591. To find a z value corresponding to a given probability, the 
process is reversed. For example, the z value leaving an area of 0.2148 under the 
curve to the left of z is seen to be —0.79. 
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X, x2 M z, z2o 

Figure 6.8: The original and transformed normal distributions. 

Example 6.2:1 Given a standard normal distribution, find the area under the curve that lies 

(a) to the right of z = 1.84, and 

(b) between z = -1.97 and z = 0.86. 

Figure 6.9: Areas for Example 6.2. 

Solution: (a) The area in Figure 6.9(a) to the right of z = 1.84 is equal to 1 minus the area 
in Table A.3 to the left of Z = 1.84, namely, 1 - 0.9671 = 0.0329. 

(b) The area in Figure 6.9(b) between z = —1.97 and z = 0.86 is equal to the 
area to the left of z = 0.86 minus the area to the left of z = —1.97. Fre 
Table A.3 we find the desired area to be 0.8051 - 0.0244 = 0.7807. 

rroni 

Example 6.3:! Given a standard normal distribution, find the value of A- such that 



6.3 Areas under the Normal Curve L79 

(a) P(Z > k) = 0.3015, and 

(b) P(k < Z < -0.18) = 0.4197. 

Figure 6.10: Areas for Example 6.3. 

Solution: (a) In Figure 6.10(a) we see that the A: value leaving an area of 0.3015 to the right 
must then leave an area of 0.6985 to the left. From Table A.3 it follows that 
k = 0.52. 

(b) From Table A.3 we note that the total area to the left of —0.18 is equal to 
0.4286. In Figure 6.10(b) we see that the area between k and -0.18 is 0.4197 
so that the area to the left, of k must be 0.4286 - 0.4197 = 0.0089. Hence, 
from Table A.3, wc have k = -2.37. J 

Example 6.4:1 Given a random variable X having a normal distribution with )i. — 50 and a = 10, 
find the probability that X assumes a value between 45 and 62. 

Solution: The z values corresponding to x\ — 45 and x2 = 62 are 

z\ 
45 - 50 

10 
= -0 .5 and 

62 - 50 

Ml 
= 1.2. 

Therefore, 

P(45 < X < 62) = P ( - 0 . o < Z < 1.2). 

The P(—0.5 < Z < 1.2) is shown by the area of the shaded region of Figure 6.11. 
This area may be found by subtracting the area to the left of the ordinate z = —0.5 
from the entire area to the left of z = 1.2. Using Table A.3, we have 

P(45 < X < 62) = P ( -0 .5 < Z < 1.2) = P(Z < 1.2) - P(Z < -0.5) 

= 0.8849 - 0.3085 = 0.5764. J 

Example 6.5:1 Given that X has a normal distribution with p — 300 and a = 50, find the: 
probability that X assumes a value greater than 362. 
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-0.5 0 1.2 

Figure 6.11: Area for Example: 6.4. 

300 362 

Figure 6.12: Area for Example 6.5. 

Solution: The1 normal probability distribution showing the desired area is shown by Figure 
6.12. To find the P(X > 362), wc need to evaluate the area under the normal 
curve to the right of;?: = 362. This can be done by transforming x = 362 to the 
corresponding z value, obtaining the area to the left of z from Tabic A.3, and then 
subtracting this area from 1. We find that 

362 - 300 

50 
1.24. 

Hence 

P(X > 362) = P(Z > 1.24) = 1 - P(Z < 1.24) = 1 - 0.8925 = 0.1075. 

According to Chebyshev's theorem, the probability that a random variable 
assumes a value within 2 standard deviations of flic: mean is at least 3/4. If the 
random variable has a normal distribution, the Z values corresponding to x\ = 
p, — 2(7 and x2 — p+2o are easily computed to be: 

z\ 
(p. - 2a) /' and 

(//. + 2cr) - p. 

Hence 

P(p - 2cr < X < p + 2a) = P ( - 2 < Z < 2) = P(Z < 2) 

= 0.9772 - 0.0228 = 0.9544. 

= 2. 

P(Z < -2) 
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which is a much stronger statement than that stated by Chebyshev's theorem. 

Using the Normal Curve in Reverse 

Occasionally, we are required to find the value of z corresponding to a specified 
probability that falls between values listed in Table A.3 (see Example 6.6). For 
convenience, we shall always choose: the z value corresponding to the tabular prob
ability that comes closest, to the specified probability. 

The preceding two examples were solved by going first; from a value of x to a z 
value and then computing the desired area. In Example 6.6 we reverse the process 
and begin with a known area or probability, find the z value, and then determine 
x by rearranging the formula. 

M 
to give: x =CTZ + p. 

Example 6.6:1 Given a normal distribution with //. = 40 and a = 6, find the value of x that has 

(a) 45% of the area to the left, and 

(b) 14% of the area to the: right. 

/ 

y 0.45 

1 \ 
1 \ 

i \ 
i \ 
i \ 
i \ 
i \ 

i \ 
1 
1 
i 
i 

= 6 

40 

(a) 

Figure1 6.13: Areas for Example 6.6. 

Solution: (a) An area of 0.45 to the left of the desired x value is shaded in Figure 6.13(a). 
We require a z value that leaves an area of 0.45 to the left. From Table A.3 
we find P(Z < —0.13) = 0.45 so that the desired z value is —0.13. Hence: 

.,:= (6)(-0.13) + 40 = 39.22. 

(b) In Figure 6.13(b) we shade an area equal to 0.14 to the right of the desired 
x value. This time we require a z value that leaves 0.14 of the area to the 
right and hence: an area of 0.86 to the left. Again, from Table A.3, we find 
P(Z < 1.08) = 0.86 so that the- desired z value is 1.08 and 

(6)( 1.08) + 4 0 = 46.48. 
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6.4 Applications of the Normal Distribution 

Some of the many problems for which the normal distribution is applicable are 
treated in the following examples. The use of the normal curve to approximate 
binomial probabilities is considered in Section 6.5. 

Example 6.7:1 A certain type of storage battery lasts, on average, 3.0 years with a standard 
deviation of 0.5 year. Assuming that the battery lives are normally distributed, 
find the probability that a given battery will last less than 2.3 years. 

Solution: First construct a diagram such as Figure 6.14, showing the given distribution of 
battery lives and the desired area. To find the P(X < 2.3), we need to evaluate 
the area under the normal curve to the left of 2.3. This is accomplished by finding 
the area to the left of the corresponding z value. Hence we find that 

2.3 - 3 

0.5 
•1.4, 

and then using Table A.3 we have 

P(X < 2.3) = P(Z < -1.4) = 0.0808. 

2.3 3 

Figure 6.14: Area for Example 6.7. 

778 800 834 

Figure 6.15: Area for Example 6.8. 

Example 6.8:1 An electrical firm manufactures light bulbs that have a life, before burn-out, that 
is normally distributed with mean equal to 800 hours and a standard deviation of 
40 hours. Find the probability that a bulb burns between 778 and 834 hours. 

Solution: The distribution of light bulbs is illustrated by Figure 6.15. The z values corre
sponding to X] = 778 and .T2 = 834 are 

778 - 800 
A = — j g - = -0.55. 

834 - 800 n M 

and z2 = : = 0.85. 
40 

He 

P(778 < X < 834) = P(-0.5S < Z < 0.85) = P(Z < 0.85) - P(Z < -0.55) 

= 0.8023-0.2912 = 0.5111. J 

Example 6.9:1 In an industrial process the diameter of a ball bearing is an important component 
part. The buyer sets specifications on the diameter to be 3.0 ± 0.01 cm. The 
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implication is that no part falling outside these specifications will be accepted. It 
is known that in the process the diameter of a ball bearing has a normal distribution 
with mean p. = 3.0 and standard deviation a = 0.005. On the average, how many 
manufactured ball bearings will be: scrapped? 

Solution: The distribution of diameters is illustrated by Figure 6.16. The values correspond
ing to the specification limits are X\ = 2.99 and x2 = 3.01. The corresponding z 
values are 

2.99 - 3.0 „ „ , 3.01 - 3.0 
-i = —^7^— = - 2 - 0 ' and «2 = = +2.0. 

0.005 0.005 
Hence 

P(2.99 < X < 3.01) = P ( -2 .0 < Z < 2.0). 

From Table A.3, P(Z < -2.0) = 0.0228. Due to symmetry of the normal distribu
tion, we find that 

P(Z < -2.0) + P(Z > 2.0) = 2(0.0228) = 0.0456. 

As a result, it is anticipated that on the average, 4.56% of manufactured ball 
bearings will be scrapped. J 

0.005 

2.99 3.0 3.01 

Figure 6.16: Area for Example 6.9. 

0.0228 0.025 
X 

1.108 1.500 1.892 

Figure 6.17: Specifications for Example 6,10. 

Example 6.10:1 Gauges are used to reject all components where a certain dimension is not within 
the specification l.50±d. It is known that this measurement is normally distributed 
with mean 1.50 and standard deviation 0.2. Determine the value d such that the 
specifications "cover"' 95% of the measurements. 

Solution: From Table A.3 we know that: 

Therefore. 

from which we obtain 

P ( - 1 . 9 6 < Z < 1.96) = 0.95. 

(1.S0 + d) - 1.50 
1.96 

0.2 

d= (0.2)(1.96) = 0.392. 

An illustration of the specifications is shown in Figure 6.17. 
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Example 6.11:1 A certain machine makes electrical resistors having a mean resistance of 40 ohms 
and a standard deviation of 2 ohms. Assuming that the resistance follows a normal 
distribution and can be measured to any degree of accuracy, what percentage of 
resistors will have a resistance exceeding 43 ohms'? 

Solution: A percentage is found by multiplying the relative frequency by 100%. Since the 
relative frequency for an interval is equal to the probability of falling in the interval, 
we must find the area to the right of x = 43 in Figure 6.18. This can be done by 
transforming x = 43 to the corresponding ; value, obtaining the area to the left of 
z from Table: A.3, and then subtracting this area from 1. We find 

43-40 
= 1.5. 

Therefore, 

P(X > 43) = P(Z > 1.5) = I - P(Z < 1.5) = 1 - 0.9332 = 0.0668. 

Hence, 6.68%. of the resistors will have a resistance exceeding 43 ohms. J 

43.5 

Figure 6.18: Area for Example: 6.11. Figure 6,19: Area for Example: 6.11 

Example 6.12:1 Find the percentage of resistances exceeding 43 ohms for Example 6.11 if resistance 
is measured to the nearest ohm. 

Solution: This problem differs from Example 6.11 in that we now assign a measurement of 
43 ohms to all resistors whose resistances are greater than 42.5 and less than 43.5. 
We are actually approximating a discrete distribution by means of a continuous 
normal distribution. The required area is the region shaded to the right of 43.5 in 
Figure 6.19. We now find that 

43.5 - 40 

2 
= 1.75. 

Hence 

P(X > 43.5) = P(Z > 1.75) = 1 - P(Z < 1.75) = 1 - 0.9599 = 0.0401. 

Therefore, 4.01% of the resistances exceed 43 ohms when measured to the nearest 
ohm. The difference 6.68% - 4.01% = 2.67%: between this answer and that or 
Example 6.11 represents all those resistors having a resistance greater than 43 and 
less than 43.5 that are now being recorded as 43 ohms. J 
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Example 6.13:1 The average grade for an exam is 74, and the standard deviation is 7. If 12%; of 
the class is given A's, and the grades are curved to follow a normal distribution, 
what is the lowest possible A and the highest possible B? 

Solution: In this example we begin with a known area of probability, find the z value, and 
then determine x from the formula x = az + p.. An area of 0.12, corresponding 
to the fraction of students receiving A's, is shaded in Figure 6.20. Wc require a z 
value that leaves 0.12 of the area to the right and hence, an area of 0.88 to the left. 
From Table A.3, P(Z < 1.18) has the closest value to 0.88, so that, the desired z 
value is 1.18. Hence 

.i:= (7)(1.18) + 74 = 82.26. 

Therefore, the lowest A is 83 and the highest. B is 82. J 

74 DR 

Figure 6.20: Area for Example 6.13. Figure 6.21: Area for Example 6.14. 

Example 6.14:1 Refer to Example 6.13 and find the sixth decile. 
Solution: The sixth decile, written Da, is the x value: that leaves 60% of the area to the left 

as shown in Figure 6.21. From Table A.3 we find P(Z < 0.25) =a 0.6, so that the 
desired z value is 0.25. Now x = (7)(0.25) + 74 = 75.75. Hence D(i = 75.75. That 

Exercises 

is, 60%. of the grades are 75 or less. 

C.l Given a standard normal distribution, find the normal curve 
area under the curve which lies 
(a) to the left of a = 1.43; 
(b) to the right of z = -0.89: 
(c) between z = —2.16 and z = — 0.65; 
(el) te> the left of ; = -1.39; 
(e) to the: right of z = 1.90: 
(T) between z = -0.48 and z = 1.74. 

6.2 Find the value of z if the area under a standard 

(a) to the right, of z is 0.:!022; 
(b) to the left of a is 0.1131; 
(c) between 0 and z, with z > 0, is 0.4838; 
(d) between —z and z, with z > 0, is 0.9500. 

6.3 Given a standard normal distribution, 
value of k such that 
(a) P(Z < k) = 0.0427; 
(b) P(Z > /,•) = 0.2946; 

find the 
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(c) P ( -0 .93 < Z < k) = 0.7235. 

6.4 Given a normal distribution with p = 30 and 
a — 6, find 
(a) the normal-curve area to the right of x = 17; 
(b) the normal-curve area to the left of x = 22; 

(c) the normal-curve area between x = 32 and x = 41; 
(d) the value of a: that has 80% of the normal-curve 

area to the left; 
(e) the two values of x that contain the middle 75% of 

the normal-curve area. 

6.5 Given the normally distributed variable X with 
mean 18 and standard deviation 2.5, find 
(a) P(X < 15): 
(b) the value of k such that P(X < k) = 0.2236; 
(c) the value of k such that P(X > k) = 0.1814; 
(d) P(17 < X < 21). 

6.6 According to Chebyshev's theorem, the probabil
ity that any random variable assumes a value within 3 
standard deviations of the mean is at least 8/9. If it 
is known that the probability distribution of a random 
variable X is normal with mean p, and variance a2, 
what is the exact value of P(p, — 3a- < X < p + 3a)? 

6.7 A research scientist reports that mice will live an 
average of 40 months when their diets are sharply re
stricted and then enriched with vitamins and proteins. 
Assuming that the lifetimes of such mice are normally 
distributed with a standard deviation of 6.3 months, 
find the probability that a given mouse will live 

(a) more than 32 months; 
(b) less than 28 months; 

(c) between 37 and 49 months. 

6.8 The loaves of rye bread distributed to local stores 
by a certain bakery have an average length of 30 cen
timeters and a standard deviation of 2 centimeters. As
suming that the lengths are normally distributed, what 
percentage of the loaves are 

(a) longer than 31.7 centimeters? 
(b) between 29.3 and 33.5 centimeters in length? 
(c) shorter than 25.5 centimeters? 

6.9 A soft-drink machine is regulated so that it dis
charges an average of 200 milliliters per cup. If the 
amount of drink is normally distributed with a stan
dard deviation equal to 15 milliliters, 
(a) what fraction of the cups will contain more than 

224 milliliters? 
(b) what is the probability that a cup contains between 

191 and 209 milliliters? 
(c) how many cups will probably overflow if 230-

milliliter cups are used for the next 1000 drinks? 
(d) below what value do we get the smallest 25% of the 

drinks? 

6.10 The finished inside diameter of a piston ring is 
normally distributed with a mean of 10 centimeters and 
a standard deviation of 0.03 centimeter. 

(a) What proportion of rings will have inside diameters 
exceeding 10.075 centimeters? 

(b) What is the probability that a piston ring will have 
an inside diameter between 9.97 and 10.03 centime
ters? 

(c) Below what value of inside diameter will 15% of the 
piston rings fall? 

6.11 A lawyer commutes daily from his suburban 
home to his midtown office. The average time for a 
one-way trip is 24 minutes, with a standard deviation 
of 3.8 minutes. Assume the distribution of trip times 
to be normally distributed. 

(a) What is the probability that a trip will take at least 
1/2 hour? 

(b) If the office opens at 9:00 A.M. and he leaves his 
house at 8:45 A.M. daily, what percentage of the 
time is he late for work? 

(c) If he leaves the house at 8:35 A.M. and coffee is 
served at the office from 8:50 A.M. until 9:00 A.M., 
what is the probability that he misses coffee? 

(d) Find the length of time above which we find the 
slowest 15% of the trips. 

(e) Find the probability that 2 of the next 3 trips will 
take at least 1/2 hour. 

6.12 In the November 1990 issue of Chemical Engi
neering Progress, a study discussed the percent purity 
of oxygen from a certain supplier. Assume that the 
mean was 99.61 with a standard deviation of 0.08. As
sume that the distribution of percent purity was ap
proximately normal. 

(a) What percentage of the purity values would you 
expect to be between 99.5 and 99.7? 

(b) What purity value would you expect to exceed ex
actly 5% of the population? 

6.13 The average life of a certain type of small motor 
is 10 years with a standard deviation of 2 years. The 
manufacturer replaces free all motors that fail while 
under guarantee. If he is willing to replace only 3% of 
the motors that fail, how long a guarantee should he 
offer? Assume that the lifetime of a motor follows a 
normal distribution. 
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6.14 The heights of 1000 students are normally dis
tributed with a mean of 174.5 centimeters and a stan
dard deviation of 6.9 centimeters. Assuming that the 
heights are recorded to the nearest half-centimeter, 
how many of these students would you expect to have 
heights 

(a) less than 160.0 centimeters? 
(b) between 171.5 and 182.0 centimeters inclusive? 

(c) equal to 175.0 centimeters? 
(d) greater than or equal to 188.0 centimeters? 

6.15 A company pays its employees an average wage 
of $15.90 an hour with a standard deviation of $1.50. If 
the wages are approximately normally distributed and 
paid to the nearest cent, 

(a) what percentage of the workers receive wages be
tween S13.75 and S16.22 an hour inclusive? 

(b) the highest 5% of the employee hourly wages is 
greater than what; amount? 

6.16 The weights of a large number of miniature poo
dles are approximately normally distributed with a 
mean of 8 kilograms and a standard deviation of 0.9 
kilogram. If measurements arc recorded to the nearest 
tenth of a kilogram, find the fraction or these poodles 
with weights 

(a) over 9.5 kilograms: 
(b) at most 8.6 kilograms; 
(c) between 7.3 and 9.1 kilograms inclusive. 

6.17 The tensile strength of a certain metal compo
nent, is normally distributed with a mean 10,000 kilo
grams per square centimeter and a standard deviation 
of 100 kilograms per square centimeter. Measurements 
are recorded to the nearest 50 kilograms per square 
centimeter. 

(a) What proportion of these components exceed 
10,150 kilograms per square centimeter in tensile 
strength? 

(b) If specifications require that all components have 

tensile strength between 9800 and 10,200 kilograms 
per square centimeter inclusive, what, proportion of 
pieces would we expect to scrap? 

6.18 If a set of observations is normally distributed, 
what percent of these differ from the mean by 
(a) more than 1.3c? 
(b) less than 0.52cr? 

6.19 The IQs of 600 applicants of a certain college 
are approximately normally distributed with a mean 
of 115 and a standard deviation of 12. If the college 
requires an IQ of at least 95, how many of these stu
dents will be rejected on this basis regardless of their 
other qualifications? 

6.20 Given a continuous uniform distribution, show 
that 
(a) p = ^ - , and 

(b) tr 2 _ (D-A)-
12 

6.21 The daily amount of coffee, in liters, dispensed 
by a machine located in an airport, lobby is a random 
variable X having a continuous uniform distribution 
with A = 7 and B = 10. Find the probability that 
on a given day the amount, of coffee dispensed by this 
machine will be 

(a) at most 8.8 liters; 
(b) more than 7.4 liters but less than 9.5 liters; 
(c) at least 8.5 liters. 

6.22 A bus arrives every 10 minutes at a bus stop. It 
is assumed that the waiting time for a particular indi
vidual is a random variable with a continuous uniform 
distribution. 

(a) What is the probability that the individual waits 
more than 7 minutes? 

(b) What is the probability that the individual waits 
between 2 and 7 minutes? 

6.5 Normal Approximation to the Binomial 

Probabilities associated with binomial experiments are readily obtainable from the 
formula b(x;n,p) of the binomial distribution or from Table A . l when n is small. 
In addition, binomial probabilities are readily available in many software computer 
packages. However, it is instructive to learn the relationship between the binomial 
and normal distr ibution. In Section 5.6 we illustrated how the Poisson distribution 
can be used to approximate binomial probabilities when 77 is quite large and p is 
very close to 0 or 1. Both the binomial and Poisson distributions are discrete. 
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Theorem 6.2: 

The first application of a continuous probability distribution to approximate prob
abilities over a discrete sample space is demonstrated by Example 6.12, where the 
normal curve was used. The normal distribution is often a good approximation 
to a discrete distribution when the latter takes on a symmetric bell shape. From 
a theoretical point, of view, some distributions converge to the normal as their 
parameters approach certain limits. The normal distribution is a convenient ap
proximating distribution because the cumulative distribution function is so easily 
tabled. The binomial distribution is nicely approximated by the normal in practi
cal problems when one works with the cumulative distribution function. We now 
state a theorem that allows us to use areas under the normal curve to approximate 
binomial properties when n is sufficiently large. 

If A'' is a binomial random variable with mean p 
then the limiting form of the distribution of 

X — np 

np and variance a2 = npq, 

as n —* oo, is the standard normal distribution 11,(2; 0,1). 

It turns out that the normal distribution with p = np and a2 = np(l — p) not 
only provides a very accurate approximation to the binomial distribution when 
n is large and p is not extremely close to 0 or 1 but also provides a fairly good 
approximation even when n is small and p is reasonably close to 1/2. 

To illustrate the normal approximation to the binomial distribution, we first 
draw the histogram for b(x; 15,0.4) and then superimpose the particular normal 
curve having the same mean and variance as the binomial variable X. Hence we 
draw a normal curve with 

p = np = (15)(0.4) = 6, and a2 = npq = (15)(0.4)(0.6) = 3.0. 

The histogram of b(x; 15, 0.4) and the corresponding superimposed normal curve, 
which is completely determined by its mean and variance, are illustrated by Figure 
6.22. 

0 1 2 3 4 5 6 7 8 9 1 1 1 3 1 5 

Figure 6.22: Normal approximation of b(x; 15,0.4). 
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The exact probability that the binomial random variable X assumes a given 
value: x is equal to the area of the bar whose base: is centered at x. For example, the 
exact probability that X assumes the value 4 is equal to the area of the rectangle 
with base centered at x = 4. Using Table A.l, we find this area to be 

P(X = 4) = 6(4; 15,0.4) = 0.1268, 

which is approximately equal to the area of the shaded region under the normal 
curve between the two ordinates x\ = 3.5 and x2 = 4.5 in Figure 6.23. Converting 
to z values, we have 

= 3^zJ? = _ = 4J5-6 = 
1.897 " 1.897 

0 1 2 3 4 5 6 7 8 9 

Figure 6.23: Normal approximation of b(x: 15,0.4) and Y^ b(x;15,0.4). 

If A" is a binomial random variable and Z a .standard normal variable, then 

P(X = 4) = b(4; 15,0.4) % P(-1.32 < Z < -0.79) 

= P(Z < -0.79) - P(Z < -1.32) = 0.2118 - 0.0934 = 0.1214. 

This agrees very closely with the exact value of 0.1268. 
The: normal approximation is most useful in calculating binomial sums for large 

values of n. Referring to Figure 6.23, we might be interested in the probability 
that X assumes a value from 7 to 9 inclusive. The exact probability is given by 

9 (i 

P(7 <x <Q) = Y &(«; 15> 0-4) - Y b(x'<15> °-4) 
x=Q ,r=() 

= 0.9662 - 0.6098 = 0.3564, 

which is eepial to the sum of the areas of the rectangles with bases centered at 
x = 7, 8, and 9. For the normal approximation we find the area of the shaded 
region tinclt:r the curve between the ordinates xi = 6.5 and asa = 9.5 in Figure 6.23. 
The corresponding z values are 

^1 = 5^5-6 = 0 < 2 6 aml C2 = ^ « = 1_85_ 
vmi 1.897 
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Now, 

P(7 < X < 9) ftf P(0.26 < Z < 1.85) = P(Z < 1.85) - P(Z < 0.26) 

= 0.9678 - 0.6026 = 0.3652. 

Once again, the normal-curve approximation provides a value that agrees very 
closely with the exact value of 0.3564. The degree of accuracy, which depends on 
how well the curve fits the histogram, will increase as n increases. This is particu
larly true when p is not very close to 1/2 and the histogram is no longer symmetric. 
Figures 6.24 and 6.25 show the histograms for fo(a;;6,0.2) and b(x; 15,0.2), respec
tively. It is evident that a normal curve would fit the histogram when n — 15 
considerably better than when n = 6. 

0 1 2 3 4 5 6 7 8 9 11 13 15 

Figure 6.24: Histogram for b(x: 6, 0.2). Figure 6.25: Histogram for b(x; 15,0.2). 

In our illustrations of the normal approximation to the binomial, it became 
apparent that if we seek the area under the normal curve to the left of, say, x it is 
more accurate to use x + 0.5. This is a correction to accommodate the fact, that 
a discrete distribution is being approximated by a continuous distribution. The 
correction + 0 . 5 is called a continuity correction. From the foregoing discussion 
we give the following formal normal approximation to the binomial. 

Normal Let X be a binomial random variable with parameters n and p. Then X has 
Approximation to approximately a normal distribution with p = np and a2 = npq = np(l — p) 

the Binomial and 
Distribution 

P(X<x) = Yb(k>n'P) 
fe=0 
area, under normal curve to the left of x + 0.5 

. < £ L ± 0 : 5 - V 

and the approximation will be good if np and n(\ —p) are greater than or equal 
to 5. 

As we indicated earlier, the quality of the approximation is quite good for large 
n. If p is close to 1/2, a moderate or small sample size will be sufficient for a 
reasonable approximation. We offer Table 6.1 as an indication of the quality of the 
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approximation. Both the normal approximation and the true binomial cumulative 
probabilities are given. Notice that at p = 0.05 and p = 0.10, the approximation 
is fairly crude for n = 10. However, even for n = 10, note the improvement for 
p = 0.50. On the other hand, when p is fixed at p = 0.05, note the improvement 
of the approximation as we go from n — 20 to n = 100. 

Table 6.1: Normal Approximation and True Cumulative Binomial Probabilities 

r 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

r 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

p = 0.05 
Binomial 

0.5987 
0.9139 
0.9885 
0.9990 
1.0000 

n = 
Binomial 

0.3585 
0.7358 
0.9245 
0.9841 
0.9974 
0.9997 
1.0000 

, n = 10 
Normal 
0.5000 
0.9265 
0.9981 
1.0000 
1.0000 

• 20 
Normal 
0.3015 
0.6985 
0.9382 
0.9948 
0.9998 
1.0000 
1.0000 

p = 0.1C 
Binomial 

0.3487 
0.7361 
0.9298 
0.9872 
0.9984 
1.0000 

P = 
n = 

Binomial 
0.0769 
0.2794 
0.5405 
0.7604 
0.8964 
0.9622 
0.9882 
0.9968 
0.9992 
0.9998 
1.0000 

i, n = 10 
Normal 
0.2981 
0.7019 
0.9429 
0.9959 
0.9999 
1.0000 

0.05 
= 50 

Normal 
0.0968 
0.2578 
0.5000 
0.7422 
0.9032 
0.9744 
0.9953 
0.9994 
0.9999 
1.0000 
1.0000 

p = 0.50 
Binomial 

0.0010 
0.0107 
0.0547 
0.1719 
0.3770 
0.6230 
0.8281 
0.9453 
0.9893 
0.9990 
1.0000 

n — 
Binomial 

0.0059 
0.0371 
0.1183 
0.2578 
0.4360 
0.6160 
0.7660 
0.8720 
0.9369 
0.9718 
0.9885 

, n = 10 
Normal 
0.0022 
0.0136 
0.0571 
0.1711 
0.3745 
0.6255 
0.8289 
0.9429 
0.9864 
0.9978 
0.9997 

100 
Normal 

0.0197 
0.0537 
0.1251 
0.2451 
0.4090 
0.5910 
0.7549 
0.8749 
0.9463 
0.9803 
0.9941 

Example 6.15:1 The probability that a patient recovers from a rare blood disease is 0.4. If 100 
people are known to have contracted this disease, what is the probability that less 
than 30 survive? 

Solution: Let the binomial variable X represent the number of patients that survive. Since 
n = 100, we should obtain fairly accurate results using the normal-curve approxi
mation with 

/i = np=(100) (0 .4 )=40 , 

and 

= v/npc7 = \/(100)(0.4)(0.6) = 4.899. 
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To obtain the: desired probability, we have to find the area to the left of x — 29.5. 
The z value corresponding to 29.5 is 

29.5 - 40 
z = 4.899 

= -2.14. 

and the probability of fewer than 30 of the 100 patients surviving is given by the 
shaded region in Figure: 6.26. Hence, 

P(X < 30) « P ( Z < -2.14) = 0.0162. J 

-2.14 0 

Figure 6.26: Area for Example 6.15 Figure 6.27: Area for Example 6.16. 

Example 6.16:1 A multiple-choice quiz has 200 questions each with 4 possible answers of which 
only 1 is the correct answer. What is the probability that sheer guesswork yields 
from 25 to 30 correct answers for 80 of the 200 problems about which the student 
has no knowledge? 

Solution: The probability of a correct answer for each of the 80 questions is p = 1/4. If X 
represents the number of correct answers due to guesswork, then 

30 

P(25 < X < 30) = Y l'ix' 80< ]/4). 
s=25 

Using the normal-curve approximation with and 

p = np = (80) 

and 

= 20, 

(npq = v
/(80)(l/4)(3/4) = 3.873, 

we need the area between Xj = 24.5 and x2 = 30.5. The corresponding z values 

are 
24 .5 -20 , „„ , 30 .5 -20 

z\ = - ^ — ^ — = 1.16, and z2 = —r^r = 2.71. 3.873 3.873 
The probability of correctly guessing from 25 to 30 questions is given by the shaded 
region in Figure 6.27. From Table A.3 we find that 

30 

P(25 < X < 30) = Y bix'>80' ° '25) ~ P ( L JC < Z < 2 ' 7 1 ) 

P(Z < 2.71) - P(Z < 1.16) = 0.996G - 0.8770 = 0.1196. 
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6.23 Evaluate P ( l < X < 4) for a binomial variable 
with n = 15 and p = 0.2 by using 

(a) Table A.l in the Appendix; 
(b) the normal-curve approximation. 

6.24 A coin is tossed 400 times. Use the normal-curve 
approximation to find the probability of obtaining 

(a) between 185 and 210 heads inclusive; 
(b) exactly 205 heads; 

(c) less than 176 or more than 227 heads. 

6.25 A process for manufacturing an electronic com
ponent is 1% defective. A quality control plan is to 
select 100 items from the process, and if none are de
fective, the process continues. Use the normal approx
imation to the binomial to find 

(a) the probability that the process continues for the 
sampling plan described; 

(b) the probability that the process continues even if 
the process has gone bad (i.e., if the frequency 
of defective components has shifted to 5.0% defec
tive). 

6.26 A process yields 10% defective items. If 100 
items are randomly selected from the process, what 
is the probability that the number of defectives 

(a) exceeds 13? 
(b) is less than 8? 

6.27 The probability that a patient recovers from a 
delicate heart operation is 0.9. Of the next 100 patients 
having this operation, what is the probability that 
(a) between 84 and 95 inclusive survive? 
(b) fewer than 86 survive? 

6.28 Researchers at George Washington University 
and the National Institutes of Health claim that ap
proximately 75% of the people believe "tranquilizers 
work very well to make a person more calm and re
laxed." Of the next 80 people interviewed, what is the 
probability that 
(a) at least 50 are of this opinion? 
(b) at most 56 are of this opinion? 

6.29 If 20% of the residents in a U.S. city prefer a 
white telephone over any other color available, what is 
the probability that among the next 1000 telephones 
installed in that city 
(a) between 170 and 185 inclusive will be white? 

(b) at least 210 but not more than 225 will be white? 

6.30 A drug manufacturer claims that a certain drug 
cures a blood disease, on the average, 80% of the time. 
To check the claim, government testers used the drug 
on a sample of 100 individuals and decided to accept 
the claim if 75 or more were cured. 
(a) What is the probability that, the claim will be re

jected when the cure probability is, in fact, 0.8? 

(b) What is the probability that the claim will be ac
cepted by the government when the cure probabil
ity is as low as 0.7? 

6.31 One-sixth of the male freshmen entering a large 
state school are out-of-state students. If the students 
are assigned at random to the dormitories, 180 to a 
building, what is the probability that in a given dor
mitory at least one-fifth of the students are from out 
of state? 

6.32 A pharmaceutical company knows that approx
imately 5% of its birth-control pills have an ingredient 
that is below the minimum strength, thus rendering 
the pill ineffective. What is the probability that fewer 
than 10 in a sample of 200 pills will be ineffective? 

6.33 Statistics released by the National Highway 
Traffic Safety Administration and the National Safety 
Council show that on an average weekend night, 1 out 
of every 10 drivers on the road is drunk. If 400 drivers 
are randomly checked next Saturday night, what is the 
probability that the number of drunk drivers will be 

(a) less than 32? 
(b) more than 49? 
(c) at least 35 but less than 47? 

6.34 A pair of dice is rolled 180 times. What is the 
probability that a total of 7 occurs 

(a) at least 25 times? 
(b) between 33 and 41 times inclusive? 
(c) exactly 30 times? 

6.35 A company produces component parts for an en
gine. Parts specifications suggest that 95% of items 
meet specifications. The parts are shipped to cus
tomers in lots of 100. 
(a) What is the probability that more than 2 items will 

be defective in a given lot? 
(b) What is the probability that more than 10 items 

will be defective in a lot? 
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6.36 A commonly used practice of airline companies 
is to sell more tickets than actual seats to a particular 
flight because customers who buy tickets do not always 
show up for the flight. Suppose that the percentage of 
no-shows at flight time is 2%. For a particular flight 
with 197 seats, a total of 200 tickets was sold. What is 
the probability that the airline overbooked this flight? 

6.37 The serum cholesterol level X in 14-year-old 
boys has approximately a normal distribution with 
mean 170 and standard deviation 30. 

(a) Find the probability that the serum cholesterol 
level of a randomly chosen 14-year-old boy exceeds 
230. 

(b) In a middle school there are 300 14-year-old boys. 
Find the probability that at least 8 boys have a 

serum cholesterol level that exceeds 230. 

6.38 A tele-marketing company has a special letter-
opening machine that opens and removes the contents 
of an envelope. If the envelope is fed improperly into 
the machine, the contents of the envelope may not be 
removed or may be damaged. In this case we say that, 
the machine has "failed." 

(a) If the machine has a probability of failure of 0.01, 
what is the probability of more than 1 failure oc
curring in a batch of 20 envelopes? 

(b) If the probability of failure of the machine is 0.01 
and a batch of 500 envelopes is to be opened, what 
is the probability that more than 8 failures will oc
cur? 

6.6 Gamma and Exponential Distributions 

Although the normal distribution can be used to solve many problems in engineer
ing and science, there are still numerous situations tha t require different types of 
density functions. Two such density functions, the g a m m a and e x p o n e n t i a l 
d i s tr ibut ions , are discussed in this section. 

It turns out that the exponential is a special case of the gamma distribution. 
Both find a large number of applications. The exponential and gamma distributions 
play an important role in both queuing theory and reliability problems. Time 
between arrivals at service facilities, and time to failure of component parts and 
electrical systems, often are nicely modeled by the exponential distribution. The 
relationship between the gamma and the exponential allows the gamma to be 
involved in similar types of problems. More details and illustrations will be supplied 
in Section 6.7. 

The gamma distribution derives its name from the well-known g a m m a func
t ion, studied in many areas of mathematics . Before we proceed to the: gamma 
distribution, let us review this function and some of its important properties. 

Definition 6.2: The g a m m a funct ion is defined by 

F (a ) = / xn-le~x dx, for a > 0. 
Jo 

Integrating by par ts with TJ = x° l and dv — e •' dx, we obtain 

r(ct) = -e~x xn~] | ~ + / e~x(a - l)xa~2 dx = (a - 1) / xa-2e~x 

Jo Jo 

for a > 1, which yields the recursion formula 

T(a) = (a-l)T(a-l). 

Repeated application of the recursion formula gives 

T(a) = (a - 1 ) (Q - 2 ) r ( a - 2) = (a - l ) ( a - 2 ) (a - 3 )F(a - 3), 

dx, 
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and so forth. Note that when a = n, where n is a positive integer, 

r(n)-(n-l)(n-2)-..(l)r(l). 

However, by Definition 6.2. 

r(i) = f 
Jo 

and hence 

T(n) 

e x dx = 1, 

- 1 ) ! . 

One important property of the gamma function, left for the reader to verify (see 
Exercise 6.41 on page 205). is that T(l/2) = \pK. 

Wc shall now include the gamma function in our definition of the gamma dis
tribution. 

Gamma The continuous random variable X has a g a m m a distribution, with param-
Distribution eters a and ,3, if its density function is given by 

par{a)x , X>U, 

0, elsewhere, 

where a > 0 and fi > 0. 

Graphs of several gamma distributions are shown in Figure 6.28 for certain specified 
values of the parameters a and j3. The special gamma distribution for which a = 1 
is called the exponential distribution. 

1 2 3 4 5 

Figure 6.28: Gamma distributions. 
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Exponential The continuous random variable X has an exponential distribution, with 
Distribution parameter 3, if its density function is given by 

Theorem 6.3; 

fix; 3) 
'^c-x'a, x > 0 , 

0, elsewhere, 

where 0 > 0. 

The following theorem and corollary give the mean and variance of the gamma 
and exponential distributions. 

The mean and variance of the gamma distribution are 

p = ctfl, and a2=ad2. 

The proof of this theorem is found in Appendix A.28. 

Corollary 6.1: The mean and variance of the exponential distribution are 

p = B, and a2 = 02. 

Relationship to the Poisson Process 

We shall pursue applications of the exponential distribution and then return to 
the gamma distribution. The most important applications of the exponential dis
tribution are situations where the Poisson process applies (see Chapter 5). The 
reader should recall that the Poisson process allows for the use of the discrete dis
tribution called the Poisson distribution. Recall that the Poisson distribution is 
used to compute the probability of specific numbers of "events" during a particular 
•period of time or space. In many applications, the time period or span of space 
is the random variable. For example, an industrial engineer may be interested in 
modeling the time T between arrivals at a congested intersection during rush hour 
in a large city. An arrival represents the Poisson event. 

The relationship between the exponential distribution (often called the negative 
exponential) and the Poisson process is quite simple. In Chapter 5 the Poisson dis
tribution was developed as a single-parameter distribution with parameter A, wdiere 
X may be interpreted as the mean number of events per unit "time." Consider now 
the random variable described by the time required for the first event to occur. 
Using the Poisson distribution, we find that the probability of no events occurring 
in the span up to time f. is given by 

p(0; Xt) 
,-xt (A*)0 

0! = e -xt 

We can now make use of the above and let X be the time to the first Poisson 
event. The probability that the length of time until the first event will exceed x is 
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the same as the probability that no Poisson events will occur in x. The latter, of 
course, is given by e~ . As a result, 

P(X > x) = erXx. 

Thus the cumulative distribution function for X is given by 

P(0<X <x) = \-e-Xx. 

Now, in order that we recognize the presence of the exponential distribution, we 
may differentiate the cumulative distribution function above to obtain the density 
function 

f(x) = Xe-Xx, 

which is the density function of the exponential distribution with A = 1/0. 

6.7 Applications of the Exponential and Gamma Distributions 

In the foregoing we provided the foundation for the application of the exponential 
distribution in "time to arrival" or time to Poisson event problems. We will display 
illustrations here and then proceed to discuss the role of the gamma distribution in 
these modeling applications. Notice that the mean of the exponential distribution 
is the parameter 0, the reciprocal of the parameter in the Poisson distribution. 
The reader should recall that it is often said that the Poisson distribution has no 
memory, implying that, occurrences in successive time periods are independent. 
The important parameter 0 is the mean time between events. In reliability theory, 
where equipment failure: often conforms to this Poisson process, 0 is called mean 
t ime between failures. Many equipment breakdowns do follow the Poisson pro
cess, and thus the exponential distribution does apply. Other applications include 
survival times in biomedical experiments and computer response time. 

In the following example we show a simple application of the exponential dis
tribution to a problem in reliability. The binomial distribution also plays a role in 
the solution. 

Example 6.17:1 Suppose that a system contains a certain type of component whose time, in years, to 
failure is given by T. The random variable T is modeled nicely by the exponential 
distribution with mean time to failure /? = 5. If 5 of these components are installed 
in different systems, what is the probability that at least. 2 are still functioning at 
the end of 8 years? 

Solution: The probability that a given component is still functioning after 8 years is given 
by 

P(T > 8) = \ j e-'lu dt = e - 8 / 5
 M 0.2. 

5 .Is 
Let X represent the number of components functioning after 8 years. Then using 
the binomial distribution, 

5 1 

P(X >2) = Y b(x\ 5.0-2) = 1 " Y b{-'"- 5' °'2) = X ~ 0 7 3 7 3 = °-2627- J 
x=2 
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There are exercises and examples in Chapter 3 where the reader has already-
encountered the exponential distribution. Others involving waiting time and relia
bility problems can be found in Example 6.24 and in exercises and review exercises 
at the end of this chapter. 

The Memoryless Property and Its Effect on the Exponential Distribution 

The types of applications of the exponential distribution in reliability and compo
nent or machine lifetime problems is influenced by the memoryless (or lack-of-
memory) property of the exponential distribution. For example, in the case of, say, 
an electronic component where distribution of lifetime has an exponential distri
bution, the probability that the component lasts, say t hours, that is, P(X > t), 
is the same as the conditional probability 

P(X>t0 + t | X>tQ). 

So if the component "makes it" to to hours, the probability of lasting an additional 
t hours is the same as the probability of lasting t hours. So there is no "punish
ment" through wear that may have ensued for lasting the first to hours. Thus, 
the exponential distribution is more appropriate when the memoryless property is 
justified. But if the failure of the component is a result of gradual or slow wear (as 
in mechanical wear), then the exponential does not apply and either the gamma 
or Weibull distribution (Section 6.10) may be more appropriate. 

The importance of the gamma distribution lies in the fact that it defines a 
family of which other distributions are special cases. But the gamma itself has 
important applications in waiting time and reliability theory. Whereas the expo
nential distribution describes the time until the occurrence of a Poisson event (or 
the time between Poisson events), the time (or space) occurring until a specified 
number of Poisson events occur is a random variable whose density function is 
described by that of the gamma distribution. This specific number of events is the 
parameter a in the gamma density function. Thus it becomes easy to understand 
that when a = 1, the special case of the exponential distribution occurs. The 
gamma density can be developed from its relationship to the Poisson process in 
much the same manner as we developed the exponential density. The details are 
left to the reader. The following is a numerical example of the use of the gamma 
distribution in a waiting-time application. 

Example 6.18:1 Suppose that telephone calls arriving at a particular switchboard follow a Poisson 
process with an average of 5 calls coming per minute. What is the probability that 
up to a minute will elapse until 2 calls have come in to the switchboard? 

Solution: The Poisson process applies with time until 2 Poisson events following a gamma 
distribution with 0 = 1/5 and a = 2. Denote by X the time in minutes that 
transpires before 2 calls come. The required probability is given by 

P(X < 1) = / ]pxe~X/fi dx = 2 5 / xe~5X dx = i~ e"5(l + 5) = 0.96. -

While the origin of the gamma distribution deals in time (or space) until the 
occurrence of a Poisson events, there are many instances where a gamma distri
bution works very well even though there is no clear Poisson structure. This is 
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particularly true for survival t ime problems in both engineering and biomedical 
applications. 

Example 6.19:1 In a biomedical study with rats, a dose-response investigation is used to determine 
the effect of the dose of a toxicant on their survival time. The toxicant is one that 
is frequently discharged into the atmosphere from jet fuel. For a certain dose of 
the toxicant the study determines that the survival time, in weeks, has a gamma 
distribution with a: = 5 and 0 = 10. What is the probability that a rat survives 
no longer than 60 weeks? 

Solution: Let the random variable X be the survival time (time to death). The required 
probability is 

60 _ a - l . i r x x/0 

r(5) 
dx. 

The integral above can be solved through the use of the incomplete gamma 
function, which becomes the cumulative distribution function for the gamma dis
tribution. This function is written as 

f va~1e~v 

F(x;a)= / l
TrT-dy. 

Jo ria) 

If we let y = x/0, so x = 0y, we have 

P{X < 60) = f 
Jo 

ye 

r(5) 
dy, 

which is denoted as F(6: 5) in the table of the incomplete gamma function in 
Appendix A.24. Note that this allows a quick computation of probabilities for the 
gamma distribution. Indeed, for this problem the probability that the rat survives 
no longer than 60 days is given by 

P(X < 60) = F(6; 5) = 0.715. J 

Example 6.20:1 It is known, from previous data, that the length of time in months between cus
tomers1 complaints about a certain product is a gamma distribution with a = 2 
and 3 = 4. Changes were made that involve a tightening of quality control re
quirements. Following these changes, it took 20 months before the first complaint. 
Does it appear as if the quality control tightening was effective? 

Solution: Let X be the time to the first complaint, which, under conditions prior to the 
changes, follows a gamma distribution with a = 2 and 0 = 4. The question 
centers around how rare is X > 20 given that a and 3 remain at values 2 and 4, 
respectively. In other words, under the prior conditions is a "time to complaint" as 
large as 20 months reasonable? Thus we need, following the solution to Example 
6.19, 

P ( X > 2 0 ) = l - i ^ 2 

Again, using y = x/0, we have 

'"20 xa~le"x/!i 

r(a) 
dx. 

P(X > 20) 
Jo 

ye » 
r(2) 

dy = 1 - F(5; 2) = 1 - 0.96 = 0.04, 
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where F(5; 2) = 0.9G is found from Table A.24. 
As a result, we could conclude that the conditions of the gamma distribution 

with a = 2 and 0 = 4 are not supported by the data that an observed time to 
complaint is as large as 20 months. As a result, it. is reasonable to conclude that 
the finality control work was effective. J 

Example 6.21:1 Consider Exercise 3.31 on page 90. Based on extensive testing it is determined 
that the time Y in years before a major repair is required for a certain washing 
machine is characterized by the density function 

10. elsewhere. 

Note this is an exponential with p = 4 years. The machine is considered a bargain 
if it is unlikely to require a major repair before the sixth year. Thus, what is the 
probability P(Y > 6)? Also, what is the probability that a major repair occurs in 
the first year? 

Solution: Consider the cumulative distribution function F(y) for the: exponential distribution 

F(y) = - f e-1'0 dt= l-e~v' 
P Jo 

-via 
' "" 0 J0 ' - * " 

So 

P(Y > 6) = 1 - F{6) = e _ 3 / a = 0.2231. 

Thus, the probability that it will require major repair after year six is 0.223. Of 
course, it will require: the: repair before year six with probability 0.777. Thus, one 
might conclude the machine is not really a bargain. The probability that a. major 
repair occurs in the first year is 

P(Y < 1) = 1- c"l/"1 = I -0 .779 = 0.221. J 

6.8 Chi-Squared Distribution 

Another very important special case of the gamma distribution is obtained by 
letting o = v/2 and 0 = 2. where v is a positive: integer. The: result is called the 
chi-squared distr ibut ion. The distribution has a. single parameter, v, called the 
degrees of freedom. 

Chi-Squared The continuous random variable: X has a chi-squared distribution, with v degrees 
Distribution of freedom, if its density function is given by 

xvj2-ie-x/2 X>Q 

f(x;v) = {*"3rW*r 
10. elsewhere, 

where v is a positive integer. 
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The chi-squared distribution plays a vital role in statistical inference. It has 
considerable application in both methodology and theory. While we do not discuss 
applications in detail in this chapter, it is important to understand that Chapters 
8, 9, and 16 contain important applications. The chi-squared distribution is an 
important component of statistical hypothesis testing and estimation. 

Topics dealing with sampling distributions, analysis of variance, and nonpara
metric statistics involve1 extensive use of the chi-squared distribution. 

Theorem 6.4: The mean and variance of the chi-squared distribution are 

//. = v and er" = 2-t'. 

6.9 Lognormal Distribution 

The lognormal distribution is used for a. wide variety of applications. The dis
tribution applies in cases where a natural log transformation results in a normal 
distribution. 

Lognormal The continuous random variable X has a lognormal distribution if the; ran-
DistributiOn dom variable Y — hi (A) has a normal distribution with mean p. and standard 

deviation a. The resulting density function of X is 

f(x.;ii,a) = { V^trx 
{{), x < 0. 

The graphs of the Lognormal distributions are illustrated in Figure 6.29. 

0 1 2 3 4 

Figure 6.29: Lognormal distributions. 
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Theorem 6.5: 

The cumulative distribution function is quite simple due to its relationship to the 
normal distribution. The use of the distribution function is illustrated by the 
following example. 

Example 6.22:1 Concentration of pollutants produced by chemical plants historically are known to 
exhibit behavior that resembles a lognormal distribution. This is important when 
one considers issues regarding compliance to government regulations. Suppose it is 
assumed that the concentration of a certain pollutant, in parts per million, has a 
lognormal distribution with parameters p = 3.2 and a — 1. What is the probability 
that the concentration exceeds 8 parts per million? 

Solution: Let. the random variable X be pollutant concentration 

P(X > 8) = 1 - P(X < 8). 

Since bx(X) has a normal distribution with mean p. = 3.2 and standard deviation 
(7 = 1, 

PiX < 8) = <l> 
ln(8) - 3.2 

1 
#(-1.12) = 0.1314. 

Here, we use the <3> notation to denote the cumulative distribution function of 
the standard normal distribution. As a result, the probability that the pollutant 
concentration exceeds 8 parts per million is 0.1314. J 

Example 6.23:1 The life, in thousands of miles, of a certain type of electronic control for locomotives 
has an approximate lognormal distribution with p — 5.149 and a — 0.737. Find 
the 5th percentile of the life of such a locomotive. 

Solution: From Table A.3 we know that P(Z < —1.645) = 0.05. Denote by A' the life of 
such a locomotive. Since ln(A') has a normal distribution with mean p = 5.149 
and a = 0.737, the 5th percentile of X can be calculated as 

ln(.r) = 5.149+ (0.737)(-1.045) = 3.937. 

Hence, ,?;=51.265. This means that only 5% of the locomotives will have lifetime 
less than 51.265 thousand miles. J 

6.10 Weibull Distribution (Optional) 

Modern technology has enabled us to design many complicated systems whose op
eration, or perhaps safety, depends on the reliability of the various components 
making up the systems. For example, a fuse may burn out, a steel column may 
buckle, or a heat-sensing device may fail. Identical components subjected to iden
tical environmental conditions will fail at different and unpredictable: times. Wc 
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have seen the role that the gamma and exponential distributions play in these 
types of problems. Another distribution that has been used extensively in recent 
years to deal with such problems is the Weibull d is t r ibut ion, introduced by the 
Swedish physicist Waloddi Weibull in 1939. 

Weibull The continuous random variable X has a Weibull d is t r ibut ion, with parain-
Distribution eters a and 0 if its density function is given by 

,. . ja0x')-'e-"x", x>0, 
f(x:a,3) = < 

0, elsewhere, 

where a > 0 and 0 > 0. 

The graphs of the Weibull distribution for a = 1 and various values of the pa
rameter 3 are illustrated in Figure 6.30. We see that the curves change in shape 
considerably for different values of the parameter ,3, If we let 0 = 1, the Weibull 
distribution reduces to the exponential distribution. For values of 0 > 1, the curves 
become somewhat bell shaped and resemble the normal curves but, display some 
skewness. 

/3 = 3.5 

0 0.5 1.0 1.5 2.0 

Figure 6.30: Weibull distributions (a = 1). 

The mean and variance of the Weibull distribution are stated in the following 
theorem. The reader is asked to provide the: proof in Exercise 6.48 on page 205. 

Theorem 6.6: The mean and variance of the Weibull distribution are 

1 
Q - i / 3 r ( 1 + ^ 1 2 - a'2!3 {T\l + r i + 

n 2 

Like the gamma and exponential distribution, the Weibull distribution is also 
applied to reliability and life-testing problems such as the t ime to failure or 
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life length of a component, measured from some specified time until it fails. 
Let us represent this time to failure by the continuous random variable T, with 
probability density function f(t), where f(t) is the Weibull distribution. The 
Weibull distribution has the inherent flexibility that does not require the lack of 
memory property of the exponential distribution. The cumulative distribution 
function (cdf) for the Weibull can be written in closed form and certainly is useful 
in computing probabilities. 

cdf for Weibull The cumulative distribution function for the Weibull distribution is given by 
Distribution 

F(aO = l - e - a i r ' \ f o r ; r > 0 . 

for a > 0 and 0 > 0. 

Example 6.24:1 The length of life X in hours of an item in the machine shop has a Weibull 
distribution with o = 0.01 and 0=2. What is the probability that it fails before 
eight hours of usage? 

Solution: P(X < 8) = F(8) = 1 - e^ 0 0 1 ) 8* = 1 - 0.527 = 0.473. J 

The Failure Rate for the Weibull Distribution 

When the Weibull distribution applies, it is often helpful to determine the failure 
rate (sometimes called hazard rate) in order to get a sense of wear or deterioration 
of the component. Let us first define the reliability of a component or product 
as the probability that it will function properly for at least a specified time under 
specified experimental conditions. Therefore, if R(t) is defined to be the reliability 
of the given component at time t, we may write 

/•OO 
R(t) = P(T>t) = / f(t) dt = l- F(t), 

where F(t) is the cumulative distribution function of T. The conditional probability 
that a component will fail in the interval from T = t to T = t + At, given that it 
survived to time t, is 

F(t + At) - F(t) 
R(t) 

Dividing this ratio by At and taking the limit as At —» 0, we get the failure rate, 
denoted by Z(t). Hence 

Z(t) = lim F{t + At) ~F{t) 1 - F'{t) - f{t) - fit) 

At-+o At R(t) R(t) R(t) l - F ( t ) ' 

which expresses the failure rate in terms of the distribution of the time to failure. 
Since Z(t) = f(t)/[l — F(t)], then the failure rate is given as the following: 

Failure Rate for The failure rate at time t for the Weibull distribution is given by 
Weibull 

Distribution Z(t) = a0tP~l, t > 0. 
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Interpretation of the Failure Rate 

The quanti ty Z(t) is aptly named as a failure rate since it docs quantify the rate 
of change over t ime of the conditional probabili ty tha t the component lasts an 
additional At given that it has lasted to time t. T h e ra te of decrease (or increase) 
with time is important . The following are crucial points. 

(a) If 0 — 1, the failure ra te = a, a constant . This, as indicated earlier, is the 
special case of the exponential distribution in which lack of memory prevails. 

(b) If 0 > 1, Z(t) is an increasing function of t which indicates tha t the component 
wears over time. 

(c) If 0 < 1, Z(t) is a decreasing function of t ime and hence the component 
s trengthens or hardens over time. 

For example, the item in the machine shop in Example 6.24 possesses 0 = 2 and 
hence it wears over time. In fact, the failure ra te function is given by Z(t) = .Q2t. 
On the other hand, suppose the parameters were 0 = 3/4 and a = 2. Z(t) = 1.5/f1 

and hence the component gets stronger over t ime. 

Exercises 

6.39 If a random variable X has the gamma distribu
tion with a = 2 and 0 = 1, find P(1.8 < X < 2.4). 

6.40 In a certain city, the daily consumption of water 
(in millions of liters) follows approximately a gamma 
distribution with Q = 2 and 0 = 3. If the daily capac
ity of that city is 9 million liters of water, what is the 
probability that on any given day the water supply is 
inadequate? 

6.41 Use the gamma function with y = \/2x to show 
that T(l/2) =s/n. 

6.42 Suppose that the time, in hours, taken to repair 
a heat pump is a random variable X having a gamma 
distribution with parameters a =2 and 3 =1/2 . What 
is the probability that the next service call will require 
(a) at most 1 hour to repair the heat pump? 
(b) at least 2 hours to repair the heat pump? 

6.43 (a) Find the mean and variance of the daily wa
ter consumption in Exercise 6.40. 

(b) According to Chebyshev's theorem, there is a prob
ability of at least 3/4 that the water consumption 
on any given day will fall within what interval? 

6.44 In a certain city, the daily consumption of elec
tric power, in millions of kilowatt-hours, is a random 
variable X having a gamma distribution with mean 
fi = 6 and variance a2 = 12. 

(a) Find the values of a and 0. 
(b) Find the probability that on any given day the daily 

power consumption will exceed 12 million kilowatt-
hours. 

6.45 The length of time for one individual to be 
served at a cafeteria is a random variable having an ex
ponential distribution with a mean of 4 minutes. What 
is the probability that a person is served in less than 3 
minutes on at least 4 of the next 6 days? 

6.46 The life, in years, of a certain type of electrical 
switch has an exponential distribution with an average 
life 0 = 2. If 100 of these switches are installed in dif
ferent systems, what is the probability that at most 30 
fail during the first year? 

6.47 Suppose that the service life, in years, of a hear
ing aid battery is a random variable having a Weibull 
distribution with a = 1/2 and B = 2. 
(a) How long can such a battery be expected to last? 
(b) What is the probability that such a battery will be 

operating after 2 years? 

6.48 Derive the mean and variance of the Weibull dis
tribution. 

6.49 The lives of a certain automobile seal have the 
Weibull distribution with failure rate Z(t) =\/\fi. 
Find the probability that such a seal is still intact after 
4 years. 
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6.50 The continuous random variable X has the beta 
distribution with parameters a and 3 if its density 
function is given by 

fix) = J r(a)i 
\ 0 , 

+3) ^ - ' ( l - x ) ' ' 0 < x < 1, 

elsewhere, 

where a > 0 and 0 > 0. If the proportion of a brand 
of television set requiring service during the first year 
of operation is a random variable having a beta distri
bution with a = 3 and 3 = 2, what is the probability 
that at least 80% of the new models sold this year of 
this brand will require service during their first year of 
operation? 

6.51 In a biomedical research activity it was deter
mined that the survival time, in weeks, of an animal 
when subjected to a certain exposure of gamma radia
tion has a gamma distribution with a =5 and 3 =10. 

(a) What is the mean survival time of a randomly se
lected animal of the type used in the experiment? 

(b) What is the standard deviation of survival time? 
(c) What is the probability that an animal survives 

more than 30 weeks? 

6.52 The lifetime, in weeks, of a certain type of tran
sistor is known to follow a gamma distribution with 
mean 10 weeks and standard deviation \/50 weeks. 
(a) What is the probability that the transistor will last 

at most 50 weeks? 
(b) What is the probability that the transistor will not 

survive the first 10 weeks? 

6.53 Computer response time is an important appli
cation of the gamma and exponential distributions. 
Suppose that a study of a certain computer system 
reveals that the rasponse time, in seconds, has an ex
ponential distribution with a mean of 3 seconds. 

(a) What is the probability that response time exceeds 
5 seconds? 

(b) What is the probability that response time exceeds 
10 seconds? 

6.54 Rate data often follow a lognormal distribution. 
Average power usage (dB per hour) for a particular 
company is studied and is known to have a lognormal 
distribution with parameters fi = 4 and a =2. What is 
the probability that the company uses more than 270 
dB during any particular hour? 

6.55 For Exercise 6.54, what is the mean power usage 
(average dBs per hour)? What is the variance? 

6.56 The number of automobiles that arrive at a cer
tain intersection per minute has a Poisson distribution 
with a mean of 5. Interest centers around the time that 
elapses before 10 automobiles appear at the intersec
tion. 

(a) What is the probability that more than 10 auto
mobiles appear at the intersection during any given 
minute of time? 

(b) What is the probability that more than 2 minutes 
are required before 10 cars arrive? 

6.57 Consider the information in Exercise 6.56. 
(a) What is the probability that more than 1 minute 

elapses between arrivals? 

(b) What is the mean number of minutes that elapse 
between arrivals? 

6.58 Show that the failure-rate function is given by 

Z(t) = a,3t0~l, t>0, 

if and only if the time to failure distribution is the 
Weibull distribution 

f(t)=a3t!i~le-atl', t>0. 

Review Exercises 

6.59 According to a study published by a group of so
ciologists at the University of Massachusetts, approx
imately 49% of the Valium users in the state of Mas
sachusetts are white-collar workers. What is the prob
ability that between 482 and 510, inclusive, of the next 
1000 randomly selected Valium users from this state 
would be white-collar workers? 

6.60 The exponential distribution is frequently ap
plied to the waiting times between successes in a Pois

son process. If the number of calls received per hour 
by a telephone answering service is a Poisson random 
variable with parameter X = 6, we know that the time, 
in hours, between successive calls has an exponential 
distribution with parameter 0 =1/6. What is the prob
ability of waiting more than 15 minutes between any 
two successive calls? 

6.61 When a is a positive integer n, the gamma dis
tribution is also known as the Erlang distribution. 
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Setting a = n in the gamma distribution on page 195, 
the Erlang distribution is 

fix) ) 3n(n-l)< ' 

\0, 
x > 0, 

elsewhere. 

It can be shown that if the times between successive 
events are independent, each having an exponential 
distribution with parameter 3, then the total elapsed 
waiting time X until all n events occur has the Erlang 
distribution. Referring to Review Exercise 6.60, what 
is the probability that the next 3 calls will be received 
within the next 30 minutes? 

6.62 A manufacturer of a certain type of large ma
chine wishes to buy rivets from one of two manufac
turers. It is important that the breaking strength of 
each rivet exceed 10,000 psi. Two manufacturers (A 
and B) offer this type of rivet and both have rivets 
whose breaking strength is normally distributed. The 
mean breaking strengths for manufacturers A and B 
are 14,000 psi and 13,000 psi, respectively. The stan
dard deviations are 2000 psi and 1000 psi, respectively. 
Which manufacturer will produce, on the average, the 
fewest number of defective rivets? 

6.63 According to a recent census, almost 65% of all 
households in the United States were composed of only 
one or two persons. Assuming that this percentage is 
still valid today, what is the probability that between 
590 and 625, inclusive, of the next 1000 randomly se
lected households in America will consist of either one 
or two persons? 

6.64 The life of a certain type of device has an adver
tised failure rate of 0.01 per hour. The failure rate is 
constant and the exponential distribution applies. 
(a) What is the mean time to failure? 
(b) What is the probability that 200 hours will pass 

before a failure is observed? 

6.65 In a chemical processing plant it is important 
that the yield of a certain type of batch product stay 
above 80%. If it stays below 80% for an extended pe
riod of time, the company loses money. Occasional de
fective manufactured batches are of little concern. But 
if several batches per day are defective, the plant shuts 
down and adjustments are made. It is known that the 
yield is normally distributed with standard deviation 
4%. 

(a) What is the probability of a "false alarm" (yield 
below 80%) when the mean yield is 85%? 

(b) What is the probability that a manufactured batch 
will have a yield that exceeds 80% when in fact the 
mean yield is 79%? 

6.66 Consider an electrical component failure rate of 
once every 5 hours. It is important to consider the time 
that it takes for 2 components to fail. 
(a) Assuming that the gamma distribution applies, 

what is the mean time that it takes for failure of 2 
components? 

(b) What is the probability that 12 hours will elapse 
before 2 components fail? 

6.67 The elongation of a steel bar under a particular 
load has been established to be normally distributed 
with a mean of 0.05 inch and a = 0.01 inch. Find the 
probability that the elongation is 

(a) above 0.1 inch; 
(b) below 0.04 inch; 
(c) between 0.025 and 0.065 inch. 

6.68 A controlled satellite is known to have an er
ror (distance from target) that is normally distributed 
with mean zero and standard deviation 4 feet. The 
manufacturer of the satellite defines a "success" as a 
firing in which the satellite comes within 10 feet of the 
target. Compute the probability that the satellite fails. 

6.69 A technician plans to test a certain type of resin 
developed in the laboratory to determine the nature 
of the time it takes before bonding takes place. It is 
known that the mean time to bonding is 3 hours and 
the standard deviation is 0.5 hour. It will be consid
ered an undesirable product if the bonding time is ei
ther less than 1 hour or more than 4 hours. Comment 
on the utility of the resin. How often would its perfor
mance be considered undesirable? Assume that time 
to bonding is normally distributed. 

6.70 Consider the information in Review Exercise 
6.64. What is the probability that less than 200 hours 
will elapse before 2 failures occur? 

6.71 For Review Exercise 6.70 what is the mean and 
variance of the time that elapses before 2 failures oc
cur? 

6.72 The average rate of water usage (thousands of 
gallons per hour) by a certain community is known 
to involve the lognormal distribution with parameters 
p = 5 and a = 2. It is important for planning purposes 
to get a sense of periods of high usage. What is the 
probability that, for any given hour, 50,000 gallons of 
water are used? 

6.73 For Review Exercise 6.72, what is the mean of 
the average water usage per hour in thousands of gal
lons? 

6.74 In Exercise 6.52 on page 206, the lifetime of a 
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transistor is assumed to have a gamma distribution 
with mean 10 weeks and standard deviation V50 weeks. 
Suppose that the gamma distribution assumption is in
correct. Assume that the distribution is normal. 
(a) What is the probability that the transistor will last 

at most 50 weeks? 
(b) What is the probability that the transistor will not 

survive for the first 10 weeks? 
(c) Comment on the difference between your results 

here and those found in Exercise 6.52 on page 206. 

6.75 Consider Exercise 6.50 on page 206. The beta 
distribution has considerable application in reliability 
problems in which the basic random variable is a pro
portion in the practical scenario illustrated in the ex
ample. In that regard, consider Review Exercise 3.75 
on page 105. Impurities in the batch of product of a 
chemical process reflect a serious problem. It is known 
that the proportion of impurities Y in a batch has the 
density function 

fiy) = J10*1 -yf 0 < y < l , 
elsewhere. 

(a) Verify that the above is a valid density function. 
(b) What is the probability that a batch is considered 

not acceptable (i.e., Y > 0.6)? 
(c) What are the parameters a and 0 of the beta dis

tribution illustrated here? 
(d) The mean of the beta distribution is ^pj. What is 

the mean proportion of impurities in the batch? 

(e) The variance of a beta distributed random variable 
is 

a2 = a0 
(a + 0)*(a + 0+1)' 

What is the variance of Y in this problem? 

6.76 Consider now Review Exercise 3.76 on page 105. 
The density function of the time Z in minutes between 
calls to an electrical supply store is given by 

/(*) \o, 
-z/10 0 < z < co, 

elsewhere. 

(a) What is the mean time between calls? 
(b) What is the variance in the time between calls? 
(c) What is the probability that the time between calls 

exceeds the mean? 

6.77 Consider Review Exercise 6.76. Given the as
sumption of the exponential distribution, what is the 
mean number of calls per hour? What is the variance 
in the number of calls per hour? 

6.78 In a human factor experimental project, it has 
been determined that the reaction time of a pilot to a 
visual stimulus is normally distributed with a mean of 
1/2 second and standard deviation of 2/5 seconds. 

(a) What is the probability that a reaction from the 
pilot takes more than 0.3 seconds? 

(b) What reaction time is that which is exceeded 95% 
of the time? 

6.79 The length of time between breakdowns of an es
sential piece of equipment is important in the decision 
of the use of auxiliary equipment. An engineer thinks 
that the best "model" for time between breakdowns of 
a generator is the exponential distribution with a mean 
of 15 days. 
(a) If the generator has just broken down, what is the 

probability that it will break down in the next 21 
days? 

(b) What is the probability that the generator will op
erate for 30 days without a breakdown? 

6.80 The length of life, in hours, of a drill bit in a 
mechanical operation has a Weibull distribution with 
a = 2 and 0 = 50. Find the probability that the bit 
will fail before 10 hours of usage. 

6.81 Derive the cdf for the Weibull distribution. 
[Hint: In the definition of a cdf, make the transfor
mation z = j/3 .] 

6.82 In Review Exercise 6.80, explain why the na
ture of the scenario would likely not lend itself to the 
exponential distribution. 

6.83 Form the relationship between the chi-squared 
random variable and the gamma random variable, 
prove that the mean of the chi-squared random variable 
is v and the variance is 2v. 

6.84 The length of time, in seconds, that a computer 
user reads his (or her) e-mail is distributed as a log-
normal random variable with p = 1.8 and a2 = 4.0. 
(a) What is the probability that the user reads the mail 

for more than 20 seconds? More than a minute? 
(b) What is the probability that the user reads the mail 

for a length of time that is equal to the mean of the 
underlying lognormal distribution? 
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6.11 Potential Misconceptions and Hazards; 
Relationship to Material in Other Chapters 

Many of the hazards in the use of material in this chapter are quite similar to 
those of Chapter 5. One of the biggest: misuses of statistics is the assumption of 
an underlying normal distribution in carrying out a type of statistical inference: 
when indeed it is not normal. The reader will be exposed to tests of hypotheses in 
Chapters 10 through 15 in which the normality assumption is made. In addition, 
however, the reader will be reminded that, there are t es t s of goodness of fit as 
well as graphical routines discussed in Chapters 8 and 10 that allow for "chee;ks" 
on data to determine if the normality assumption is reasonable. 



Chapter 7 

Functions of Random Variables 
(Optional) 

7.1 Introduction 

This chapter contains a broad spectrum of material. Chapters 5 and 6 deal with 
specific: types of distributions, both discrete and continuous. These arc: distri
butions that find use in many subject matter applications, including reliability, 
quality control, and acceptance sampling. In the present chapter wc begin with a 
more general topic:, that of distributions of functions of random variables. Gen
eral techniques are introduced and illustrated by examples. This is followed by 
a related concept, moment-generating functions, which can be helpful in [earning 
about distributions of linear functions of random variables. 

In standard statistical methods, the result of statistical hypothesis testing, es
timation, or even statistical graphics does not involve a single random variable 
but, rather, functions of one or more random variables. As a result, statistical 
inference requires the distributions of the>se functions. For example, the use of 
averages of r andom variables is common. In addition, sums and more general 
linear combinations are important. We are often interested in the distribution of 
sums of squares of random variables, particularly in the use of analysis of variance 
techniques discussed in Chapters 11 14. 

7.2 Transformations of Variables 

Frequently in statistics, one encounters the need to derive the probability distribu
tion of a function of one: or more random variables. Fbr example, suppose that X is 
a discrete random variable with probability distribution f(x), and suppose further 
that Y = u(X) defines a one-to-one transformation between the values of X and 
Y. We wish to find the probability distribution of Y. It is important to note that 
the one-to-one transformation implies that each value x is related to one, and only 
one, value y = u(x) and that each value y is related to one, and only one:, value 
x = w(y), where w(y) is obtained by solving y = u(x) for x in terms of y. 
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From our discussion of discrete probability distributions in Chapter 3, it is clear 
that the random variable Y assumes the value y when X assumes the value w(y). 
Consequently, the probability distribution of Y is given by 

g(y) = P(Y = y) = P[X = w(y)} = f[w(y)]. 

Theorem 7.1: Suppose that X is a discrete random variable with probability distribution fix). 
Let Y = u(X) define a one-to-one transformation between the values of X and 
y so that the equation y = u(x) can be uniquely solved for x in terms of y, say 
x = w(y). Then the probability distribution of Y is 

giv) = f[w(y)]. 

Example 7.1:1 Let X be a geometric random variable with probability distribution 

m" /(r) ^ 4 U J ' •7: = 1'2'3""--
Find the probability distribution of the random variable Y = X2. 

Solution: Since the values of X are all positive, the transformation defines a one-to-one 
correspondence between the x and y values, y = x2 and x = ^/y. Hence 

g{v) = 
_ |7(VJ/) = ! Q ) ^ \ ?/ = i,4,9,..., 

10, elsewhere. 
J 

Consider a problem where Xx and X2 are two discrete random variables with 
joint probability distribution f(x\,x2) and we wish to find the joint probability 
distribution g(yi,y2) of the two new random variables, 

Yx = ux(X\, Xt) and Y2 = u2(Xx,X2), 

which define a one-to-one transformation between the set of points (xi, x2) and 
(2/1.2/2)- Solving the equations y\ = u\(x\,x2) and y2 = u2(x\,x2) simultaneously, 
we obtain the unique inverse solution 

xx = wx (2/1 ,y2), and x2 = w2 (yx ,y2)-

Hence the random variables Yi and Y2 assume the values y\ and y2, respectively, 
when A'i assumes the value wx (j/i, 2/2) and X2 assumes the value w2 = (yi, y2). The 
joint probability distribution of Yi and Y2 is then 

5(1/1,2/2) = P\Yx = y\,Y2 = 2/2) 
= P[X\ = wi(yx,y2),X2 = w2(yx,y2)] 

= f[miyi,V2),w2iyx,m)]-
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Theorem 7.2: Suppose that A'i and X2 are discrete random variables with joint probability 
distribution f(xx,x2)- Let Yi = uxiXx,X2) and Y2 = u2(Xx,X2) define a one-to-
one transformation between the points (xx,x2) and (2/1,2/2) so that the equations 

2/i = ux(xx,x2) and 2/2 = u2(xx,x2) 

may be uniquely solved for xx and x2 in terms of 2/1 and y2, say xx = 1^1(2/1,2/2) 
and X2 = ^2(51,52)- Then the joint probability distribution of Yi and Y2 is 

5(2/1,2/2) = f[m(yu 2/2), 1^2(2/1, lte)]. 

Theorem 7.2 is extremely useful for finding the distribution of some random 
variable Y] = ui(Xx,X2), where X\, and X2 are discrete random variables with 
joint probability distribution f(x\,x2). We simply define a second function, say 
Y2 = u2(Xx,X2), maintaining a one-to-one correspondence between the points 
(xx,x2) and (2/1,2/2), and obtain the joint probability distribution 5(2/1,2/2)- The 
distribution of Yi is just the marginal distribution of 5(2/1,2/2), found by summing 
over the 2/2 values. Denoting the distribution of Y] by h(y\), we can then write 

M2/1) = ^.9(2/i ,2/2) • 

Example 7.2:1 Let Xi and X2 be two independent random variables having Poisson distributions 
with parameters p\ and p2, respectively. Find the distribution of the random 
variable Yx = Xx + X2. 

Solution: Since Xi and X2 arc independent, we can write 

fixx,x2) = f(xi)f(x2) = - ' " / 4 1 e-' '2P22 

zi l .r2! 

e-(^+«*)pXlpx* 

.Tl!x2! 

where Xx = 0 ,1 ,2 , . . . , and x2 = 0,1,2, Let us now define a second random 
variable, say Y2 = X2. The inverse functions arc given by x\ = 2/1 —2/2 and x2 —y2. 
Using Theorem 7.2, we find the joint probability distribution of Yi and Y2 to be 

5(2/1 • 2/2) = 
e-Ou+wO^vi-i t t^ 

(2/1 - 52)152! 

where 2/1 = 0 ,1 ,2 , . . . , and y2 = 0 ,1 ,2 , . . .,y\. Note that since x\ > 0, the trans
formation Xi = j/i — x-2 implies that y2 and hence x2 must always be less than or 
equal to 2/1 • Consequently, the marginal probability distribution of Y] is 

Vi VI 

% . ) = Y 5(5i,52) = e- ( '"+"a ) Y TTTZ 
11-2=0 t/2=0 W 

,-(fl+K2) Jli. y i ( 

Mi1"w/4f 
52)152! 

51! 

-(M1+M2) 

E » ' ' ,,!/l -1/2 ,,.V2 

_ 0 5 2 ! ( 5 , - 5 2 ) ! / i l M2 

5i 3/2=0 V W 2 / 
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Recognizing this sum as the binomial expansion of (px + p2)
yi we obtain 

e - O l + / i 2 ) ( u . + uo)yi 

M ' 5 i ) = f
 g l ; • 2 / 1 - 0 , 1 , 2 , . . . , 

from which we conclude that the sum of the two independent random variables 
having Poisson distributions, with parameters px and p2, has a Poisson distribution 
with parameter px + p2- J 

To find the probability distribution of the random variable Y = u(X) when 
X is a continuous random variable and the transformation is one-to-one, we shall 
need Theorem 7.3. 

Theorem 7.3: Suppose that X is a continuous random variable with probability distribution 
f(x). Let Y = u(X) define a one-to-one correspondence between the values of X 
and Y so that the equation y = u(x) can be uniquely solved for x in terms of y, 
say x = w(y). Then the probability distribution of Y is 

9iy) = fHy)]\J\, 

where J = w'(y) and is called the Jacobian of the transformation. 

w(a) w(b) 

Figure 7.1: Increasing function. 

b 

\ y = "(x) 

vv(fi) w{a) 

Figure 7.2: Decreasing function. 

Proof: Suppose that y = u(x) is an increasing function as in Figure 7.1. Then we see that 
whenever Y falls between a and b, the random variable X must fall between w(a) 
and w(b). Hence 

rw(b) 

P(a <Y <b) = P[w(a) < X < w(b)] = / f(x) dx. 
Jw(a) 

Changing the variable of integration from x to y by the relation x = w(y), we 
obtain dx = w'(y) dy, and hence 

P(a<Y<b)= f f[w(y)]w'(y) dy. 
J a 
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Since the integral gives the desired probability for every a < b within the permis
sible set of y values, then the probability distribution of Y is 

9iv) = f[wiy)]v/iy) = f[w(y)]J. 

If wc recognize ./ = u:'(y) as the reciprocal of the slope of the tangent line to the 
curve of the increasing function y = u(x), it is then obvious that J = \J\. Hence 

9iv) = f[w(y)]\J\. 

Suppose that y = u(x) is a decreasing function as in Figure 7.2. Then we write 

P(a <Y<b) = P[w(b) < X < w(o)\ = / f(x) dx. 

Again changing the variable of integration to y, wc: obtain 

P(a < Y <b)= I f[w(y)}w'(y) dy = - / f[iv(y)\w'(g) dy, 
•I i, J„ 

from which wc conclude that 

9iv) = -fMy)]w'(y) = -f[w(y)]J. 

In this case the slope of the curve is negative and .7 = —1./|. Hence 

g(y) = f\w(y)}\J\, 

as before. J 

Example 7.3:1 Let X be a continuous random variable with probability distribution 

/'(a:) = J &' 1 < :': < 5' 
l o , elsewhere. 

Find the probability distribution of the random variable V" = 2X — 3. 
Solution: The inverse solution of y = 2x — 3 yields x = (y + 3)/2, from which we obtain 

J = w'(y) = dx/dy = 1/2. Therefore, using Theorem 7.3, we find the density 
function of Y to be 

rM|iZ2(i) = ^ - 1 < , < 7 , 
</(v) = <n '- y~' , , I 

10, elsewhere. 
To find the joint probability distribution of the: random variables Y\ = u\ (A'i, X2) 
and Y2 = u2(X\,X2) when X\ and X2 arc: continuous and the transformation is 
one-to-one, we need an additional theorem, analogous to Theorem 7.2. which we 
state without proof. 
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Theorem 7.4: Suppose that A'i and X2 are continuous random variables with joint probability 
distribution f(xi,x2). Let Yx = u i p f i , X2) and Y2 = u2(Xi,X2) define a one-to-
one transformation between the points (xi,X2) and (2/1,2/2) so that the equations 
2/1 = ui(xi,X2) and y2 = u2(xx,x2) may be uniquely solved for xi and X2 in terms 
of 2/1 and 2/2, say xi = w\(yi,y2) and X2 = tf2(5i,52)- Then the joint probability 
distribution of Yi and Y2 is 

5(51,52) = /K(2/i,52),W2(5i,52)]|J|, 

where the Jacobian is the 2 x 2 determinant 

J = 
dx, 

& 
Ox 1 
dy2 

6x3 
9V2 

and g j 1 is simply the derivative of xx = wi(yx,y2) with respect to 2/1 with y2 held 
constant, referred to in calculus as the partial derivative of xi with respect to y\. 
The other partial derivatives are defined in a similar manner. 

Example 7.4:1 Let Xx and X2 be two continuous random variables with joint probability distri
bution 

J l> i ,x 2 ) = 
4xix2 , 0 < xi < 1, 0 < x2 < 1, 

0, elsewhere. 

Find the joint probability distribution of Yi = X2 and Y2 = XxX2. 
Solution: The inverse solutions of j/i = x2 and y2 = xxx2 are xi = ^fyl and x2 = y2j yfy[, 

from which we obtain 

,7 = 
1 / ( 2 ^ ) 0 

-y2j2y\12 Ify/yi 

1 

2'5i' 

To determine the set B of points in the y\y2 plane into which the set A of points 
in the X1X2 plane is mapped, we write 

Xx = y/m and x2 = y2/v
/m 

and then setting X\ = 0, X2 = 0, X] = 1, and X2 = 1, the boundaries of set 
A are transformed to yi = 0, y2 = 0, 2/1 = 1, and 2/2 — \/5i or y\ = yx- The 
two regions are illustrated in Figure 7.3. Clearly, the transformation is one-to-
one, mapping the set A = {(xi,X2) | 0 < xi < 1, 0 < x2 < 1} into the set 
B — {(51,52) I 52 < 5i < 1, 0 < 52 < 1}. From Theorem 7.4 the joint probability 
distribution of Yi and Y2 is 

52 1 f2 ,̂ 
122/1 [0, 

y\ < 2/1 < 1, 0 < 2/2 < 1, 
elsewhere. 

5(51,52) =4(y/yi~) 

iblems frequently z 
of the random variable Y = u(X) when X is a continuous random variable and 

\fy~\2y\ l [J, elsewhere. 1 

Problems frequently arise when we wish to find the probability distribution 

file:///fy~/2y/
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x2 = 0 y2 = 0 

Figure 7.3: Mapping set A into set B. 

the transformation is not one-to-one. That, is, to each value x there corresponds 
exactly one value y, but to each y value there corresponds more than one x value. 
For example:, suppose that f(x) is positive over the interval — 1 < x < 2 and 
zero elsewhere. Consider the transformation y = X2. In this case x = ±*/l7 for 
0 < y < 1 and x = ,Jy for 1 < y < 4. For the interval 1 < y < 4, the probability 
distribution of Y is found as before, using Theorem 7.3. That is, 

giv) = fHvW\ fis/V) 
- \ /5 ' 

1 < y < 4. 

However, when 0 < y < t, wc may partition the interval — 1 < x < 1 to obtain the 
two inverse functions 

x = -y/y, 1 < x < 0, . 'uiel x = y/y, 0 < x < l . 

Then to every y value there corresponds a single x value for each partition. From 
Figure 7.4 we see that 

P(u. < Y < b) = P(-Vb < X < - V o ) + P(v /a < X < Vb) 

/

- v/77 /• </b 

fix) dx + / f(x) dx. 
-Vb JjTi. 

Changing the variable of integration from x to y, we obtain 

P(n < Y < b) = f f(-y/y)Ji dy + I f(y/y)J» dy 
J I, J a 

= - f f(-yfi)J\ dy+ j f{y/y)J2dy, 

when 

, gc-yy) - i 
Jl ~ i = TT^= 

dv 2\/y 
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y = x* 

-1 -v6~ -Va Va VF 1 

Figure 7.4: Decreasing and increasing function. 

and 

* / 2yf 

Hence we can write 

P(« <Y<b)= I \f(-Jy-)\Jy\ + f{y/y)\J2\] dy, 
J a 

and then 

5(5) = fi-Vv)\Ji\ + f{y/v)\h\ = / ( Vfl + /(vfl 0 L 
2^/j/ 

The probability distribution of Y for 0 < y < 4 may now be written 

/(-v*yv*>, 0<2/<l, 
4 4£f , ' 1< v, < 4, 

0, elsewhere. 

This procedure for finding g(y) when 0 < y < 1 is generalized in Theorem 7.5 
for k inverse functions. For transformations not one-to-one of functions of several 
variables, the reader is referred to Introduction to Mathematical. Statistics by Hogg 
and Craig (see the Bibliography). 
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Theorem 7.5: Suppose that X is a continuous random variable with probability distribution 
fix). Let Y = u(X) define a transformation between the value of X and Y that 
is not one-to-one. If the interval over which X is defined can be partitioned into 
k mutually disjoint sets such that each of the inverse functions 

xx = w\iv)> x2 =w2(y), Xk = Wk(y) 

of y = u(x) defines a one-to-one correspondence, then the probability distribution 
of Y is 

9(y) = Yf[mivWil 
4 = 1 

where Ji = w'^y), i = 1,2,.. . , k. 

Example 7.5:1 Show that Y = (X — p)2/o2 has a chi-squared distribution with 1 degree of freedom 
when A' has a normal distribution with mean p and variance a2. 

Solution: Let Z = (X — p)/a, where the random variable Z has the standard normal distri
bution 

/(*) = 
1 -z2/2 

'2it 
—oo < z < oo. 

We shall now find the distribution of the random variable Y = Z2. The inverse 
solutions of y = z2 are z = ±\/j7' ^ w e designate z\ = — Vy and z2 — \/y, then 
J\ = —l/2yfy and J2 = 1/2V/Ty. Hence, by Theorem 7.5, we have 

giy) = -!/ /2 

2^5 
- y / 2 

'2-n 2VP 
yi/a-ie-ir/2, 5 > 0 . 

Since g(y) is a density function, it follows that 

/2K Jo 
i /a-ie-s/a rf,J = d5 

£(1/2) o yX/2-Xe-y/2 _ F(l/2) 

v/2r(l/2) w " v^ ' 
/2) f°° j /V ' - ' e " 
SF ./,, v

/2r( i y 

the integral being the area under a gamma probability curve with parameters 
o = 1/2 and 0 = 2. Therefore, ^px = r ( l / 2 ) and the probability distribution of Y 
is given by 

1 . . .1/2-1 -?/ /2 > n 

7Hwi)5 . 5>0, 
0, elsewhere, 

which is seen to be: a chi-squared distribution with 1 degree of freedom. _l 

7.3 Moments and Moment-Generating Functions 

In this section we concentrate on applications of moment-generating functions. The 
obvious purpose of the moment-generating function is in determining moments 
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Definition 7.1: 

of random variables. However, the most important contribution is to establish 
distributions of functions of random variables. 

lig(X) = X1' for r = 0 ,1 ,2 ,3 , . . . , Definition 7.1 yields an expected value called 
the rth moment abou t the origin of the random variable X, which we denote 
by p'r. 

The rth momen t about the origin of the random variable X is given by 

J2xrf(x), if X is discrete, 
//,. = E(Xr) 

J_ xrf(x) dx, if A' is continuous. 

Since the first and second moments about the origin are given by p.] = E(X) and 
p2 = E(X2), we can write the mean and variance of a random variable as 

p = p. and p2 - pr 

Although the moments of a random variable can be determined directly from 
Definition 7.1, an alternative procedure exists. This procedure requires us to utilize 
a moment-genera t ing function. 

Definition 7.2: The moment-genera t ing function of the random variable X is given by E(etx) 
and is denoted by Mx(t). Hence 

Mx(t) = E(et*) 
£ e * " / ( x ) , if X is discrete, 

f(x) dx, if X is continuous. 

Moment-generating functions will exist only if the sum or integral of Definition 
7.2 converges. If a moment-generating function of a random variable X does exist, 
it can be used to generate all the moments of that variable. The method is described 
in Theorem 7.0. 

Theorem 7.G: Let AT be a random variable with moment-generating function A/y(r). Then 

drMx(t) 

dtr = Mr 
(=0 

Proof: Assuming that wc: can differentiate inside summation and integral signs, we obtain 

drMX (f) j T, Xretxf(x), if X is discrete, 

dfV \ IZo xre'xf(x) dx, if X is continuous. 

Setting t = 0, wc: see that both cases reduce to 7i'(Xr) = pr. J 

Example 7.6:1 Find the moment-generating function of the binomial random variable X and then 
use it to verify that //. = np and o2 = npq. 
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Solution: From Definition 7.2 we have: 

MX(t)=5>te(")pv-* = Y ("W)v-*. 
:i: = t> ^ ' x-0 \ * / 

Recognizing this last sum as the binomial expansion of (pe* + q)", wc obtain 

Mxit) = (pet + q)n. 

Now 

dMx(t) I i ~\n—l„„t 

dt 
= n(pe' +q)"~lpe 

d2Mx(t) _ 
dt? 

Setting t = 0, we get 

np[c'(n - l)(pe' + q)n-2pel + (pe1 + ey)"" V] 

and 

Therefore. 

p, = np 

p2 = np[(n- l)p + 1]. 

and 

p = Px~ "P 

o2 = p2 - P2 = np(\ - p) = npq, 

which agrees with the results obtained in Chapter 5. 

Example 7.7:1 Show that the moment-generating function of the random variable X having a 
normal probability distribution with mean p and variance a1 is given by 

Mx(l)=v.xp(pi+^a2tA . 

Solution: From Definition 7.2 the moment-generating function of the normal random variable 
X is 

-^--jy^HM dx 

J^x \/2TT 
exp 

x2 - 2(p + ta2)x + p 

2a'2 dx. 
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Completing the square in the exponent, we can write 

x2 - 2(p + ta2)x + p2 = [x - (p. + ta2)}2 - 2pto2 - t2o4 

and then 

*«-£?c-'{-"-»""t-»--*> 
-W £)£7feM- f c Jss s a t}* 

Let w = [x - (p + £<72)]/CT; then dx = er eiwi and 

Mx (t) = exp htf + \<J2t2\ j -j=e-w^2 dw = exp (pet + ^<T2*2) , 

since the last integral represents the area under a standard normal density curve 
and hence equals 1. J 

Example 7.8:1 Show that the moment-generating function of the random variable X having a 
chi-squared distribution with v degrees of freedom is Mx(r-) = (1 — 2t)~vf2. 

Solution: The chi-squared distribution was obtained as a special case of the gamma distri
bution by setting a = v/2 and 3 = 2. Substituting for f(x) in Definition 7.2, we 
obtain 

r°° l 
Adx(t) = / etx - xv/2~1e~x/2 dx 

x[> Jo 2*/2r(l!/2)a; ax 

- I f rv/2-l -x(X-2t)/2 d 

Writing y = x(l - 2t)/2 and cix = [2/(1 - 2t)} dy, we get for t < ±, 

1 f°° f 2v \v/2~i 2 

" r W 2 K l ^ l" v"",e" * = (1"2,)""2 ' 

since the last integral equals r(u/2) . J 

Although the method of transforming variables provides an effective way of 
finding the distribution of a function of several variables, there is an alternative 
and often preferred procedure when the function in question is a linear combination 
of independent random variables. This procedure utilizes the properties of moment-
generating functions discussed in the following four theorems. In keeping with the 
mathematical scope of this book, we state Theorem 7.7 without proof. 
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Theorem 7.7: (Uniqueness Theorem) Let X and Y be two random variables with moment-
generating functions Mxit) and My(t), respectively. If Mx(t) = My-(£) for all 
values of t, then X and Y have the same probability distribution. 

Theorem 7.8: Mx+a(t) = eatMx(t). 

Proof: Mx+ait) = E[etiX+")\ = eatE(elX) = e<"Mx(t). 

Theorem 7.9: Maxit) = Mxiat). 

Proof: MaX(t) = E[ei{-"x^\ = E\eia^x] = Mxiat). 

Theorem 7.10: If X i , X 2 , . . . , X n are independent random variables with moment-generating 
functions MXl it), M . Y 2 ( 0 , • • •, Mx„ it), respectively, and Y = Xi + X2 + r Xn, 
then 

Mr(t) = MXl {t)Mx2(t) • • • MXn it). 

,X2,..., xn) dx\ dx2 • • • dx„. 

Proof: For the continuous case 

MYit) = E(etY) = E[et{Xi+x*+-+x")} 

/

OO /»GQ 

• " / #**+*+™+x4f{s1,x 
•oc J—oc 

Since the variables are independent, we have 

f(xux2,. • ., Xn) = fxixi )f2(x2) • • • /„(xr,.) 

and then 

/

OO rC>Cl /-OC 

e^fxixi) dxx / e,x\f2(x2) dx2 • • • / ete» fn(xn) dxn 
- CO J—OC J — DC' 

= MXl(t)MX2(t)---MxJt). j 
The proof for the discrete case is obtained in a similar manner by replacing inte
grations with summations. 

Theorems 7.7 through 7.10 are vital for understanding moment-generating func
tions. An example follows to illustrate. There are many situations in which we 
need to know the distribution of the sum of random variables. We may use Theo
rems 7.7 and 7.10 and the result of Exercise 7.19 following this section to find the 
distribution of a sum of two independent Poisson random variables with moment-
generating functions given by 

MXl it) = e - „/'l (<>'-!) Mx.2(t) = e'l'l-ei-1\ 
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respectively. According to Theorem 7.10, the moment-generating function of the 
random variable Y\ — Xx + X2 is 

MYl(t) = MXl(t)MxAt) = e/M«'-i)e/'2(e«-i) = etMi+^Ke'-i) 

which we immediately identify as the moment-generating function of a random 
variable having a Poisson distribution with the parameter pi + p2- Hence, accord
ing to Theorem 7.7, we again conclude that the sum of two independent random 
variables having Poisson distributions, with parameters pi and p2, has a Poisson 
distribution with parameter pi + p2-

Linear Combinations of Random Variables 

In applied statistics one frequently needs to know the probability distribution of 
a linear combination of independent normal random variables. Let us obtain the 
distribution of the random variable Y = a iXi +02X2 when Xi is a normal variable 
with mean px and variance o2 and X2 is also a normal variable but independent 
of Xi with mean p2 and variance cr2. First, by Theorem 7.10, we find 

MY(t) = MaiXl(t)Ma2X2(t), 

and then, using Theorem 7.9, 

My(t) = Mx,iaxt)MX2(a2t). 

Substituting axt for t and then a2t for t in a moment-generating function of the 
normal distribution derived in Example 7.7, we have 

My(t) = exp(axpit + d\a2t2/2 + a2p2t + a\o\t2 j2) 

= exp[(aipi + a2p2)t + (ajaj + ala2)t
2/2], 

which we recognize as the moment-generating function of a distribution that is 
normal with mean aipi + CI2P2 and variance a2cT2 + a\o~\. 

Generalizing to the case of n independent normal variables, we state the fol
lowing result, 

Theorem 7.11: If X l , X 2 , . . . , 
with means px 
dom variable 

xn 
,M2, 

are independent random variables having normal distributions 
...,p„ and variances a\,o\,...,on, respectively, then the ran-

Y = - axXx + 02X2 + • 

has a normal distribution with mean 

and variance 

VY 

a\ 

= flipi +a2p2 + 

2 2 1 2 2 , = a\a\ + a\a2 + • 

• • + anXn 

••+ anpn 

••+<&£• 

It is now evident that the Poisson distribution and the normal distribution 
possess a reproductive property in that the sum of independent random variables 
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having either of these: distributions is a random variable that also has the same type 
of distribution. This reproductive property is also possessed by the chi-squared 
distribution. 

Theorem 7.12: If A'i, A ro,. . . , Xn arc mutually independent random variables that have, respec
tively, chi-squared distributions with vx, v2,..., vn degrees of freedom, then the 
random variable 

Y = Xx + X2 + • • • + X„ 

has a chi-squared distribution with v = V\ + v2 + • • • + vn degrees of freedom. 

Proof: By Theorem 7.10, 

My(l) = Mxl(t)MX2(l.)---MxJt). 

From Example 7.8. 

,U.v,(/) = ( l - 2 / . ) - " ' / 2 , i= l ,2 , . . . ,n . ] 

Therefore, 

MY(t) = (1 - 2/,)-' : i /2(l - 2/.)-"- /2 • . - ( I - 2t)-v^2 

= (1 - 2/:)~("1+"-+"'+"")/'2, 

which we recognize as the moment-generating function of a chi-squared distribution 

with v — V\ + i»2 + • • • + vn degrees of freedom. J 

Corollary 7.1: If Xi, X 2 , . . . , X„ are independent random variables having identical normal dis
tributions with mean p and variance a2, then the random variable 

r-T, 
i=l 

Xi - p 

has a chi-squared distribution with v = n degrees of freedom. 

This corollary is an immediate consequence of Example 7.5, which states that 
each of the n independent random variables [(A",; — p)/a]2, i — 1,2, . . . , n , has 
a chi-squared distribution with 1 degree of freedom. This corollary is extremely 
important. It establishes a relationship between the very important chi-squared 
distribution and the normal distribution. It also should provide the reader a clear 
idea of what wc mean by the parameter that wc; call degrees of freedom. As we 
move into future chapters, the notion of degrees of freedom plays an increasingly 
important role. We see from Corollary 7.1 that if Z\,Z2,... ,Zn are independent 

" 
standard normal random variables, then J^ Zf has a chi-squared distribution and 

the single parameter, v, the degrees of freedom, is n, the number of standard normal 
variates. Furthermore, if each normal random variable in the Xi, in Corollary 7.1 
has different mean and variance, wc can have the following result. 
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C o r o l l a r y 7.2: If X ] , X2, • • •, X n are independent random variables and X; follows a normal 
distribution with mean p.j and variance a2 for i = 1,2, . . . , n , then the random 
variable 

Y £ Xt - fa 

at 

has a chi-squared distribution with v = n degrees of freedom. 

Exercises 

7.1 Let X be a random variable with probability 

' 4 , 85 = 1,2,3, 
elsewhere. / ( * : 

• f t 
Find the probability distribution of the random vari
able Y = 2 X - 1 . 

7.2 Let X be a binomial random variable with prob
ability distribution 

Show that the random variable Y = —2 In A' has a chi-
squared distribution with 2 degrees of freedom. 

7.6 Given the random variable X with probability 
distribution 

/ (*) = 
2x, 0 < x < 1, 
0. elsewhere. 

/w = {air (i)". x = 0,1,2,3, 
elsewhere. 

Find the probability distribution of the random vari
able Y = X2. 

7.3 Let Xi and X2 be discrete random variables with 
the joint multinomial distribution 

find the probability distribution of Y = 8X3 . 

7.7 The speed of a molecule in a uniform gas at equi
librium is a random variable V whose probability dis
tribution is given by 

/ (x i .xa ) 

Xl,X2, 2 — X\ — x2 

/(«) = 0. 
0 > 0, 
elsewhere. 

for x\ = 0,1,2; £2 = 0,1,2; x\ + x2 < 2; and zero 
elsewhere. Find the joint probability distribution of 
Yx = Xi + X2 and y2 = Xx - X2. 

7.4 Let Xi and Xi be discrete random variables with 
joint probability distribution 

where k is an appropriate constant and b depends on 
the absolute temperature and mass of the molecule. 
Find the probability distribution of the kinetic energy 
of the molecule W, where W = mV2 /2. 

7.8 A dealer's profit, in units of $5000, on a new au
tomobile is given by Y = X 2 , where X is a random 
variable having the density function 

fixi,x2) 16 

o, 
zi = 1,2; X2 = 1,2,3, 
elsewhere. *> - { * - * 0 < x< 1, 

elsewhere. 

Find the probability distribution of the random vari
able Y = Xi.X-2. 

7.5 Let X have the probability distribution 

/ ( * ) -
1, 0 < x < 1. 
0, elsewhere. 

(a.) Find the probability density function of the random 
variable Y. 

(b) Using the density function of Y, find the probabil
ity that the profit will be less than S500 on the next 
new automobile sold by this dealership. 
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7.9 The hospital period, in days, for patients follow
ing treatment for a certain type of kidney disorder is a 
random variable Y = X + 4, where X has the density 
function 

If the resistance varies independently of the current ac
cording to the probability distribution 

fix. -{ 
9ir) 

(x+4)* ' 

0, 

x>0, 

elsewhere. 

_ f 2r, 0 < 
~~ \0, else 

r < I, 
elsewhere, 

(a) Find the probability density function of the random 
variable Y. 

(b) Using the density function of Y, find the probabil
ity that the hospital period for a patient following 
this treatment will exceed 8 days. 

7.10 The random variables X and Y, representing 
the weights of creams and toffees in 1-kilogram boxes 
of chocolates containing a mixture of creams, toffees, 
and cordials, have the joint density function 

find the probability distribution for the power W = 
I2R watts. 

7.14 Let X be a random variable with probability 
distribution 

(0, elsewhere. 

Find the probability distribution of the random vari
able Y = X2. 

fix, y) = 
'24xy, 

.0, 

0 < x < 1 , 0 < 
x + y< 1, 
elsewhere. 

< 1, 

7.15 Let X have the probability distribution 

fix) -flr t11, -\<x<2, 
elsewhere. 

(a) Find the probability density function of the random 
variable Z = X + Y. 

(b) Using the density function of Z, find the probabil
ity that in a given box the sum of the creams and 
toffees accounts for at least 1/2 but less than 3/4 
of the total weight. 

7 .11 The amount of kerosene, in thousands of liters, 
in a tank at the beginning of any day is a random 
amount Y from which a random amount X is sold dur
ing that day. Assume that the joint density function 
of these variables is given by 

fix,y) 
- f t 

0 < x < y, 0 < y < 1, 
elsewhere. 

Find the probability density function for the amount 
of kerosene left in the tank at the end of the day. 

7.12 Let Xi and X2 be independent random variables 
each having the probability distribution 

fix 

Find the probability distribution of the random vari
able Y = X2. 

7.16 Show that the r th moment about the origin of 
the gamma distribution is 

' 0'T(a + r) 

[Hint: Substitute y = x/Q in the integral defining pr' 
and then use the gamma function to evaluate the inte
gral] 

7.17 A random variable X has the discrete uniform 
distribution 

/(x;fc) = / * ' x~l,2,...,k, 

Jy ' \ 0 , elsewhere. 

Show that the moment-generating function of X is 

e{(l - e*') x > 0 , 
elsewhere. 

Mx(t) = 
fe(l - el) 

Show that the random variables Yi and Y2 are inde
pendent when Yi = Xi + X2 and Y2 - X\j(X\ +X2). 

7.13 A current of I amperes flowing through a resis
tance of R ohms varies according to the probability 
distribution 

7.18 A random variable X has the geometric distri
bution g(x;p) = pqx~^ for x = 1,2, 3 Show that 
the moment-generating function of X is 

Mx(t) = pe 
\-qe* 

t <\nq. 

/(») = 
f 6 t ( l - t ) , 0 < i < 1, 
\ 0 , elsewhere. 

and then use Mx(t) to find the mean and variance of 
the geometric distribution. 
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7.19 A random variable X has the Poisson distribu
tion p(x; u) = e~'xpx/x\ for x = 0,1,2, Show that 
the moment-generating function of X is 

Mx(t) = e" ( e , _ 1 ) . 

Using Mx(t), find the mean and variance of the Pois
son distribution. 

7.20 The moment-generating function of a certain 
Poisson random variable X is given by 

Mx(t) = e^e'-l). 

Find P(p - 2CT < X < fi + 2a). 

7.21 Using the moment-generating function of Exam
ple 7.8, show that the mean and variance of the chi-
squared distribution with v degrees of freedom are, re
spectively, v and 2v. 

7.22 Dy expanding etx in a Maclaurin series and in
tegrating term by term, show that 

/ . ' 
Mx(t) = / etxf(x) dx 

• t2 > f 
= 1 + pi + fl2y + • • • + Pr-J + • • 

7.23 If both A' and Y, distributed independently, fol
low exponential distributions with mean parameter 1. 
find the distributions of 
(a) U = X + Y, and 
(b) V = X/(X + Y). 



Chapter 8 

Fundamental Sampling 
Distributions and Data Descriptions 

8.1 Random Sampling 

The outcome of a statistical experiment may be recorded either as a numerical 
value or as a descriptive representation. When a pair of dice: is tossed and the total 
is the outcome of interest, we record a numerical value. However, if the students 
of a certain school arc: given blood tests and the typo of blood is of interest, then 
a descriptive representation might be the most useful. A person's blood can be 
classified in 8 ways: AB, A, B, or O, with a plus or minus sign, depending on the 
presence or absence of the Eh antigen. 

In this chapter wc focus ou sampling from distributions or populations and 
study such important quantities as the sample mean and sample variance, which 
are of vital importance in future chapters. In addition, we attempt to give the 
reader an introduction to the role that the sample mean and variance will play in 
later chapters in statistical inference. The use of the modern high-speed computer 
allows the scientist or engineer to greatly enhance his or her use of formal statistical 
inference with graphical techniques. Much of the time formal inference appears 
quite dry and perhaps even abstract to the practitioner or the manager who wishes 
to let statistical analysis be a guide to decision-making. 

Populations and Samples 

We begin this section by discussing the notions of populations and samples. Both 
are mentioned in a broad fashion in Chapter 1. However, much more needs to be 
discussed about them here, particularly in the context of the concept of random 
variables. The totality of observations with which wc: arc: concerned, whether their 
number be finite or infinite, constitutes what we call a popula t ion . There was a 
time when the word population referred to observations obtained from statistical 
studies about people. Today, the statistician uses the term to refer to observations 
relevant to anything of interest, whether it be groups of people, animals, or all 
possible outcomes from some complicated biological or engineering system. 
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Definition 8.1: 

Definition 8.2: 

A populat ion consists of the totality of the observations with which we are 
concerned. 

The number of observations in the population is defined to be the size of the 
population. If there are 600 students in the school that we classified according 
to blood type, we say that we have a population of size 600. The numbers on 
the cards in a deck, the heights of residents in a certain city, and the lengths of 
fish in a particular lake are examples of populations with finite size. In each case 
the total number of observations is a finite number. The observations obtained by 
measuring the atmospheric pressure every day from the past on into the future, 
or all measurements on the depth of a lake from any conceivable position, are 
examples of populations whose sizes are infinite. Some finite populations are so 
large that in theory we assume them to be infinite. This is true if you consider the 
population of lifetimes of a certain type of storage battery being manufactured for 
mass distribution throughout the country. 

Each observation in a population is a value of a random variable X having some 
probability distribution fix). If one is inspecting items coming off an assembly line 
for defects, then each observation in the population might, be a value 0 or 1 of the 
Bernoulli random variable X with probability distribution 

b(x:l,p)=pxq1- 0,1, 

where 0 indicates a nondefective item and 1 indicates a defective item. Of course, 
it is assumed that p, the probability of any item being defective, remains constant 
from trial to trial. In the blood-type experiment the random variable X represents 
the type of blood by assuming a value from 1 to 8. Each student is given one of the 
values of the discrete random variable. The lives of the storage batteries are values 
assumed by a continuous random variable having perhaps a normal distribution. 
When we refer hereafter to a "binomial population," a "normal population," or, in 
general, the "population f(x)," we shall mean a population whose observations are 
values of a random variable having a binomial distribution, a normal distribution, 
or the probability distribution fix). Hence the mean and variance of a random 
variable or probability distribution are also referred to as the mean and variance 
of the corresponding population. 

In the field of statistical inference the statistician is interested in arriving at 
conclusions concerning a population when it is impossible or impractical to ob
serve the entire set of observations that make up the population. For example, 
in attempting to determine the average length of life of a certain brand of light 
bulb, it would be impossible to test all such bulbs if we are to have any left to sell. 
Exorbitant costs can also be a prohibitive factor in studying the entire population. 
Therefore, we must depend on a subset of observations from the population to help 
us make inferences concerning that same population. This brings us to consider 
the notion of sampling. 

A sample is a subset of a population. 

If our inferences from the sample to the population are to be valid, we must 
obtain samples that are representative of the population. All too often we are 
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tempted to choose a sample by selecting the most convenient members of the 
population. Such a procedure may lead to erroneous inferences concerning the 
population. Any sampling procedure that produces inferences that consistently 
overestimate or consistently underestimate some characteristic of the population is 
said to be biased. To eliminate any possibility of bias in the sampling procedure, 
it is desirable to choose a r a n d o m sample in the sense that the observations are 
made independently and at random. 

In selecting a random sample of size n from a population f(x), let us define the 
random variable X;, i = 1,2, . . . , n , to represent the ith measurement or sample 
value that we observe. The random variables X i , X 2 , . . . ,Xn will then constitute 
a random sample from the population f(x) with numerical values x\,x2,... ,xn if 
the measurements are obtained by repeating the experiment n independent times 
under essentially the same conditions. Because of the identical conditions under 
which the elements of the sample are selected, it is reasonable to assume that the n 
random variables Xj , X2,..., X„ are independent and that, each has the same prob
ability distribution fix). That is, the probability distributions of X i , X 2 , . . . , X n 

are, respectively, fixx),f(x2),...,f(xn) and their joint probability distribution 
is f(xx,x2,...,xn) = fixi)f(x2)---f(xn). The concept of a random sample is 
described formally by the following definition. 

Definition 8.3: Let Xy,X2,...,Xn be n independent random variables, each having the same 
probability distribution f(x). Define X i , X 2 , . . . , Xn to be a r andom sample of 
size n from the population f(x) and write its joint probability distribution as 

f(xi,x2,...,xn) = f(xi)f(x2)- •• f{xn). 

If one makes a random selection of n = 8 storage batteries from a. manufacturing 
process, which has maintained the same specification, and records the length of 
life for each battery with the first measurement X\ being a value of X\, the second 
measurement x2 a value of X2, and so forth, then x\,x2,... ,x$ are the values of 
the random sample Xi, X 2 , . . . , X§. If we assume the population of battery lives to 
be normal, the possible values of any X,;, i = 1,2, . . . , 8, will be precisely the same 
as those in the original population, and hence X, has the same identical normal 
distribution as X. 

8.2 Some Important Statistics 

Our main purpose in selecting random samples is to elicit information about the 
unknown population parameters. Suppose, for example, that we wish to arrive 
at a conclusion concerning the proportion of coffee-drinking people in the United 
States who prefer a certain brand of coffee. It would be impossible to question 
every coffee-drinking American in order to compute the value of the parameter p 
representing the population proportion. Instead, a large random sample is selected 
and the proportion p of people in this sample favoring the brand of coffee in question 
is calculated. The value p is now used to make an inference concerning the true 
proportion p. 

Now, p is a function of the observed values in the random sample; since many 
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Definition 8.4: 

random samples arc possible from the same population, we would expect p to vary 
somewhat from sample to sample. That is, p is a value of a random variable that 
we represent by P. Such a random variable is called a statist ic. 

Any function of the random variables constituting a random sample is called a 
stat ist ic. 

Central Tendency in the Sample; the Sample Mean 

In Chapter 4 we introduced the two parameters p and a2, which measure the center 
of location and the variability of a probability distribution. These are constant 
population parameters and are in no way affected or influenced by the observations 
of a random sample. We shall, however, define sonic important statistics that 
describe corresponding measures of a random sample. The most commonly used 
statistics for measuring the center of a set of data, arranged in order of magnitude, 
are the mean, median, and mode. All of these statistics arc defined in Chapter 
1. The mean will be defined again here. 

Definition 8.5: If X i , X 2 , . . . ,X„ represent a random sample of size n, then the sample mean 
is defined by the statistic 

I 
x = ^]Tx„ 

; = i 

Note that the statistic X assumes the value .i: = •- J2 '•''' when X] assumes the 
" i = i 

value x%, X2 assumes the value x2, and so forth. In practice the value of a statistic 
is usually given the: same name as the statistic. For instance, the term sample 
mean is applied to both the statistic X and its computed value x. 

There is an earlier reference made to the sample mean in Chapter 1. Examples 
were given that illustrated the computation of a sample mean. 

As we suggested in Chapter 1, a measure of central tendency in the sample does 
not by itself give a clear indication of the nature of the sample. Thus a measure 
of variability in the sample must also be considered. 

The Sample Variance 

The variability in the sample should display how the observations spread out from 
the average. The reader is referred to Chapter 1 for more discussion. It is pos
sible to have two sets of observations with the same mean or median that differ 
considerably in the variability of their measurements about the average. 

Consider the following measurements, in liters, for two samples of orange juice 
bottled by companies A and B: 

Sample A 
Sample B 

0.97 
1.06 

1.00 
1.01 

0.94 
0.88 

1.03 
0.91 

1.06 
1.14 

Both samples have the same mean. 1.00 liter. It is obvious that company A 
bottles orange juice: with a more uniform content than company B. Wc say that 
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Definition 8.6: 

the variability or the dispersion of the observations from the average is less for 
sample A than for sample B. Therefore, in buying orange juice, we would feel 
more confident that the bottle we select will be closer to the advertised average if 
we buy from company A. 

In Chapter 1 we introduced several measures of sample variability including the 
sample variance and sample range. In this chapter we will focus on the sample 
variance. 

If X] , X2,..., X„ represent a random sample of size n, then the sample variance 
is defined by the statistic 

/ ' = I 

The computed value of S2 for a given sample is denoted by s2. Note that 
S2 is essentially defined to be the average of the squares of the deviations of the 
observations from their mean. The reason for using n — 1 as a divisor rather than 
the more obvious choice n will become apparent, in Chapter 9. 

Example 8.1:1 A comparison of coffee prices at 4 randomly selected grocery stores in San Diego 
showed increases from the previous month of 12, 15, 17, and 20 cents for a 1-pound 
bag. Find the: variance of this random sample of price increases. 

Solution: Calculating the sample mean, we get 

12 + 15 + 17 + 20 ,„ 
x = • = 16 cents. 

Therefore, 

(12-16) 2 - f 
i£(*i-ie)a 

(-4)2 + ( - l ) 2 + (l)2 + (4)2 

1 6 ) 2 + ( I 7 - 16)2 + ( 2 0 - 1 6 ) s 

34 
3" 3 3 ' J 

Whereas the expression for the sample variance in Definition 8.6 best illustrates 
that S2 is a measure of variability, an alternative expression does have some merit 
and thus the reader should be aware of it and the following theorem contains this 
expression. 

Theorem 8.1: 

Proof: By definition, 

i = l 
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i= l 

£x2-2X]Tx, : + ;zX2 

n - 1 1=1 i = l 

Replacing X by ^ Xi/n and multiplying numerator and denominator by n. we 

Definition 8.7: 

i=\ 

obtain the more useful computational formula of Theorem 8.1. 

The s a m p l e s t a n d a r d dev ia t ion , denoted by S, is the positive square root of 
the sample variance. 

E x a m p l e 8.2:1 Find the variance of the da ta 3, 4, 5, 6, 6, and 7, representing the number of t rout 
caught by a random sample of 6 fishermen on June 19, 1996, at Lake Muskoka. 

6 6 
Solution: We find that J2 x2 = 171, J^ Xf = 31 , n — 6. Hence 

i - l i=\ 

s2 = (6M [ ( 6 ) ( 1 7 1 ) - ( 3 1 ) 2 ] = f-
Thus the sample s tandard deviation s = \ / l 3 / 6 = 1.47. 

Exercises 

8.1 Define suitable populations from which the fol
lowing samples are selected: 
(a) Persons in 200 homes are called by telephone in the 

city of Richmond and asked to name the candidate 
that they favor for election to the school board. 

(b) A coin is tossed 100 times and 34 tails are recorded. 
(c) Two hundred pairs of a new type of tennis shoe 

were tested on the professional tour and, on the 
average, lasted 4 months. 

(d) On five different occasions it took a lawyer 21, 26, 
24, 22, and 21 minutes to drive from her suburban 
home to her midtown office. 

8.2 The number of tickets issued for traffic violations 
by 8 state troopers during the Memorial Day weekend 
are 5, 4, 7, 7, 6, 3, 8, and 6. 
(a) If these values represent the number of tickets is

sued by a random sample of 8 state troopers from 
Montgomery County in Virginia, define a suitable 
population. 

(b) If the values represent the number of tickets issued 
by a random sample of 8 state troopers from South 
Carolina, define a suitable population. 

8.3 The numbers of incorrect answers on a true-false 
competency test for a random sample of 15 students 
were recorded as follows: 2, 1, 3, 0, 1, 3, 6, 0, 3. 3. 5, 
2, 1, 4, and 2. Find 

(a) the mean; 
(b) the median; 
(c) the mode. 

8.4 The lengths of time, in minutes, that 10 patients 
waited in a doctor's office before receiving treatment 
were recorded as follows: 5, 11, 9, 5, 10, 15. 6, 10, 5, 
and 10. Treating the data as a random sample, find 
(a) the mean; 

(b) the median; 
(c) the mode. 

8.5 The reaction times for a random sample of 9 sub
jects to a stimulant were recorded as 2.5, 3.6, 3.1, 4.3, 
2.9. 2.3, 2.6, 4.1, and 3.4 seconds. Calculate 
(a) the mean; 
(b) the median. 
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8.6 According to ecology writer Jacqueline Killeen, 
phosphates contained in household detergents pass 
right through our sewer systems, causing lakes to turn 
into swamps that eventually dry up into deserts. The 
following data show the amount of phosphates per load 
of laundry, in grams, for a random sample of various 
types of detergents used according to the prescribed 
directions: 

Laundry Phosphates per Load 
Detergent (grains) 
A & P Blue Sail 
Dash 
Concentrated All 
Cold Water All 
Breeze 
Oxydol 
Ajax 
Seaxs 
Fab 
Cold Power 
Bold 
Rinso 

For the given phosphate data, 
(a) the mean: 
(b) the median; 
(c) tile mode. 

48 
47 
42 
42 
41 
34 
31 
30 
29 
29 
29 
26 

find 

8.7 A random sample of employees from a local man
ufacturing plant pledged the following donations, in 
dollars, to the United Fund: 100, 40, 75. 15, 20, 100, 
75, 50, 30, 10, 55, 75, 25, 50, 90, 80, 15, 25, 45, and 
100. Calculate 

(a) the mean: 

(b) the mode. 

8.8 Find the mean, median, and mode for the sample 
whose observations, 15, 7, 8, 95. 19, 12, 8, 22, and 14, 
represent the number of sick days claimed on 9 federal 
income tax returns. Which value appears to be the 
best measure of the center of our data? State reasons 
for j'our preference. 

8.9 With reference to the lengths of time that 10 pa
tients waited in a doctor's office before receiving treat
ment in Exercise 8.4, find 

(a) the range; 
(b) the standard deviation. 

8.10 With reference to the sample of reaction times 
for the 9 subjects receiving the stimulant in Exercise 

8.5, calculate 
(a) the range; 

(b) the variance using the formula of Definition 8.6. 

8.11 With reference to the random sample of incor
rect answers on a true-false competency test for the 15 
students in Exercise 8.3, calculate the variance using 
the formula 

(a) of Definition 8.6; 
(b) of Theorem 8.1. 

8.12 The tar contents of 8 brands of cigarettes se
lected at random from the latest list released by the 
Federal Trade Commission are as follows: 7.3, 8.6, 10.4, 
16.1, 12.2, 15.1, 14.5, and 9.3 milligrams. Calculate 
(a) the mean; 
(b) the variance. 

8.13 The grade-point averages of 20 college seniors 
selected at random from a graduating class are as fol
lows: 

3.2 
2.9 
1.8 
3.2 

1.9 
3.8 
2.5 
2.3 

2.7 
3.0 
3.7 
2.1 

2.4 
2.5 
2.8 
2.5 

2.8 
3.3 
2.0 
1.9 

Calculate the standard deviation. 

8.14 (a) Show that the sample variance is unchanged 
if a constant c is added to or subtracted from each 
value in the sample. 

(b) Show that the sample variance becomes c2 times 
its original value if each observation in the sample 
is multiplied by c. 

8.15 Verify that the variance of the sample 4, 9, 3, 
6, 4, and 7 is 5.1, and using this fact along with the 
results of Exercise 8.14, find 
(a) the variance of the sample 12, 27, 9, 18, 12, and 21; 
(b) the variance of the sample 9, 14, 8, 11, 9, and 12. 

8.16 In the season of 2004-05, the football team of 
University of South California had the following score 
differences for its 13 games played. 

11 49 32 3 6 38 38 30 8 40 31 5 36 

Find 
(a) the mean score differences: 
(b) the median score difference. 



236 Chapter 8 Fundamental Sampling Distributions and Data Descriptions 

8.3 Data Displays and Graphical Methods 

In Chapter 1 we introduce the reader to empirical distributions. The motivation is 
to use creative displays to extract information about properties of a set of data. For 
example, the stem-and-leaf plots provide the viewer a look at symmetry and other 
properties of the data. In this chapter we deal with samples which, of course, are 
collections of experimental data from which we draw conclusions about populations. 
Often the appearance of the sample provides information about the distribution 
from which the data, arc taken. For example, in Chapter 1 we illustrated the general 
nature of pairs of samples with point plots that displayed a relative comparison 
between central tendency and variability among two samples. 

In chapters that follow, wc often make the assumption that the distribution 
is normal. Graphical information regarding the validity of this assumption can 
be retrieved from displays like the stem-and-leaf plots and frequency histograms. 
In addition, wc will introduce the notion of normal probability plots and quantile 
plots in this section. These plots are used in studies that have varying degrees 
of complexity, with the main objective of the plots being to provide a diagnostic 
check on the assumption that the data came from a normal distribution. 

We can characterize statistical analysis as the process of drawing conclusions 
about systems in the presence of system variability. An engineer's attempt to 
learn about a chemical process is often clouded by process variability. A study 
involving the number of defective items in a production process is often made 
more difficult by variability in the method of manufacture of the items. In what 
has preceded, we have learned about samples and statistics that express center of 
location and variability in the sample. These statistics provide single measures, 
whereas a graphical display adds additional information in terms of a picture. 

Box-and-Whisker Plot or Box Plot 

Another display that is helpful for reflecting properties of a sample is the box-
and-whisker plot. This plot encloses the interquartile range of the data in a box 
that has the median displayed within. The interquartile range has as its extremes, 
the 75th percentile (upper quartile) and the 25th percentile (lower quartile). In 
addition to the box, "whiskers" extend, showing extreme observations in the sam
ple. For reasonably large samples the display shows center of location, variability, 
and the degree of asymmetry. 

In addition, a variation called a box plot can provide the viewer information 
regarding which observations may be outliers. Outliers arc observations that are 
considered to be unusually far from the bulk of the data. There are many statistical 
tests that are designed to detect outliers. Technically, one may view an outlier as 
being an observation that represents a ''rare event" (there is a small probability 
of obtaining a value that far from the bulk of the data). The concept of outliers 
resurfaces in Chapter 12 in the context of regression analysis. 

The visual information in the box-and-whisker plot or box plots is not intended 
to be a formal test for outliers. Rather, it is viewed as a diagnostic tool. While the 
determination of which observations are outliers varies with the typo of software 
that is used, one common procedure is to use a multiple of the interquart i le 



8.3 Data Displays and Graphical Methods 237 

range. For example, if the distance from the box exceeds 1.5 times the interquartile 
range (in either direction), the observation may be labeled an outlier. 

Example 8.3:1 Consider the data in Exercise 1.21 at the end of Chapter I (page 29). Nicotine con
tent was measured in a random sample of 40 cigarettes. The data are redisplayed 
in Table 8.1. 

Table 8.1: Nicotine Data for Example 8.3 

1.09 
0.85 
1.86 
1.82 
1.40 

1.92 
1.24 
1.90 
1.79 
1.64 

2.31 
1.58 
1.68 
2.46 
2.09 

1.79 
2.03 
1.51 
1.88 
1.75 

2.28 
1.70 
1.64 
2.08 
1.63 

1.74 
2.17 
0.72 
1.67 
2.37 

1.47 
2.55 
1.69 
1.37 
1.75 

1.97 
2.11 
1.85 
1.93 
l.fiy 

O O Q 

1.0 1.5 2.0 
Nicotine 

2.5 

Figure 8.1: Box-and-whisker plot for nicotine data of Exercise 1.21. 

Figure 8.1 shows the box-and-whisker plot, of the data depicting the observations 
0.72 and 0.85 as mild outliers in the lower tail, whereas the observation 2.55 is a 
mild outlier in the upper tail. In this example the interquartile range is 0.365, and 
1.5 times the interquartile range is 0.5475. Figure 8.2, on the other hand, provides 
a stem-and-leaf plot. J 

Example 8.4:1 Consider the data in Table 8.2, consisting of 30 samples measuring the thickness 
of paint can ears (see the work by Hogg and Ledolter in the Bibliography). Figure 
8.3 depicts a box-and-whisker plot for this asymmetric: set of data. Notice that 
the left block is considerably larger than the block on flic: right. The median is 
35. The lower quartile is 31, while the upper quartile is 36. Notice also that the 
extreme observation on the right is farther away from the box than the extreme 
observation on the left. There are no outliers in this data set. J 

There are additional ways that box-and-whisker plots and other graphical dis
plays can aid the analyst. Multiple samples can be compared graphically. Plots of 
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decimal point is 1 digit(s) to the left of the The 
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24 
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9 

4 
7 
07 
18 
3447899 
045599 
2568 
0237 
389 
17 
8 
17 
6 
5 

Figure 8.2: Stem-and-leaf plot for the nicotine data. 

Table 8.2: Data for Example 8.4 

Sample 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

Measurements 
29 36 39 34 34 
29 29 28 32 31 
34 34 39 38 37 
35 37 33 38 41 
30 29 31 38 29 
34 31 37 39 36 
30 35 33 40 36 
28 28 31 34 30 
32 36 38 38 35 
35 30 37 35 31 
35 30 35 38 35 
38 34 35 35 31 
34 35 33 30 34 
40 35 34 33 35 
34 35 38 35 30 

Sample 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

Measurements 
35 30 35 29 37 
40 31 38 35 31 
35 36 30 33 32 
35 34 35 30 36 
35 35 31 38 36 
32 36 36 32 36 
36 37 32 34 34 
29 34 33 37 35 
36 36 35 37 37 
36 30 35 33 31 
35 30 29 38 35 
35 36 30 34 36 
35 30 36 29 35 
38 36 35 31 31 
30 34 40 28 30 

data can suggest relationships between variables. Graphs can aid in the detection 
of anomalies or outlying observations in samples. 

Another type of plot that can be particularly useful in characterizing the nature 
of a data set is the quantile plot. As in the case of the box-and-whisker plot, one can 
use the basic ideas in the quantile plot to compare samples of data, where the goal 
of the analyst is to draw distinctions. Further illustrations of this type of usage will 
be given in future chapters where the formal statistical inference associated with 
comparing samples is discussed. At that point, case studies will be demonstrated 
in which the reader is exposed to both the formal inference and the diagnostic 
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Figure 8.3: Box-and-whisker plot for thickness of paint can "ears. 

graphics for the same data set. 

Quantile Plot 

Definition 8.8: 

The purpose of the quantile plot is to depict, in sample form, the cumulative 
distribution function discussed in Chapter 3. 

A quantile of a sample, e7(/), is a value for which a specified fraction / of the 
data values is less than or equal to q(f). 

Obviously, a quantile represents an estimate of a characteristic of a population, 
or rather, the theoretical distribution. The sample median is cy(0.5). The 75th 
percentile (upper quartile) is ey(0.75) and the lower quartile is g(0.25). 

A quantile plot simply plots the data values on the vertical axis against an 
empirical assessment of the fraction of observations exceeded by the data value. For 
theoretical purposes this fraction is computed as 

fi 
i — 

n + 
where i is the order of the observations when they are ranked from low to high. In 
other words, if we denote the ranked observations as 

2/(1) < 9(2) < 2/(3) < • • • < 2/(n-l) < ?/(«)' 

then the quantile plot depicts a plot of y^), against /*. In Figure 8.4 the quantile 
plot is given for the paint can ear data discussed previously. 

Unlike the box-and-whisker plot, the quantile plot actually shows all observa
tions. All quantilcs, including the median and the upper and lower quantile, can 
be approximated visually. For example, we readily observe a median of 35 and an 
upper quartile of about 36. Indications of relatively large clusters around specific 
values are indicated by slopes near zero, while sparse data in certain areas produce 
steeper slopes. Figure 8.4 depicts sparsity of data from the values 28 through 30 
but relatively high density at 36 through 38. In Chapters 9 and 10 we pursue 
quantile plotting further by illustrating useful ways of comparing distinct samples. 
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Figure 8.4: Quantile plot for paint data. 

Detection of Deviations from Normality 

It should be somewhat evident to the reader that detection of whether or not a 
data set came from a normal distribution can be an important tool for the data 
analyst. As we indicated earlier in this section, we often make the assumption 
that all or subsets of observations in a data set are realizations of independent 
identically distributed normal random variables. Once again, the diagnostic plot 
can often nicely augment (for display purposes) a formal goodness-of-fit test on 
the data. Goodness-of-fit tests are discussed in Chapter 10. For the reader of 
a scientific paper or report, diagnostic information is much clearer, less dry, and 
perhaps not boring. In later chapters (Chapters 9 through 13), we focus again 
on methods of detecting deviations from normality as an augmentation of formal 
statistical inference. These types of plots are useful in detection of distribution 
types. There are also situations in both model building and design of experiments 
in which the plots are used to detect important model terms or effects that 
are active. In other situations they are used to determine whether or not the 
underlying assumptions made by the scientist or engineer in building the model 
are reasonable. Many examples with illustrations will be encountered in Chapters 
11, 12, and 13. The following subsection provides a discussion and illustration of 
a diagnostic plot called the normal quantile-quantile plot. 

Normal Quantile-Quantile Plot 

The normal quantile-quantile plot takes advantage of what is known about the 
quantiles of the normal distribution. The methodology involves a plot of the em-
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pirical quantiles recently discussed against the corresponding quantile of the normal 
distribution. Now, the expression for a quantile of an N(p,a) random variable is 
very complicated. However, a good approximation is given by 

%Af) = V + a{4.91[/° ' u - (1 - f)ou]}. 

The expression in brackets (the multiple of er) is the approximation for the corre
sponding quantile for the N(0, 1) random variable, that is, 

go,i(/) = 4 . 9 1 [ / 0 1 4 - ( l - / ) 0 1 4 ] . 

Definition 8.9: The normal quantile-quantile plot is a plot of y^) (ordered observations) 
; _ 3 

against <fo,i(/i), where /* = ^ + . 

A nearly straight-line relationship suggests that the data came from a normal 
distribution. The intercept on the vertical axis is an estimate of the population 
mean p and the slope is an estimate of the standard deviation a. Figure 8.5 shows 
a normal quantile-quantile plot for the paint can data. 
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38 

* 36 

| 34 
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• fl • • 

—~~ 

— 

_ " 

^ ^ 

• • • • 

• 

- 2 2 1 - 2 2 

Standard Normal Quantile, qfo.iiV) 

Figure 8.5: Normal quantile-quantile plot for paint data. 

Normal Probability Plotting 

Notice how the deviation from normality becomes clear from the appearance of the 
plot. The asymmetry exhibited in the data results in changes in the slope. 
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The ideas of probability plotting are manifested in plots other than the normal 
quantile-quantile plot discussed here. For example, much attention is given to 
the so-called normal probabili ty plot, in which the vertical axis contains / 
plotted on special paper and the scale used results in a straight line when plotted 
against the ordered data values. In addition, an alternative plot makes use of the 
expected values of the ranked observations for the normal distribution and plots 
the ranked observations against their expected value, under the assumption of data 
from N(p,a). Once again, the straight line is the graphical yardstick used. We 
continue to suggest that the foundation in graphical analytical methods developed 
in this section aid in the illustration of formal methods of distinguishing between 
distinct samples of data. 

Example 8.5:1 Consider the data in Exercise 10.41 on page 359 in Chapter 10. In a study, Nu
trient Retention and Macro Invertebrate Community Response to Sewage Stress 
in a Stream Ecosystem, conducted in the Department of Zoology at the Virginia 
Polytechnic Institute and State University, data were collected on density measure
ments (number of organisms per square meter) at two different collecting stations. 
Details are given in Chapter 10 regarding analytical methods of comparing samples 
to determine if both are from the same N(p,a) distribution. The data are given 
in Table 8.3. 

Table 8.3: Data for Example 8.5 

N u m b e r of Organisms pe r Square M e t e r 
Station 1 

5,030 
13.700 
10.730 
11.400 

860 
2.200 
4,250 
15,040 

4,980 
11,910 
8,130 
26.850 
17.660 
22,800 
1.130 
1.690 

Station 2 
2,800 
4.670 
6,890 
7,720 
7,030 
7,330 

2.810 
1.330 
3.320 
1.230 
2.130 
2,190 

Construct a normal quantile-quantile plot and draw conclusions regarding whether 
or not it is reasonable to assume that the two samples are from the same n(x; p, a) 
distribution. 

Solution: Figure 8.6 shows the normal quantile-quantile plot for the density measurements. 
The plot shows an appearance that is far from a single straight line. In fact, the 
data from station 1 reflect a few values in the lower tail of the distribution and 
several in the upper tail. The "clustering" of observations would make it seem 
unlikely that the two samples came from a common N(p, a) distribution. _l 

Although we have concentrated our development and illustration on probability 
plotting for the normal distribution, wc could focus on any distribution. We would 
merely need to compute quantities analytically for the theoretical distribution in 
question. 
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Figure 8.6: Normal quantile-quantile plot, for density data of Example 8.5. 

8.4 Sampling Distributions 

The field of statistical inference is basically concerned with generalizations and 
predictions. For example, we might claim, based on the opinions of several people 
interviewed on the street, that in a forthcoming election 60% of the eligible voters 
in the city of Detroit favor a certain candidate. In this case we are dealing with 
a random sample of opinions from a very large finite population. As a second il
lustration we might state that the average cost to build a residence in Charleston, 
South Carolina, is between 8230,000 and $235,000, based on the estimates of 3 
contractors selected at random from the 30 now building in this city. The popu
lation being sampled here is again finite but very small. Finally, let us consider a 
soft-drink dispensing machine in which the average amount of drink dispensed is 
being held to 240 milliliters. A company official computes the mean of 40 drinks to 
obtain x = 236 milliliters and on the basis of this value decides that the machine 
is still dispensing drinks with an average content of p = 240 milliliters. The 40 
drinks represent a sample from the infinite population of possible drinks that will 
be dispensed by this machine. 

Inference about the Population from Sample Information 

In each of the examples above we have computed a statistic from a sample selected 
from the population, and from these statistics we made various statements con
cerning the values of population parameters that may or may not be true. The 
company official made the decision that the soft-drink machine dispenses drinks 
with an average content of 240 milliliters, even though the sample mean was 236 
milliliters, because he knows from sampling theory that such a sample value is 
likely to occur. In fact, if he ran similar tests, say every hour, he would expect the 
values of x to fluctuate above and below p. = 240 milliliters. Only wdien the value 
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of x is substantially different from 240 milliliters will the company official initiate 
action to adjust the machine. 

Since a statistic is a random variable that depends only on the observed sample, 
it must have a probability distribution. 

Definition 8.10: The probability distribution of a statistic is called a sampling distribution. 

The probability distribution of X is called the sampling distribution of the 
mean. 

The sampling distribution of a statistic depends on the size of the population, 
the size of the samples, and the method of choosing the samples. For the remainder 
of this chapter we study several of the more important sampling distributions of 
frequently used statistics. Applications of these sampling distributions to problems 
of statistical inference are considered throughout most of the remaining chapters. 

What Is the Sampling Distribution of XI 

Wc should view the sampling distributions of X and S2 as the mechanisms from 
which we are eventually to make inferences on the parameters p and a2. The 
.sampling distribution of X with sample size n is the distribution that results when 
an experiment is conducted over and over (always with sample size n) and 
the many values of X result. This sampling distribution, then, describes the 
variability of sample averages around the population mean p. In the case of the 
soft-drink machine, knowledge of the: sampling distribution of X arms the analyst 
with the knowledge of a "typical" discrepancy between an observed x value and true 
//.. The same principle applies in the case of the distribution of S2. The sampling 
distribution produces information about the variability of s2 values around a2 in 
repeated experiments. 

8.5 Sampling Distribution of Means 

The first important sampling distribution to be considered is that of the mean 
X. Suppose that a random sample of n observations is taken from a normal 
population with mean p and variance a2. Each observation Xi, i = 1,2. . . . ,n, of 
the random sample: will then have the same normal distribution as the population 
being sampled. Hence, by the reproductive property of the normal distribution 
established in Theorem 7.11. we conclude that 

X = -(Xx+X2 + --- + Xn) 
n 

has a normal distribution with mean 
1, 

px = -jp + p + • • • + p) = p., 

and variance 

II terms 

1 / 2 •-> •>•. °" 
-s (a- + a2 + ---+a2) = —. 
n2 "> *• ' n 

n terms 
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Theorem 8.2: 

If we are sampling from a population with unknown distribution, either finite 
or infinite, the sampling distribution of X will still be approximately normal with 
mean p and variance o2/n provided that the sample size is large. This amazing 
result is an immediate consequence of the following theorem, called the central 
limit theoi'em. 

Central Limit Theorem: If X is the mean of a random sample of size n taken 
from a population with mean p and finite variance a2 , then the limiting form of 
the distribution of 

Z = 
X-p 

a/vn' 

as n —> oo, is the standard normal distribution n(z; 0,1). 

The normal approximation for X will generally be good if n > 30. If n < 30, 
the approximation is good only if the population is not too different from a normal 
distribution and, as stated above, if the population is known to be normal, the 
sampling distribution of X will follow a normal distribution exactly, no matter 
how small the size of the samples. 

The sample size n = 30 is a guideline to use for the central limit theorem. 
However, as the statement of the theorem implies, the presumption of normality 
on the distribution of X becomes more accurate as n grows larger. In fact, Figure 
8.7 illustrates how the theorem works. It shows how the distribution of X becomes 
closer to normal as n grows larger, beginning with the clearly nonsymmetric dis
tribution of that of an individual observation (n = 1). It also illustrates that the 
mean of X remains p for any sample size and the variance of X gets smaller as n 
increases. 

As one might expect, the distribution of X will be near normal for sample size 
n < 30 if the distribution of an individual observation itself is close to normal. 

Example 8.6:1 An electrical firm manufactures light bulbs that have a length of life that is ap
proximately normally distributed, with mean equal to 800 hours and a standard 
deviation of 40 hours. Find the probability that a random sample of 16 bulbs will 
have an average life of less than 775 hours. 

Solution: The sampling distribution of X will be approximately normal, with px = 800 and 
ax = 40/ \ / l6 = 10. The desired probability is given by the area of the shaded 
region in Figure 8.8. 

Corresponding to x = 775, we find that 

775 - 800 
io = -2.5. 

and therefore 

P(X < 775) = P(Z < -2.5) = 0.0062. 
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Large n (near normal) 

Figure 8.7: Illustration of the central limit theorem (distribution of X for n = 1, 
moderate n, and large n). 

775 800 

Figure 8.8: Area for Example 8.6. 

Inferences on the Population Mean 

One very important application of the central limit theorem is the determination 
of reasonable values of the population mean p. Topics such as hypothesis test
ing, estimation, quality control, and others make use of the central limit theorem. 
The following example illustrates the use of the central limit theorem in that re
gard, although the formal application to the foregoing topics is relegated to future 
chapters. 

Example 8.7:1 An important manufacturing process produces cylindrical component parts for 
the automotive industry. It is important that the process produces parts having 
a mean of 5.0 millimeters. The engineer involved conjectures that, the population 
mean is 5.0 millimeters. An experiment is conducted in which 100 parts produced 
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by the process are selected randomly and the diameter measured on each. It is 
known that the population standard deviation a = 0.1. The experiment indicates 
a sample average diameter x = 5.027 millimeters. Does this sample information 
appear to support or refute the engineer's conjecture? 

Solution: This example reflects the kind of problem often posed and solved with hypothesis 
testing machinery introduced in future chapters. We will not use the formality 
associated with hypothesis testing here but we will illustrate the principles and 
logic used. 

Whether or not the data support or refute the conjecture depends on the proba
bility that data similar to that obtained in this experiment (x = 5.027) can readily 
occur when in fact p = 5.0 (Figure 8.9). In other words, how likely is it that one 
can obtain x > 5.027 with n = 100 if the population mean p = 5.0? If this proba
bility suggests that x — 5.027 is not unreasonable, the conjecture is not refuted. If 
the probability is quite low, one can certainly argue that the data do not support 
the conjecture that p — 5.0. The probability that we choose to compute is given 
by P(\X - 5| > 0.027). 

4.973 5.027 

Figure 8.9: Area for Example 8.7. 

In other words, if the mean p is 5, what is the chance that X will deviate by 
as much as 0.027 millimeter? 

P(\X - 5| > 0.027) = P(X - 5 > 0.027) + P(X - 5 < -0.027) 

X - 5 
= 2P 

O.l/vlOO 
>2.7 

Here we are simply standardizing X according to the central limit theorem. If the 
conjecture p = 5.0 is true, u~/°im should follow Ar(0,1). Thus 

2P > 2.7 = 2P(Z > 2.7) = 2(0.0035) = 0.007. 
,0.1/v/lOO 

Thus one would experience by chance that an x is 0.027 millimeter from the mean 
in only 7 in 1000 experiments. As a result, this experiment with x = 5.027 certainly 
does not give supporting evidence to the conjecture that p = 5.0. In fact, it strongly 
refutes the conjecture! J 
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Sampling Distribution of the Difference between Two Averages 

The illustration in Example 8.7 deals with notions of statistical inference on a single 
mean p. The engineer was interested in supporting a conjecture regarding a single 
population mean. A far more important application involves two populations. A 
scientist or engineer is interested in a comparative experiment in which two man
ufacturing methods, 1 and 2, are to be compared. The basis for that comparison 
is pi — p2, the difference in the population means. 

Suppose that we have two populations, the first with mean p\ and variance 
a2, and the second with mean p2 and variance o\. Let the statistic A'i represent 
the mean of a random sample of size n\ selected from the first population, and 
the statistic X2 represent the mean of a random sample of size n2 selected from 
the second population, independent of the sample from the first population. What 
can we say about the sampling distribution of the difference A'i — X2 for repeated 
samples of size nx and n2? According to Theorem 8.2, the variables Xx and X2 

are both approximately normally distributed with means px and p2 and variances 
af/nx and a2/n2, respectively. This approximation improves as n\ and n2 increase. 
By choosing independent samples from the two populations the variables Xx and 
X2 will be independent, and then using Theorem 7.11, with ax = 1 and a2 = —1, 
we can conclude that Xx - X2 is approximately normally distributed with mean 

Mx,-x2 = Pxt ~ l'x2 = Mi - P2 

and variance 

ax1-x2 -ax, +ax7 - n\ n2 

Theorem 8.3: If independent samples of size ni and n2 are drawn at random from two popu
lations, discrete or continuous, with means pi and p2, and variances o\ and 
respectively, then the sampling distribution of the differences of means, A'i 
is approximately normally distributed with mean and variance given by 

' 2 ' 

x2, 

PXx-X2 = P l - ^ 2 , and X\—X2 

°2 

nx n2 

= ^ + 

Hence 

Z = 
(Xx - X2) - (px - p2) 

y/ici/nx) + ial/n2) 

is approximately a standard normal variable. 

If both ni and n2 are greater than or equal to 30, the normal approximation 
for the distribution of A'i — X2 is very good when the underlying distributions 
are not too far away from normal. However, even when nx and n2 are less than 
30, the normal approximation is reasonably good except when the populations are 
decidedly nonnormal. Of course, if both populations are normal, then A'i — X2 has 
a normal distribution no matter what the sizes are of nx and n2. 
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Example 8.8:1 Two independent experiments are being run in which two different types of paints 
arc compared. Eighteen specimens are painted using type A and the drying time, 
in hours, is recorded on each. The same is done with type B. The population 
standard deviations are both known to be 1.0. 

Assuming that the mean drying time is equal for the two types of paint, find 
P(XA — XB > 1-0), where XA and XB are average drying times for samples of size 
".•1 = nB — 18. 

Solution: From the sampling distribution of XA — XB, we know that the distribution is 
approximately normal with mean 

and variance: 

l'xA-xB = AM -fiB = 0 , 

a a 
nA nB 18 18 9 

B 

L *A - *B 
MA - MB = 0 1.0 

Figure 8.10: Area for Example 8.8. 

The desired probability is given by the shaded region in Figure 8.10. Corre
sponding to the value XA — XB = 1.0, we have 

i-iflA-ps) 1 -0 3.0: 

so 

v/1/9 y/1/9 

P(Z > 3.0) = 1 - P(Z < 3.0) = 1 - 0.9987 = 0.0013. 

What Do We Learn from This Example? 

The machinery in the calculation is based on the presumption that ft A = PB-
Suppose, however, that the experiment is actually conducted for the purposes of 
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drawing an inference regarding the equality of PA and pB, the two population 
mean drying times. If the two averages differ by as much as 1 hour (or more), 
this clearly is evidence that would lead one to conclude that the population mean 
drying time is not equal for the two types of paint. On the other hand, suppose 
that the difference in the two sample averages is as small as, say, 15 minutes. If 
P A = M B I 

P[(XA - XB) > 0.25 horn] = P (*A~J^~° > f ) 

= P (Z > j } = 1 - P(Z < 0.75) = 1 - 0.7734 = 0.2266. 

Since this probability is not low, one would conclude that a difference in sample 
means of 15 minutes can happen by chance (i.e., it happens frequently even though 
pA = fiD). As a result, that type of difference in average drying times certainly is 
not a clear signal that pA ^ pB. 

As we indicated earlier, more formalism regarding this and other types of statis
tical inference (e.g., hypothesis testing) will be supplied in detail in future chapters. 
The central limit theorem and sampling distributions discussed in the next three 
sections will also play a vital role. 

Example 8.9:1 The television picture tubes of manufacturer A have a mean lifetime of 6.5 years 
and a standard deviation of 0.9 year, while those of manufacturer B have a mean 
lifetime of 6.0 years and a standard deviation of 0.8 year. What is the probability 
that a random sample of 36 tubes from manufacturer A will have a mean lifetime 
that is at least 1 year more than the mean lifetime of a sample of 49 tubes from 
manufacturer BI 

Solution: We are given the following information: 

Population 1 
px = 6.5 
<7i = 0.9 
ni = 36 

Population 2 
p2 = 6.0 
a2 = 0.8 
n2 = 4 9 

If we use Theorem 8.3, the sampling distribution of A'i — X2 will be approxi
mately normal and will have a mean and standard deviation 

pXl_Xa - 6 . 5 - 6 . 0 = 0.5 and a ? ] _ Az - \ j ^ + ^ = 0.189. 

The probability that the mean of 36 tubes from manufacturer A will be at least 
1 year longer than the mean of 49 tubes from manufacturer B is given by the area 
of the shaded region in Figure 8.11. Corresponding to the value xi — x2 = 1.0, we 
find that 

1 .0-0.5 
0.189 

= 2.65, 
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crJf l_%= 0.189 

0.5 1.0 

Figure 8.11: Area for Example 8.9. 

x, - x2 

and hence 

P(Xx - X2 > 1.0) = P(Z > 2.65) = 1 - P(Z < 2.65) 

= 1 - 0.9960 = 0.0040. J 

More on Sampling Distribution of Means - Normal Approximation to 
Binomial 

In Section 6.5 much was discussed regarding the normal approximation to the 
binomial distribution. Conditions were given on the parameters n and p for which 
the distribution of a binomial random variable can be approximated by the normal 
distribution. Examples and exercises reflected the importance of the tool we refer 
to as the "normal approximation/' It turns out that the central limit theorem sheds 
even more light on how and why this approximation works. We certainly know 
that a binomial random variable is the number X of successes in n independent 
trials, where the outcome of each trial is binary. We also illustrated in Chapter 1 
that the proportion computed in such an experiment is an average of a set of 0s 
and Is. Indeed, while the proportion X/n is an average, X is the sum of this set 
of 0s and Is, and both X and X/n are approximately normal if n is sufficiently 
large. Of course, from wdiat we learned in Chapter 6, there are conditions on n 
and p that affect the quality of the approximation, namely np > 5 and nq > 5. 

Exercises 

8.17 If all possible samples of size 16 are drawn from 
a normal population with mean equal to 50 and stan
dard deviationequal to 5, what is the probability that a 
sample mean X will fall in the interval from p% — 1.9ax 
to px ~ 0.4<Tjf ? Assume that the sample means can be 
measured to any degree of accuracy. 

8.18 Given the discrete uniform population 

/ ( " " f t 
a: = 2,4, 6, 
elsewhere, 

find the probability that a random sample of size 54, 
selected with replacement, will yield a sample mean 
greater than 4.1 but less than 4.4. Assume the means 



252 Chapter 8 Fundamental Sampling Distributions and Data Descriptions 

to be measured to the nearest tenth. 

8.19 A certain type of thread is manufactured with a 
mean tensile strength of 78.3 kilograms and a standard 
deviation of 5.6 kilograms. How is the variance of the 
sample mean changed when the sample size is 
(a) increased from 64 to 196? 

(b) decreased from 784 to 49? 

8.20 If the standard deviation of the mean for the 
sampling distribution of random samples of size 36 
from a large or infinite population is 2, how large must 
the size of the sample become if the standard deviation 
is to be reduced to 1.2? 

8.21 A soft-drink machine is being regulated so that 
the amount of drink dispensed averages 240 milliliters 
with a standard deviation of 15 milliliters. Periodically, 
the machine is checked by taking a sample of 40 drinks 
and computing the average content. If the mean of the 
40 drinks is a value within the interval px ± 2a x , the 
machine is thought to be operating satisfactorily; oth
erwise, adjustments are made. In Section 8.4, the com
pany official found the mean of 40 drinks to be x = 236 
milliliters and concluded that the machine needed no 
adjustment. Was this a reasonable decision? 

8.22 The heights of 1000 students are approximately 
normally distributed with a mean of 174.5 centimeters 
and a standard deviation of 6.9 centimeters. If 200 
random samples of size 25 are drawn from this popu
lation and the means recorded to the nearest tenth of 
a centimeter, determine 

(a) the mean and standard deviation of the sampling 
distribution of X; 

(b) the number of sample means that fall between 172.5 
and 175.8 centimeters inclusive; 

(c) the number of sample means falling below 172.0 
centimeters. 

8.23 The random variable X, representing the num
ber of cherries in a cherry puff, has the following prob
ability distribution: 

X 

P(X = x) 
4 

0.2 
5 

0.4 
6 

0.3 
7 

0.1 

(a) Find the mean p. and the variance a2 of X. 

(b) Find the mean px, and the variance a\ of the 
mean X for random samples of 36 cherry puffs. 

(c) Find the probability that the average number of 
cherries in 36 cherry puffs will be less than 5.5. 

8.24 If a certain machine makes electrical resistors 
having a mean resistance of 40 ohms and a standard 
deviation of 2 ohms, what is the probability that a 
random sample of 36 of these resistors will have a com

bined resistance of more than 1458 ohms? 

8.25 The average life of a bread-making machine is 7 
years, with a standard deviation of 1 year. Assuming 
that the lives of these machines follow approximately 
a normal distribution, find 

(a) the probability that the mean life of a random sam
ple of 9 such machines falls between 6.4 and 7.2 
years; 

(b) the value of a; to the right of which 15% of the 
means computed from random samples of size 9 
would fall. 

8.26 The amount of time that a drive-through bank 
teller spends on a customer is a random variable with 
a mean p = 3.2 minutes and a standard deviation 
a = 1.6 minutes. If a random sample of 64 customers 
is observed, find the probability that their mean time 
at the teller's counter is 

(a) at most 2.7 minutes: 
(b) more than 3.5 minutes; 
(c) at least 3.2 minutes but less than 3.4 minutes. 

8.27 In a chemical process the amount of a certain 
type of impurity in the output is difficult to control 
and is thus a random variable. Speculation is that 
the population mean amount of the impurity is 0.20 
grams per gram of output. It is known that the stan
dard deviation is 0.1 grams per gram. An experiment 
is conducted to gain more insight regarding the spec
ulation that p = 0.2. The process was run on a lab 
scale 50 times and the sample average x turned out to 
be 0.23 grams per gram. Comment on the speculation 
that the mean amount of impurity is 0.20 grams per 
gram. Make use of the central limit theorem in your 
work. 

8.28 A random sample of size 25 is taken from a nor
mal population having a mean of 80 and a standard 
deviation of 5. A second random sample of size 36 
is taken from a different normal population having a 
mean of 75 and a standard deviation of 3. Find the 
probability that the sample mean computed from the 
25 measurements will exceed the sample mean com
puted from the 36 measurements by at least 3.4 but 
less than 5.9. Assume the difference of the means to 
be measured to the nearest tenth. 

8.29 The distribution of heights of a certain breed of 
terrier dogs has a mean height of 72 centimeters and a 
standard deviation of 10 centimeters, whereas the dis
tribution of heights of a certain breed of poodles has a 
mean height of 28 centimeters with a standard devia
tion of 5 centimeters. Assuming that the sample means 
can be measured to any degree of accuracy, find the 
probability that the sample mean for a random sample 
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of heights of 64 terriers exceeds the sample mean for 
a random sample of heights of 100 poodles by at most 
44.2 centimeters. 

8.30 The mean score for freshmen on an aptitude test 
at a certain college is 540, with a standard deviation of 
50. What is the probability that two groups of students 
selected at random, consisting of 32 and 50 students, 
respectively, will differ in their mean scores by 

(a) more than 20 points? 
(b) an amount between 5 and 10 points? 

Assume the means to be measured to any degree 
of accuracy. 

8.31 Construct a quantile plot of these data. The 
lifetimes, in hours, of fifty 40-watt. 110-volt internally-
frosted incandescent lamps taken from forced life tests: 

(b) 

919 
1156 
1170 
1045 
938 
978 
765 
1217 
702 

1196 
920 
929 
855 
970 
832 
958 
1085 
923 

785 
948 
950 
1195 
1237 
1009 
902 
896 

1126 
1067 
905 
1195 
956 
1157 
1022 
958 

936 
1092 
972 
1340 
1102 
1151 
1333 
1311 

918 
1162 
1035 
1122 
1157 
1009 
811 
1037 

8.32 Consider Example 8.8 on page 249. Suppose 18 
specimens were used for each type of paint in an ex
periment and XA — XB, the actual difference in mean 
drying time turned out to be 1.0. 

(a) Does this seem to be a reasonable result if the 
two population mean drying times truly are equal? 
Make use of the result in the solution to Example 
8.8. 

(b) If someone did the experiment 10,000 times un
der the condition that PA = p-B, in how many of 
those 10,000 experiments would there be a differ
ence XA —XB that is as large (or larger) as 1.0? 

8.33 Two different box-filling machines are used to fill 
cereal boxes on the assembly line. The critical mea
surement influenced by these machines is the weight 
of the product in the machines. Engineers are quite 
certain that the variance of the weight of product is 
a2 = 1 ounce. Experiments are conducted using both 
machines with sample sizes of 36 each. The sample av
erages for machine A and B are XA = 4.5 ounces and 
XB = 4.7 ounces. Engineers seemed surprised that the 
two sample averages for the filling machines were so 
different. 

(a) Use the central limit theorem to determine 

P(XB - XA > 0.2) 

under the condition that PA = PB-

Do the aforementioned experiments seem to, in any 
way, strongly support a conjecture that the two 
population means for the two machines are differ
ent? Explain using your answer in (a). 

8.34 Construct a normal quantile-quantile plot of 
these data. Diameters of 36 rivet heads in 1/100 of 
an inch: 

6.72 
6.75 
6.72 
6.76 
6.74 
6.72 

6.77 
6.66 
6.76 
6.70 
6.81 

6.82 
6.66 
6.76 
6.78 
6.79 

6.70 
6.64 
6.68 
6.76 
6.78 

6.78 
6.76 
6.66 
6.67 
6.66 

6.70 
6.73 
6.62 
6.70 
6.76 

6.62 
6.80 
6.72 
6.72 
6.76 

8.35 The chemical benzene is highly toxic to hu
mans. However, it is used in the manufacture of many 
medicine dyes, leather, and many coverings. In any 
production process involving benzene, the water in the 
output of the process must not exceed 7950 parts per 
million (ppm) of benzene because of government regu
lations. For a particular process of concern the water 
sample was collected by a manufacturer 25 times ran
domly and the sample average x was 7960 ppm. It is 
known from historical data that the standard deviation 
a is 100 ppm. 

(a) What is the probability that the sample average in 
this experiment would exceed the government limit 
if the population mean is equal to the limit? Use 
the central limit theorem. 

(b) Is an observed x = 7960 in this experiment firm 
evidence that the population mean for the process 
exceeds the government limit? Answer your ques
tion by computing 

P(X > 7960 | p = 7950). 

Assume that the distribution of benzene concentra
tion is normal. 

8.36 Two alloys A and B are being used to manufac
ture a certain steel product. An experiment needs to 
be designed to compare the two in terms of maximum 
load capacity in tons. This is the maximum that can 
be tolerated without breaking. It is known that the 
two standard deviations in load capacity are equal at 
5 tons each. An experiment is conducted in which 30 
specimens of each alloy (A and B) are tested and the 
results gave 

XA = 49.5, xo = 45.5; XA — XB = 4. 

The manufacturers of alloy A are convinced that this 
evidence shows conclusively that ft,A > PB and strongly 
supports their alloy. Manufacturers of alloy B claim 
that the experiment could easily have given XA — XB — 
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4 even iflhe two population means arc: equal. In other premise that p = 800 hours? Give a probabilistic re
words, "tilings are inconclusive!" suit that indicates how rare an event that X < 775 is 
(a) Make an argument that manufacturers of alloy B w h o n /'• = 800. On the other hand, how rare would it 

are wrong. Do it by computing he if p truly were, say, 760 hours? 

P(XA - XB > 4 | pA = pa). 8.38 Let Xi, X2,..., X„ be a random sample from a 
(b) Do you think these data strongly support alloy A! distribution that can take on only positive values. Use 

the central limit theorem to produce an argument that 
„ „_ r, . , .. ., ,. • ,, , 0 ,, if n is sufficiently large, then Y = X\X2-- • Xn has 
8.37 Consider the situation in example 8.6 on page . , ; ° ' , ,. , ., .. 
„ . . T^ ^L ^ ., approximately a lognormal distribution. 
245. Do these results prompt you to question the • • * ° 

8.6 Sampling Distribution of S2 

In the preceding section we learned about the sampling distribution of X. The 
central limit theorem allowed us to make use of the fact tha t 

X-p 

a/sfn. 

tends toward A'(0, 1) as the sample size grows large. Examples 8.6 through 8.9 
illustrate applications of the central limit theorem. Sampling distributions of im
portant statistics allow us to learn information about parameters. Usually, the 
parameters are the counterpart to the statistics in question. If an engineer is inter
ested in the population mean resistance of a certain type of resistor, the sampling 
distribution of X will be exploited once the sample information is gathered. On 
the other hand, if the variability in resistance is to be studied, clearly the sampling 
distribution of S2 will be used in learning about the parametric counterpart , the 
population variance a2. 

If a random sample of size n is drawn from a normal population with mean 
p and variance a2, and the sample variance is computed, we obtain a value of 
the statistic: S2. Wc shall proceed to consider the distribution of the statistic 
(n-l)S2/o2. 

By the addition and subtraction of the sample mean X, it is easy to see that 

Y(Xi-ti2=Yttxi-x)+(x-ri? 
n ii ii 

= Y(*i - x? + £ ( * - /')2+2(A- - it) Yi-X'i - x) 
n 

= YiXi-X)i + n(X-p)i 

t= i i = i 

\2 

Dividing each term of the equality by a and substi tut ing ( n - l ) 5 for Y^iXj-X)2, 
;=i 

we obtain 

*?> 
£=1 

a2/n 
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Now according to the corollary of Theorem 7.12 wc: know that 

" i v \2 
y - (A,- - p)-

is a chi-squared random variable with n degrees of freedom. We have a chi-squared 
random variable: with n degrees of freedom partitioned into two components. The 
second term on the right-hand side is a Z2 which is a chi-squared random variable 
with 1 degree of freedom, and it turns out that (n — l)S2/a2 is a chi-squared 
random variable with n — 1 degree of freedom. We: formalize this in the following 
theorem. 

Theorem 8.4: If S is the variance of a random sample of size n taken from a normal population 
having the variance a2, then the statistic 

, _ (n - 1)S2 

X — 
a* 

£ 1.x,-xf 

has a chi-squared distribution with v = n — 1 degrees of freedom. 

The values of the random variable x2 are calculated from each sample by the 
formula 

X 
( n - l p 

The probability that a random sample produces a ,\;~ value greater than some 
specified value is equal to the area under the curve to the right of this value. It is 
customary to let. y2, represent the y2 value above which we find an area of a. This 
is illustrated by the shaded region in Figure 8.12. 

Figure 8.12: The chi-squared distribution. 

Table A.5 gives values of y^ for various values c>r a and v. The areas, a, are 
the column headings; the degrees of freedom, v, are given in the left column, and 
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the table entries are the Y2 values. Hence the y2 value with 7 degrees of freedom, 
leaving an area of 0.05 to the right, is x0_ng = 14.067. Owing to lack of symmetry, 
we must also use the tables to find X0.95 = 2.167 for v = 7. 

Exactly 95% of a chi-squared distribution lies between X0.075 a i M Xo.025- A Y2 

value falling to the right of X0.025 is n o t likely to occur unless our assumed value of 
a2 is too small. Similarly, a x2 value falling to the left of ^0,975 is unlikely unless 
our assumed value of er2 is too large. In other words, it is possible to have a \ 2 

value to the left of Xo.375 o r t 0 the right of X0.025 when <r2 is correct, but if this 
should occur, it is more probable that the assumed value of a2 is in error. 

Example 8.10:1 A manufacturer of car batteries guarantees that his batteries will last, on the 
average, 3 years with a standard deviation of 1 year. If five of these batteries have 
lifetimes of 1.9, 2.4, 3.0, 3.5, and 4.2 years, is the manufacturer still convinced that 
his batteries have a standard deviation of 1 year? Assume that the battery lifetime 
follows a normal distribution. 

Solution: We first find the sample variance using Theorem 8.1, 

2 (5)(48.26)-(15)2 

' " (5X4) = °-81°-

Then 

a _ (4)(0.815) 
X 1 

= 3.26 

is a value from a chi-squared distribution with 4 degrees of freedom. Since 95% 
of the x2 values with 4 degrees of freedom fall between 0.484 and 11.143, the 
computed value with a2 = 1 is reasonable, and therefore the manufacturer has no 
reason to suspect that the standard deviation is other than 1 year. J 

Degrees of Freedom as a Measure of Sample Information 

The reader may gain some insight by considering Theorem 8.4 and Corollary 7.1 in 
Section 7.3. We know that with the conditions of Theorem 7.12, namely, a random 
sample is taken from a normal distribution, the random variable 

^jXj-p)2 

i=X 

has a ^-distribution with n degrees of freedom. Now note Theorem 8.4, which 
indicates that with the same conditions of Theorem 7.12, the random variable 

(n-l)S2 _^(X,-Xf -E 
j = i 

has a ^-distribution with n — 1 degrees of freedom. The reader may recall that the 
term degrees of freedom, used in this identical context, is discussed in Chapter 1. 
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As we indicated earlier, the proof of Theorem 8.4 will not be given. However, 
the reader can view Theorem 8.4 as indicating that when p is not known and one 
considers the distribution of 

v ^ {Xj - X)2 

f-f «2 

there is 1 less degree of freedom, or a degree of freedom is lost in the estimation 
of p (i.e., when p is replaced by x). In other words, there are n degrees of free
dom or independent pieces of information in the random sample from the normal 
distribution. When the data (the values in the sample) are used to compute the 
mean, there is 1 less degree of freedom in the information used to estimate er2. 

8.7 t-Distribution 

In Section 8.5 we discussed the utility of the central limit theorem. Its applica
tions revolve around inferences on a population mean or the difference between two 
population means. Use of the central limit theorem and the normal distribution 
is certainly helpful in this context. However, it was assumed that the population 
standard deviation is known. This assumption may not be unreasonable in situa
tions where the engineer is quite familiar with the system or process. However, in 
many experimental scenarios knowledge of a is certainly no more reasonable than 
knowledge of the population mean p. Often, in fact, an estimate of a must be 
supplied by the same sample information that produced the sample average x. As 
a result, a natural statistic to consider to deal with inferences on p is 

T = X - p 
S/s/n~ 

since 5 is the sample analog to a. If the sample size is small, the values of S2 fluc
tuate considerably from sample to sample (see Exercise 8.45 on page 265) and the 
distribution of T deviates appreciably from that of a standard normal distribution. 

If the sample size is large enough, say n > 30, the distribution of T does not 
differ considerably from the standard normal. However, for n < 30, it is useful to 
deal with the exact, distribution of T. In developing the sampling distribution of T, 
we shall assume that our random sample was selected from a normal population. 
We can then write 

T = (X - p)/(a/Vrl,) = Z 

x/57^2 y/V/(n-iy 

where 

X-u 
o/sfh. 

has the standard normal distribution and 

v = (n - 1)S2 
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Theorem 8.5: 

Corollary 8.1: 

has a chi-squared distribution with v = n — 1 degrees of freedom. In sampling from 
normal populations, we can show that X and S2 are independent, and consequently 
so are Z and V. The following theorem gives the definition of a T random variable 
as a function of Z (standard normal) and a x2- For completeness the density 
function of the /-distribution is given. 

Let Z be a standard normal random variable and V a chi-squared random variable 
with v degrees of freedom. If Z and V are independent, then the distribution of 
the random variable T, where 

T = 

is given by the density function 

r[(« + i)/2] 
h(t) = 

; \ v 

-(v+l)/2 
— OC < t < 00. 

Y(V/2)JKV 

This is known as the fr-distribution with v degrees of freedom. 

From the foregoing and the theorem above we have the following corollary. 

Let Xx,X2,...,Xn be independent random variables that are all normal with 
mean p and standard deviation a. Let 

» = i t = i 

Then the random variable T = J V £ has a it-distribution with v = n — 1 degrees 
offreedom. 

The probability distribution of T was first published in 1908 in a paper by W. 
S. Gosset. At the time, Gosset was employed by an Irish brewery that disallowed 
publication of research by members of its staff. To circumvent this restriction, he 
published his work secretly under the name "Student." Consequently, the distribu
tion of T is usually called the Student /.-distribution, or simply the /-distribution. 
In deriving the equation of this distribution, Gosset assumed that the samples 
were selected from a normal population. Although this would seem to be a very 
restrictive assumption, it can be shown that nonnormal populations possessing 
nearly bell-shaped distributions will still provide values of T that approximate the 
/-distribution very closely. 

W h a t Does the ^-Distribution Look Like? 

The distribution of T is similar to the distribution of Z in that they both are 
symmetric about a mean of zero. Both distributions are bell shaped, but the t-
distribution is more variable, owing to the fact that the T-values depend on the 
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fluctuations of two quantities. X and S2, whereas the Z-values depend only on the 
changes of X from sample to sample. The distribution of T differs from that of Z 
in that the variance of T depends on the sample size n and is always greater than 
1. Only when the sample size n —» oo will the two distributions become the same. 
In Figure 8.13 we show the relationship between a standard normal distribution 
(v = oo) and /-distributions with 2 and 5 degrees of freedom. The percentage 
points of the /-distribution are given in Table A.4. 

Figure 8.13: The ^-distribution curves for v = 2,5, Figure 8.14: Symmetry property of the t-
and oc. distribution. 

It is customary to let Z„ represent the /-value above which we find an area equal 
to a. Hence, the /-value with 10 degrees of freedom leaving an area of 0.025 to 
the right is / = 2.228. Since the /-distribution is symmetric about a mean of zero, 
we have Zi_a = —ta; that is, the /-value leaving an area of 1 - a to the right and 
therefore an area of Q to the left is equal to the negative /-value that leaves an area 
of a in the right tail of the distribution (see Figure 8.14). That is, /0.95 = — fo.05i 
i0 U9 = —/0.oi and so forth. 

Example 8.11:1 The /-value with v = 14 degrees of freedom that leaves an area of 0.025 to the left 
and therefore an area of 0.975 to the right, is 

t<),975 = — *0.025 = —2.145. J 

Example 8.12:1 Find P(-t0.025 < T < Z0.05). 
Solution: Since Z0.05 leaves an area of 0.05 to the right, and —/0.025 leaves an area of 0.025 

to the left, wc find a total area of 

1 - 0.05 - 0.025 = 0.925 

between — Z0.025 and Zo.os- Hence 

P(-to.oas < T < Z,u,o) = 0.925. 

Example 8.13:1 Find k such that P(k < T < —1.761) = 0.045 for a random sample of size 15 

selected from a normal distribution and i~fc. 
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Solution: From Table A.4 we note that 1.761 corresponds to Z0.05 when v = 14. Therefore, 
—Z005 = —1.761. Since k in the original probability statement is to the left of 
— '0.05 = —1.761, let A' = — ta. Then, from Figure 8.15, we have 

0.045 = 0.05 - a or a = 0.005. 

Figure 8.15: The /-values for Example 8.13. 

Hence, from Table A.4 with v — 14, 

k = -to.oos = -2.977 and P(-2.977 < T < -1.761) = 0.045. J 
Exactly 95%. of the values of a /-distribution with v = n — 1 degrees of freedom 

lie between — Zn.02!j and /Q.025. Of course, there are other /-values that contain 95%, 
of the distribution, such as —/0.02 and fco.03, but these values do not appear in 
Table A.4, and furthermore the shortest possible interval is obtained by choosing 
/-values that leave exactly the same area in the two tails of our distribution. A 
/-value that falls below —/0.025 or above Z0.025 would tend to make us believe: that 
either a very rare event has taken place or perhaps our assumption about p is in 
error. Should this happen, we shall make the latter decision and claim that our 
assumed value of p is in error. In fact, a /-value falling below —/y.oi or above /QOI 
would provide even stronger evidence that our assumed value of ft is quite: unlikely. 
General procedures for testing claims concerning the value of the parameter p 
will be treated in Chapter 10. A preliminary look into the foundation of these 
procedures is illustrated by the following example. 

Example 8.14:1 A chemical engineer claims that the population mean yield of a certain batch 
process is 500 grams per milliliter of raw material. To check this claim he samples 
25 batches each month. If the computed /-value falls between —/0.05 and to.05, he 
is satisfied with his claim. What conclusion should he draw from a sample that 
has a mean x = 518 grams per milliliter and a sample standard deviation ,s = 40 
grams? Assume the distribution of yields to be approximately normal. 

Solution: From Table A.4 we find that to.05 = 1-711 for 24 degrees of freedom. Therefore, the 
manufacturer is satisfied with his claim if a sample of 25 batches yields a /-value 
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between —1.711 and 1.711. If p= 500, then 

t_ 5 1 8 - 5 0 0 = 2 2 5 

40/\/25 

a value well above 1.711. The probability of obtaining a /-value, with v = 24, equal 
to or greater than 2.25 is approximately 0.02. If p > 500. the value of / computed 
from the sample is more reasonable. Hence the manufacturer is likely to conclude 
that the process produces a better product than he thought. J 

What Is the ^-Distribution Used for? 

The /-distribution is used extensively in problems that deal with inference about 
the population mean (as illustrated in Example 8.14) or in problems that involve 
comparative samples (i.e., in cases where one is trying to determine if means from 
two samples are significantly different). The use of the distribution will be extended 
in Chapters 9, 10, 11, and 12. The reader should note that use of the '-distribution 
for the statistic 

T = X - P 
S/VT, 

requires that Xx,X2,...,Xn be normal. The use of the /-distribution and the 
sample size consideration do not relate to the central limit theorem. The use of 
the standard normal distribution rather than T for n > 30 merely implies that 
S is a sufficiently good estimator of a in this case. In chapters that follow the 
/-distribution finds extensive usage. 

8.8 F-Distribution 

We have motivated the /-distribution in part on the basis of application to problems 
in which there is comparative sampling (i.e., a comparison between two sample 
means). Some of our examples in future chapters will provide the formalism. A 
chemical engineer collects data on two catalysts. A biologist collects data on two 
growth media. A chemist gathers data on two methods of coating material to 
inhibit corrosion. While it is of interest to let sample information shed light on 
two population means, it. is often the case that a comparison, in some sense, of 
variability is equally important, if not more so. The F-distribntion finds enormous 
application in comparing sample variances. The applications of the F-distribution 
are found in problems involving two or more samples. 

The statistic F is defined to be the ratio of two independent chi-squared random 
variables, each divided by its number of degrees of freedom. Hence, we can write 

F = U/vi 
V/V-2 ' 

where U and V are independent random variables having chi-squared distributions 
with V\ and v2 degrees of freedom, respectively. We shall now state the sampling 
distribution of F. 
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Theorem 8.6: Let U and V be two independent random variables having chi-squared distribu
tions with Vi and v2 degrees of freedom, respectively. Then the distribution of the 
random variable F •TTT^ is given by the density 

(r\(vi+V2)/2](vi/v2Vl/2 

htf\ _ J F(cl/2)rC«2/2) 

b, 
Jll ( > - l / 2 ) - l 

(l+t.l//u2)(^l+"2)/2 ' />o, 
/ < 0. 

This is known as the F-distr ibution with Ui and V2 degrees of freedom (d.f). 

Again we make considerable use of the F random variable in future chapters. 
However, the density function will not be used and is given only for completeness. 
The curve of the F-distribution depends not only on the two parameters t>x and 
v2 but also on the order in which we state them. Once these two values are given, 
we can identify the curve. Typical F-distribtitions are shown in Figure 8.16. 

,d.f. = (10,30) 

Figure 8.16: Typical F-distributions. Figure 8.17: Illustration of the /„ for the F-
distribution. 

Let fa be the /-value above which we find an area equal to a. This is illustrated 
by the shaded region in Figure 8.17. Table A.6 gives values of fa only for a = 0.05 
and Q = 0.01 for various combinations of the degrees of freedom t'i and v2. Hence, 
the /-value with 6 and 10 degrees of freedom, leaving an area of 0.05 to the right. 
is /o.Oo = 3.22. By means of the following theorem, Table A.6 can also be used to 
find values of /0.95 and /0.99. The proof is left for the reader. 

Theorem 8.7: Writing fa{vx,v2) for fa with vi and v2 degrees of freedom, we obtain 

1 
/i_„(i. 'i,t>2) faiv2,Vl)' 

Thus the /-value with 6 and 10 degrees of freedom, leaving an area of 0.95 to the 
right, is 

1 1 
/o.9s(6,10) = 

/o.o5(10:6) 4.0G 
= 0.246. 
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The F-Distribution with Two Sample Variances 

Suppose that random samples of size m and n2 are selected from two normal 
populations with variances er2 and cr2, respectively. From Theorem 8.4, we know 
that 

, _ ( ! > ! - 1)S? 
x- = and XI = (U2 - 1)5g 

are random variables having chi-squared distributions with vx = nx — 1 and i>2 = 
U2 — 1 degrees of freedom. Furthermore, since the samples are selected at random, 
we are dealing with independent random variables, and then using Theorem 8.6 
with X 2 = U and X2 = V, we obtain the following result. 

Theorem 8.8: If S 2 and S2 are the variances of independent random samples of size nx and n2 

taken from normal populations with variances of and o\, respectively, then 

F = Sf>2 _ 4SI 
Si/a2 

has an F-distribution with vx = nx 

o\S*2 

1 and v2 = n2 — 1 degrees of freedom. 

What Is the F-Distribution Used For? 

We answered this question, in part, at the beginning of this section. The F-
distribution is used in two-sample situations to draw inferences about the popula
tion variances. This involves the application of the result of Theorem 8.8. However, 
the F-distribution is applied to many other types of problems in which the sam
ple variances are involved. In fact, the F-distribution is called the variance ratio 
distribution. As an illustration, consider Example 8.8. Two paints, A and B, were 
compared with regard to mean drying time. The normal distribution applies nicely 
(assuming that a A and crB are known). However, suppose that there are three types 
of paints to compare, say A, B, and C. We wish to determine if the population 
means are equivalent. Suppose, in fact, that important summary information from 
the experiment is as follows: 

Paint 
A 

B 

C 

Sample Mean 
XA = 4.5 

XB = 5.5 

Xc = 6.5 

Sample Variance 
s2

A = 0.20 

s% = 0.14 

4 = 0.11 

Sample Size 
10 

10 

10 

The problem centers around whether or not the sample averages (XA, XB, XC) 
are far enough apart. The implication of "far enough apart" is very important. 
It would seem reasonable that if the variability between sample averages is larger 
than what one would expect by chance, the data do not support the conclusion 
that PA = PB = PC- Whether these sample averages could have occurred by 
chance depends on the variability within samples, as quantified by sA, s2

B, and 
S"Q. The notion of the important components of variability is best seen through 
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some simple graphics. Consider the plot of raw data from samples A, B, and C, 
shown in Figure 8.18. These data could easily have generated the above summary 
information. 

A AAAAA ARAAR A R R R R R FPTTR CCCC COCO 
4.5 5.5 6.5 

*A XB *C 

Figure 8.18: Data from three distinct samples. 

It appears evident that the data came from distributions with different pop
ulation means, although there is some overlap between the samples. An analysis 
that involves all of the data would attempt to determine if the variability between 
the sample averages and the variability within the samples could have occurred 
jointly if in fact the populations have a common mean. Notice that the key to this 
analysis centers around the two following sources of variability. 

(1) Variability within samples (between observations in distinct samples) 

(2) Variability between samples (between sample averages) 

Clearly, if the variability in (1) is considerably larger than that in (2), there will 
be considerable overlap in the sample data and a signal that the data could all 
have come from a common distribution. An example is found in the data set 
containing three samples, shown in Figure 8.19. On the other hand, it is very 
unlikely that data from a distribution with a common mean could have variability 
between sample averages that is considerably larger than the variability within 
samples. 

A BC ACBAC CAB C ACBA BABABCACBBABCC 
± 1 1 
*A * C XB 

Figure 8.19: Data that easily could have come from the same population. 

The sources of variability in (1) and (2) above generate important ratios of 
sample variances and ratios are used in conjunction with the F-distribution. The 
general procedure involved is called analysis of variance. It is interesting that 
in the paint example described here, we are dealing with inferences on three pop
ulation means, but two sources of variability are used. We will not supply details 
here but in Chapters 13 through 15 we make extensive use of analysis of variance, 
and, of course, the F-distribution plays an important role. 
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Exercises 

8.39 For a chi-squared distribution find 

(a) X'o.025 when v = 15: 

(b) Xo.oi when v = 7: 

(c) xl.nr> when e = 24. 

8.40 For a chi-sc|iiarc:cl distribution find the following: 

(a) Xo.oo5 w l | en v = 5; 

(b) Xo.05 when v = 19: 

(c) Xo.oi when v = 12. 

8.41 For a chi-squared distribution find \ „ .such that 

(a) P(X3 > \i) = 0.99 when v = 4; 

(b) /'(A'- > xl) = 0.025 when « = 19: 
(c) P(37.652 < A'2 < xi) = 0-M5 when i> = 25. 

8.42 For a chi-squared distribution find Xa such that 

(a) F(A"-' > \l) = 0.01 when o = 21: 

(b) lJ(X2 < xl) = 0-95 when v = 6; 

('') P(Xo < A'2 < 23.209) = 0.015 when v = 10. 

8.43 Find the probability that a random sample of 25 
observations, from a normal population with variance 
a" = 6, will have a variance s 

(a) greater than !). I; 
(b) between 3.462 and 10.745. 

Assume the sample variances to be continuous mea
surements. 

8.44 The scores on a placement test given to college 
freshmen for the past five years are approximately nor
mally distributed with a mean //. = 71 and a variance 
a2 = 8. Would you still consider a2 = 8 to be a valid 
value of the variance if a random sample or 20 students 
who take this placement test this year obtain a value 
of .s2 = 20? 

8.45 Show that the variance of S for random sam
ples of size n. from a normal population decreases as 
n becomes largo. [Hint: First, find the variance of 
(n - 1 ) 5 > 2 . ] 

8.46 (a) Find i0.oas when v = 14. 
(h) Find —to.io when v = 10. 
(c) Find ta.nm when v = 7. 

8.47 (a) Find P(T < 2.3G5) when v = 7. 

(b) Find P(T > 1.318) when v = 24. 

(c) Find F( —J-356 < T < 2.179) when v = 12. 
(d) Find P(T > -2.567) when r = 17. 

8.48 (a) Find P(-to.oos < T < iu.en) for v = 20. 
(b) Find P(T> -tojou). 

8.49 Given a random sample of size 21 from a normal 
distribution, find k such that 
(a) P(-2.069 < T < k) = 0.965; 
(b) P{k <T< 2.807) = 0.095; 
(c) P(-Jfc < T < k) = 0.90. 

8.50 A manufacturing firm claims that the batteries 
used in their electronic games will last an average of 
30 hours. To maintain this average. L6 batteries are 
tested each month. If the computed /-value falls be
tween —fo.02S and to.OBBi '-he firm is satisfied with its 
claim. What conclusion should the firm draw from a 
sample that has a mean x = 27.5 hours and a stan
dard deviation a = 5 hours? Assume the distribution 
of battery lives to be approximately normal. 

8.51 A normal population with unknown variance has 
a mean of 20. Is one likely to obtain a random sample 
of size !) from this population with a mean of 24 and 
a standard deviation of 4.1? If not, what conclusion 
would you draw? 

8.52 A maker of a certain brand of low-fat cereal bars 
claims that their average saturated fat content is 0.5 
gram. In a random sample of 8 cereal bars of this brand 
the saturated fat. content was 0.6. 0.7. 0.7. 0.3. 0.4. 0.5, 
0.4, and 0.2. Would you agree with the claim? Assume 
a normal distribution. 

8.53 For an F-distribution find 

(a) /(i.o5 with vi = 7 and v2 = 15; 

(b) /ei.ci.-i with vi = 15 and v2 = 7: 
(c) /o.oi with f.'i = 24 and v2 = 19; 
(el) /o.ss with vt = li) and ua = 24; 
(e) /o.BB with Ui = 28 and v2 = 12. 

8.54 Pull-strength tests on 10 soldered leads for a 
semi conductor device yield the following results in 
pounds force required to rupture the bond: 

19.8 12.7 13.2 16.9 10.6 
18.8 11.1 143 17.0 12.5 

Another set, of 8 leads was tested after encapsulation to 
determine whether the pull strength has been increased 
by encapsulation of the device, with the following re
sults: 
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24.9 22.8 23.6 22.1 20.4 21.6 21.8 22.5 
Comment on the evidence available concerning equal
ity of the two population variances. 

8.55 Consider the following measurements of the heat 
producing capacity of the coal produced by two mines 

(in millions of calories per ton): 
Mine 1: 8260 8130 8350 8070 8340 
Mine 2: 7950 7890 7900 8140 7920 7840 

Can it be concluded that the two population variances 
are equal? 

Review Exercises 

8.56 Consider the data displayed in Exercise 1.20 on 
page 29. Construct a box-and-whisker plot, and com
ment on the nature of the sample. Compute the sample 
mean and sample standard deviation. 

8.57 If Xi, X2,..., X„ are independent random vari
ables having identical exponential distributions with 
parameter 6, show that the density function of the ran
dom variable Y = X\ +X2+- • -+Xn is that of a gamma 
distribution with parameters a = n and 3 = 0. 

8.58 In testing for carbon monoxide in a certain 
brand of cigarette, the data, in milligrams per 
cigarette, were coded by subtracting 12 from each ob
servation. Use the results of Exercise 8.14 on page 235 
to find the standard deviation for the carbon monox
ide contents of a random sample of 15 cigarettes of this 
brand if the coded measurements are 3.8, —0.9. 5.4, 4.5. 
5.2. 5.6. 2.7, - 0 . 1 . - 0 . 3 , -1 .7 . 5.7, 3.3. 4.4, -0 .5 , and 
1.9. 

8.59 If S2 and S2 represent the variances of indepen
dent random samples of size m = 8 and n2 = 12, taken 
from normal populations with equal variances, find the 
P(SJ7S| < 4.89). 

8.60 A random sample of 5 bank presidents indi
cated annual salaries of $395,000, $521,000, $483,000, 
$479,000, and 8510,000. Find the variance of this set. 

8.61 If the number of hurricanes that hit. a certain 
area of the eastern United States per year is a random 
variable having a Poisson distribution with p = 6, find 
the probability that this area will be hit by 
(a) exactly 15 hurricanes in 2 years; 

(b) at most 9 hurricanes in 2 years. 

8.62 A taxi company tests a random sample of 10 
steel-belted radial tires of a certain brand and recorded 
the following tread wear: 48,000, 53,000. 45,000. 
61,000, 59,000, 56,000, 63,000, 49,000, 53,000, and 
54,000 kilometers. Use the results of Exercise 8.14 on 
page 235 to find the standard deviation of this set of 
data by first dividing each observation by 1000 and 
then subtracting 55. 

8.63 Consider the data of Exercise 1.19 on page 28. 
Construct a box-and-whisker plot. Comment. Com
pute the sample mean and sample standard deviation. 

8.64 If A"? and Sf represent the variances of indepen
dent random samples of size n\ = 25 and n2 — 31, 
taken from normal populations with variances a2 = 10 
and erf = 15, respectively, find 

P(S\/Sl > 1.26). 

8.65 Consider Exercise 1.21 on page 29. 
on any outliers. 

Comment 

8.66 Consider Review Exercise 8.56. 
any outliers in the data. 

Comment on 

8.67 The breaking strength A" of a certain rivet used 
in a machine engine has a mean 5000 psi and stan
dard deviation 400 psi. A random sample of 36 rivets 
is taken. Consider the distribution of X, the sample 
mean breaking strength. 

(a) What is the probability that the sample mean falls 
between 4800 psi and 5200 psi? 

(b) What sample n would be necessary in order to have 

P(4900 < X < 5100) = 0.99? 

8.68 Consider the situation of Review Exercise 8.62. 
If the population from which the sample was taken has 
population mean p = 53,000 kilometers, does the sam
ple information here seem to support that claim? In 
your answer, compute 

_ x - 53, 000 
s/VW 

and determine from Table A.4 (with 9 d.f.) if the com
puted <-value is reasonable or does it appear to be a 
rare event? 
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8.69 Two distinct solid fuel propellants, type A and 
type B, are being considered in a space program activ
ity. Burning rates on the propellant are crucial. Ran
dom samples of 20 specimens of the two propellants 
are taken with sample means given by 20.5 cm/sec for 
propellant A and 24.50 cm/sec for propellant B. It is 
generally assumed that the variability in burning rate 
is roughly the same for the two propellants and is given 
by a population standard deviation of 5 cm/sec. As
sume that the burning rates for each propellant are 
approximately normal and hence make use of the cen
tral limit theorem. Nothing is known about the two 
population mean burning rates and it is hoped that 
this experiment might shed some light. 

(a) If, indeed PA = PB, what is P(XB — XA > 4.0)? 
(b) Use your answer in (a) to shed some light on the 

proposition that PA = PB-

8.70 The concentration of an active ingredient in the 
output of a chemical reaction is strongly influenced by 
the catalyst that is used in the reaction. It is felt that 
when catalyst A is used, the population mean concen
tration exceeds 65%. The standard deviation is known 
to be a = 5%. A sample of outputs from 30 inde
pendent experiments gives the average concentration 
of XA = 64.5%. 

(a) Does this sample information with an average con
centration of XA = 64.5% provide disturbing in
formation that perhaps pA is not 65%, but less 
than 65%? Support your answer with a probability 
statement. 

(b) Suppose a similar experiment is done with the use 
of another catalyst, catalyst B. The standard devi
ation a is still assumed to be 5% and XB turns out 
to be 70%. Comment on whether or not the sam
ple information on catalyst B seems to give strong 
information that suggests that \IB is truly greater 
than PA- Support your answer by computing 

P(XB - XA > 5.5 | pB = PA). 

(c) Under the condition that PA = PB = 65%, give the 
approximate distribution of the following quantities 
(with mean and variance of each). Make use of the 
central limit theorem. 

\)XB; 
ii)A\, - XB: 

compute (assuming pa = 65%) 

P(XB > 70). 

8.72 Given a normal random variable X with mean 
20 and variance 9, and a random sample of size ;i taken 
from the distribution, what sample size n is necessary 
in order that 

P(19.9 < X < 20.1) = 0.95? 

8.73 In Chapter 9 the concept of parameter esti
mation will be discussed at length. Suppose A is a 
random variable with mean p and variance a2 = 1.0. 
Suppose also that a random sample of size n is to be 
taken and x is to be used as an estimate of p. When 
the data are taken and the sample mean is measured, 
we wish it to be within 0.05 units of the true mean 
with probability 0.99. That is, we want, there to be a 
good chance that the computed x from the sample is 
"very close" to the population mean (wherever it is!), 
so we wish 

P(\X -p\< 0.05) = 0.99. 

What sample size is required? 

8.74 Suppose a filling machine is used to fill cartons 
with a liquid product. The specification that is strictly 
enforced for the filling machine is 9 ± 1.5 oz. If any 
carton is produced with weight outside these bounds, 
it is considered by the supplier to be a defective. It 
is hoped that at least 99% of cartons will meet these 
specifications. With the conditions p, = 9 and a = 1, 
what proportion of cartons from the process are defec
tive? If changes are made to reduce variability, what 
must a be reduced to in order to meet specifications 
with probability 0.99? Assume a normal distribution 
for the weight. 

8.75 Consider the situation in Review Exercise 8.74. 
Suppose a considerable quality effort is conducted to 
"tighten'' the variability in the system. Following the 
effort, a random sample of size 40 is taken from the 
new assembly line and the sample variance s" = 0.188 
ounces2. Do we have strong numerical evidence that a2 

has been reduced below 1.0? Consider the probability 

P(S2 < 0.188 | a2 = 1.0). 

8.71 From the information in Review Exercise 8.70. and give conclusion. 
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8.9 Potential Misconceptions and Hazards; 
Relationship to Material in Other Chapters 

The central limit theorem is one of the most powerful tools in all statistics, and 
even though this chapter is relatively short, it contains a wealth of fundamental 
information that, is laced with tools that will lie used throughout the balance of 
the text. 

The: notion of a sampling distribution is one of the most important fundamental 
concepts in all of statistics, and the student at this point in his or her training 
should gain a clear understanding before proceeding beyond this chapter. All 
chapters that follow will make considerable use of sampling distributions. Suppose 
one wants to use the statistic X to draw inferences about the population mean 
//. It will be done by using the observed value X from a single sample of size 
it. Then any inference made must be accomplished by taking into account not-
just the single value but rather the theoretical structure or dis t r ibut ion of all 
x values tha t could be observed from samples of size n. Thus the term 
sampling distribution is introduced. This distribution is the basis for the central 
limit theorem. The /., \ 2 , and F-distributions arc also used in the context of 
sampling distributions. For example, the {-distribution, pictured in Figure 8.13, 
represents the structure that occurs if all of the values of '',~C- arc formed, where 
x and S are taken from samples of size n from a n(x;p,a) distribution. Similar 
remarks can be made about, x a,nd F, and the reader should not forget, that 
the sample information forming the statistics for all of these distributions is the 
normal. So it can be said t ha t where there is a t, F, or \ 2 , t he source was 
a sample from a normal dis tr ibut ion. 

The three distributions described above may appear to be introduced in a rather 
self-contained fashion with no indication of what they are about. However, they 
will appear in practical problem-solving throughout the: balance of the text. 

Now, there are things that one must bear in mind lest confusion set in regarding 
these fundamental sampling distributions: 

(i) One cannot use the central limit theorem unless er is known. When a is not 
known, it should be replaced by s. the sample standard deviation, in order to 
use the central limit theorem. 

(ii) The Tstatistic is not a result, of the central limit theorem and X\,x2,.. • ,xn 

must come from a n(x: p. a) distribution in order that fj-f= be a f-distribution. 
and s is, of course, merely an estimate of a. 

(iii) While the notion of degrees of freedom is new at this point, the concept 
should be very intuitive since it. is reasonable that the nature of the distri
bution of S and also f should depend on the amount of information in the 
sample x\,x2,... ,xn. 



Chapter 9 

One- and Two-Sample 
Estimation Problems 

9.1 Introduction 

In previous chapters we emphasized sampling properties of the sample mean and 
sample: variance. We also emphasized displays of data in various forms. The 
purpose of these: presentations is to build a foundation that allows statisticians to 
draw conclusions about, the population parameters from experimental data. For 
example, the central limit theorem provides information about the distribution of 
the sample mean X. The distribution involves the population mean //.. Thus any 
conclusions drawn concerning p from an observed sample average must depend on 
knowledge of this sampling distribution. Similar comments could apply for S2 and 
a2. Clearly, any conclusions wc draw about the variance of a normal distribution 
would likely involve the sampling distribution of S2. 

In this chapter we begin by formally outlining the purpose of statistical infer
ence. We follow this by discussing the problem of es t imat ion of popula t ion 
paramete r s . We confine our formal developments of specific estimation proce
dures to problems involving one and two samples. 

9.2 Statistical Inference 

In Chapter 1 wc discuss the general philosophy of formal statistical inference:. The 
theory of s tat is t ical inference consists of those methods by which one makes in
ferences or generalizations about a population. The trend of today is to distinguish 
between the classical me thod of estimating a population parameter, whereby in
ferences arc based strictly on information obtained from a random sample selected 
from the population, and the Bayesian me thod , which utilizes prior subjective 
knowledge about the probability distribution of the unknown parameters in con
junction with the information provided by the sample data. Throughout most of 
this chapter we shall use classical methods to estimate unknown population pa
rameters such as the mean, proportion, and the variance by computing statistics 
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from random samples and applying the theory of sampling distributions, much of 
which was covered in Chapter 8. Bayesian estimation will be discussed in Chapter 
18. 

Statistical inference may be divided into two major areas: est imation and 
tes ts of hypotheses. We treat these two areas separately, dealing with theory 
and applications of estimation in this chapter and hypothesis testing in Chapter 
10. To distinguish clearly between the two areas, consider the following examples. 
A candidate for public office may wish to estimate the true proportion of voters 
favoring him by obtaining the opinions from a random sample of 100 eligible voters. 
The fraction of voters in the sample favoring the candidate could be used as an 
estimate of the true proportion in the population of voters. A knowledge of the 
sampling distribution of a proportion enables one to establish the degree of accuracy 
of our estimate. This problem falls in the area of estimation. 

Now consider the case in which one is interested in finding out whether brand 
A floor wax is more sc;uff-resistant than brand B floor wax. He or she might 
hypothesize that brand A is better than brand B and, after proper testing, accept or 
reject this hypothesis. In this example we do not attempt to estimate a parameter, 
but instead we try to arrive at a correct decision about a prestated hypothesis. 
Once again we are dependent on sampling theory and the use of data to provide 
us with some measure of accuracy for our decision. 

9.3 Classical Methods of Estimation 

A point es t imate of some population parameter 0 is a single value 8 of a statistic: 
0. For example, the value x of the statistic X, computed from a sample of size n, 
is a point estimate of the population parameter p. Similarly, p = x/n is a point 
estimate of the true proportion p for a binomial experiment. 

An estimator is not expected to estimate the population parameter without 
error. We do not expect X to estimate p exactly, but we certainly hope that it 
is not far off. For a particular sample it is possible to obtain a closer estimate 
of p by using the sample median X as an estimator. Consider, for instance, a 
sample consisting of the values 2, 5, and 11 from a population whose mean is 4 but 
supposedly unknown. We would estimate p to be x = 6, using the sample mean 
as our estimate, or x — 5, using the sample median as our estimate. In this case 
the estimator X produces an estimate closer to the true parameter than that of 
the estimator X. On the other hand, if our random sample contains the values 
2, 6, and 7, then x = 5 and x = 6, so that X is now the better estimator. Not 
knowing the true value of ft, we must decide in advance whether to use X or X as 
our estimator. 

Unbiased Est imator 

What are the desirable properties of a "good" decision function that would influ
ence us to choose one estimator rather than another? Let 0 be an estimator whose 
value 0 is a point estimate of some unknown population parameter 6. Certainly, we 
would like the sampling distribution of 0 to have a mean equal to the parameter 
estimated. An estimator possessing this property is said to be unbiased. 
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Definition 9.1: A statistic 0 is said to be an unbiased estimator of the parameter 0 if 

Pe = F(0 ) = 6. 

Example 9.1:1 Show that S2 is an unbiased estimator of the: parameter a2. 
Solution: Let us write 

; = i 

i = l 

Now 

nE(X - p. 

^iK"^ 
However, 

Therefore, 

ox. = a2 for i = 1,2,. 

E(S2) = 

a 
n 

n.a — n— 
n — 1 \ II 

a2. 

Y(x,-x)2 = Ytix>-i''>-(x-iiW 
t> n 

= Yi*> - I'f - 2(* - p) YiXi - I') + "iX ~ I'f 

n 

^YiX'-rf-oiX-l'f-

Although S2 is an unbiased estimator of a2, S, cm the other hand, is a biased 
estimator of a with the bias becoming insignificant for large samples. This example 
illustrates why we divide by n — 1 rather than n when the variance is estimated. 

Variance of a Point Es t imator 

If 0 i and 02 arc1 two unbiased estimators of the: same population parameter 0, we 
would choose the estimator whose sampling distribution has the smaller variance. 
Hence, if er? < a'j , we say that 0 i is a more efficient es t imator of 0 than 02-

If I rV-J 

Definition 9.2: If wc consider all possible unbiased estimators of some parameter 0, the: one with 
the smallest variance is called the most efficient es t imator of 8. 

In Figure 9.1 we illustrate the sampling distributions of 3 different estimators 
01 , 02, and 0.j. all estimating 9. It is clear that only 0 1 : and 02 are unbiased, 
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since their distributions are centered at 8. The estimator B | has a. smaller variance 
than 02 and is therefore more efficient. Hence our choice for an estimator of 8, 
among the three considered, would be 0 ] . 

Figure 9.1: Sampling distributions of different estimators of 6. 

For normal populations one can show that both X and X are1 unbiased estima
tors of the population mean p, but the variance of X is smaller than the variance 
of A . Thus both estimates x and x will, on the average, equal the population mean 
//.. but X is likely to be closer to p. for a given sample:, and thus X is more efficient 
than X. 

The Notion of an Interval Estimate 

Even the most efficient unbiased estimator is unlikely to estimate the: population 
parameter exactly. It is true that our accuracy increases with large samples, but 
there is still no reason why we should expect a point estimate from a given sample 
to be exactly equal to the population parameter it. is supposed to estimate. There 
are many situations in which it is preferable to determine an interval within which 
wc would expect to find the value of the parameter. Such an interval is called an 
interval es t imate. 

Interval Est imation 

An interval estimate of a population parameter 6 is an interval of the form 81, < 8 < 
()ij, where 6L and By depend on the value of the statistic: 0 for a particular sample 
and also on the sampling distribution of 0. Thus a random sample of SAT verbal 
scores for students of the entering freshman class might produce an interval from 
530 to 550 within which we expect to find the true average of all SAT verbal scores 
for the: fresh man class. The values of the Midpoints, 530 and 550, will depend on 
the computed sample mean x and the sampling distribution of X. As the sample 
size increases, we know that a\ = a2fn decreases, and consequently our estimate 
is likely to be closer to the parameter p, resulting in a shorter interval. Thus the 
interval estimate indicates, by its length, the accuracy of the point estimate. An 
engineer will gain some insight into the population proportion defective by taking 
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a sample and computing the sample proportion defectives. But an interval estimate 
might be more informative. 

Interpretation of Interval Estimates 

Since different samples will generally yield different, values of 0 and, therefore, dif
ferent values 81, and 8u, these cndpoints of the interval are values of corresponding 
random variables 0/, and 0(.:. From the sampling distribution of 0 we shall be 
able to determine 0/, and 0/y such that the P(&L < 8 < 0 y ) is equal to any 
positive fractional value wc care to specify. If, for instance, we find 0/ , and ©jy 
such that 

F ( 0 t < 8 < &u) = 1 - a 

for 0 < a < 1, then we have a probability of 1 —a of selecting a random sample that 
will produce an interval containing 0. The interval 0/, < 9 < 8u, computed from 
the selected sample, is then called a 100(1 —a)% confidence interval, the fraction 
1 — a is called the confidence coefficient or the degree of confidence, and the 
endpoints, 8i, and 8a, are called the lower and upper confidence l imits. Thus, 
when a = 0.05, we have a 95% confidence interval, and when a = 0.01 we obtain 
a wider 99% confidence interval. The wider the confidence interval is, the more 
confident we can be that the given interval contains the unknown parameter. Of 
course, it is better to be 95% confident that the average life of a certain television 
transistor is between 6 and 7 years than to be 99% confident that it is between 3 
and 10 years. Ideally, we prefer a short interval with a high degree of confidence. 
Sometimes, restrictions on the size of our sample prevent us from achieving short 
intervals without sacrificing some of our degree of confidence. 

In the sections that follow we pursue the notions of point and interval estima
tion, with each section representing a different special case. The reader should 
notice that while point and interval estimation represent different approaches to 
gain information regarding a parameter, they are related in the sense that confi
dence interval estimators are based on point estimators. In the following section, 
for example, we should see that the estimator X is a very reasonable point estima
tor of p. As a result, the important confidence interval estimator of p depends on 
knowledge of the sampling distribution of X. 

Wc begin in the following section with the simplest case of a confidence inter
val. The scenario is simple and yet unrealistic. We are interested in estimating a 
population mean p and yet a is known. Clearly if p is unknown, it is quite unlikely 
that a is known. Any historical information that produced enough information to 
allow the assumption that a is known would likely have produced similar informa
tion about p. Despite this argument, we begin with this case because the concepts 
and indeed the resulting mechanics associated with confidence interval estimation 
remain the same when more realistic situations surface later in Section 9.4 and 
beyond. 
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9.4 Single Sample: Estimating the Mean 

The sampling distribution of X is centered at. p and in most applications the 
variance is smaller than that of any other estimators of /<. Thus the sample mean 
.i: will be used as a point estimate for the population mean p. Recall that ay — 
a2/n, so that a large sample will yield a value of X that comes from a sampling 
distribution with a small variance. Hence X is likely to be a very accurate estimate 
of p when n is large. 

Let us now consider the interval estimate of p. If our sample is selected from 
a normal population or, failing this, if n is sufficiently large, wc can establish a 
confidence interval for p by considering the sampling distribution of X. 

According to the central limit theorem, we can expect the- sampling distribution 
of X to be approximately normally distributed with mean // y = p and standard 
deviation cry = of s/Tt. Writing zai2 lor the z-varue above which we find an area 
of a/2, we can se:c from Figure 9.2 that: 

Pi- <-al2 <z < •af2) 
1 

where 

Hence 

Z = 
X - p 

P -Za/2 < 

a/yTr' 

X - p 
o/sfTt < Za/2 ) — 1 ~ 0!. 

-za/2 0 

Figure 9.2: P(-zo/2 < Z < za/2) = 1 - a. 

Multiplying each term in the inequality by a/^/n, and then subtracting X from 
each term and multiplying by —1 (reversing the sense of the inequalities), we obtain 

P[X- ZQ/2-7= < P < X + Za /2-4= ) = 1 - Q. 

A random sample of size n is selected from a population whose variance a2 is known 
and the mean x is computed to give the 100(1 — a)% confidence interval below. It 
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is important to emphasize that we have invoked the central limit theorem above. 
As a result it is important to note the conditions for applications that follow. 

Confidence 
Interval of p\ <r 

Known 

If x is the mean of a random sample of size n from a population with known 
variance a2, a 100(1 - o)% confidence interval for p is given by 

X- za/2-?= < P<X + 

' \/n 
•a/2 

a 

7^' 
where za/2 is the 3-value leaving an area of a /2 to the right. 

For small samples selected from nonnormal populations, wc cannot expect our 
degree of confidence to be accurate. However, for samples of size n > 30, with the 
shape of distributions not too skewed, sampling theory guarantees good results. 

Clearly, the values of the random variables @L and 0 y , defined in Section 9.3, 
are the confidence limits 

0L Za/2 yfn 
and 8y = x + za i2 —=. 

v^n" 

Different samples will yield different values of x and therefore produce different 
interval estimates of the parameter // as shown in Figure 9.3. The circular dots at 
the center of each interval indicate the position of the point estimate x for each 
random sample. Most of the intervals are seen to contain p, but not in every case. 
Note that all of these intervals are of the same width, since their widths depend 
only on the choice of zQ/2 once x is determined. The larger the value we choose for 
za/2, the wider we make all the intervals and the more confident we can be that 
the particular sample selected will produce an interval that contains the unknown 
parameter p. 

Example 9.2:1 The average zinc concentration recovered from a sample of zinc measurements in 
36 different locations is found to be 2.6 grams per milliliter. Find the 95% and 99% 
confidence intervals for the mean zinc concentration in the river. Assume that the 
population standard deviation is 0.3. 

Solution: The point estimate of p is x = 2.6. The 2-value, leaving an area of 0.025 to the 
right and therefore an area of 0.975 to the left, is zo.025 = 1-96 (Table A.3). Hence 
the 95% confidence interval is 

2.6-(1.96) 
0.3 

\/36 
<p< 2.6+(1.96) (—) 

\V3QJ 
which reduces to 2.50 < p < 2.70. To find a 99% confidence interval, we find the 
z-value leaving an area of 0.005 to the right and 0.995 to the left. Therefore, using 
Table A.3 again, 20.005 = 2.575, and the 99% confidence interval is 

2.6 - (2.575) 
0.3 

v/36 
< p < 2.6 +(2.575) ° " 

vW 
or simply 

2.47 < p < 2.73. 

file:///V3QJ
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Figure.' 9.3: Interval estimates of p. for different samples. 

We now see that a longer interval is required to estimate: p with a higher degree of 

confidence. J 
The 100( 1 — a)% confidence interval provides an estimate of the accuracy of our 

point estimate. If // is actually the center value of the interval, then x estimates 
p without error. Most of the time, however, x will not be exactly equal to p. and 
the point estimate is in error. The size of this error will be the absolute value of 
the difference between p and x, and we can be 100(1 — a)% confident that this 
difference will not exceed za/2-j=. We can readily see this if we draw a diagram of 
a hypothetical confidence interval as in Figure 9.4. 

Error 

x-zal2al\/n x p- x + z„i2<rl\/n 

Figure 9.4: Error in estimating //. by x. 

Theorem 9.1: If x is used as an estimate of p, we can then be 100(1 — a)% confident that the 
error will not exceed Zaj2-ns, 

In Example 9.2 we are 95% confident that the sample1 mean x = 2.6 differs from 
the true mean p by an amount less than 0.1 and 99%. confident that the difference 
is less than 0.13. 
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Theorem 9.2: 

Frequently, we wish to know how large a sample is necessary to ensure that the 
error in estimating ft will be less than a specified amount e. By Theorem 9.1 this 
means that we must choose n such that -0/2-7= = e> Solving this equation gives 
the following formula for 11. 

If x is used as an estimate of p, we can be 100(1 — «•)% confident that the error 
will not exceed a specified amount e when the sample size is 

" = ( e ) ' 

When solving for the: sample size, n, all fractional values arc rounded up to the 
next whole number. By adhering to this principle, we can be sure that our degree 
of confidence never falls below 100(1 - n)%. 

Strictly speaking, the formula in The:orem 9.2 is applicable only if we know 
the variance of the population from which we are to select our sample. Lacking 
this information, we could take a preliminary sample of size n > 30 to provide an 
estimate of a. Them, using ,s as an approximation for a in Theorem 9.2 we could 
determine approximately how many observations are needed to provide the desired 
degree of accuracy. 

Example 9.3:1 How large a sample is required in Example 9.2 if we want to be 95% confident that 
our estimate of p. is off by less than 0.057 

Solution: The population standard deviation is a = 0.3. Then, by Theorem 9.2, 

(1.96)(0.3) 
O.O: 

= 138.3. 

Therefore, we can be 95% confident that a random sample of size 139 will provide 
an estimate x differing from //. by an amount less than 0.05. J 

One-Sided Confidence Bounds 

The confidence intervals and resulting confidence bounds discussed thus far are 
two-sided in nature (i.e., both tipper and lower bounds are given). However, there 
are many applications in which only one bound is sought. For example, if the 
measurement of interest is tensile strength, the engineer receives more information 
from a lower bound only. This bound communicates the "worst case" scenario. On 
the other hand, if the measurement is something for which a relatively large value 
of p is not profitable or desirable, then an upper confidence bound is of interest. 
An example would be a case: in which inferences need to be made concerning the 
mean mercury composition in a river. An upper bound is very informative in this 
case. 

One-sided confidence bounds are developed in the: same fashion as two-sided 
intervals. However, the source is a one-sided probability statement that makes use 
of the central limit theorem 

P 
X I' 
a/y/n. < z, = 1 



278 Chapter 9 One- and Two-Sample Estimation Problems 

One can then manipulate the probability statement much like before and obtain 

P(p > X - 2Qcr/Vn) = 1 - Q. 

Similar manipulation of P ( .~j~ > — za J = 1 — a gives 

P(p < X + zao/sfn) - I - a . 

As a result, the upper and lower one-sided bounds follow. 

One-Sided If X is the mean of a random sample of size n from a population with variance 
Confidence a2, the one-sided 100(1 - a)% confidence bounds for p are given by-

Bounds on p; a 
Known upper one-sided bound: x + Zo,a/y/n; 

lower one-sided bound: x — zao/\frt.. 

Example 9.4:1 In a psychological testing experiment, 25 subjects are selected randomly and their 
reaction time, in seconds, to a particular experiment, is measured. Past experience 
suggests that the variance in reaction time to these types of stimuli are 4 sec2 and 
that reaction time is approximately normal. The average time for the subjects was 
6.2 seconds. Give an upper 95% bound for the mean reaction time. 

Solution: The upper 95% bound is given by 

x + zaa/s/n = 6.2 + (1.645)^/4/25 = 6.2 + 0.658 

= 6.858 seconds. 

Hence, we arc 95% confident that the mean reaction is less than 6.858 seconds. -I 

The Case of a Unknown 

Frequently, wc are attempting to estimate the mean of a population when the 
variance is unknown. The reader should recall that in Chapter 8 we learned that 
if we have a random sample from a normal distribution, then the random variable 

S/Jn 
has a Student t-distribution with n — 1 degrees of freedom. Here S is the sample 
standard deviation. In this situation with a unknown, T can be used to construct 
a confidence interval on p. The procedure is the same as that with known a except 
that a is replaced by S and the standard normal distribution is replaced by the 
^-distribution. Referring to Figure 9.5, we can assert that 

P(-ta/2 < T < ta/2) = 1 - a, 

where tai2 is the (-value with n — 1 degrees of freedom, above which we find an 
area of a /2 . Because of symmetry, an equal area of a /2 will fall to the left of-tQy2-
Substituting for T, we write 

X-p \ 

~ta/2 < ~sm< ta/2)= 
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Multiplying each term in the inequality by S/y/ti, and then subtracting X from 
each term and multiplying by —1, we obtain 

P [ X - ta/s-7= <p<X + tai2-j= 
V" Vn 

1 - a. 

For our particular random sample of size n, the mean x and standard deviation s 
are computed and the following 100(1 — a)% confidence interval for p. is obtained. 

Figure 9.5: P(-ta/2 <T< ta/2) = 1 - a. 

Confidence 
Interval for p.; a 

Unknown 

If x and s are the mean and standard deviation of a. random sample from a 
normal population with unknown variance a2, a 100(1 — n)% confidence interval 
for p is 

s s 
x - Wz~7= < M < •'*•' + ta/2-7=: 

where ta/2 is the (-value with v = n — 1 degrees of freedom, leaving an area of 
o/2 to the right. 

We have made a distinction between the cases of a known and a unknown in 
computing the confidence interval estimates. Wc should emphasize that for the 
a known case we exploited the central limit theorem, whereas for er unknown we 
made use of the sampling distribution of the random variable T. However, the use 
of the (-distribution is based on the premise that the sampling is from a normal 
distribution. As long as the distribution is approximately bell shaped, confidence 
intervals can be computed when a2 is unknown by using the (-distribution and we 
may expect very good results. 

Computed one-sided confidence bounds for p with unknown a are as the reader 
would expect, namely 

s and •t 

They are the upper and lower 100(1 — a)% 
(-value having a area to the right. 

s/n 

respectively. Here ta is the 
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Concept of a Large-Sample Confidence Interval 

Often statisticians recommend that even when normality cannot be assumed, a 
unknown, and n > 30, s can replace er and the confidence interval 

s 

Vn 

may be used. This is often referred to as a large-sample confidence interval. The 
justification lies only in the presumption that with a sample as large as 30 and the 
population distribution not too skewed, s will be very close to the true a and thus 
the central limit theorem prevails. It should be emphasized that this is only an 
approximation and the quality of the approach becomes better as the sample size 
grows larger. 

Example 9.5:1 The contents of 7 similar containers of sulfuric acid are 9.8, 10.2, 10.4, 9.8, 10.0, 10.2, 
and 9.6 liters. Find a 95% confidence interval for the mean of all such containers, 
assuming an approximate normal distribution. 

Solution: The sample mean and standard deviation for the given data are 

x = 10.0 and s = 0.283. 

Using Table A.4, we find (0.025 = 2.447 for v = 6 degrees of freedom. Hence the 
95%. confidents interval for p. is 

10 .0 - (2.447) ( ^ ) < M < 10.0 + (2.447) ( ^ 

which reduces to 9.74 < p < 10.20. J 

9.5 Standard Error of a Point Estimate 

We have made a rather sharp distinction between the goals of point estimates and 
confidence interval estimates. The former supplies a single number extracted from a 
set of experimental data, and the latter provides an interval given the experimental, 
data that is reasonable for the parameter; that is, 100(1 — a)% of such computed 
intervals "cover" the parameter. 

These two approaches to estimation are related to each other. The "common 
thread" is the sampling distribution of the point estimator. Consider, for example, 
the estimator X of p with a known. We indicated earlier that a measure of quality 
of an unbiased estimator is its variance. The variance of X is 

2 °~ 
ax = —. 

n 
Thus the standard deviation of AT or standard error of X is a/s/n. Simply put, 
the standard error of an estimator is its standard deviation. For the case of X, the 
computed confidence limit 

a 
x ± zty f2—~=, is written as x ± za/2 s.e.(x), 
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where ils.e." is the standard error. The important point to make is that the width 
of the confidence interval on p. is dependent on the quality of the point estimator 
through its standard error. In the case where a is unknown and sampling is from a 
normal distribution, s replaces a and the estimated standard error s/^/n is involved. 
Thus the confidence limits on p are 

Confidence s 

Limits on p for a x ± t a / 2 77^ = x ± ia/2S-e-(a;) 
Unknown 

Again, the confidence interval is no better (in terms of width) than the quality of 
the point estimate, in this case through its estimated standard error. Computer 
packages often refer to estimated standard errors merely as "standard errors.1' 

As we move to more complex confidence intervals, there is a prevailing concept 
that, widths of confidence intervals become shorter as the quality of the corre
sponding point estimate becomes better, although it is not always quite as simple 
as what we have illustrated here. It can be argued that a confidence interval is 
merely an augmentation of the point, estimate to take into account precision of the 
point estimate. 

9.6 Prediction Intervals 

The point and interval estimations of the mean in Sections 9.4 and 9.5 provide 
good information on the unknown parameter p of a normal distribution, or a non-
normal distribution from which a large sample is drawn. Sometimes, other than 
the population mean, the experimenter may also be interested in predicting the 
possible value of a future observation. For instance, in a quality control case, 
the experimenter may need to use the observed data to predict a new observation. 
A process that produces a metal part may be evaluated on the basis of whether a 
part meets process specifications on tensile strength. On certain occasions a cus
tomer may be interested in purchasing a single part. In this case a confidence 
interval on the mean tensile strength does not capture the requirement. The cus
tomer requires a statement regarding the uncertainty of single observation. The 
type of requirement, is nicely fulfilled by the construction of a prediction interval. 

It is quite simple to obtain a prediction interval for the situations we have 
considered so far. Assume that the random sample comes from a normal population 
with unknown mean p and known variance a2. A natural point, estimator of a 
new observation is X. It is known, from Section 8.5, that the variance of X is 
a2jn. However, to predict a new observation, not only do we need to account 
for the variation clue to estimating the mean, but also should we account for the 
variation of a future observation. From the assumption, we know that the 
variance of the random error in a new observation is a2. The development of a 
prediction interval is best displayed by beginning with a normal random variable 
XQ — x, where XQ is the new observation and x comes from the sample. Since XQ 
and x are independent, we know that 

XQ — x xo — x 
z = s/a2 + a2/n ay/l + 1/n 
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is n(z; 0,1). As a result, if we use the probability statement 

Pi-Za/2 <Z < za/2) = 1 - a 

with the z statistic above, and place .To in the center of the probability statement, 
we have the following event occurring with probability 1 — a: 

x - zaj2ayj\ + 1/n < x0 < x + za/2a \Jl + 1/n. 

As a result, the computed prediction interval is formalized as follows: 

Prediction For a normal distribution of measurements with unknown mean p and known 
Interval of a variance er2, a 100(1 - a)% predict ion interval of a future observation xo is 

Future 
Observation: a x- zaj2o\J\ + l/n < xa < x + za/2ay/l + 1/n, 

Lnown 
where za/2 is the z-value leaving an area of a /2 to the right. 

Example 9.6:1 Due to the decrease in interest rates, the First Citizens Bank received a lot of 
mortgage applications. A recent sample of 50 mortgage loans resulted in an average 
of $257,300. Assume a population standard deviation of $25,000. If the next 
customer called in for a mortgage loan application, find a 95% prediction interval 
on this customer's loan amount. 

Solution: The point prediction of the next customer's loan amount is x = $257,300. The 
z-value here is zo.025 = 1-96. Hence a 95% prediction interval for a future loan is 

257300 - (1.96)(25000)v
/l + l/50 < x0 < 257300 + (1.96)(25000)>/l + 1/50, 

which gives the interval ($207,812.43, $306,787.57). J 
The prediction interval provides a good estimate of the location of a future 

observation, which is quite different from the estimation of the sample mean value. 
It should be noted, that the variation of this prediction is the sum of the variation 
due to an estimation of the mean and the variation of a single observation. However, 
as in the past, we consider the known variance case first. It is, therefore, important 
to deal with the prediction interval of a future observation in the situation where 
the variance is unknown. Indeed a Student (-distribution may be used in this case 
as described in the following result. Here the normal distribution is merely replaced 
by the (-distribution. 

Prediction For a normal distribution of measurements with unknown mean p and unknown 
Interval of a variance cr2, a 100(1 — a)% predict ion interval of a future observation XQ is 

Future 
Observation: a x — ta/2s\/l + 1/n < XQ < x + ta/2sy/l + l/n, 

Unknown 
where ta/2 is the i-value with v = n — 1 degrees of freedom, leaving an area of 
a/2 to the right. 

One-sided prediction intervals can also be implemented. They certainly apply-
in cases where, say, focus must be placed on future large observations. Here upper 
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prediction bounds apply. Concern over future small observations suggest the use 
of lower prediction bounds. The upper bound is given by 

and the lower bound by 

x + tas>/l + l/n 

x — tnsy 1 + 1/n. 

Example 9.7:1 A meat inspector has randomly measured 30 packs of 95%. lean beef. The sample 
resulted in the mean 96.2% with the sample standard deviation of 0.8%. Find a 
99% prediction interval for a new pack. Assume normality. 

Solution: For v = 29 degrees of freedom, (Q.OUS = 2.756. Hence a 99% prediction interval for 
a new observation .TQ is 

96.2 - (2.756) (0.8)^1 - ^ < a* < 96.2 + (2.756)(0.8) J l + ±, 

which reduces to (93.96, 98.44). 

Use of Prediction Limits for Outlier Detection 

To this point in the text very little attention has been paid to the concept of 
out l iers or aberrant, observations. The majority of scientific investigators are 
keenly sensitive to the existence of outlying observations or so called faulty or 
"bad data." We deal with the concept to a large extent in Chapter 12. where 
outlier detection in regression analysis is illustrated. However, it is certainly of 
interest to consider here since there is an important relationship between outlier 
detection and prediction intervals. 

It is convenient for our purposes to view an outlying observation as one in 
which that observation conies from a population with a mean that is different from 
that which governs the rest of the sample of size n being studied. The prediction 
interval produces a bound that "covers" a future single observation with probability 
1 — Q if it comes from the population from which the sample was drawn. As a 
result, a methodology for outlier detection involves the rule that an observation 
is an outlier if it falls outside the prediction interval computed without 
inclusion of the quest ionable observation in the sample. As a result, for 
the prediction interval of Example 9.7, if a new pack is observed and contains a 
percent fat content outside the interval (93.96,98.44), as on page 283, it can be 
viewed as an outlier. 

9.7 Tolerance Limits 
We learned from the discussion in Section 9.6 that the scientist or engineer may 
be* less interested in estimating parameters and more concerned with gaining a 
notion about where an individual observation or measurement might fall. Hence 
the interest is in prediction intervals. However, there is yet a third type of interval 
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that is of interest in many applications. Once again, suppose that interest cen
ters around the manufacturing of a component part and specifications exist on a 
dimension of that part. There is little concern about the mean of the dimension. 
Nonetheless, unlike the scenario in Section 9.6, one may be less interested in a 
single observation and more interested in where the majority of the population 
falls. If process specifications are important, then the manager of the process is 
concerned about long-range performance, not the next observation. One must 
attempt to determine bounds, which in some probabilistic sense, "cover" values in 
the population (i.e., the measured values of the dimension). 

One method of establishing the desired bound is to determine a confidence 
interval on a fixed proportion of the measurements. This is best motivated by 
visualizing a situation in which we are doing random sampling from a normal 
distribution with known mean p and variance cr2. Clearly, a bound that covers the 
middle 95% of the population of observations is 

p± 1.96er. 

This is called a tolerance interval, and indeed the coverage of 95%. of measured 
observations is exact. However, in practice p and a are seldom known; thus the 
user must apply 

x ± ks, 

and now, of course, the interval is a random variable and hence the coverage of a 
proportion of the population enjoyed by the interval is not exact. As a result, a 
100(1 — 7)% confidence interval is applied to the statement since x ± ks cannot be 
expected to cover any specified proportion all the time. As a result we have the 
following definition. 

Tolerance Limits For a normal distribution of measurements with unknown mean p and unknown 
standard deviation a, tolerance limits are given by x ± ks, where k is deter
mined so that one can assert with 100(1 — 7)% confidence that the given limits 
contain at least the proportion 1 — a of the measurements. 

Table A.7 gives values of fc for 1 - a = 0.90,0.95,0.99; 7 = 0.05,0.01; and for 
selected values of n from 2 to 1000. 

Example 9.8:1 A machine is producing metal pieces that are cylindrical in shape. A sample of 
these pieces is taken and the diameters are found to be 1.01, 0.97, 1.03, 1.04, 0.99, 
0.98, 0.99, 1.01, and 1.03 centimeters. Find the 99% tolerance limits that will con
tain 95% of the metal pieces produced by this machine, assuming an approximate 
normal distribution. 

Solution: The sample mean and standard deviation for the given data are 

. T = 1.0056 and s = 0.0246. 

From Table A.7 for n = 9, 1 - 7 = 0.99, and 1 - a= 0.95, we find k = 4.550 for 
two-sided limits. Hence the 99% tolerance limits are 

1.0056 ±(4.550)(0.0246). 
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Tha t is, wc are 99% confident that the tolerance interval from 0.894 to 1.117 will 
contain 95% of the metal pieces produced by this machine. It is interesting to note 
that the corresponding 99% confidence: interval for //. (see Exercise 9.13 on page 
286) has a lower limit of 0.978 and an upper limit, of 1.033, verifying our earlier 
statement, tha t a tolerance interval must necessarily be longer than a confidence 
interval with the same degree of confidence. J 

Distinction among Confidence Intervals, Prediction Intervals, 
and Tolerance Intervals 

It is important to reempbnsize the difference among the three types of intervals 
discussed and illustrated in the preceding sections. The computat ions are straight
forward but interpretation can be confusing. In real-life applications these intervals 
are not interchangeable because their interpretat ions are quite distinct. 

In the case of the confidence intervals discussed, one is only at tent ive to the 
p o p u l a t i o n m e a n . For example, in Exercise 9.15 on page 286 there is an en
gineering process that produces the sheering pins. A specification will be set on 
Rockwe:ll hardness below which a customer will not accept any pins. Here, a pop
ulation parameter must take a backseat. It is important tha t the engineer know 
where the> majority of the values of Rockwell hardness are going to be. Thus, toler
ance limits should be used. Surely when tolerance limits on any process output are 
tighter than process specifications then the news is good for the process manager. 

It is true t ha t the tolerance limit interpretation is somewhat related to the 
confidence interval. The 100(1—a)% tolerance interval on, say, the proportion 0.95 
can be viewed as a confidence interval on t h e m i d d l e 9 5 % of the corresponding 
normal distribution. One-sided tolerance limits are also relevant. In the case of 
the Rockwell hardness problem, it is desirable to have a lower bound of the form 
x — ks such tha t we arc "99% confident that at least 99%, of Rockwell hardness 
values will exceed the computed value." 

Prediction limits are applicable when it is important to determine a bound on 
a s ing l e v a l u e . The mean is not the issue and the location of the majority of the 
population is not the direct issue. Rather, the location of a single new observation 
is required. 

Exercises 

9.1 Let ns define A"'2 = £ ( A ; - X)2/n. Show that. 9 - 3 Show that the estimator P' of Exercise: 9.2(b) be-
;=: comes unbiased as n —> oo. 

E(S' ) = [(» - l)/njff , 9.4 An electrical firm manufactures light bulbs that 
„ _ have a length of life that, is approximately normally 

and hence S ' is a biased estimator for a~. distributed with a standard deviation of 40 hours. If 
a sample of 30 bulbs lias an average life of 780 hours, 
(hid a 9695 confidence interval for the population mean 

(a) P = X/n is an unbiased estimator of p; of all bulbs produced by this firm. 

9.2 ff A' is a binomial random variable, show that 

K/n is a 

(b) P' = x --fiip is a biased estimator of p. 
9.5 Many cardiac patients wear implanted pacemak
ers to control their heartbeat. A plastic connector 



286 Chapter 9 One- and Two-Sample Estimation Problems 

module mounts on the top of the pacemaker. Assum
ing a standard deviation of 0.0015 and an approximate 
normal distribution, find a 95% confidence interval for 
the mean of all connector modules made by a certain 
manufacturing company. A random sample of 75 mod
ules has an average of 0.310 inch. 

9.6 The heights of a random sample of 50 college stu
dents showed a mean of 174.5 centimeters and a stan
dard deviation of 6.9 centimeters. 
(a) Construct a 98% confidence interval for the mean 

height of all college students. 

(b) What can we assert with 98% confidence about the 
possible size of our error it we estimate the mean 
height of all college students to be 174.5 centime
ters? 

9.7 A random sample of 100 automobile owners shows 
that, in the state of Virginia, an automobile is driven on 
the average 23,500 kilometers per year with a standard 
deviation of 3900 kilometers. Assume the distribution 
of measurements to be approximately normal. 

(a) Construct a 99% confidence interval for the aver
age number of kilometers an automobile is driven 
annually in Virginia. 

(b) What can we assert with 99% confidence about the 
possible size of our error if we estimate the aver
age number of kilometers driven by car owners in 
Virginia to be 23.500 kilometers per year? 

9.8 How large a sample is needed in Exercise 9.4 if we 
wish to be 96% confident that our sample mean will be 
within 10 hours of the true mean? 

9.9 How large a sample is needed in Exercise 9.5 if we 
wish to be 95% confident that our sample mean will be 
within 0.0005 inch of the true mean? 

9.10 An efficiency expert wishes to determine the av
erage time that it takes to drill three holes in a certain 
metal clamp. How large a sample will he need to be 
95% confident that his sample mean will be within 15 
seconds of the true mean? Assume that it is known 
from previous studies that a = 40 seconds. 

9.11 A UCLA researcher claims that the life span of 
mice can be extended by as much as 25% when the calo
ries in their food are reduced by approximately 40% 
from the time they are weaned. The restricted diets 
are enriched to normal levels by vitamins and protein. 
Assuming that it is known from previous studies that 
a = 5.8 months, how many mice should be included 
in our sample if we wish to be 99% confident that the 
mean life span of the sample will be within 2 months 
of the population mean for all mice subjected to this 
reduced diet? 

9.12 Regular consumption of presweetened cereals 
contributes to tooth decay, heart disease, and other 
degenerative diseases, according to studies conducted 
by Dr. W. H. Bowen of the National Institute of Health 
and Dr. J. Yudben, Professor of Nutrition and Dietet
ics at the University of London. In a random sample 
of 20 similar single servings of Alpha-Bits, the average 
sugar content was 11.3 grams with a standard devia
tion of 2.45 grams. Assuming that the sugar contents 
are normally distributed, construct a 95% confidence 
interval for the mean sugar content for single servings 
of Alpha-Bits. 

9.13 A machine is producing metal pieces that are 
cylindrical in shape. A sample of pieces is taken and 
the diameters are 1.01, 0.97, 1.03, 1.04, 0.99, 0.98, 0.99, 
1.01, and 1.03 centimeters. Find a 99% confidence in
terval for the mean diameter of pieces from this ma
chine, assuming an approximate normal distribution. 

9.14 A random sample of 10 chocolate energy bars 
of a certain brand has, on average, 230 calories with 
a standard deviation of 15 calories. Construct a 99% 
confidence interval for the true mean calorie content of 
this brand of energy bar. Assume that the distribution 
of the calories is approximately normal. 

9.15 A random sample of 12 shearing pins is taken in 
a study of the Rockwell hardness of the head on the pin. 
Measurements on the Rockwell hardness were made for 
each of the 12, yielding an average value of 48.50 with 
a sample standard deviation of 1.5. Assuming the mea
surements to be normally distributed, construct a 90% 
confidence interval for the mean Rockwell hardness. 

9.16 A random sample of 12 graduates of a certain 
secretarial school typed an average of 79.3 words per 
minute with a standard deviation of 7.8 words per 
minute. Assuming a normal distribution for the num
ber of words typed per minute, find a 95% confidence 
interval for the average number of words typed by all 
graduates of this school. 

9.17 A random sample of 25 bottles of buffered as
pirin contain, on average, 325.05 mg of aspirin with a 
standard deviation of 0.5 mg. Find the 95% tolerance 
limits that will contain 90% of the aspirin contents for 
this brand of buffered aspirin. Assume that the aspirin 
content is normally distributed. 

9.18 The following measurements were recorded for 
the drying time, in hours, of a certain brand of latex 
paint: 

3.4 2.5 4.8 2.9 3.6 
2.8 3.3 5.6 3.7 2.8 
4.4 4.0 5.2 3.0 4.8 

Assuming that the measurements represent a random 
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sample from a normal population, find the 99% toler
ance limits that will contain 95%. of the drying times. 

9.19 Referring to Exercise 9.7, construct a 99% tol
erance interval containing 99% of the miles traveled by 
automobiles annually in Virginia. 

9.20 Referring to Exercise 9.15, construct, a 95% tol
erance interval containing 90% of the measurements. 

9.21 In Section 9.3 wc emphasized the notion of 
"most efficient estimator" by comparing the variance 
of two unbiased estimators ©i and ©2. However this 
does not take into account bias in case one or both 
estimators are not unbiased. Consider the quantity 

MSE = E(Q - B), 

where MSE denotes m e a n s q u a r e d error . The 
MSE is often used to compare two estimators ©i and 
02 of 6 when either or both is unbiased because (i) it 
is intuitively reasonable and (ii) it accounts for bias. 
Show that MSE can be written 

MSE = E{& - E(<3>)]2 + [£(© - 6))2 

= Var(Q) + [Bias(e)]2. 

9.22 Consider Exercise 9.1 and S'2, the estimator 
of <r". Analysts often use S'2 rather than dividing 

n 
52 (Xi — X)2 by n — 1, the degrees of freedom in the 
i = i 

sample. 

(a) What is the bias of S"2? 

(b) Show that the bias of S'2 approaches zero as n —> 
oo. 

9.23 Compare S2 and S'2 (see Exercise 9.1), the 
two estimators of a2, to determine which is more 
efficient. Assume they are estimators found using 
Xi, X2,...,Xn, independent random variables from 
n(x:p,a). Which estimator is more efficient consid
ering only the variance of the estimators? [Hint Make 
use of Theorem 8.4 and Section 6.8 in which we learned 
that, the variance of a xl is 2v.] 

9.24 Consider Exercise 9.23. Use the MSE discussed 
in Exercise 9.21 to determine which estimator is more 
efficient. In fact, write out 

MSE(S2) 
MSE(S'2)' 

9.25 Consider Exercise 9.12. Compute a 95% predic
tion interval for the sugar content for the next single 
serving of Alpha-Bits. 

9.26 Consider Exercise 9.16. Compute the 95% pre
diction interval for the next observed number of words 
per minute typed by a member of the secretarial school. 

9.27 Consider Exercise 9.18. Compute a 95% predic
tion interval on a new observed measured drying time 
for the latex paint. 

9.28 Consider the situation of Exercise 9.13. Esti
mation of the mean diameter, while important, is not 
nearly as important as trying to "pin down" the loca
tion of the majority of the distribution of diameters. 
To that, end, find the 95%. tolerance limits that contain 
95% of the diameters. 

9.29 In a study conducted by the Department of Zo
ology at Virginia Tech. fifteen "samples" of water were 
collected from a certain station in the James River in 
order to gain some insight regarding the amount of 
orthophosphorous in the river. The concentration of 
the chemical is measured in milligrams per liter. Let 
us suppose that the mean at the station is not as im
portant as the upper extremes of the distribution of 
the chemical at the station. Concern centers around 
whether the concentrations at these extremes are too 
large. Readings for the fifteen water samples gave a 
sample mean of 3.84 milligrams per liter and sample 
standard deviation of 3.07 milligrams per liter. Assume 
that the readings are a random sample from a nor
mal distribution. Calculate a prediction interval (up
per 95% prediction limit) and a tolerance limit (95% 
upper tolerance limit that exceeds 95% of the popula
tion of value). Interpret both; that is, tell what each 
communicates to us about the upper extremes of the 
distribution of orthophosphorous at the sampling sta
tion. 

9.30 A type of thread is being studied for its ten
sile strength properties. Fifty pieces were tested under 
similar conditions and the results showed an average 
tensile strength of 78.3 kilograms and a standard devi
ation of 5.6 kilograms. Assuming a normal distribution 
of tensile strength, give a lower 95% prediction interval 
on a single observed tensile strength value. In addi
tion, give a lower 95% tolerance limit that is exceeded 
by 99% of the tensile strength values. 

9.31 Refer to Exercise 9.30. Why are the quantities 
requested in the exercise likely to be more important to 
the manufacturer of the thread than say a confidence 
interval on the mean tensile strength? 

9.32 Refer to Exercise 9.30 once again. Suppose that 
specifications by a buyer of the thread are that the 
tensile strength of the material must be at least 62 
kilograms. The manufacturer is satisfied if at most 5% 
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of manufactured pieces have tensile strength less than 
62 kilograms. Is there cause for concern? This time 
use a one-sided 99%) tolerance limit that is exceeded 
by 95%) of the tensile strength values. 

9.33 Consider the drying time measurements in Ex
ercise 9.18. Suppose the 15 observations in the data 
se;t also included a 16th value of 6.9 hours. In the con

text of the original 15 observations, is the 16th value 
an outlier? Show work. 

9.34 Consider the data in Exercise 9.15. Suppose the 
manufacturer of the shearing pins insists that the Rock
well hardness of the product will be as low, or lower 
than a value: of 44.0 only 5%, of the time. What is your 
reaction? Use a tolerance limit calculation to deter
mine your judgment. 

9.8 Two Samples: Estimating the Difference 
between Two Means 

If we have two populations with means p\ and p2 and variances 07 and erf, re
spectively, a point estimator of the difference between p.\ and p2 is given by the 
statistic X\—X2. Therefore, to obtain a point estimate of p.\ — p2, we shall select 
two independent random samples, one: from each population, of size -ti\ and n2, and 
compute the difference X\ — x2, of the sample means. Clearly, we must consider 
the sampling distributions of Xj — X2. 

According to Theorem 8.3, we can expect the sampling distribution of X% — 
X2 to be approximately normally distributed with mean f*jp,_ j j . = ft] — p2 and 
s tandard deviation oXi_Xn — \fo\jii\ +o2/n2- Therefore, we can assert with a 
probability of 1 — n that the s tandard normal variable 

Z 
{Xi -X2) - (//,, -p2) 

\/o-2/»i + a\/n2 

will fall between —Za/2 and za/2. Referring once again to Figure 9.2. we write 

P{-za/2 < Z < Za/2) = 1 - a . 

Substituting for Z, we: s tate equivaleutly tha t 

P -: 
Xi -X2)- (/M -p2) \ 

= < Za/2 ) = 1 _ CV, 
\J a\l ni +a\/n2 

which leads to the following 100(1 — <v)% confidence interval for p\ — p2. 

Confidence If .i:t and x2 are means of independent random samples of sizes m and n2 

Interval for from populations with known variances a\ and a2, respectively, a 100(2 — a ) % 
P\ — P>\ a2 and confidence interval for p.\ — p2 is given by 

a2. Known 

(xi - x2) 
tar az , . 

za/2\l — + —<px- P2 < {xi - x a ) + z. 
" ill n2 

n / 2 V m + 

where za,-2 is the --value leaving an area of a / 2 to the right. 

The degree of confidence is exact when samples are selected from normal popu
lations. For nonnoriual populations the central limit theorem allows for a good 
approximation for reasonable size samples. 

file:///fo/jii/


9.8 Two Samples: Estimating the Difference between Two Means 289 

The Experimental Conditions and the Experimental Unit 

For the case of confidence interval estimation on the difference between two means, 
we need to consider the experimental conditions in the data-taking process. It is 
assumed that we have two independent random samples from distributions with 
means pi and p2, respectively. It is important that experimental conditions emu
late this "ideal" described by the assumptions as closely as possible. Quite often 
the experimenter should plan the strategy of the experiment accordingly. For al
most any study of this type, there is a so-called experimental unit, which is that 
part of the experiment that produces experimental error and is responsible for the 
population variance we refer to as a2. In a drug study, the experimental unit is 
the patient or subject. In an agricultural experiment, it may be a plot of ground. 
In a chemical experiment, it may be a quantity of raw materials. It is important 
that differences between these units have minimal impact on the results. The ex
perimenter will have a degree of insurance that experimental units will not bias 
results if the conditions that define the two populations are randomly assigned to 
the experimental units. We shall again focus on randomization in future chapters 
that deal in hypothesis testing. 

Example 9.9:1 An experiment was conducted in which two types of engines, A and B, were 
compared. Gas mileage, in miles per gallon, was measured. Fifty experiments 
were conducted using engine type A and 75 experiments were done for engine type 
B. The gasoline used and other conditions were held constant. The average gas 
mileage for engine A was 3G miles per gallon and the average for machine B was 42 
miles per gallon. Find a 96% confidence interval on pB ~PA, where PA and ps are 
population mean gas mileage for machines A and B, respectively. Assume that the 
population standard deviations arc 6 and 8 for machines A and B, respectively. 

Solution: The point estimate of PB — PA is XB — %A = 42 — 36 = 6. Using a = 0.04, we find 
zo.m = 2.05 from Table A.3. Hence with substitution in the formula above, the 
96%) confidence interval is 

or simply 3.43 < PB - PA < 8.57. J 
This procedure for estimating the difference between two means is applicable 

if a2 and a2 are known. If the variances are not known and the two distributions 
involved are approximately normal, the f-distribution becomes involved as in the 
case of a single sample. Hone is not willing to assume normality, large samples (say 
greater than 30) will allow the use of S\ and s2 in place of ai and a2, respectively, 
with the rationale that si re CTI, and ,s2 re a2. Again, of course, the confidence 
interval is an approximate one. 

Variances Unknown 

Consider the case where a2 and <r| are unknown. If a2 = a2 = a2, we obtain a 
standard normal variable of the form 

{Xi - X2) - (px - p2) 
Z = 

v/ff2[(l/ni) + ( l /n2)] 
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According to Theorem 8.4, the two random variables 

'"' -,"S? a„d OozM 
oz a2-

have chi-squared distributions with n\ — 1 and n2 — 1 degrees of freedom, respec
tively. Furthermore, they are independent chi-squared variables, since the random 
samples were selected independently. Consequently, their sum 

y = (m - 1)5? | (n2 - 1)52
2
 = (n, - 1)5? + (n2 - 1)52

2 

a2 a2 a2 

has a chi-squared distribution with v = n\ + n2 — 2 degrees of freedom. 
Since the preceding expressions for Z and V can be shown to be independent, 

it follows from Theorem 8.5 that the statistic 

(Xi - X2) ~ jpi - P2) , {ni-l)S$ + (;n2-\)S
2 

v/<72[(l/ni) + (l/n2)] ' V ff2(»i + "2 " 2) 

has the ^-distribution with v = ni + n2 — 2 degrees of freedom. 
A point estimate of the unknown common variance a2 can be obtained by 

pooling the sample variances. Denoting the pooled estimator by S2, we write 

Pooled Estimate 2 _ (m - 1)5? + (n2 - 1 )5 | 
of Variance br ~ n i + n 2 _ 2 ' 

Substituting S2 in the T statistic, we obtain the less cumbersome form as follows: 

T ^ (Xx - X2) - (pi - p2) 

S p v W m ) + (l/«2) ' 

Using the statistic T, we have 

Pi-ta/2 <T< ta/2) = l-a, 

where ta/2 is the t-value with nx + n2 — 2 degrees of freedom, above which we find 
an area of a /2 . Substituting for T in the inequality, we write 

, . JXx ~ x2) -jpi - P2) , . 

SPy/(l/ni) + (l/n2) 
= l - a . 

After performing the usual mathematical manipulations, the difference of the sam
ple means $i — x2 and the pooled variance are computed and then the following 
100(1 — a)% confidence interval for px - p2 is obtained. 

The value for s2 is easily seen to be a weighted average of the two sample 
variances s2 and s2, where the weights are the degrees of freedom. 
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Confidence 
Interval for 

Pi - P25 o\ = al 
but Unknown 

If xi and x2 are the means of independent random samples of sizes rti and 
n2, respectively, from approximate normal populations with unknown but equal 
variances, a 100(1 — Q ) % confidence interval for pi — p2 is given by 

(xx - x2) - tQ/2spJ h — < pi - p2 < (xx - x2) + ta/2SpJ— + —, 
' ¥ V 'M n2 ' y V «-i n2 

where sp is the pooled estimate of the population standard deviation and ta/2 

is the f-value with v = nx + n2 — 2 degrees of freedom, leaving an area of a/2 
to the right. 

Example 9.10:1 In the article "Macroinvertebrate Community Structure as an Indicator of Acid 
Mine Pollution" published in the Journal of Environmental Pollution, we are given 
a report on an investigation undertaken in Cane Creek, Alabama, to determine the 
relationship between selected physiochemical parameters and different measures 
of macroinvertebrate community structure. One facet of the investigation was an 
evaluation of the effectiveness of a numerical species diversity index to indicate 
aquatic degradation due to acid mine drainage. Conceptually, a high index of 
macroinvertebrate species diversity should indicate an unstressed aquatic system, 
while a low diversity index should indicate a stressed aquatic system. 

Two independent sampling stations were chosen for this study, one located 
downstream from the acid mine discharge point and the other located upstream. 
For 12 monthly samples collected at the downstream station the species diversity 
index had a mean value xi — 3.11 and a standard deviation sx = 0.771, while 
10 monthly samples collected at the upstream station had a mean index value 
x2 — 2.04 and a standard deviation s2 = 0.448. Find a 90% confidence interval for 
the difference between the population means for the two locations, assuming that 
the populations are approximately normally distributed with equal variances. 

Solution: Let p\ and p2 represent the population means, respectively, for the species diversity 
index at the downstream and upstream stations. We wish to find a 90% confidence 
interval for p\ — p2. Our point, estimate of pi — p2 is 

xx -x2 = 3 . 1 1 - 2 . 0 4 = 1.07. 

The pooled estimate, s2 of the common variance, a2, is 

(nx - l ) s 2 + (n2 - 1)4 (11)(0.7712) + (9)(0.4482) 
4 = ni + n2 — 2 12 + 1 0 - 2 

0.417. 

Taking the square root, we obtain sp = 0.646. Using a — 0.1, we find in Table A.4 
that fo.os = 1-725 for v = ni + n2 — 2 = 20 degrees of freedom. Therefore, the 90% 
confidence interval for p.j - p2 is 

1 . 0 7 - ( 1 . 7 2 5 ) ( 0 . 6 4 6 ) ^ + ^ < px - p2 

< 1,07+(1.725K0.(M(S)\/-L + -L 

which simplifies to 0.593 < p\ — p2 < 1.547. 



292 Chapter 9 One- and Two-Sample Estimation Problems 

Interpretation of the Confidence Interval 

For the case of a single parameter, the confidence interval simply produces error 
bounds on the parameter. Values contained in the interval should be viewed as 
reasonable values given the experimental data. In the case of a difference between 
two means, the interpretation can be extended to one of comparing the two means. 
For example, if we have high confidence that a difference p\ — p2 is positive, we 
would certainly infer that px > p2 with little risk of being in error. For example, in 
Example 9.10, wc are 90% confident that the interval from 0.593 to 1.547 contains 
the difference of the population means for values of the species diversity index at 
the two stations. The fact that both confidence limits are positive indicates that, 
on the average, the index for the station located downstream from the discharge 
point is greater than the index for the station located upstream. 

Equal Sample Sizes 

The procedure for constructing confidence intervals for pi — p2 with CTJ = o2 = a 
unknown requires the assumption that the populations are normal. Slight de
partures from either the equal variance or normality assumption do not seriously 
alter the degree of confidence for our interval. (A procedure is presented in Chap
ter 10 for testing the equality of two unknown population variances based on the 
information provided by the sample variances.) If the population variances are 
considerably different, we still obtain reasonable results when the populations are 
normal, provided that n\ = n2. Therefore, in a planned experiment, one should 
make every effort to equalize the size of the samples. 

Unequal Variances 

Let us now consider the problem of finding an interval estimate of pi — p2 when 
the unknown population variances are not likely to be equal. The statistic most 
often used in this case is 

T, _ JXx - X2) - (pi - p2) 

x/(5?/n1) + (52
2/n2) ' 

which has approximately a £-distri button with v degrees of freedom, where 

is2i/nx+sl/n2)
2 

" lisynx)2/{nx-l)} + [(s2/n2)
2/(n2-l)Y 

Since v is seldom an integer, we round it down to the nearest whole number. 
Using the statistic T', we write 

P(-tQ/2 < T' < ta/2) re 1 - a, 

where taj2 is the value of the f-distribution with v degrees of freedom, above which 
we find an area of a/2. Substituting for T' in the inequality, and following the 
exact steps as before, we state the final result. 
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Confidence If x\ and s2, and x2 and s2 are the means and variances of independent random 
Interval for samples of sizes m and n2, respectively, from approximate normal populations 

Pi — P2\ <r2 ¥" °~2 w l th unknown and unequal variances, an approximate 100(1 — o)% confidence 
and Unknown interval for pi — p2, is given by 

(ail -x2) - f Q / 2 \ / — + — < Pi - p2 < {xi -x2) + tQ/2\ — + -2-, 

where tQ/2 is the f-value with 

(jf/ni +s\/n2)
2 

l(s2/nx)2/(ni - 1)] + [(s2/n2f/(n2 - 1)] 

degrees of freedom, leaving an area a /2 to the right. 

Note that the value v above involves random variables and thus it represents an 
estimate of the degrees of freedom, In applications this estimate will not be a whole 
number, and thus the analyst must round down to the nearest integer to achieve 
desired confidence. 

Before we illustrate the confidence interval above with an example, we should 
point out that all the confidence intervals on pi — p2 are of the same general form 
as those on a single mean; namely, they can be written 

point estimate ± ta/2 sTe.(point estimate) 

or 

point estimate ± za/2 s.e.(point estimate). 

For example, in the case where &i = er2 = er, the estimated standard error of 
Si — x2 is Spy/l/nx + l /n 2 . For the case where a2 ^ o\. 

s.e.(.Ti - x2) = -*• + -*•. 
ni n2 

Example 9.11:1 A study was conducted by the Department of Zoology at the Virginia Polytechnic 
Institute and State University to estimate the difference in the amount of the chem
ical orthophosphorus measured at two different stations on the James River. Or-
thophosphorus is measured in milligrams per liter. Fifteen samples were collected 
from station 1 and 12 samples were obtained from station 2. The 15 samples from 
station 1 had an average orthophosphorus content of 3.84 milligrams per liter and 
a standard deviation of 3.07 milligrams per liter, while the 12 samples from station 
2 had an average content of 1.49 milligrams per liter and a standard deviation of 
0.80 milligram per liter. Find a 95% confidence interval for the difference in the 
true average orthophosphorus contents at these two stations, assuming that the 
observations came from normal populations with different variances. 

Solution: For station 1 we have xi = 3.84, s\ = 3.07, and ni = 15. For station 2, 5:2 = 1.49, 
s2 = 0.80, and n2 = 12. We wish to find a 95% confidence interval for pj — p2. 
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Since the population variances are assumed to be unequal, we can only find an 
approximate 95% confidence interval based on the ("-distribution with v degrees of 
freedom, where 

(3.072/15 + 0.802/12)2 _ i r o - i r 
1 [(3.072/15)2/14] + [(0.802/12)2/H] ~ 

Our point estimate of p\ - p2 is 

xx -x2 = 3.84 - 1 . 4 9 = 2.35. 

Using a = 0.05, we find in Table A.4 that £0.025 = 2.120 for v = 16 degrees of 
freedom. Therefore, the 95% confidence interval for pi — p2 is 

3.072 0.802 „ „ /3.072 0.802 

2.35 - 2.120^ - ^ - + -r^-<px-p2< 2.35 + 2.120^ " J g - + ,,, 

which simplifies to 0.60 < px — p2 < 4.10. Hence we are 95% confident that the 
interval from 0.60 to 4.10 milligrams per liter contains the difference of the true 
average orthophosphorus contents for these two locations. J 

9.9 Paired Observations 

At this point we shall consider estimation procedures for the difference of two 
means when the samples are not independent and the variances of the two popu
lations are not necessarily equal. The situation considered here deals with a very 
special experimental situation, namely that of paired observations. Unlike the sit
uation described earlier, the conditions of the two populations are not assigned 
randomly to experimental units. Rather, each homogeneous experimental unit re
ceives both population conditions; as a result, each experimental unit has a pair 
of observations, one for each population. For example, if we run a test on a new 
diet using 15 individuals, the weight before and after going on the diet form the 
information for our two samples. These two populations are '"before" and "after" 
and the experimental unit is the individual. Obviously, the observations in a pair 
have something in common. To determine if the diet is effective, we consider the 
differences dx,d2,... ,dn in the paired observations. These differences are the val
ues of a random sample Di,D2,... ,Dn from a population of differences that we 
shall assume to be normally distributed with mean pD = pi — p2 and variance a2

D. 
We estimate a2,, by s2

d, the variance of the differences that constitute our sample. 
The point estimator of pD is given by D. 

When Should Pairing Be Done? 

Pairing observations in an experiment is a strategy that can be employed in many 
fields of application. The reader will be exposed to this concept in material related 
to hypothesis testing in Chapter 10 and experimental design issues in Chapters 13 
and 15. By selecting experimental units that are relatively homogeneous (within 
the units) and allowing each unit to experience both population conditions, the 
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effective "experimental error variance" (in this case a2
D) is reduced.The reader 

may visualize that the ith pair consists of the measurement 

Di = Xu — X2i. 

Since the two observations are taken on the sample experimental unit, they are not 
independent and, in fact, 

Var(Di) = Var(Xu - X2i) =o\ + a\- 2Cov(Xu,X2i). 

Now, intuitively, it is expected that er2 should be reduced because of the similarity 
in nature of the "errors" of the two observations within an experimental unit, and 
this comes through in the expression above. One certainly expects that if the 
unit is homogeneous, the covariance is positive. As a result, the gain in quality 
of the confidence interval over that of not pairing will be greatest when there is 
homogeneity within units and large differences as one goes from unit to unit. One 
should keep in mind that the performance of the confidence interval will depend 
on the standard error of D, which is, of course, oD/\/n, where n is the number of 
pairs. As we indicated earlier, the intent of pairing is to reduce aD. 

Tradeoff between Reducing Variance and Losing Degrees of Freedom 

In comparing the paired confidence interval situation against that of the unpaired, 
it is apparent that there is a "tradeoff" involved. Although pairing should indeed 
reduce variance and hence reduce the standard error of the point estimate, the 
degrees of freedom are reduced by reducing the problem to a one-sample problem. 
As a result, the taj2 point attached to the standard error is adjusted accordingly. 
Thus pairing may be counterproductive. This would certainly be the case if one 
experiences only a modest reduction in variance (through er2) by pairing. 

Another illustration of pairing might involve the choice of n pairs of subjects 
with each pair having a similar characteristic, such as IQ, age, breed, and so on; 
then for each pair one member is selected at random to yield a value of X\, leaving 
the other member to provide the value of X2. In this case Xx and X2 might 
represent the grades obtained by two individuals of equal IQ when one of the 
individuals is assigned at random to a class using the conventional lecture approach 
while the other individual is assigned to a class using programmed materials. 

A 100(1 — Q ) % confidence interval for pD can be established by writing 

P(-ta/2 <T< ttt/2) = 1 - a, 

where T = D~^ and tn/2, as before, is a value of the ^-distribution with n — 1 
degrees of freedom. 

It is now a routine procedure to replace T by its definition in the inequality 
above and carry out the mathematical steps that lead to the following 100(1 — Q ) % 
confidence interval for pi — p2 = pD-



296 Chapter 9 One- and Two-Sample Estimation Problems 

Veteran 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

TCDD 
Levels in 
Plasma 

2.5 
3.1 
2.1 
3.5 
3.1 
1.8 
6.0 
3.0 

36.0 
4.7 

Table 9.1: Data for Example 9.12 

T C D D 
Levels in 

Fat Tissue 
4.9 
5.9 
4.4 
6.9 
7.0 
4.2 

10.0 
5.5 

41.0 
4.4 

di 
-2.4 
-2.8 
-2 .3 
-3.4 
-3 .9 
-2.4 
-4.0 
-2 .5 
-5.0 

0.3 

Veteran 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

TCDD 
Levels in 
Plasma 

6.9 
3.3 
4.6 
1.6 
7.2 
1.8 

20.0 
2.0 
2.5 
4.1 

TCDD 
Levels in 

Fat Tissue 
7.0 
2.9 
4.6 
1.4 
7.7 
1.1 

11.0 
2.5 
2.3 
2.5 

di 
-0 .1 

0.4 
0.0 
0.2 

-0 .5 
0.7 
9.0 

-0 .5 
0.2 
1.6 

Source: Schecter, A. et ai. "Partitioning of 2, 3, 7, 8-chlorinated clibenzo-p-dioxins and dibenzofurans between 
adipose tissue and plasma lipid of 20 Massachusetts Vietnam veterans," Chemosphere, Vol. 20, Nos. 7-9, 
1990, pp. 954-955 (Tables I and II). 

Confidence If d and Sd are the mean and standard deviation, respectively, of the normally 
Interval for distributed differences of n random pairs of measurements, a 100(1 — Q ) % con-

po = P\ — P2 for fidence interval for pD = px — p2 is 
Paired 

Observations Sd Sd 

' \/n ' -y/n 

where ta/2 is the ('-value with v = n — 1 degrees of freedom, leaving an area of 
a/2 to the right. 

Example 9.12:1 A study published in Chemosphere reported the levels of the dioxin TCDD of 20 
Massachusetts Vietnam veterans who were possibly exposed to Agent Orange. The 
amount of TCDD levels in plasma and in fat tissue are listed in the Table 9.1. 

Find a 95% confidence interval for pi — p2, where pi and p2 represent the true 
mean TCDD in plasma and in fat tissue, respectively. Assume the distribution of 
the differences to be approximately normal. 

Solution: We wish to find a 95% confidence interval for pi — p2. Since the observations 
are paired, p\ — p2 = pD. The point estimate of pD is d — —0.87. The standard 
deviation Srf, of the sample differences is 

— ^ g c * - - " > • -
168.4220 

19 
2.9773. 

Using a = 0.05 we find in Table A.4 that £0.025 = 2.093 for v = n - 1 = 19 degrees 
of freedom. Therefore, the 95% confidence interval is 

-0.8700 - (2.093) 
/2.9773X 

< -0.8700 + (2.093) 
/2 .9773\ 

I v ^ O / ' 



Exercises 297 

Exercises 

or .simply —2.2634 < //.,, < 0.5234. from which we can conclude that there- is no 

significant, difference between the mean T C D D level in plasma and the mean T C D D 

level in fat. tissue. J 

9.35 A random sample of size m = 25 taken from a 
normal population with a standard deviation <TI = 5 
has a mean $x = 80. A second random sample of size 
7)2 = 36, taken from a different normal population with 
a standard deviation a2 = 3, has a mean x2 = 75. Find 
a 94% confidence interval for p\ — /i2. 

9.36 Two kinds of thread are being compared for 
strength. Fifty pieces of each type of thread are tested 
under similar conditions. Brand A had an average: ten
sile strength of 78.3 kilograms with a standard devia
tion of 5.6 kilograms, while brand B had an average 
tensile strength of 87.2 kilograms with a standard de
viation of 6.3 kilograms. Construct a 95% confidence 
interval for the difference of the population means. 

9.37 A study was conducted to determine if a certain 
metal treatment has any effect on the amount of metal 
removed in a pickling operation. A random sample of 
100 pieces was immersed in a bath for 24 hours without 
the treatment, yielding an average of 12.2 millimeters 
of metal removed and a sample standard deviation of 
1.1 millimeters. A second sample of 200 pieces was 
exposed to the treatment, followed by the 24-hour im
mersion in the bath, resulting in an average: removal 
of 9.1 millimeters of metal with a sample standard de
viation of 0.9 millimeter. Compute a 98% confidence 
interval estimate for the difference between the popu
lation means. Docs the treatment appear to reduce the 
mean amount of metal removed? 

9.38 In a hatch chemical process, two catalysts arc 
being compared for their effect on the output of the 
process reaction. A sample of 12 batches was prepared 
using catalyst 1 and a sample of 10 batches was ob
tained using catalyst 2. The 12 batches for which cat
alyst 1 was used gave an average yield of 85 with a 
sample standard deviation of 4, and the second sample 
gave an average of 81 and a sample standard deviation 
of 5. Find a 90% confidence interval for the difference 
between the population means, assuming thai, the: pop
ulations art: approximately normally distributed with 
equal variances. 

9.39 Students may choose between a 3-semcstcr-hour 
course in physics without, labs and a 4-semester-liour 
course with labs. The final written examination is the 
same for each section. If 12 students in the section with 

labs made an average examination grade of 84 with a 
standard deviation of 4, and 18 students in the section 
without labs made an average: grade of 77 with a stan
dard deviation of 6, find a 99%. confidence interval for 
the difference between the average grades for the two 
courses. Assume the populations to be approximately 
normally distributed with equal variances. 

9.40 Ilia study conducted at (lie Virginia Polytechnic: 
Institute: and State University on the development of 
ectomycorrhizal. a symbiotic relationship between the 
roots of trees and a fungus in which minerals are trans
ferred from the fungus to the trees and sugars from the 
trees to the fungus, 20 northern red oak seedlings with 
the fungus Pisolithus tinctortts were grown in a green
house. All seedlings were planted in the same type of 
soil and received the same amount of sunshine and wa
ter. Half received no nitrogen at planting time: to serve 
as a control and the other half ree;eived 368 ppm of ni
trogen in the form NaNO:i. The stem weights, recorded 
in grams, at the end of 140 days were recorded as fol
lows: 

No Ni t rogen N i t r o g e n 
0.32 
0.53 
0.28 
0.37 
0.47 
0.43 
0.30 
0.42 
0.38 
0.43 

0.26 
0.43 
0.47 
0.49 
0.52 
0.75 
0.79 
0.86 
0.62 
0.46 

Construct a 95% confidence interval for the difference 
in the mean stem weights between seedlings that re
ceive no nitrogen and those: that receive 308 ppm of 
nitrogen. Assume the populations to be normally dis
tributed with equal variances. 

9.41 The: following data, recorded in days, represent 
the length of time to recovery for patients randomly 
treated with one of two medications to clear up severe 
bladder infections: 

Med ica t i on 1 Medica t ion 2 
ni = 14 
x'i = 17 
ai = 1.5 

112 = 16 

Xi = 19 
4 = 1.8 
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lows: 

Find a 99% confidence interval for the difference ft2—pi 
in the mean recovery time for the two medications, as
suming normal populations with equal variances. 

9.42 An experiment reported in Popular Science 
compared fuel economics for two types of similarly 
equipped diesel mini-trucks. Let us suppose that 12 
Volkswagen and 10 Toyota trucks are: used in 90-
kilometer per hour steady-spaced tests. If the 12 Volk
swagen trucks average 16 kilometers per liter with a 
standard deviation of 1.0 kilometer per liter and the 
10 Toyota trucks average 11 kilometers per liter with a 
standard deviation of 0.8 kilometer per liter, construct 
a 90% confidence interval for the difference between 
the average kilometers per liter of these two mini-
trucks. Assume that the distances per liter for each 
truck model are approximately normally distributed 
with equal variances. 

9.43 A taxi company is trying to decide: whether to 
purchase brand .4 or brand B tires for its fleet of taxis. 
To estimate the difference in the two brands, an exper
iment is conducted using 12 of each brand. The tires 
are run until they wear out. The results are 

Brand .4: xi — 36,300 kilometers, 
s\ = 5,000 kilometers. 

Brand B: x2 = 38,100 kilometers, 
s2 = 6.100 kilometers. 

Compute a 95% confidence interval for /I.A — pa as
suming the populations to be approximately normally 
distributed. You may not assume that the variances 
are equal. 

9.44 Referring to Exercise 9.43, find a 99% confidence 
interval for pi — p2 if a tire from each company is as
signed at random to the rear wheels of 8 taxis and the 
following distance, in kilometers, recorded: 

Taxi Brand A Brand B 
1 
2 
3 
4 
5 
6 
7 
8 

34.400 
45.500 
36,700 
32.000 
48,400 
32.800 
38.100 
30,100 

36.700 
46.800 
37.700 
31.100 
47.800 
36,400 
38,900 
31,500 

Assume that the differences of the distances are ap
proximately normally distributed. 

9.45 The government awarded grants to the agricul
tural departments of 9 universities to test the yield ca
pabilities of two new varieties of wheat. Each variety 
was planted on plots of equal area at each university 
and the yields, in kilograms per plot, recorded as fol-

University 

Variety 1 2 4 8 9 
1 38 23 35 41 44 29 37 31 38 
2 45 25 31 38 50 33 36 40 43 

Find a 95% confidence interval for the mean difference 
between the yields of the two varieties, assuming the 
differences of yields to be approximately normally dis
tributed. Explain why pairing is necessary in this prob
lem. 

9.46 The following data represent the running times 
of films produced by two motion-picture companies. 

Company Time (minutes) 
t 
II 

103 
97 

94 
82 

no 
123 

87 
92 

98 
175 88 118 

Compute a 90% confidence interval for the difference 
between the average running times of films produced by 
the two companies. Assume that the running-time dif
ferences are approximately normally distributed with 
unequal variances. 

9.47 From Fortune magazine (March 1997), 10 of the 
431 companies studied are listed below. The total re
turns for the 10 year's prior to 1996 and also for 1996 
are listed. Find a 95% confidence interval for the mean 
change in percent return to investors. 

Company 
Coca-Cola 
Mirage Resorts 
Merck 
Microsoft 
Johnson & Johnson 
Intel 
Pfizer 
Procter & Gamble 
Berkshire Hathawav 
S&P 500 

Total Return 
to Investors 

1986-96 
29.8% 
27.9% 
22.1% 
44.5% 
22.2% 
43.8% 
21.7% 
21.9% 
28.3% 
11.8% 

1996 
43.3% 
25.4% 
24.0% 
88.3% 
18.1% 

131.2% 
34.0% 
32.1% 
6.2% 

20.3% 

9.48 An automotive company is considering two 
types of batteries for its automobile. Sample infor
mation on the life of the battery is being used. Twenty 
batteries of type A and twenty batteries of type B are 
being used. The summary statistics are XA = 32.91, 
XB = 30.47, SA = 1-57, and SB — 1.74. Assume the 
data on each battery are normally distributed and as
sume a A = &B-

(a) Find a 95% confidence interval on PA — PB. 
(b) Draw some conclusion from (a) that provides some 

insight into whether A o r f i should be adopted. 
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9.49 Two different brands of latex paint are being-
considered for use. Drying time in hours is being mea
sured on specimen samples of the use of the two paints. 
Fifteen specimens for each were selected and the drying 
times are as follows: 

Pa in t A Pa in t B 
3.5 2.7 3.9 4.2 3.6 
2.7 3.3 5.2 4.2 2.9 
4.4 5.2 4.0 1.1 3.4 

4.7 3.D 4.5 5.5 4.0 
5.3 4.3 6.0 5.2 3.7 
5.5 6.2 5.1 5.4 4.8 

Assume the drying time is normally distributed with 
a A = VB- Find a 95% confidence interval on pn — PA 

where PA and /;« are mean drying times. 

9.50 Two levels (low and high) of insulin doses are 
given to two groups of diabetic rats tea check the insulin-
binding capacity, yielding the following data: 

Low dose:: Hi =8 X\ — 1.98 «i = 0.51 
High dose: n2 = 13 £ 2 = 1.30 8a = 0.35 

Assume that both variances are equal. Give a 95% 
confidence interval for the difference of the true aver
age insulin-binding capacity between two samples. 

9.10 Single Sample: Estimating a Proportion 

A point est imator of the proportion p in a binomial experiment is given by the 
statistic P = X/n, where X represents the number of successes in n trials. There
fore, the sample proportion p = x/n will be used as the pom! estimate of the 
parameter /;. 

If the unknown proportion p is not expected to be too close to zero or 1. we 
can establish a confidence interval for p by considering the sampling distr ibution 
of P. Designating a failure in each binomial trial by the value 0 and a success by 
the value 1, the number of successes, x, can be interpreted as the sum of n values 
consisting only of zeros and ones, and p is just the sample mean of these it values. 
Hence, by the central limit theorem, for n sufficiently large, P is approximately 
normally distributed with mean 

pp = E(P) = E 
X up 

= P 

and variance 

2 2 _ °~x _ "P'l _ PQ 

Therefore, we can assert that 

P(-za/2 < Z < zn/2) = 1 - a, 

Aievc 

Z = 
P-p 

s/pq/' 

and za/2 is the value of the s tandard normal curve above which we find an area of 
a/2. Subst i tut ing for Z, we write 

( P-P \ 
P -Za/2 < —j== < za/2 = 1 - a. 

V vWn / 
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Multiplying each term of the inequality by y/pq/n, and then subtracting P and 
multiplying by —1, we obtain 

?<»<'+v.,/5i--* 
It is difficult to manipulate the inequalities so as to obtain a random interval whose 
end points are independent of p, the unknown parameter. When n is large, very 
little error is introduced by substituting the point estimate p = x/n for the p under 
the radical sign. Then we can write 

P\P-zal2^<p<P + za/2^jS\^l-a. 

For our particular random sample of size n, the sample proportion p = x/n is 
computed, and the following approximate 100(1 — a)% confidence interval for p is 
obtained. 

Large-Sample If p is the proportion of successes in a random sample of size n, and q = 1 — p, 
Confidence an approximate 100(1 — a)% confidence interval for the binomial parameter p 

Interval for p is given by 

P9 ^ ^ . , Iffl 
— <p<p + za/2\ —, 
n ' V n 

where za/2 is the g-yalue leaving an area of o/2 to the right. 

When n is small and the unknown proportion p is believed to be close to 0 or to 
1, the confidence-interval procedure established here is unreliable and, therefore, 
should not. be used. To be on the safe side, one should require both np or nq 
to be greater than or equal to 5. The method for finding a confidence interval 
for the binomial parameter p is also applicable when the binomial distribution is 
being used to approximate the hypergeometric distribution, that is, when n is small 
relative to N, as illustrated by Example 9.13. 

Example 9.13:1 In a random sample of n = 500 families owning television sets in the city of 
Hamilton, Canada, it is found that x = 340 subscribed to HBO. Find a 95% 
confidence interval for the actual proportion of families in this city who subscribe 
to HBO. 

Solution: The point estimate of p is p = 340/500 = 0.68. Using Table A.3, we find that 
zo.025 = 1-96. Therefore, the 95% confidence interval for p is 

which simplifies to 0.64 < p < 0.72. J 
If p is the center value of a 100(1 - a)% confidence interval, then p estimates p 

without error. Most of the time, however, /; will not be exactly equal to p and the 
point estimate is in error. The size of this error will be the positive difference that 
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separates p and p, and wc can be 100(1 — o)% confident that this difference will 
not exceed zai2 y/pq/n. We can readily see this if we draw a diagram of a typical 
confidence: interval as in Figure 9.6. 

Error 

A /A A 

P -ZaizVP qtn 
A 

P P+z, •a/2Vp Q'n 

Figure 9.6: Error in estimating p by p. 

Theorem 9.3: If -p is used as an estimate of p, we can be 100(1 — a)% confident that the error 
will not exceed za/2y/pq/n. 

In Example 9.13 we are 95%. confident that the sample proportion p = 0.68 
differs from the true proportion p by an amount not exceeding 0.04. 

Choice of Sample Size 

Let us now determine how large a sample is necessary to ensure that the error in 
estimating p will be less than a specified amount e. By Theorem 9.3, this means 
we must choose n such that z„/2 y/pq/n = e. 

Theorem 9.4: If p is 
will be 

used as an 
less than a 

estimate of p, we 
specified amount 

n = 

can be 100( 
e when the s 

*l/m 
e2 ' 

l—,ot)% confident that the error 
ample size is approximately 

Theorem 9.4 is somewhat misleading in that we must use p to determine the 
sample size n, but p is computed from the sample. If a crude estimate of p can 
be made without taking a sample, this value can be used to determine n. Lacking 
such an estimate, we could take a preliminary sample of size n > 30 to provide an 
estimate of p. Using Theorem 9.4 we could determine approximately how many 
observations are needed to provide the desired degree of accuracy. Note that frac
tional values of n arc rounded up to the next whole number. 

Example 9.14:1 How large a sample is required in Example 9.13 if we want to be 95% confident 
that our estimate of/; is within 0.02? 

Solution: Let us treat the 500 families as a preliminary sample providing an estimate p = 0.68. 
Then, by Theorem 9.4, 

(1.96)2 (0.68) (0.32) 

"'= — ^ a o 2 ) ^ — = 2 0 8 9 - 8 ~ 2 0 9 ° -
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Therefore, if we base our estimate of p on a random sample of size 2090, wc can be 
95% confident that our sample proportion will not differ from the true proportion 
by more than 0.02. J 

Occasionally, it will be impractical to obtain an estimate of p to be used for 
determining the sample size for a specified degree of confidence. If this happens, 
an upper bound for n is established by noting that pq = p(l — /5), which must be 
at most equal to 1/4, since p must lie between 0 and 1. This fact may be verified 
by completing the square. Hence 

P(l - P) = - ( / r - P ) = ~ ~ (P* ~P+ ~) = - ~ l P ~ -

which is always less than 1/4 except when p = 1/2 and then pq = 1/4. Therefore, 
if we substitute p = 1/2 into the formula for n in Theorem 9.4, when, in fact, p 
actually differs from 1/2, then n will turn out to be larger than necessary for the 
specified degree of confidence and as a result our degree of confidence will increase. 

Theorem 9.5: If p is used as an estimate of p, we can be at least 100(1 - o)% confident that 
the error will not exceed a specified amount e when the sample size is 

~2 
Za/2 

" = 4 ^ -

Example 9.15:1 How large a sample is required in Example 9.13 if we want to be at least 95% 
confident that our estimate of p is within 0.02? 

Solution: Unlike Example 9.14. wc: shall now assume that no preliminary sample has been 
taken to provide an estimate of p. Consequently, we can be at least 95% confident 
that our sample proportion will not differ from the true proportion by more than 
0.02 if we choose a sample of size 

- - <L 9 6»2 = 2 4 0 , . 
(.1)(0.(I2)2 

Comparing the results of Examples 9.14 and 9.15, information concerning p. pro
vided by a preliminary sample, or perhaps from past experience, enables us to 
choose a smaller sample while maintaining our required degree of accuracy. _l 

9.11 Two Samples: Estimating the Difference between 
Two Proportions 

Consider the problem where we wish to estimate the difference between two bi
nomial parameters p\ and p2. For example, we might let p\ be the proportion of 
smokers with lung cancer and p2 the proportion of nonsmokers with lung cancer. 
Our problem, then, is to estimate the difference between these two proportions. 
First, we select independent random samples of size nx and 712 from the two bi
nomial populations with means niPi and n2p2 and variances nxPx°x a n d n2p2q2, 
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respectively, then determine the numbers x\ and x2 of people in each sample with 
lung cancer, and form the proportions px — xx/n, and p2 = x2/n. A point estima
tor of the difference between the two proportions, pi — p2, is given by the statistic 
Pi — P2. Therefore, the difference of the sample proportions, px — p2, will be used 
as the point estimate of pi — p2. 

A confidence interval for pi — p2 can be established by considering the sam
pling distribution of Pi — P2. From Section 9.10 we know that A and P2 are each 
approximately normally distributed, with means pi and p2 and variances pxqx/n-x 
and p2q2/n2, respectively. By choosing independent samples from the two popula
tions, the variables Pi and P2 will be independent, and then by the reproductive 
property of the normal distribution established in Theorem 7.11, we conclude that 
Pi — P2 is approximately normally distributed with mean 

P p j - p , = P i - P 2 

and variance 

2 _ Plgl P2(?2 
A - A ni n2 

Therefore, we can assert that 

P( -2a /2 < Z < Za/2) = 1 - Q', 

where 

z_ ( A - P 2 ) - ( P 1 - P 2 ) 

\ /Pi9i /ni +p2q2/n2 ' 

and zay2 is a value of the standard normal curve above wdiich we find an area of 
a /2 . Substituting for Z, we write 

„ ( P i - P 2 ) - ( p i - p 2 ) „ 
-Za/2 < / , , , - < Zct/2 

y/PiQx/nx +p2q2/n2 
= 1 - a. 

After performing the usual mathematical manipulations, we replace pi, p2, Qi, 
ande72 under the radical sign by their estimates pi = xi/ni,p2 = x2/n2, qx = 1—pi, 
and 92 = 1 — p2, provided that n-ipi, nitji, U2p2. and r).2e72, are all greater than 
or equal to 5, and the following approximate 100(1 — Q ) % confidence interval for 
Pi — P2 is obtained. 

Large-Sample If pi and p~2 are the proportions of successes in random samples of size n-i and 
Confidence n2, respectively, qi = 1 —pi, and 172 = 1 — p2, an approximate 100(1 — Q ) % 
Interval for confidence interval for the difference of two binomial parameters pi — P2. is 

Pi - P2 given by 

, - . x Pill . P292 . 
(pi - p2) - za/2 d 1 < Pi - P2 

" nx n2 ^ t- - i , P1^1 , P2(l2 

< Pi -P2) + Za/2 \ + , 

' V nx n2 

wdiere za/2 is the 3-value leaving an area of a/2 to the right. 
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E x a m p l e 9.16:1 A certain change in a. process for manufacture of component parts is being con
sidered. Samples are taken using both the existing and the: new procedure so as 
to determine if the new process results in an improvement. If 75 of 1500 items 
from the existing procedure were found to be defective and 80 of 2000 items from 
the new procedure were found to be defective, find a, 90%: confidence interval for 
the t rue difference in the fraction of defectives between the existing and the new 
process. 

Solution: Let p\ and p2 be the true proportions of defectives for the existing and new proce
dures, respectively. Hence ;3, = 75/1500 = 0.05 and f>2 = 80/2000 = 0.04, and the 
point estimate of pi — p2 is 

px - p2 = 0 . 0 5 - 0 . 0 4 = 0.01. 

Using Table A.3, we find Zo.oa = 1.645. Therefore, substi tuting into the formula, 
with 

/(0.05)(0.95) (0.04)(0.96) 

V 1500 2000 

we: obtain the 90%, confidence interval to be -0 .0017 < p\ -p2 < 0.0217. Since the 
interval contains the value 0, there is no reason to believe that the new procedure 
produced a significant decrease in the: proportion of defectives over the existing 

method, J 
Up to this point all confidence intervals presented were of the form 

Exercises 

point estimate ± K s.e.(point estimate), 

where K is a constant (cither t or normal percent point). This is the case when the 
parameter is a mean, difference between means, proportion, or difference between 
proportions, due to the symmetry of the /. and Z distributions. However, it does 
not, extend to variances and ratios of variances that will be discussed in Sections 
9.12 and 9.13. 

9.51 (a) A random .sample of 200 voters is selected 
and 114 are found to support, an annexation suit. 
Find the 96% confidence interval for the fraction of 
the voting population favoring the suit. 

(b) What can we assert with 90% confidence about the 
possible size of our error if we estimate the fraction 
of voters favoring the annexation suit to be 0.57? 

9.52 A manufacturer of compact disk players uses a 
set of comprehensive tests to access the electrical func
tion of its product. All compact disk players must pass 
all tests prior to being sold. A random sample of 500 
disk players resulted in 15 failing one or more tests. 

Find a 90% confidence intt 
compact disk players from 
tests. 

tcrval for the proportion of 
the: population that pass all 

9.53 In a random sample of 1000 homes in a certain 
city, it is found that 228 are heated by oil. Find the 
99%, confidence interval for the: proportion of homes in 
this city that are heated by oil. 

9.54 Compute a 98% confidence interval for the pro
portion of defective items in a process when it is found 
that a sample of si^e 100 yields 8 defectives. 
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9.55 A new rocket-launching system is being consid
ered for deployment of small, short-range rockets. The 
existing system has p = 0.8 as the probability of a suc
cessful launch. A sample of 40 experimental launches 
is made with the new system and 34 are successful. 

(a) Construct a 95% confidence interval for p. 

(b) Would you conclude that the new system is better? 

9.56 A geneticist is interested in the proportion of 
African males that have a certain minor blood disor
der. In a. random sample of 100 African males, 24 are 
found to be afflicted. 

(a) Compute a 99% confidence interval for the propor
tion of African males that have this blood disorder. 

(b) What can we assert with 99% confidence about the 
possible size of our error if we estimate the propor
tion of African males with this blood disorder to be 
0.24? 

9.57 (a) According to a report in the Roanoke Times 
& World-News, approximately 2/3 of the 1600 
adults polled by telephone said they think the space 
shuttle program is a good investment for the coun
try. Find a 95% confidence interval for the propor
tion of American adults who think the space shuttle 
program is a good investment for the country. 

(b) What can we assert with 95% confidence about the 
possible size of our error if we estimate the propor
tion of American adults who think the space shuttle 
program is a good investment to be 2/3? 

9.58 In the newspaper article referred to in Exercise 
9.57, 32% of the 1600 adults polled said the U.S. space 
program should emphasize scientific exploration. How 
large a sample of adults is needed in the poll if one 
wishes to be 95% confident that the estimated per
centage will be within 2% of the true percentage? 

9.59 How large a sample is needed in Exercise 9.51 
if we wish to be 96% confident that our sample pro
portion will be within 0.02 of the true fraction of the 
voting population? 

9.60 How large a sample is needed in Exercise 9.53 if 
wo wish to be 99% confident that our sample propor
tion will be within 0.05 of the true proportion of homes 
in this city that are heated by oil? 

9 .61 How large a sample is needed in Exercise 9.54 if 
we wish to be 98% confident that our sample propor
tion will be within 0.05 of the true proportion defec
tive? 

9.62 A study is to be made to estimate the percent
age of citizens in a town who favor having their water 
fluoridated. How large a sample is needed if one wishes 

to be at least 95% confident that our estimate is within 
1% of the true percentage? 

9.63 A conjecture by a faculty member in the micro
biology department at Washington University School 
of Dental Medicine in St. Louis states that a couple 
of cups of either green or oolong tea each day will pro
vide sufficient fluoride to protect your teeth from de
cay. How large a sample is needed to estimate the 
percentage of citizens in a certain town who favor hav
ing their water fluoridated if one wishes to be at least 
99% confident that the estimate is within 1% of the 
true percentage? 

9.64 A study is to be made to estimate the propor
tion of residents in a certain city and its suburbs who 
favor the construction of a nuclear power plant. How 
large a sample is needed if one wishes to be at least 
95% confident that the estimate is within 0.04 of the 
true proportion of residents in this city and its suburbs 
that favor the construction of the nuclear power plant? 

9.65 A certain geneticist is interested in the propor
tion of males and females in the population that have 
a certain minor blood disorder. In a random sample 
of 1000 males, 250 are found to be afflicted, whereas 
275 of 1000 females tested appear to have the disorder. 
Compute a 95% confidence interval for the difference 
between the proportion of males and females that have 
the blood disorder. 

9.66 Ten engineering schools in the United States 
were surveyed. The sample contained 250 electrical 
engineers, 80 being women; 175 chemical engineers, 
40 being women. Compute a 90% confidence inter
val for the difference between the proportion of women 
in these two fields of engineering. Is there a significant 
difference between the two proportions? 

9.67 A clinical trial is conducted to determine if a 
certain type of inoculation has an effect on the inci
dence of a certain disease. A sample of 1000 rats was 
kept in a controlled environment for a period of 1 year 
and 500 of the rats were given the inoculation. Of the 
group not given the drug, there were 120 incidences 
of the disease, while 98 of the inoculated group con
tracted it. If we call pi the probability of incidence of 
the disease in uninoculated rats and p2 the probability 
of incidence after receiving the drug, compute a 90% 
confidence interval for pi — p2. 

9.68 In a study. Germination and Emergence of Broc
coli, conducted by the Department of Horticulture at 
Virginia Polytechnic Institute and State University, a 
researcher found that at 5CC, 10 seeds out of 20 germi
nated, while at 15CC, 15 out of 20 seeds germinated. 
Compute a 95% confidence interval for the difference 
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between the proportion of germination at the two dif
ferent temperatures and decide if there is a significant 
difference. 

9.G9 A survey of 1000 students concluded that 274 
students chose a professional baseball team. .4. as his 
or her favorite team. In 1991, the same survey was con
ducted involving 760 students. It concluded that 240 
eif them also chose team A as their favorite. Compute a 
95% confidence interval for the difference between the 
proportion oT students favoring team .4 between the 
two surveys. Is there a significant difference? 

9.70 According to <7S'.4 Today (March 17. 1997), 
women made up 33.7% of the editorial staff at. local 
TV stations in 1990 and 36.2% in 1994. Assume 20 
new employees were: hired as editorial staff. 
(a) Estimate the number that would have been women 

in each year, respectively. 
(b) Compute a 95% confidence interval to see if there is 

evidence that the proportion of women hired as ed
itorial stall' in 1994 was higher than the proportion 
hired in 1990. 

9.12 Single Sample: Estimating the Variance 

If a sample size of n is drawn from a normal population with variance a2, and 
the sample variance s2 is computed, we obtain a value of the statistic S2. This 
computed sample variance will be used as a point estimate of a2. Hence the statistic 
S2 is called an estimator of a2. 

An interval estimate of a2 can be established by using the statistic 

X 
•2 (n-l)S2 

According to Theorem 8.4, the statistic A'2 has a chi-squared distribution with 
n — 1 degrees of freedom when samples arc chosen from a normal population. We 
may write (see Figure 9 7 ) 

P ( A " - O / 2 < A ' 2 < ^ / 2 ) = 1 - « ' 

where x\-a/2
 a n ^ X2

a/2
 a r e values of the chi-squared distribution with n— 1 degrees 

of freedom, leaving areas of 1 —a/2 and a / 2 , respectively, to the right. Substituting 
for X2, we write 

„ ( » - l ) 5 2 ^ 2 

Xl-a/2 "̂  2 Vv/2 = I - a. 

Dividing each term in the inequality by (n — 1 )S 2 , and then inverting each term 
(thereby changing the sense of the inequalities), we obtain 

(n - 1)S2
 a (u-l)S2 

< a < — x 
Y 2 

Xl-a/I 
= 1-Q!, 

For our particular random sample of size n, the .sample variance s2 is computed, 
and the following 100(1 — a)% confidence interval for cr2 is obtained. 
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Figure: 9.7: P( v2 < A'2 < v;2 ) = , _ a . 

Confidence If S is the variance of a random sample of size: n from a normal population, a 
Interval for er2 100(1 — ot)% confidence interval for tr2 is 

( n - l ) . s 2 _ , ^ (n-l)s* 
< a < • — T ; , 

Y 2 

Art/2 
X I - Q / 2 

where: Xa/2
 a n d -Y.'i_,> •'•' a r c X -values with v = n — 1 degrees of freedom, leaving 

areas of a /2 and 1 — a/2 , respectively, to the right. 

An approximate 100(1 — n)% confidence interval for er is obtained by taking the 
square root of each endpoint of the interval for a2. 

Example 9.17:1 The following are the weights, in decagrams, of 10 packages of grass seed distributed 
by a. certain company: 46.4, 46.1, 45.8, 47.0, 46.1, 45.9, 45.8, 46.9, 45.2, and 46.0. 
Find a 95% confidence interval for the variance of all such packages of grass seed 
distributed by this company, assuming a normal population. 

Solution: First we find 

n£z?-(X» 2 

; = 1 i=l 

n(n- 1) 
(10)(21. 273.12)- (4G1.2)2 

(10)(9) 
0.286. 

To obtain a 95%, confidence interval, we choose a = 0.05. Then, using Table 
A.5 with v = 9 degrees of freedom, we find X0.025 = 19.023 and A'u.975 = 2.700. 
Therefore, the 95%: confidence interval for a2 is 

(9)(0.286) o (9)(0.286) 
19.023 "" 2.700 ' 

or simply 0.135 < a1 < 0.953. J 
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Two Samples: Estimating the Ratio of Two Variances 

A point estimate of the ratio of two population variances o'j/a2 is given by the ratio 
s\/s\ of the sample variances. Hence the statistic S2/S2 is called an estimator of 
al/al } 

If a\ and a\ are the variances of normal populations, we can establish an 
interval estimate of a\/a\ by using the statistic 

„ °$s2 

arSr, 

According to Theorem 8.8, the random variable F has an F-distribution with 
Vi — n\ — I and v2 — vt2 — 1 degrees of freedom. Therefore, we may write (see 
Figure 9.8) 

P{fx-a/iivx,v2) < F < fQ/2(vx,v2)] = 1 - a. 

where fx-a/ii^U '<-!2) and ftt/2{i'i'V2) arc the values of the F-distribution with Vx 
and t'2 degrees of freedom, leaving areas of 1 — ct/2 and a /2 , respectively, to the 
right. Substituting for F. we write 

P 
a2S2 

/ l -«/2( f , l -1 '2) < - | -=J < fa/2ivtiV2) 
T a2S2 1 - a. 

Multiplying each term in the inequality by S2/S2, and then inverting each term 
(again changing the sense of the inequalities), we obtain 

P 
a2 S2 

< - 3 < aS S2 fa/2(vx,V2) ar, S2 / ,_, t/2(vi,v2) 
= 1 - a. 

The results of Theorem 8.7 enable us to replace the quantity fx-a/2ivi>v2) by 
1/fa/2(v2,V]). Therefore, 

P Si I 
S2 fa/2{m, v2) a\ St 

••> ,.2 
al bX J! I \ 

< zs < -&Lfiin,vx) 
1 - a . 

For any two independent random samples of size nx and n2 selected from two 
normal populations, the ratio of the sample variances sj/s2, is computed and the 
following 100(1 — a)% confidence interval for a2/a2, is obtained. 

Confidence If s\ and Sj are the variances of independent samples of size »i and n2, re-
Interval for a2/a2 spectively, from normal populations, then a 100(1 — a)% confidence interval for 

2 / 2 • 
0\/02 IS 

< ~k < 4/a/a(«3i»l) i 
s\ fa/2ivx,V2) ar, 

where fa/2{vx,v2) is an /-value with v\ = ii\ — 1 and v2 = n2 — 1 degrees of 
freedom leaving an area of a /2 to the right, and fa/2iv2> <-'i) is a similar /-value 
with v2 = i>2 — I arid v\ = nx — 1 degrees of freedom. 
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'1 - o H (r,'2 

Figure 9.8: P[/i_Q/2(vi,V2) < F < / , / 2 ( " i , r2)] = 1 - a. 

As in Section 9.12. an approximate 100(1 — a)% confidence interval for oi/a2 is 
obtained by taking the square root of each cndpoint of the interval for a2/a2,. 

Example 9.18:1 A confidence interval for the difference in the mean orthophosphorus contents, 
measured in milligrams per liter, at two stations on the James River was con
structed in Example 9.1 I on page 293 by assuming the normal population variance 
to be unequal. Justify this assumption by constructing a 98% confidence interval 
for a\/a2 and for a\/a2, where a\ and a2 are the variances of the populations of 
orthophosphorus contents at station I and station 2, respectively, 

Solution: Prom Example 9.11, wc: have nx = 15, n2 = 12, s\ = 3.07, and s2 = 0.80. 
For a 98% confidence interval, a = 0.02. Interpolating in Table A.6, we find 
/o.oi (14, U) fts 4.30 and /o.oi(ll, 14) w 3.87. Therefore, the 98%. confidence interval 
for a\/a\ is 

3.(J7-

0.802 
1 

430 
< <S(3.87), 

0.802^ " 

which simplifies to 3.425 < ^i < 56.991. Taking square roots of the confidence 
limits, we: find that a 98%; confidence interval for ai/a2 is 

1.851 < — < 7.549. 
0*2 

Since this interval does not allow for the- possibility of Oi/a2 being equal to 1, we 

were correct in assuming that ai ^ a-., or a2 •£ a\ in Example 9.11. J 
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9.71 A manufacturer of car batteries claims that his 
batteries will last, on average, 3 years with a variance 
of 1 year. If 5 of these batteries have lifetimes of 1.9, 
2.4, 3.0, 3.5, and 4.2 years, construct a 95% confidence 
interval for a2 and decide if the manufacturer's claim 
that a" = 1 is valid. Assume the population of battery 
lives to be approximately normally distributed. 

9.72 A random sample of 20 students obtained a 
mean of x = 72 and a variance of s~ = 16 on a college 
placement, test in mathematics. Assuming the scores 
to be normally distributed, construct a 98% confidence 
interval for o~. 

9.73 Construct, a 95% confidence interval for a in 
Exercise 9.12 on page 286. 

9.74 Construct a 99% confidence interval for er in 
Exercise 9.13 on page 286. 

9.75 Construct a 99%. confidence intcrvi 
crcise 9.14 on page 286. 

for a in Ex-

9.76 Construct: a 90%. confidence interval for ex in Ex
ercise 9.15 on page 286. 

9.77 Construct a 98% confidence interval for oi/aj 
in Exercise 9.42 on page 298, where <7i and o2 are, 
respectively, the standard deviations for the distances 
obtained per liter of fuel by the Volkswagen and Toyota 
mini-trucks. 

9.78 Construct a 90% confidence interval for a\ja\ in 
Exercise 9.43 on page 298. Were we justified in assum
ing that a\ ^ a2 when we constructed our confidence 
interval for /ii — p2? 

9.79 Construct a 90% confidence interval for aj/rr]t 

in Exercise 9.46 on page 298. Should we have assumed 
ai = of/ in constructing our confidence interval for 
/ ' ; - / ' ; ;? 

9.80 Construct a 95% confidence interval for ex^/er^ 
in Exercise 9.49 on page 298. Should the equal-variance 
assumption be used? 

9.14 Maximum Likelihood Estimation (Optional) 

Often the estimators of parameters have been those that, appeal to intuition. The 
estimator X certainly seems reasonable as an est imator of a population mean p. 
The virtue of S2 as an estimator of a2 is underscored through the discussion of 
unbiasedness in Section 9.3. The estimator for a binomial parameter p is merely 
a sample proportion, which of course is an average and appeals to common sense. 
But there are many situations in which it is not at all obvious what the proper 
estimator should be. As a result, there is much to be learned by the student 
in statistics concerning different philosophies tha t produce different methods of 
estimation. In this section we deal with the m e t h o d of m a x i m u m l ike l ihood . 

Maximum likelihood estimation represents one of the most, important approaches 
to estimation in all of statistical inference. We will not give a thorough develop
ment of the method. Rather, we will a t t empt to communicate the philosophy of 
maximum likelihood and illustrate with examples tha t relate to other estimation 
problems discussed in this chapter. 

The Likelihood Function 

As the name implies, the method of maximum likelihood is that for which the like
lihood function is maximized. The likelihood function is best illustrated through 
the use of an example with a discrete distribution and a single parameter. Denote 
by Xi, X2,..., X„ the independent, random variables taken from a discrete prob
ability distribution represented by f(x, 9), where 9 is a single parameter of the: 
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distribution. Now 

L(.r,i, x2,..., x„; 8) = /(:e.'i, :i:2, . . . . x„; (?) 

= f{xx,8)f(x2,8)--.f{xn,8) 

is the joint distribution of the random variables. This is often referred to as the 
likelihood function. Note that the variable of the likelihood function is 9, not the x. 
Denote by xi, x2,.... xn the observed values in a sample. In the case of a discrete 
random variable the interpretation is very clear. The quantity L(xx, x2,..., xn; 9), 
the likelihood, of the sample, is the following joint probability: 

P(Xi=xi.X2=x2....,X„=x„\0). 

which is the probability of obtaining the sample values x\.x2,... ,xn. For the 
discrete case the maximum likelihood estimator is one that results in a maximum 
value for this joint probability or maximizes the likelihood of the sample. 

Consider a fictitious example where three items from an assembly line are in
spected. The items are ruled either defective or nondefective and thus the Bernoulli 
process applies. Testing the three items results in two nondefective items followed 
by a. defective item. It is of interest to estimate p, the proportion nondefective in 
the process. The likelihood of the sample for this illustration is given by 

.3 
p.p.q = p q V 

where q = 1 — p. Maximum likelihood estimation would give an estimate of p for 
which the: likelihood is maximized. It is clear that if we differentiate the likelihood 
with respect to p, set the derivative to zero, and solve, wc: obtain the value 

9 

? 3 = 3 -

Now, of course, in this situation p = 2/3 is the sample: proportion defective 
and is thus a reasonable estimator of the probability of a defective. The reader 
slienikl attempt to understand that the philosophy of maximum likelihood estima
tion evolves from the notion that the reasonable estimator of a parameter based 
on sample information is that parameter value that produces tin largest probability 
of obtaining the sample. This is, indeed, the interpretation for the discrete case, 
since the likelihood is the probability of jointly observing the values in the sample. 

Xow. while the interpretation of the likelihood function as a joint, probability 
is confined to the discrete case, the notion of maximum likelihood extends to the 
estimation of parameters of a continuous distribution. We now present a formal 
definition of maximum likelihood estimation. 

Definition 9.3: Given independent observations x.i,x2,... ,xu from a probability density func
tion (continuous case) or probability mass function (discrete case) f(x,\0), the 
maximum likelihood estimator 8, is that which maximizes the likelihood function 

L(xx,x2,...,xn;8) = f(xx,8)fix2,8)---f(xnt8). 

Quite often it, is convenient to work with the natural log of the likelihood 
function in finding the maximum of the likelihood function. Consider the following 
example dealing with the parameter p of a Poisson distribution. 



312 Chapter 9 One-and Two-Sample Estimation Problems 

Example 9.19:1 Consider a Poisson distribution with probability mass function 

f{x\p)=E—£- a;-0,1,2, 

Suppose that a random sample x\,x2,...,x„ is taken from the distribution. What 
is the maximum likelihood estimate of pi 

Solution: The likelihood function is 

Lixx ,x2 x„; p) = YI fixi\u) = -=5 j -—j 
,:=i ll»=i-1'-

Now consider 

n 

\nL(x,i,x2,...,xn;p) - —np + ^ Xj hi p - l n j ^ a : , ! 
i=[ 

n 

i.= I i-1 

d In L(xx,x2,...,xn;p) 

di1 r-f P-» = i 

Solving for p, the maximum likelihood estimator involves setting the derivative to 
zero and solving for the parameter. Thus 

n 

p= > — = X. 

f-f n 
i = i 

Since p is the mean of the Poisson distribution (Chapter 5), the sample average 

would certainly seem like a reasonable estimator. J 
The following example shows the use of the method of maximum likelihood for 

finding estimates of two parameters. We simply find the values of the parameters 
that maximize (jointly) the likelihood function. 

Example 9.20:1 Consider a random sample xx,x2,... ,xn from a normal distribution N(p,a). Find 
the maximum likelihood estimators for p and er2. 

Solution: The likelihood function for the normal distribution is 

L(xi,x2,...,xn;p,a2) = ^ J ^ ^ exp j - | g ( ^ ) 

Taking logarithms gives us 

1 " / \ ' 
\\\L(xi,x2,...,xn;p,a2) = - - ln(27t) - T^hier2- - ^ (——^ j 

j = 1 \ G J 

Hence 

c91nL _ Y ^ (xi — P 
dp =4-i \ a 

! = 1 
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and 

dhxL n 1 >—>. 2 

" e ^ 2 " = -2o~2 + 2^)2 2>'';'' - ll> 
1 = 1 

Setting both derivatives to zeroes, we obtain 

2~] Xj — np = 0 and no2 = 2_]ixi — p)2-
; = 1 t = l 

Thus the maximum likelihood estimator of p is given by 

1 " 
= - V Xj = x, 

n *-^ 
P 

n i= l 

which is a pleasing result since x has played such an important role in this chapter 
as a point estimate of p. On the other hand, the maximum likelihood estimator of 
CT 2 i s 

a> = ± £>-*)*. 
t = i 

Checking the second order partial derivative matrix confirms that the solutions 

resulting maximum of the likelihood function. J 
It is interesting to note the distinction between the maximum likelihood esti

mator of er2 and the unbiased estimator S2 developed earlier in this chapter. The 
numerator is identical, of course, and the denominator is the "degrees of freedom1' 
n — 1 for the unbiased estimator and n for the maximum likelihood estimator. Max
imum likelihood estimators do not necessarily enjoy the property of unbiasedness. 
However, the maximum likelihood estimators do have very important asymptotic 
properties. 

Example 9.21:1 Suppose 10 rats are used in a biomedical study where the rats are injected with 
cancer cells and given a cancer drug that is designed to increase their survival rate. 
The survival times, in months, are 14, 17, 27, 18, 12, 8, 22, 13, 19, and 12. Assume 
that the exponential distribution applies. Give a maximum likelihood estimate of 
mean survival. 

Solution: From Chapter 6 we know that the probability density function for the exponential 
random variable X is 

10, elsewhere. 

Thus the log likelihood of the data given (n = 10) is 

10 
lnL(xx,x2,...,xi0;B) = - 1 0 1 n / 9 - ^ Y, xi-

' i=\ 
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Setting 

dlnL 10 1 ^ 

da a a2 ._ i 

implies that 

1 10 

3= TT-^Xi = x = 16.2. 
t = i 

The second derivative of the log likelihood evaluated at the value p above yields a 
negative value. As a result, the estimator of the parameter 8 the population mean 
is the sample average x. J 

The following example shows the maximum likelihood estimator for a distribu
tion that does not appear in previous chapters. 

Example 9.22:1 It is known that a sample of 12, 11.2, 13.5, 12.3, 13.8, and 11.9 comes from a 
population with the density function 

f(x:8) = +T-. X > \ , 

0, elsewhere, 

where 8 > 0. Find the maximum likelihood estimate of 8. 
Solution: The likelihood function of n observations from this population be written as 

L(xx,x2,... ,x10;8) = 1 1 - ^ = rrjn Ae+1, 

which implies that 

n 

lnL(xl,x2,...,Xio;8) = n\n(8) - (9 + 1) ^ l n (x>) -

Setting 0 = Q^ = § - £ ln(Xi) results in 

! = 1 

1 = 1 

n 

E ln(xi) 
i= i 

6 
= = 0 3970 

ln(12) + ln(11.2) + ln(13.5) + ln(12.3) + ln(13.8) + ln(11.9) u - o t " u -

Since the second derivative of L is —n/82, which is always negative, the likelihood 

function does achieve its maximum value at 8. J 
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Additional Comments Concerning Maximum Likelihood Est imat ion 

A thorough discussion of the properties of maximum likelihood estimation is be
yond the scope of this book and is usually a major topic of a course in the theory 
of statistical inference. The method of maximum likelihood allows the analyst to 
make use of knowledge of the distribution in determining an appropr ia te estima
tor. The method of maximum likelihood cannot be applied without knowledge of the 
underlying distribution. We learned in Example 9.20 tha t the maximum likelihood 
est imator is not necessarily unbiased. The maximum likelihood est imator is unbi
ased asymptotically or in the limit; tha t is, the amount of bias approaches zero as 
the sample size becomes large. Earlier in this chapter the notion of efficiency was 
discussed, efficiency being linked to the variance property of an estimator. Maxi
mum likelihood estimators possess desirable variance properties in the limit. T h e 
reader should consult Lehmann's book for details. 

Exercises 

9.81 Suppose that there are n trials X\,x2,... ,xn 

from a Bernoulli process with parameter p, the prob
ability of a success. That is, the probability of r suc
cesses is given by (")p '( l — p)n~'. Work out the max
imum likelihood estimator for the parameter p. 

9.82 Consider a sample of x\,x2,... ,xn, observations 
from a Weibull distribution with parameters a and 8 
and density function 

fix) 
^ (adx^e"*** 

\0, 
a ; > 0 , 
elsewhere, 

for a, 3 > 0. 
(a) Write out the likelihood function. 
(b) Write out the equations which when solved give the 

maximum likelihood estimators of a and ,3. 

9.83 Consider the lognormal distribution with the 
density function given in Section 6.9. Suppose we have 
a sample x\, x2,... ,xn from a lognormal distribution. 
(a) Write out the likelihood function. 
(b) Develop the maximum likelihood estimators of p 

and a2. 

9.84 Consider the observations xi,x2,...,xn from 
the gamma distribution discussed in Section 6.6. 
(a) Write out the likelihood function. 
(b) Write out a set of equations which when solved give 

the maximum likelihood estimators of a and 8. 

9.85 Consider a hypothetical experiment where a 
man with a fungus uses an antifungal drug and is cured. 
Consider this, then, a sample of one from a Bernoulli 
distribution with probability function 

fix) = pV 0 ,1 , 

where p is the probability of a success (cure) and 
q = 1 — p. Now, of course, the sample information 
gives x = 1. Write out a development that shows that 
p = 1.0 is the maximum likelihood estimator of the 
probability of cure. 

9.86 Consider the observation X from the negative 
binomial distribution given in Section 5.5. Find the 
maximum likelihood estimator for p, given k known. 

Review Exercises 

9.87 Consider two estimators of a2 in a sample the maximum likelihood estimator CT2 = £ £ ( x i - ; r ) 2 . 
x\,x2,...,xn, which is drawn from a normal distri- i=i 
bution with mean // and variance a2. The estimators Discuss the variance properties of these two estimators. 

are the unbiased estimator s 2 = - ^ £ (x, - x)2, and 9 8 8 I t i s d a i m e d t h a t a n e w d i e t w i l l r e d u c e a p e r . 



316 Chapter 9 One- and Two-Sample Estimation Problems 

son's weight by 4.5 kilograms on the average in a period 
of 2 weeks. The weights of 7 women who followed this 
diet were recorded before and after a 2-week period. 

W o m a n 
1 
2 
3 
4 
5 
6 
7 

Weight Before 
58.5 
60.3 
61.7 
69.0 
64.0 
62.6 
56.7 

Weight After 
60.0 
54.9 
58.1 
62.1 
58.5 
59.9 
54.4 

Test a manufacturer's claim by computing a 95% con
fidence interval for the mean difference in the weight. 
Assume the differences of weights to be approximately 
normally distributed. 

9.89 According to the Roanoke Times (March 16, 
1997), McDonald's sold 42.1% of the market share of 
hamburgers. A random sample of 75 burgers sold re
sulted in 28 of them by McDonald's. Use material in 
Section 9.10 to determine if this information supports 
the claim in the Roanoke Times. 

9.90 A study was undertaken at the Virginia Poly
technic Institute and State University to determine if 
fire can be used as a viable management tool to increase 
the amount of forage available to deer during the criti
cal months in late winter and early spring. Calcium is 
a required element for plants and animals. The amount 
taken up and stored in the plant is closely correlated 
to the amount present in the soil. It was hypothesized 
that a fire may change the calcium levels present in the 
soil and thus affect the amount available to the deer. 
A large tract of land in the Fishburn Forest was se
lected for a prescribed burn. Soil samples were taken 
from 12 plots of equal area just prior to the burn, and 
analyzed for calcium. Postburn calcium levels were an
alyzed from the same plots. These values, in kilograms 
per plot, are presented in the following table: 

Calc ium Level (kg /p lo t ) 
P lo t P r e b u r n P o s t b u r n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

50 
50 
82 
64 
82 
73 
77 
54 
23 
45 
36 
54 

9 
18 
45 
18 
18 
9 

32 
9 

18 
9 
9 
9 

prior to and after the prescribed burn. Assume the 
distribution of differences of calcium levels to be ap
proximately normal. 

9.91 A health spa claims that a new exercise program 
will reduce a person's waist size by 2 centimeters on the 
average over a 5-day period. The waist sizes of 6 men 
who participated in this exercise program are recorded 
before and after the 5-day period in the following table: 

M a n Wais t Size Before Wais t Size After 
90.4 
95.5 
98.7 

115.9 
104.0 
85.6 

91.7 
93.9 
97.4 

112.8 
101.3 
84.0 

By computing a 95% confidence interval for the mean 
reduction in waist size, determine whether the health 
spa's claim is valid. Assume the distribution of differ
ences of waist sizes before and after the program to be 
approximately normal. 

9.92 The Department of Civil Engineering at the Vir
ginia Polytechnic Institute and State University com
pared a modified (M-5 hr) assay technique for recover
ing fecal coliforms in storrnwater runoff from an urban 
area to a most probable number (MPN) technique. A 
total of 12 runoff samples were collected and analyzed 
by the two techniques. Fecal coliform counts per 100 
milliliters are recorded in the following table. 

Sample 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

M P N C o u n 
2300 
1200 
450 
210 
270 
450 
154 
179 
192 
230 
340 
194 

t M-5 hr Count 
2010 

930 
400 
436 

4100 
2090 

219 
169 
194 
174 
274 
183 

Construct a 95% confidence interval for the mean dif
ference in the calcium level that is present in the soil 

Construct a 90% confidence interval for the difference 
in the mean fecal coliform counts between the M-5 hr 
and the MPN techniques. Assume that the count dif
ferences are approximately normally distributed. 

9.93 An experiment was conducted to determine 
whether surface finish has an effect on the endurance 
limit of steel. An existing theory says that polishing in
creases the average endurance limit (reverse bending). 
From a practical point of view, polishing should not 
have any effect on the standard deviation of the en
durance limit, which is known from the performance of 
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numerous endurance limit experiments to be 4000 psi. 
An experiment was performed on 0.4% carbon steel us
ing both unpolished and polished smooth-turned spec
imens. The data are as follows: 

Endurance Limit (psi) for: 
Polished Unpol ished 

0.4% Carbon 0.4% Carbon 
85,500 
91,900 
89,400 
84.000 
89.900 
78.700 
87,500 
83,100 

82.600 
82,400 
81,700 
79,500 
79,400 
69,800 
79,900 
83,400 

Find a 95% confidence interval for the difference be
tween the population means for the two methods, as
suming that the populations are approximately nor
mally distributed. 

9.94 An anthropologist is interested in the proportion 
of individuals in two Indian tribes with double occipi
tal hair whorls. Suppose that independent samples are 
taken from each of the two tribes, and it is found that 
24 of 100 Indians from tribe A and 36 of 120 Indians 
from tribe B possess this characteristic. Construct a 
95% confidence interval for the difference pa — PA be
tween the proportions of these two tribes with occipital 
hair whorls. 

9.95 A manufacturer of electric irons produces these 
items in two plants. Both plants have the same suppli
ers of small parts. A saving can be made by purchasing 
thermostats for plant B from a local supplier. A single 
lot was purchased from the local supplier and it was 
desired to test whether or not these new thermostats 
were as accurate as the old. The thermostats were to 
be tested on tile irons on the 550° F setting, and the ac
tual temperatures were to be read to the nearest 0.1°F 
with a thermocouple. The data are as follows: 

N e w Supplier (CF) 
530.3 
549.9 
559.1 
550.0 

559.7 
550.7 
554.5 
555.0 

559.3 
556.9 
555.0 
554.9 

549.4 
536.7 
538.6 
554.7 

544.0 
558.8 
551.1 
536.1 

551.7 
538.8 
565.4 
569.1 

Old Supplier (CF) 
534.7 
563.1 
553.0 
544.8 

554.8 
551.1 
538.4 
558.4 

545.0 
553.8 
548.3 
548.7 

544.6 
538.8 
552.9 
560.3 

566.3 
543.3 
554.9 

538.0 
564.6 
535.1 

Find a 95% confidence interval for a2/a2 and for aifa2, 
where a2 and a\ are the population variances of the 
thermostat readings from the new and old suppliers, 
respectively. 

9.96 It is argued that the resistance of wire A is 
greater than the resistance of wire B. An experiment 
on the wires shows the following results (in ohms): 

Wire A 
0.140 
0.138 
0.143 
0.142 
0.144 
0.137 

Wire B 
0.135 
0.140 
0.136 
0.142 
0.138 
0.140 

Assuming equal variances, what conclusions do you 
draw? Justify your answer. 

9.97 An alternative form of estimation is accom
plished through the method of moments. The method 
involves equating the population mean and variance to 
the corresponding sample mean x and sample variance 
s2 and solving for the parameter, the result being the 
moment estimators. In the case of a single parame
ter, only the means are used. Give an argument that in 
the case of the Poisson distribution the maximum like
lihood estimator and moment estimators are the same. 

9.98 Specify the moment estimators for u. and a2 for 
the normal distribution. 

9.99 Specify the moment estimators for the p and er2 

for the lognormal distribution. 

9.100 Specify the moment estimators for a and 8 for 
the gamma distribution. 

9.101 A survey was done with the hope of comparing 
salaries of chemical plant managers employed in two 
areas of the country, the northern and west central re
gions. Independent random samples of 300 plant man
agers were selected for each of the two regions. These 
managers were asked for their annual salaries. The re
sults are 

North West Central 
x,i = $102. 300 S2 = $98,500 

s , = S 5 , 7 0 0 s2 = $3,800 

(a) Construct a 99% confidence interval in pi — p2, the 
difference in the mean salaries. 

(b) What assumption did you make in (a) about the 
distribution of annual salaries for the two regions? 
Is the assumption of normality necessary? Why or 
why not? 

(c) What assumption did you make about the two vari
ances? Is the assumption of equality of variances 
reasonable? Explain! 

9.102 Consider Review Exercise 9.101. Let us as
sume that the data have not been collected yet. Let 
us also assume that previous statistics suggest that 
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a\ = o2 = $4000. Are the sample sizes in Review 
Exercise 9.101 sufficient to produce a 95% confidence 
interval on p\ —p2 having a width of only $1000? Show 
all work. 

9.103 A specific labor union is becoming defensive 
about gross absenteeism by its members. The union 
decided to check this by monitoring a random sample 
of its members. The union leaders had always claimed 
that in a typical month, 95% of its members are ab
sent less than 10 hours per month. Use the data to 
respond to this claim. Use a one-sided tolerance limit 
and choose the confidence level to be 99%. Be sure 
to interpret what you learned from the tolerance limit 
calculation. The number of members in this sample 
was 300. The number of hours absent was recorded for 
each of the 300 members. The results were x = 6.5 
hours and s = 2.5 hours. 

9.104 A random sample of 30 firms dealing in wire
less products were selected to determine the proportion 
of such firms that have implemented new software to 
improve productivity. It turned out that eight of the 
30 have implemented such software. Find a 95% con
fidence interval on p, the true proportion of such firms 
that have implemented new software. 

9.105 Refer to Review Exercise 9.104. Suppose there 
is concern about whether or not the point estimate 
p = 8/30 is accurate enough because the confidence 
interval around p is not sufficiently narrow. Using p as 
our estimate of p, how many companies would need to 
be sampled in order to have a 95% confidence interval 
with a width of only 0.05? 

9.106 A manufacturer turns out a product item that 
is labeled either "defective" or "not defective." In order 
to estimate the proportion defective, a random sam
ple of 100 items is taken from production and 10 are 
found to be defective. Following the implementation of 
a quality improvement program, the experiment was 
conducted again. A new sample of 100 is taken and 
this time only 6 are found defective. 

(a) Give a 95% confidence interval on p\ — p2, where 
pi is the population proportion defective before im
provement, and p2 is the proportion defective after 
improvement. 

(b) Is there information in the confidence interval 
found in (a) that would suggest that pi > p21 Ex
plain. 

9.107 A machine is used to fill boxes of product in an 
assembly line operation. Much concern centers around 
the variability in the number of ounces of product in 
the box. The standard deviation in weight of product 
is known to be 0.3 ounces. An improvement is imple
mented after which a random sample of 20 boxes are 

selected and the sample variance is found to be 0.045 
ounces. Find a 95% confidence interval on the variance 
in the weight of the product. Does it appear from the 
range of the confidence interval that the improvement 
of the process enhanced quality as far as variability is 
concerned? Assume normality on the distribution of 
weight of product. 

9.108 A consumer group is interested in comparing 
operating costs for two different types of automobile 
engines. The group is able to find 15 owners whose 
cars have engine type A and 15 who have engine type 
B. All 30 owners bought their cars at roughly the 
same time and all have kept good records for a cer
tain 12 month period. In addition, owners were found 
that drove roughly the same mileage. The cost statis
tics are yA = $87.00/1,000 miles, yB = $75.00/1,000 
miles, SA = $5.99, and SB — $4.85. Compute a 95% 
confidence interval to estimate PA — PB, the difference 
in the mean operating costs. Assume normality and 
equal variance. 

9.109 Consider the statistic Sp, the pooled estimate 
of er2. The estimator is discussed in Section 9.8. It is 
used when one is willing to assume that o\ = o\ = a2. 
Show that the estimator is unbiased for a2 (i.e., show 
that E(S2) = a2). You may make use of results from 
any theorem or example in Chapter 9. 

9.110 A group of human factor researchers are con
cerned about reaction to a stimulus by airplane pilots 
with a certain cockpit arrangement. An experiment 
was conducted in a simulation laboratory and 15 pilots 
were used with average reaction time 3.2 seconds and 
sample standard deviation 0.6 seconds, It is of interest 
to characterize extremes (i.e., worst case scenario). To 
that end, answer the following: 

(a) Give a particular important one-sided 99% confi
dence bound on the mean reaction time. What 
assumption, if any, must you make on the distribu
tion of reaction time? 

(b) Give a 99% one-sided prediction interval and give 
an interpretation of what it means. Must you make 
an assumption on the distribution of reaction time 
to compute this bound? 

(c) Compute a one-sided tolerance bound with 99% 
confidence that involves 95% of reaction times. 
Again, give interpretation and assumption on dis
tribution if any. [Note: The one-sided tolerance 
limit values are also included in Table A.7]. 

9. I l l A certain supplier manufactures a type of rub
ber mat that is sold to automotive companies. In the 
application, the pieces of material must have certain 
hardness characteristics. Defective mats are occasion
ally discovered and rejected. The supplier claims that 
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the proportion defective is 0.05. A challenge was marie- the proportion defective. 
by one of the clients who purchased the product. Thus (b) Compute an appropriate 95% one-sided confidence 
an experiment, was conducted in which 400 mats are interval on the proportion defective. 
tested and 17 were found defective. / , . . . . , r , . , , , ,, , , 

(c) Interpret both of these in (a) and (b) and comment 
(a) Compute a 95% two-sided confidence interval on o n t n e c | a i m l n a d e b y t n e . suppiior . 

9.15 Potential Misconceptions and Hazards; 
Relationship to Material in Other Chapters 

The concept of a large-sum pie confidence internal on a population is often confusing 
to the beginning student. It is based on the prescription that even when a is 
unknown and one is not convinced that the distribution being sampled is normal, 
then a confidence interval on p. can be computed from 

* ± za,2^-=. 
• \/ii 

In practice this is often used when the sample is too small. The genesis of this 
large sample interval is, of course, the central limit theorem (CUT), under which 
normality is not: necessary. Here the CLT requires a known a, of which s is only 
an estimate. Thus the requirement is made that n must be at least as large as 30 
and the underlying distribution is close to symmetric, in which case the interval is 
still an approximation. 

There are instances in which the practical application of material in Chapter 
9 must be couched in the context of material in the chapter. One very impor
tant illustration is the use of (-distribution for the confidence interval on p when 
a is unknown. Strictly speaking, the use of the (-distribution requires that the 
distribution sampled from is normal. However, it is well known that any applica
tion of the (-distribution is reasonably insensitive (i.e., robust ) to the normality 
assumption. This represents one of those fortunate situations in which do occur 
often in the field of statistics in which a basic assumption does not hold and yet 
''everything turns out alright!" However, one population from which the sample is 
drawn cannot deviate' substantially from normal. Thus, normal probability plots 
discussed in Chapter 8 and goodncss-of-fit tests introduced in Chapter 10 will often 
be called upon here to ascertain some sense of ''nearness to normality." This idea 
of "robustness to normality51 will reappear in Chapter 10. 

It is our experience that one of the most serious "misuses of statistics" in 
practice evolves from confusion about distinction between the interpretation of the 
types of statistical intervals. Thus the subsection in this chapter where differences 
among the three types of intervals are discussed. It is very likely that in practice the 
confidence interval is heavily overused. That, is, it is used when there is really 
no interest in the mean. Rather, there arc: often questions of the type, "Where is 
the next observation going to fall?" Or often, more importantly, "Where is the 
large bulk of the distribution?" These are crucial questions that are not answered 
by computing an interval on the mean. A confidence interval is commonly misused 
as an interval such that the probability of the parameter falls in this interval is, say 
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95%, which is a correct interpretation of a Bayesian posterior interval (readers 
are referred to Chapter 18 for more information on Bayesian inference). Confidence 
interval merely suggests that if the experiment or data is observed again and again, 
about 95% of such intervals will contain the true parameter. Any beginning student 
of practical statistics should be very clear on the difference among these statistical 
intervals. 

Another potential serious misuse of statistics centers around the use of the \2-
distribution for a confidence interval on a single variance. Again, normality on the 
distribution from which the sample is drawn is assumed. Unlike the use of the t-
distribution, the use of x2 test for this application is not robust to the normality 
assumption (i.e., the sampling distribution of ai— deviates far away from \2 

if the underlying distribution is not normal). Thus, strict use of goodness-of-fit 
(Chapter 10) tests and/or normal probability plotting can be extremely important 
here. More information about this general issue will be given in future chapters. 



Chapter 10 

One- and Two-Sample Tests of 
Hypotheses 

10.1 Statistical Hypotheses: General Concepts 

Often, the problem confronting the scientist or engineer is not so much the es
timation of a population parameter as discussed in Chapter 9, but rather the 
formation of a data-based decision procedure that, can produce a. conclusion about 
sonic scientific system. For example, a medical researcher may decide on the basis 
of experimental evidence whether coffee drinking increases the risk of cancer in 
humans; an engineer might have to decide on the basis of sample data whether 
there is a difference between the accuracy of two kinds of gauges; or a sociologist 
might wish to collect, appropriate data to enable him or her to decide whether a 
person's blood type and eye color are independent variables. In each of these cases 
the scientist or engineer postulates or conjectures something about a system. In 
addition, each must involve the use of experimental data and decision-making that 
is based on the data. Formally, in each case, the conjecture can be put in the form 
of a statistical hypothesis. Procedures that lead to the acceptance or rejection of 
statistical hypotheses such as these comprise a major area of statistical inference. 
First, let us define precisely what we mean by a s tat is t ical hypothesis . 

Definition 10.1: A statist ical hypothesis is an assertion or conjecture concerning one or more 
populations. 

The truth or falsity of a statistical hypothesis is never known with absolute 
certainty unless we examine the entire population. This, of course, would be im
practical in most situations. Instead, we take a random sample from the population 
of interest and use the data contained in this sample to provide evidence that either 
supports or does not support the hypothesis. Evidence from the sample that is 
inconsistent with the stated hypothesis leads to a rejection of the hypothesis. 
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The Role of Probability in Hypothesis Testing 

It should be made clear to the reader that the decision procedure must be done with 
the awareness of the probability of a wrong conclusion. For example, suppose that 
the hypothesis postulated by the engineer is that the fraction defective p in a cer
tain process is 0.10. The experiment is to observe a random sample of the product 
in question. Suppose that 100 items are tested and 12 items are found defective. It 
is reasonable to conclude that this evidence does not refute the condition p — 0.10, 
and thus it may lead one not to reject the hypothesis. However, it also does not re
fute p = 0.12 or perhaps even p = 0.15. As a result, the reader must be accustomed 
to understanding that the rejection of a hypothesis implies that the sample 
evidence refutes it. Put another way, rejection means that there is a small 
probability of obtaining the sample information observed when, in fact, 
the hypothesis is true. For example, in our proportion-defective hypothesis, a 
sample of 100 revealing 20 defective items is certainly evidence of rejection. Why? 
If, indeed, p — 0.10, the probability of obtaining 20 or more defectives is approxi
mately 0.002. With the resulting small risk of a wrong conclusion, it would seem 
safe to reject the hypothesis that p = 0.10. In other words, rejection of a hy
pothesis tends to all but "rule out" the hypothesis, On the other hand, it is very 
important to emphasize that the acceptance or. rather, failure to reject, does not 
rule out other possibilities. As a result, the firm conclusion is established by the 
data analyst when a hypothesis is rejected. 

The formal statement of a hypothesis is often inliuenced by the structure of the 
probability of a wrong conclusion. If the scientist is interested in strongly supporting 
a contention, he or she hopes to arrive at the contention in the form of rejection of a 
hypothesis. If the medical researcher wishes to show strong evidence in favor of the 
contention that coffee drinking increases the risk of cancer, the hypothesis tested 
should be of the form "there is no increase in cancer risk produced by drinking 
coffee." As a result, the contention is reached via a rejection. Similarly, to support 
the claim that one kind of gauge is more accurate than another, the engineer tests 
the hypothesis that there is no difference in the accuracy of the two kinds of gauges. 

The foregoing implies that when the data analyst formalizes experimental evi
dence on the basis of hypothesis testing, the formal statement of the hypothesis 
is very important. 

The Null and Alternative Hypotheses 

The structure of hypothesis testing will be formulated with the use of the term 
null hypothesis. This refers to any hypothesis we wish to test and is denoted 
by H[). The rejection of Ho leads to the acceptance of an alternative hypoth
esis, denoted by Hi. An understanding of the different, roles played by the null 
hypothesis (Ho) and the alternative hypothesis (Hi) is crucial to one's understand
ing of the rudiments of hypothesis testing. The alternative hypothesis Hi usually 
represents the question to be answered, the theory to be tested and thus its specifi
cation is crucial. The null hypothesis Ho nullifies or opposes Hi and is often the 
logical complement to H\. As the reader gains more understanding of hypothesis 
testing, he or she should note that the analyst, arrives at one of the two following 
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conclusions: 

reject HQ: in favor of Hi because of sufficient evidence in the data. 

fail to -reject HQ: because of insufficient evidence in the data. 

Note that the conclusions do not involve a formal and literal "accept HQ." The 
statement of Ho often represents "status quo" in opposition to the new idea, con
jecture, and so on, stated in Hi, while failure to reject HQ represents the proper 
conclusion. In our binomial example, the practical issue may come from a con
cern that the historical defective probability of 0.10 no longer is true. Indeed the 
conjecture may be that it exceeds 0.10. We may then state 

H0: p = 0.10, 

HI: p > 0.10. 

Now 12 defective items out of 100 does not refute a p = 0.10 so the conclusion is 
"fail to reject ffo" However, if the data produce 20 out of 100 defective items, 
then the conclusion is "reject Ho" in favor of Hi: p > 0.10. 

Though the applications of hypothesis testing are quite abundant in scientific 
and engineering work, perhaps the best illustration for a novice lies in the predica
ment encountered in a jury trial. The null and alternative hypotheses are 

H0: defendant is innocent, 

Hi: defendant is guilty. 

The indictment comes because of suspicion of guilt. The hypothesis Ho (status quo) 
stands in opposition to Hi and is maintained unless flj is supported by evidence 
"beyond a reasonable doubt." However, "failure to reject HQ" in this case does not 
imply innocence, but merely that the evidence was insufficient to convict. So the 
jury does not necessarily accept. HQ but fails to reject Ho-

10.2 Testing a Statistical Hypothesis 

To illustrate the concepts used in testing a statistical hypothesis about a popula
tion, consider the following example. A certain type of cold vaccine is known to 
be only 25% effective after a period of 2 years. To determine if a new and some
what more expensive vaccine is superior in providing protection against the same 
virus for a longer period of time, suppose that 20 people are chosen at random 
and inoculated. In an actual study of this type the participants receiving the new 
vaccine might number several thousand. The number 20 is being used here only 
to demonstrate the basic steps in carrying out a statistical test. If more than 8 of 
those receiving the new vaccine surpass the 2-year period without contracting the 
virus, the new vaccine will be considered superior to the one presently in use. The 
requirement that the number exceed 8 is somewhat arbitrary but appears reason
able in that it: represents a modest gain over the 5 people that could be expected to 
receive protection if the 20 people had been inoculated with the vaccine already in 
use. We are essentially testing the null hypothesis that the new vaccine is equally 
effective after a period of 2 years as the one now commonly used. The alternative 
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hypothesis is that the new vaccine is in fart superior. This is equivalent to testing 
the hypothesis that the binomial parameter for the probability of a success on a 
given trial is p — 1/4 against the alternative that p > 1/4. This is usually written 
as follows: 

HQ: p = 0.25, 

Hx: p> 0.25. 

The Test Statistic 
The test s tat is t ic on which we base our decision is X, the number of individuals 
in our test, group who receive protection from the new vaccine for a period of at 
least 2 years. The possible values of X, from 0 to 20, are divided into two groups: 
those numbers less than or equal to 8 and those greater than 8. All possible scores 
greater than 8 constitute the critical region. The last number that we observe 
in passing into the critical region is called the critical value. In our illustration 
the critical value is the number 8. Therefore, if x > 8, we reject Ho in favor of the: 
alternative hypothesis Hi. If x < 8, we fail to reject HQ. This decision criterion is 
illustrated in Figure 10.1. 

Do not reject H0 

(p = 0.25) 
1 

Reject H0 

(p > 0.25) 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Figure 10.1: Decision criterion for testing p = 0.25 versus p > 0.25. 

The decision procedure just described could lead to either of two wrong conclu
sions. For instance, the new vaccine may be no better than the one now in use and, 
for this particular randomly selected group of individuals, more than 8 surpass the 
2-year period without contracting the virus. Wc would be committing an error by 
rejecting HQ in favor of Hi when, in fact, HQ is true. Such an error is called a type 
I error. 

Definition 10.2: 

Definition 10.3: 

Rejection of the null hypothesis when it is true is called a type I error. 

A second kind of error is committed if 8 or fewer of the group surpass the 2-
ycar period successfully and we are unable to conclude that the vaccine is no better 
when it actually is better. In this case we fail to reject HQ when in fact HQ is false:. 
This is called a type II error. 

Nonrejection of the null hypothesis when it is false is called a type II error. 

In testing any statistical hypothesis, there are four possible situations that 
determine whether our decision is correct or in error. These four situations are 
summarized in Table 10.1. 

The probability of committing a type I error, also called the level of signif
icance, is denoted by the Greek letter a. In our illustration, a type I error will 
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Table 10.1: Possible Situations for Testing a Statistical Hypothesis 

Do not reject Ho 
Reject HQ 

HQ is true HQ is false 
Correct decision Type II error 
Type I error Correct decision 

occur when more than 8 individuals surpass the 2-year period without contracting 
the virus using a new vaccine that is actually equivalent to the one in use. Hence, 
if X is the number of individuals who remain free of the virus for at least 2 years, 

a = P(type I error) = P (X > 8 when p = - j = ^ b (x; 20, - j 

= 1 - £ 6 ( x; 20, j J = 1 - 0.9591 = 0.0409. 
x=0 ^ ' 

We say that the null hypothesis, p = 1/4, is being tested at the a = 0.0409 level 
of significance. Sometimes the level of significance is called the size of the test. 
A critical region of size 0.0409 is very small and therefore it is unlikely that a type 
I error will be committed. Consequently, it would be most unusual for more than 
8 individuals to remain immune to a virus for a 2-year period using a new vaccine 
that is essentially equivalent to the one now on the market. 

The Probability of a Type II Error 

The probability of committing a type II error, denoted by ,8, is impossible to com
pute unless we have a specific alternative hypothesis. If we test the null hypothesis 
that p = 1/4 against the alternative hypothesis that p = 1/2, then we are able 
to compute the probability of not rejecting HQ, when it is false. We simply find 
the probability of obtaining 8 or fewer in the group that surpass the 2-year period 
when p — 1/2. In this case 

,3 = P(type II error) = P (X < 8 when p = - j 

= J2b(x;20,^] =0.2517. 

This is a rather high probability, indicating a test procedure in which it is quite 
likely that we shall reject the new vaccine when, in fact, it is superior to what now 
in use. Ideally, we like to use a test procedure for which the type I and type II 
error probabilities are both small. 

It is possible that the director of the testing program is willing to make a type 
II error if the more expensive vaccine is not significantly superior. In fact, the only 
time he wishes to guard against the type II error is when the true value of p is at 
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least 0.7. If p — 0.7, this test procedure gives 

3 = P(type II error) = P(X < 8 when p = 0.7) 
8 

= ^ o ( x ; 20,0.7) = 0.0051. 
x=0 

With such a small probability of committing a type II error, it is extremely unlikely 
that the new vaccine would be rejected when it is 70% effective after a period of 
2 years. As the alternative hypothesis appioaches unity, the value of 3 diminishes 
to zero. 

The Role of a, /3, and Sample Size 

Let us assume that the director of the testing program is unwilling to commit a 
type II error when the alternative hypothesis p = 1/2 is true even though we have 
found the probability of such an error to be 3 = 0.2517. A reduction in 3 is always 
possible!^- increasing the size of the critical region. For example, consider what 
happens to the values of a and 3 when we change our critical value to 7 so that 
all scores greater than 7 fall in the critical region and those less than or equal to 
7 fall in the nonrejection region. Now, in testing p = 1/4 against the alternative 
hypothesis that p — 1/2, we find that 

a = j S ( Z; 20, J ) = 1 - J^eb (x;20, j J =1-0.8982 = 0.1018, 
x=8 ^ ' x=0 \ ' 

and 

3 = j^bfx;20,^ j =0.1316. 
.T=0 

By adopting a new decision procedure, we have reduced the probability of com
mitting a type II error at the expense of increasing the probability of committing 
a type I error. For a fixed sample size, a decrease in the probability of one error 
will usually result in an increase in the probability of the other error. Fortunately, 
the probability of committing both types of error can be reduced by 
increasing the sample size. Consider the same problem using a random sample 
of 100 individuals. If more than 36 of the group surpass the 2-year period, we 
reject the null hypothesis that p — 1/4 and accept the alternative hypothesis that 
p > 1/4. The critical value is now 36. All possible scores above 36 constitute the 
critical region and all possible scores less than or equal to 36 fall in the acceptance 
region. 

To determine the probability of committing a type I error, we shall use the 
normal-curve approximation with 

fj, = np = (100) f ^ j = 2 5 , and a = y/rrpq = v/(100)(l/4)(3/4) = 4.33. 
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Referring to Figure 10.2, we need the area under the normal curve to the right of 
x = 36.5. The corresponding z-value is 

36.5 - 25 
z = 4.33 

2.66. 

From Table A.3 we find that 

a = 4.33 

p = 25 36.5 

Figure 10.2: Probability of a type I error. 

a = P(type I error) = P 

= \-P(Z< 2.66) = 1 

X > 36 when p — -
4 

- 0.9961 = 0.0039. 

P(Z > 2.66) 

If Ho is false and the true value of Hi is p = 1/2, we can determine the 
probability of a type II error using the normal-curve approximation with 

p = np= (100)(l/2) = 50 and a = Jnpq = v/(100)(l/2)(l/2) = 5. 

The probability of falling in the nonrejection region when HQ is true is given by 
the area of the shaded region to the left of x = 36.5 in Figure 10.3. The z-value 
corresponding to x = 36.5 is 

36.5 - 50 
-2.7. 

Therefore, 

8 = P(type II error) = P(X < 36 when p — P(Z < -2.7) = 0.0035. 

Obviously, the type I and type II errors will rarely occur if the experiment consists 
of 100 individuals. 

The illustration above underscores the strategy of the scientist in hypothesis 
testing. After the null and alternative hypotheses are stated, it is important to 
consider the sensitivity of the test procedure. By this we mean that there should 
be a determination, for a fixed a, of a reasonable value for the probability of 
wrongly accepting HQ (i.e., the value of 8) when the true situation represents 
some important deviation from HQ. The value of the sample size can usually be 
determined for which there is a reasonable balance between a and the value of 8 
computed in this fashion. The vaccine problem is an illustration. 
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25 36.5 50 

Figure 10.3: Probability of a type II error. 

Illustration with a Continuous Random Variable 
The concepts discussed here for a discrete population can be equally well applied 
to continuous random variables. Consider the null hypothesis that the average 
weight of male students in a certain college is 68 kilograms against the alternative 
hypothesis that it is unequal to 68. That, is, we wish to test 

HQ\ p = 68, 

Hi: p#68. 

The alternative hypothesis allows for the possibility that p < 68 or ft > 68. 
A sample mean that falls close to the hypothesized value of 68 would be consid

ered evidence in favor of HQ- On the other hand, a sample mean that is considerably 
less than or more than 68 would be evidence inconsistent with HQ and therefore 
favoring Hx. The sample mean is the test, statistic in this case:. A critical region 
for the test statistic; might arbitrarily be: chosen to be the two intervals x < 67 and 
x > 69. The nonrejection region will then be: the interval 67 < x < 69. This deci
sion criterion is illustrated in Figure 10.4. Let. us now use the decision criterion 

Reject H0 

(p. * 68) 
Do not reject H0 

(p. = 68) 
Reject HQ 
(p, * 68) 

67 68 69 

Figure 10.4: Critical region (in blue). 

of Figure 10.4 to calculate the probabilities of committing type I and type II errors 
when testing the null hypothesis that //. = 68 kilograms against the alternative that 
p y^ 68 kilograms. 

Assume the standard deviation of the population of weights to be a = 3.6. For 
large samples we may substitute s for a if no other estimate of a is available. Our 
decision statistic:, based on a random sample of size n = 36, will be X, the most 
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efficient, estimator of p. From the central limit theorem, we: know that the sampling 
distribution of X is approximately normal with standard deviation crx = o/yfn = 
3.6/6 = 0.6. 

The probability of committing a type I error, or the level of significance of our 
test, is equal to the sum of the areas that have been shaded in each tail of the 
distribution in Figure 10.5. Therefore, 

a = P(X < 67 when p = 68) + P(X > 69 when p. = OS). 

67 p. = 68 

Figure: 10.5: Critical region for testing p. — 08 versus p ^ 68. 

The 2-va.lues corresponding to x\ — 67 and x2 = 69 when HQ is true are 

<J7 - 68 n „„ , 69 - 08 
Z] — ——— = —l.oc and Z2 = ——-— 1.67. 0.6 0.6 

Therefore. 

Q = P(Z < -1.67) + P(Z > 1.67) = 2P(Z < -1.67) = 0.0950. 

Thus 9.5% of all samples of size 36 would lead us to reject p. = 68 kilograms when, 
in fact, it is true. To reduce a, we have a, choice: of increasing the sample size or 
widening the fail-to-rejection region. Suppose that we increase the sample size to 
n = 64. Then 0% = 3.6/8 = 0.45. Now 

Z l = ^ 6 8 = - 2 . 2 2 and z2 = ^ = 2.22. 
0.45 0.45 

Hence 

ct = P(Z < -2.22) + P(Z > 2.22) = 2P(Z < -2.22) = 0.0264. 

The reduction in a is not sufficient, by itself to guarantee a good testing proce
dure. Wc must also evaluate 3 for various alternative hypotheses. If it is important 
to reject Ho when the true mean is some value p. > 70 or p < 66, then the prob
ability of committing a type II error should be computed and examined for the 
alternatives p = 66 and p = 70. Because of symmetry, it is only necessary to 
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consider the probability of not rejecting the null hypothesis that p = 68 when the 
alternative p. = 70 is true. A type II error will result when the sample mean x falls 
between 67 and 69 when Hi is true. Therefore, referring to Figure 10.6, we find 
that 

Q = P(67 < X < 69 when p. = 70). 

Figure 10.6: Probability of type II error for testing // = 68 versus p. — 70. 

The z-values corresponding to aSj = 67 and x2 = 69 when H\ is true are 

6 7 - 7 0 r „ _ 69 - 70 
Z\ = „ , r = -6.67 and z2 = - = -2.22. 

0.45 0.45 

Therefore. 

3 = P(-6 .67 < Z < -2.22) = P(Z < -2.22) - P(Z < -6.67) 

= 0.0132-0.0000 = 0.0132. 

If the true value of p is the alternative p = 66, the value of 8 will again be 
0.0132. For all possible values of fi < 66 or p > 70, the value of 8 will be even 
smaller when n = 64, and consequently there would be little chance of not rejecting 
HQ when it is false. 

The probability of committing a type II error increases rapidly when the true 
value of // approaches, but is not equal to, the hypothesized value. Of course, this 
is usually the situation where we do not mind making a type II error. For example, 
if the alternative hypothesis p — 68.5 is true, we do not mind committing a type 
II error by concluding that the true answer is p = 68. The probability of making 
such an error will be high when n = 64. Referring to Figure 10.7, we have 

8 = P(67 < X < 69 when //. = 68.5). 

The z-values corresponding to :ci = 67 and x-2 = 69 when p = 68.5 are 
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67 68 68.5 69 

Figure 10.7: Type II error for testing p. = 68 versus p = 68.5. 

67 - 68.5 69 - 68.5 
:i = = —3.33 and z-> = = 1.11. 

0.45 " 0.45 
Therefore, 

3 = P ( -3 .33 < Z < 1.11)= P ( Z < l . l l ) - P ( Z < -3.33) 

= 0.8665-0.0004 = 0.8661. 

The preceding examples illustrate the following important properties: 

Important 
Properties of a 

Test, of 
Hypothesis 

1. The type I error and type II error are related. A decrease in the probability 
of one generally results in an increase in the probability of the other. 

2. The size of the critical region, and therefore the probability of committing 
a type I error, can always be reduced by adjusting the critical value(s). 

3. An increase in the sample size n will reduce a and 3 simultaneously. 

4. If the null hypothesis is false, 13 is a maximum when the true value of a 
parameter approaches the hypothesized value. The greater the distance 
between the true value and the hypothesized value, the smaller 3 will be. 

One very important concept that relates to error probabilities is the notion of 
the power of a test. 

Definition 10.4: The power of a test is the probability of rejecting HQ given th, 
native is true. 

at a specific alte 

The power of a test can be computed as 1 — 8. Often different types of 
tes ts are compared by contrast ing power properties. Consider the previous 
illustration in which we were testing HQ: p = 68 and H\i p ^ 68. As before, suppose 
we are interested in assessing the sensitivity of the test. The test is governed by 
the rule that we do not reject HQ if 67 < x < 69. Wc seek the capability of 
the test for properly rejecting HQ when indeed p = 68.5. WTe have seen that the 
probability of a type II error is given by 8 — 0-8661. Thus the power of the test 
is 1 — 0.8661 = 0.1339. In a sense, the power is a more succinct measure of how 
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sensitive the test is for "detecting differences" between a mean of 68 and 68.5. In 
this case, if p is truly 68.5, the test as described will properly reject Ho only 13.39% 
of the time. As a result, the test would not be a good one if it is important that 
the analyst have a reasonable chance of truly distinguishing between a mean of 
68.0 (specified by HQ) and a mean of 68.5. From the foregoing, it is clear that to 
produce a desirable power (say, greater than 0.8), one must either increase a or 
increase the sample size. 

In what has preceded in this chapter, much of the text on hypothesis testing 
revolves around foundations and definitions. In the sections that follow we get more 
specific and put hypotheses in categories as well as discuss tests of hypotheses on 
various parameters of interest. We begin by drawing the distinction between a 
one-sided and two-sided hypothesis. 

10.3 One- and Two-Tailed Tests 

A test of any statistical hypothesis, where the alternative is one sided, such as 

HQ: 9 — 6Q, 

H\: 9 > 8Q, 

or perhaps 

HQ: 8 = 8Q, 

Hi: 8 < 8Q, 

is called a one-tailed test. In Section 10.2, we refer to the test statistic for a 
hypothesis. Generally, the critical region for the alternative hypothesis 8 > 8Q lies 
in the right tail of the distribution of the test statistic, while the critical region 
for the alternative hypothesis 8 < 8Q lies entirely in the left tail. In a sense, the 
inequality symbol points in the direction where the critical region lies. A one-
tailed test is used in the vaccine experiment of Section 10.2 to test the hypothesis 
p = 1/4 against the one-sided alternative p > 1/4 for the binomial distribution. 
The one-tailed critical region is usually obvious. For understanding, the reader 
should visualize the behavior of the test statistic and notice the obvious signal 
that would produce evidence supporting the alternative hypothesis. 

A test of any statistical hypothesis where the alternative is two sided, such as 

HQ: 9 — 8Q, 

Hi: 8 + 8Q, 

is called a two-tailed test, since the critical region is split into two parts, often 
having equal probabilities placed in each tail of the distribution of the test statistic. 
The alternative hypothesis 8 / 8Q states that either 9 < 90 or 9 > 90. A two-tailed 
test was used to test the null hypothesis that p — 68 kilograms against the two-
sided alternative p ^ 68 kilograms for the continuous population of student weights 
in Section 10.2. 
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How Are the Null and Alternative Hypotheses Chosen? 

The null hypothesis HQ will often be stated using the equality sign. With this 
approach, it is clear how the probability of type I error is controlled. However, there 
are situations in which the application suggests that "do not reject HQ''- implies 
that the parameter 9 might be any value defined by the natural complement to the 
alternative hypothesis. For example, in the vaccine example where the alternative 
hypothesis is Hi: p > 1/4, it is quite possible that a non-rejection of Ho cannot 
rule out a value of p less than 1/4. Clearly though, in the case of one-tailed tests, 
the statement of the alternative is the most important, consideration. 

Whether one sets up a one-tailed or a two-tailed test will depend on the con
clusion to be drawn if Ho is rejected. The location of the critical region can be 
determined only after Hi has been stated. For example, in testing a new drug, one 
sets up the hypothesis that it is no better than similar drugs now on the market and 
tests this against the alternative hypothesis that the new drug is superior. Such 
an alternative hypothesis will result in a one-tailed test with the critical region 
in the right tail. However, if we wish to compare a new teaching technique with 
the conventional classroom procedure, the alternative hypothesis should allow for 
the new approach to be either inferior or superior to the conventional procedure. 
Hence the test is two-tailed with the critical region divided equally so as to fall in 
the extreme left and right tails of the distribution of our statistic. 

Example 10.1:1 A manufacturer of a certain brand of rice cereal claims that the average saturated 
fat content does not exceed 1.5 grams. State the null and alternative hypotheses 
to be used in testing this claim and determine where the critical region is located. 

Solution: The manufacturer's claim should be rejected only if p is greater than 1.5 milligrams 
and should not be rejected if p is less than or equal to 1.5 milligrams. We test 

H0: p = 1.5, 

Hi: p > 1.5, 

the nonrejection of HQ does not rule out values less than 1.5 milligrams. Since we 
have a one-tailed test, the greater than symbol indicates that the critical region 
lies entirely in the right tail of the distribution of our test statistic X. J 

Example 10.2:1 A real estate agent claims that 60%, of all private residences being built today are 
3-bedroom homes. To test this claim, a large sample of new residences is inspected: 
the proportion of these homes with 3 bedrooms is recorded and used as our test 
statistic. State the null and alternative hypotheses to be used in this test and 
determine the location of the critical region. 

Solution: If the test statistic is substantially higher or lower than p = 0.6, we would reject 
the agent's claim. Hence we should make the hypothesis 

HQ: p = 0.6, 

H I : p ^ 0 . 6 . 

The alternative hypothesis implies a two-tailed test with the critical region divided 
equally in both tails of the distribution of P. our test statistic. J 
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10.4 The Use of P-Values for Decision Making in Testing 
Hypotheses 

In testing hypotheses in which the test statistic is discrete, the critical region may 
be chosen arbitrarily and its size determined. If a is too large, it can be reduced 
by making an adjustment in the critical value. It may be necessary to increase the 
sample size to offset the decrease that occurs automatically in the power of the 
test. 

Over a number of generations of statistical analysis, it had become customary 
to choose an a of 0.05 or 0.01 and select the critical region accordingly. Then, of 
course, strict rejection or nonrejection of Ho would depend on that critical region. 
For example, if the test is two tailed and a is set at the 0.05 level of significance 
and the test statistic involves, say, the standard normal distribution, then a z-value 
is observed from the data and the critical region is 

z>1 .96 or z < - 1 . 9 8 , 

where the value 1.96 is found as Zo.025 in Table A.3. A value of z in the critical 
region prompts the statement, "The value of the test statistic: is significant." We 
can translate that into the user's language. For example, if the hypothesis is given 
by 

H0: p = 10, 

Hi: p^ 10. 

one might say: "The mean differs significantly from the value 10." 

Preselection of a Significance Level 

This preselection of a significance level a has its roots in the philosophy that 
the maximum risk of making a. type I error should be controlled. However, this 
approach docs not account for values of test statistics that are "close" to the 
critical region. Suppose, for example, in the illustration with HQ: p = 10: versus 
Hi : p ^ 10, a value of z = 1.87 is observed; strictly speaking, with a = 0.05 the 
value is not significant. But the risk of committing a type I error if one rejects HQ 
in this case could hardly be considered severe. In fact, in a two-tailed scenario one 
can quantify this risk as 

P = 2P(Z > 1.87 when //. = 10) = 2(0.0307) = 0.0614. 

As a result, 0.0614 is the probability of obtaining a value of z as large or larger 
(in magnitude) than 1.87 when in fact p = 10. Although this evidence against 
Ho is not as strong as that which would result from a rejection at an a = 0.05 
level, it is important information to the user. Indeed, continued use of a = 0.05 or 
0.01 is only a result of what standards have been passed through the generations. 
The P-value approach has been adopted extensively by users in applied 
stat ist ics. The approach is designed to give the user an alternative (in terms 
of a probability) to a mere "reject" or "do not reject" conclusion. The P-value 
computation also gives the user important information wdien the z-value falls well 
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into the ordinary critical region. For example, if z is 2.73, it is informative for the 
user to observe that 

P = 2(0.0032) = 0.0064, 

and thus the z-value is significant at a level considerably less than 0.05. It. is 
important to know that under the condition of HQ, a value of z = 2.73 is an 
extremely rare event. Namely, a value at least that large in magnitude would only 
occur 64 times in 10,000 experiments. 

A Graphical Demonstra t ion of a P-Value 

One very simple way of explaining a P-value graphically is to consider two distinct 
samples. Suppose that two materials are considered for coating a particular type 
of metal in order to inhibit corrosion. Specimens are obtained and one collection 
is coated with material 1 and one collection coated with material 2. The sample 
sizes are ??.i = n2 = 10 for each sample and corrosion was measured in percent 
of surface area affected. The hypothesis is that the samples came from common 
distributions with mean p = 10. Let us assume that the population variance is 
1.0. Then we are testing 

HQ: PX = Pa = 10. 

Let Figure 10.8 represent a point plot of the data; the data are placed on the 

p= 10 

Figure 10.8: Data that are likely generated from populations having two different 
means. 

distribution stated by the null hypothesis. Let us assume that the "x" data refer to 
material 1 and the "o" data refer to material 2. Now it seems clear that the data do 
refute the null hypothesis. But how can this be summarized in one number? The 
P-value can be viewed as simply the probabi l i ty of obta in ing these da t a 
given t h a t b o t h samples come from the same dis t r ibut ion. Clearly, this 
probability is quite small, say 0.00000001! Thus the small P-value clearly refutes 
HQ and the conclusion is that the population means are significantly different. 

The P-value approach as an aid in decision-making is quite natural because 
nearly all computer packages that provide hypothesis-testing computation print 
out P-values along with values of the appropriate test statistic. The following is a 
formal definition of a P-valuc. 
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Definition 10.5: A P-value is the lowest level (of significance) at which the observed value of the 
lesl statistic is significant, 

How Does the Use of P-Values Differ from Classic Hypothesis Testing? 

If is tempting at this point to summarize the procedures associated with testing, 
say. Ho: 9 = 9Q. However, the student who is a, novice in this area should under
stand there arc differences in approach and philosophy between the classic fixed 
a approach tha t is climaxed with either the "reject Ho" or "do not reject Ho" 
conclusion and the P-value approach. In the latter, no fixed o is determined and 
conclusions are drawn on the basis of the size of the P-value in harmony with the 
subjective judgment of the engineer or scientist. While modern computer software 
will output P-values, nevertheless it is important that readers understand both 
approaches in order to appreciate the totali ty of the concepts. Thus we offer a 
brief list of procedural steps for both the classical and P-value approach. 

Approach to 
Hypothesis 

Testing with 
Fixed Probability 

of Type I Error 

1. State the null and alternative hypotheses. 
2. Choose a fixed significance level a. 
3. Choose an appropriate test statistic and establish the critical region based 
on cv. 
4. From the computed test statistic, reject HQ if the test statistic is in the 
critical region. Otherwise, do not reject. 
5. Draw scientific or engineering conclusions. 

Significance 1. S ta te null and alternative hypotheses. 
Testing (P-Value 2. Choose: an appropriate test statistic. 

Approach) 3. Compute P-value based on computed value of test statistic. 
4. Use judgment based on P-value and knowledge of scientific system. 

In the sections in this chapter and chapters that, follow, many examples and 
exercises emphasize the P-value approach to drawing scientific conclusions. 

Exercises 

10.1 Suppose that mi allergist wishes to test the hy
pothesis that at least 30% of the public is allergic to 
some cheese products. Explain how the allergist could 
commit 
(a) a type I error; 
(b) a type II error. 

10.2 A sociologist is concerned about the effective
ness of a training course designed to get more drivers 
to use seat, belts in automobiles. 

(a) What hypothesis Is she testing if she commits a 
type I error by erroneously concluding that the 

training course: is ineffective? 
(b) What hypothesis is she testing if she commits a 

type II error by erroneously concluding that the 
training course is effective? 

10.3 A large manufacturing firm is being charged 
with discrimination in its hiring practices. 
(a) What hypothesis is being tested if a jury commits 

a type I error by dueling the firm guilty? 
(b) What hypothesis is being tested if a jury commits 

a type II error by finding the firm guilty? 



Exercises 337 

10.4 The proportion of adults living in a small town 
who are college graduates is estimated to be p = 0.6. 
To test this hypothesis, a random sample of 15 adults 
is selected. If the number of college graduates in our 
sample is anywhere from 6 to 12, we shall not reject 
the null hypothesis that p = 0.6; otherwise, we shall 
conclude that p ^ 0.6. 

(a) Evaluate a assuming that p = 0.6. Use the bino
mial distribution. 

(b) Evaluate 8 for the alternatives p = 0.5 and p — 0.7. 
(c) Is this a good test procedure? 

10.5 Repeat. Exercise 10.4 when 200 adults are se
lected and the fail to reject region is defined to be 
110 < x < 130, where x is the number of college grad
uates in our sample. Use the normal approximation. 

10.6 A fabric manufacturer believes that the propor
tion of orders for raw material arriving late is p = 0.6. 
If a random sample of 10 orders shows that 3 or fewer 
arrived late, the hypothesis that p = 0.6 should be 
rejected in favor of the alternative p < 0.6. Use the 
binomial distribution. 

(a) Find the probability of committing a type I error 
if the true proportion is p = 0.6. 

(b) Find the probability of committing a type II error 
for the alternatives p = 0.3, p — 0.4, and p = 0.5. 

10.7 Repeat Exercise 10.6 when 50 orders are selected 
and the critical region is defined to be x < 24, where 
x is the number of orders in our sample that arrived 
late. Use the normal approximation. 

10.8 A dry cleaning establishment claims that a new-
spot remover will remove more than 70% of the spots 
to which it is applied. To check this claim, the spot 
remover will be used on 12 spots chosen at random. If 
fewer than 11 of the spots are removed, we shall not 
reject the null hypothesis that p = 0.7: otherwise, we 
conclude that p > 0.7. 

(a) Evaluate a, assuming that p = 0.7. 
(b) Evaluate 8 for the alternative p = 0.9. 

10.9 Repeat Exercise 10.8 when 100 spots are treated 
and the critical region is defined to be x > 82, where 
x is the number of spots removed. 

10.10 In the publication Relief from Arthritis by 
Tliorsons Publishers, Ltd., John E. Croft claims that 
over 40% of the sufferers from osteoarthritis received 
measurable relief from an ingredient produced by a par
ticular species of mussel found off the coast, of New 
Zealand. To test this claim, the mussel extract is to 
be given to a group of 7 osteoarthritic patients. If 3 
or more of the patients receive relief, we shall not re

ject the null hypothesis that p = 0.4; otherwise, we 
conclude that p < 0.4. 

(a) Evaluate a, assuming that p = 0.4. 

(b) Evaluate 8 for the alternative p = 0.3. 

10.11 Repeat Exercise 10.10 when 70 patients are 
given the mussel extract and the critical region is de
fined to be x < 24, where x is the number of os
teoarthritic patients who receive relief. 

10.12 A random sample of 400 voters in a certain city 
are asked if they favor an additional 4% gasoline sales 
tax to provide badly needed revenues for street repairs. 
If more than 220 but fewer than 260 favor the sales tax, 
we shall conclude that 60% of the voters are for it. 

(a) Find the probability of committing a type I error 
if 60% of the voters favor the increased tax. 

(b) What is the probability of committing a type II er
ror using this test procedure if actually only 48% 
of the voters are in favor of the additional gasoline 
tax? 

10.13 Suppose, in Exercise 10.12, we conclude that 
60% of the voters favor the gasoline sales tax if more 
than 214 but fewer than 266 voters in our sample fa
vor it. Show that this new critical region results in a 
smaller value for a at the expense of increasing /?. 

10.14 A manufacturer has developed a new fishing 
line, which he claims has a mean breaking strength of 
15 kilograms with a standard deviation of 0.5 kilogram. 
To test the hypothesis that, p = 15 kilograms against 
the alternative that p < 15 kilograms, a random sam
ple of 50 lines will be tested. The critical region is 
defined to be x < 14.9. 

(a) Find the probability of committing a type I error 
when Ha is true. 

(b) Evaluate 8 for the alternatives p — 14.8 and p = 
14.9 kilograms. 

10.15 A soft-drink machine at a steak house is reg
ulated so that the amount of drink dispensed is ap
proximately normally distributed with a mean of 200 
milliliters and a standard deviation of 15 milliliters. 
The machine is checked periodically by taking a sam
ple of 9 drinks and computing the average content. If 
x falls in the interval 191 < x < 209, the machine is 
thought to be operating satisfactorily; otherwise, we 
conclude that p ^ 200 milliliters. 

(a) Find the probability of committing a type I error 
when p. = 200 milliliters. 

(b) Find the probability of committing a type II error 
when //. = 215 milliliters. 
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10.16 Repeat Exercise: 10.15 for samples of size n — 10.18 If we plot the probabilities of failing to reject. 
25. Use the same critical region. Ho corresponding to various alternatives for ft (includ

ing the value specified by Ho) and connect all the 
10.17 A new cure has been developed for a certain points by a smooth curve, we obtain the ope ra t ing 
type of cement that results in a compressive strength charac ter i s t ic curve of the test criterion, or simply 
of 5000 kilograms per square centimeter and a standard the OC curve. Note that the probability of failing to 
deviation of 120. To test the hypothesis that p = 5000 reject Ho when it is true is simply 1 - o. Operating 
against the alternative that p < 5000, a random sam- characteristic curves are widely used in industrial ap
ple of 50 pieces of cement is tested. The critical region plications to provide a visual display of the merits of 
is defined to be z < 4970. the test criterion. With reference to Exercise 10.15, 
(a) Find the probability of committing a type \ error filld thc probabilities of failing to reject Ha for the fol-

when Hn is true. lowing 9 values of /; and plot the OC curve: 184, 188, 

(b) Evaluate 0 for the alternatives p = 4970 and 
p = 1960. 

192, 196, 200, 204, 208. 212. and 210. 

10.5 Single Sample: Tests Concerning a Single Mean 
(Variance Known) 

In this section wc consider formally tests of hypotheses on a single population 
mean. Many of the illustrations from previous sections involved tests on the mean, 
so the reader should already have insight into some of the details tha t are out
lined here. We should first describe the assumptions on which the experiment is 
based. The model for the underlying situation centers around an experiment with 
A'i, A'2, • • •, Xn representing a random sample from a distribution with mean p and 
variance a'2 > 0. Consider first the hypothesis 

Ho: // = po, 
HI: p ^ po. 

The appropriate test statistic should be based on the random variable X. In 
Chapter 8, the central limit theorem is introduced, which essentially states tha t 
despite the distribution of X, the random variable X has approximately a normal 
distribution with mean p. and variance a2 jn for reasonably large sample sizes. So, 
/ /y = // and a2y — a2/n. We can then determine a critical region based on the 
computed sample average, x. It. should be clear to the reader by now that there 
will be a two-tailed critical region for the test. 

S t a n d a r d i z a t i o n o f X 

It is convenient to standardize X and formally involve: the s t a n d a r d n o r m a l 
random variable Z, where 

z = ̂ =A 
a/^/rt 

Wc: know that under HQ, t ha t is, if p = po, then ^/n.(X — po)/a has an n(x; 0,1) 
distribution, and hence the expression 

P ( ^ % ~ ll° ^ >\ 1 
P -Za/2 < 7-7=- < Za/2 = 1 - Q 

V 0- yfn } 
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can be used to write an appropriate nonrejection region. The reader should keep 
in mind that, formally, the critical region is designed to control n, the probability 
of type I error. It should be obvious that a two-toiled signal of evidence: is needed 
to support, H\. Thus, given a computed value ii:, the formal test involves rejecting 
Ho if the computed test statistic z falls in the: critical region described below. 

Test Procedure 
for a Single Mean 

•'' ~ Po 
cr/y/n 

> za/2 or z = x - Po 
a/y/n 

< -i 

If —Za/2 < z < za/2, do not. reject HQ. Rejection of Ho, of course, implies 
acceptance of the alternative hypothesis p ^ p.0. With this definition of the 
critical region it should be clear that there will be probability a of rejecting HQ 
(falling into the: critical region) when, indeed, p = po-

Although it is easier to understand the critical region written in terms of z, we 
write the same critical region in terms of the computed average x. The: following 
can be written as an identical decision procedure: 

where 

reject Ho if x < <t or x > b. 

a a 
a = Po - za/2-7=, b = po + zn/2 —j=. 

y/n v/n 

Hence, for an a level of significance, the critical values of the random variable z 
and x arc both depicted in Figure 10.9. 

Figure 10.9: Critical region for the alternative hypothesis p ^ fi0. 

Tests of one-sided hypotheses on the mean involve the same statistic described 
in the two-sided case. The difference, of course, is that the critical region is only 
in one tail of the standard normal distribution. As a result, for example:, suppose 
that we seek to test 

HQ: p = PQ, 

H I : p > po. 

The signal that favors Hi comes from large values of z. Thus rejection of HQ results 
when the computed - > ~a. Obviously, if the alternative is Hi: ft < po, the critical 
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region is entirely in the lower tail and thus rejection results from z < —Za. Although 
in a one-sided testing case the null hypothesis can be written as HQ : p. < pa or 
Ho: p > PQ, it is usually written as Ho: p. = PQ. 

The following two examples illustrate tests on means for the case in which er is 
known. 

Example 10.3:1 A random sample of 100 recorded deaths in the United States during the past 
year showed an average life span of 71.8 years. Assuming a population standard 
deviation of 8.9 years, does this seem to indicate that the: mean life span today is 
greater than 70 years? Use a 0.05 level of significance. 

Solution: 1. HQ: p - 70 years. 

2. H\: 11 > 70 years. 

3. a = 0.05. 

4. Critical region: z > 1.645, where z 

5. Computations: x = 71.8 years, a = 

zJisi 
o . '?: 

.9 years, and 2 = Ji=^ = 2.02. 

6. Decision: Reject HQ and conclude that the mean life span today is greater 
than 70 years. 

In Example 10.3 the P-value corresponding to z = 2.02 is given by the area of the 
shaded region in Figure 10.10. 

Figure 10.10: P-value for Example 10.3. 

Using Table A.3, we have 

P = P(Z > 2.02) = 0.0217. 

As a result, the evidence in favor of Hi is even stronger than that suggested by a 
0.05 level of significance. J 

Example 10.4:1 A manufacturer of sports equipment has developed a new synthetic fishing line that 
he: claims has a mean breaking strength of 8 kilograms with a standard deviation 
of 0.5 kilogram. Test the hypothesis that p = 8 kilograms against the alternative 
that p ^ 8 kilograms if a random sample of 50 lines is tested and found to have a 
mean breaking strength of 7.8 kilograms. Use a 0.01 level of significance. 
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Solution: l. HQ-. p = 8 kilograms, 

2. H[: ft -£ 8 kilograms. 

3. Q =0 .01 . 

4. Critical region: z < -2.575 and z > 2.575, where z = ^&. 

5. Computations: x = 7.8 kilograms, n = 50, and hence . 7.8-8 -2.83. 0.5/V50 

6. Decision: Reject //(! and conclude that the average breaking strength is not 
equal to 8 but is, in fact, less than 8 kilograms. 

Figure 10.11: P-value for Example 10.4. 

Since the test in this example is two tailed, the desired P-value is twice: the area of 
the shaded region in Figure 10.11 to the left of z — —2.83. Therefore, using Table 
A.3, we have 

P = P(\Z\ > 2.83) = 2P(Z < -2.83) = 0.0046. 

which allows us to reject the null hypothesis that p. = 8 kilograms at a. level of 

significance smaller than 0.01. J 

10.6 Relationship to Confidence Interval Estimation 

The reader should realize by now that the hypothesis-testing approach to statistical 
inference in this chapter is very closely related to the confidence interval approach 
in Chapter 9. Confidence interval estimation involves computation of bounds for 
which it is "reasonable" that the parameter in question is inside the bounds. For the 
case of a single: population mean p with a2 known, the structure of both hypothesis 
testing and confidence interval estimation is based on the random variable 

X I' 
o/y/n" 

It turns out that the testing of HQ: p — po against II\: p / po at a significance level 
a is equivalent to computing a 100(1 — a)% confidence interval on p and rejecting 
HQ if PO is outside the confidence internal. If PQ is inside the confidence interval. 
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the hypothesis is not, rejected. The equivalence is very intuitive and quite simple to 
illustrate. Recall that with an observed value x failure to reject Ho at significance 
level a implies that 

. x - po 
— Za/2 S T~/= S Zr.v/2: 

' aj s/n 
which is equivalent to 

a a 
x ~ za/2—j= < IH) < X + Za!2—=. 

' yfll ' s/n 
The confidence interval equivalence to hypothesis testing extends to differences 

between two means, variances, ratios of variances, and so on. As a result, the stu
dent of statistics should not consider confidence interval estimation and hypothesis 
testing as separate forms of statistical inference. For example, consider Example 
9.2 on page 275. The: 95% confidence interval on the mean is given by the bounds 
(2.50, 2.70). Thus, with the same sample information, a two-sided hypothesis on 
p involving any hypothesized value between 2.50 and 2.70 will not be rejected. As 
we turn to different areas of hypothesis testing, the equivalence to the confidence 
interval estimation will continue to be exploited. 

10.7 Single Sample: Tests on a Single Mean 
(Variance Unknown) 

One would certainly suspect that tests on a. population mean p with a2 unknown, 
like confidence interval estimation, should involve the use of Student, f-distribution. 
Strictly speaking, the application of Student f for both confidence intervals and 
hypothesis testing is developed under the following assumptions. The random 
variables Xi,X2.... ,Xn represent a random sample from a normal distribution 
with unknown p. and a2. Then the random variable y/n(X — p)/S has a Student's 
it-distribution with n—1 degrees of freedom. The structure of the test is identical to 
that for the case of a known with the exception that the value a in the test statistic 
is replaced by the computed estimate S and the standard normal distribution is 
replaced by a /-distribution. As a result., for the two-sided hypothesis 

Ho: p = po, 

H\: ft / p o , 

rejection of Ho, at significance level O' results when a computed /-statistic 

The /.-Statistic 
for a Test on a 

Single Mean _ x — p 0 

(Variance s/y/n 
Unknown) 

exceeds ZQ/2,„-i or is less than —ta/2.„-\- The reader should recall from Chapters 
8 and 9 that the: /-distribution is symmetric around the value zero. Thus, this two-
tailed critical region applies in a fashion similar to that for the case of known a. 
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For the two-sided hypothesis at significance level a, the two-tailed critical regions 
apply. For H\: p > pa, rejection results when t > r„,T,_|. For H i : p < p.0, the 
critical region is given by / < — tfa,n_i. 

Example 10.5:1 The Edison Electric Institute has published figures on the annual number of kilowatt 
hours expended by various home appliances. It is claimed that a vacuum cleaner 
expends an average of 46 kilowatt hours per year. If a random sample of 12 homes 
included in a planned study indicates that vacuum cleaners expend an average of 
42 kilowatt hours per year with a standard deviation of 11.9 kilowatt hours, does 
this suggest at the 0.05 level of significance that vacuum cleaners expend, on the 
average, less than 46 kilowatt hours annually? Assume the population of kilowatt 
hours to be normal. 

Solution: 1. HQ: p = 46 kilowatt hours. 

2. Hi: p < 46 kilowatt hours. 

3. a = 0.05. 

4. Critical region: t < —1.796, where t = JT/T= with 11 degrees of freedom. 

5. Computations: x = 42 kilowatt hours, s = 11.9 kilowatt hours, and n = 12. 
Hence 

t 
4 2 - 4 6 

11.9/\/l2 
= -1.16, P = P(T< -1.16) w 0.135. 

6. Decision: Do not reject Ho and conclude that the average number of kilowatt, 
hours expended annually by home vacuum cleaners is not significantly less 
than 46. J 

C o m m e n t o n t h e S i n g l e - S a m p l e T-Tes t 

The reader has probably noticed that the equivalence of the two-tailed t-test for 
a single mean and the computation of a confidence interval on p with a replaced 
by s is maintained. For example, consider Example 9.5 on page 280. Essentially, 
we can view that computation as one in which we have found all values of po, the 
hypothesized mean volume of containers of sulfuric acid, for which the hypothesis 
Ho : p = po will not be rejected at o = 0.05. Again, this is consistent with 
the statement: "Based on the sample information, values of the population mean 
volume between 9.74 and 10.26 liters are not unreasonable." 

Comments regarding the normality assumption are worth emphasis at this 
point. We have indicated that when a is known, the central limit theorem al
lows for the use of a test statistic or a confidence interval which is based on Z, 
the standard normal random variable. Strictly speaking, of course, the central 
limit theorem and thus the use of the standard normal does not apply unless a 
is known. In Chapter 8, the development of the ^-distribution is given. At that 
point it was stated that normality on Xy,X2,..., Xn was an underlying assump
tion. Thus, strictly speaking, the Student's /-tables of percentage points for tests 
or confidence intervals should not be used unless it is known that the sample comes 
from a normal population. In practice, a can rarely be assumed known. However, 
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a very good estimate may be available from previous experiments. Many statistics 
textbooks suggest that one can safely replace a by s in the test statistic 

_ x - po 
ajy/n ' 

when n > 30 and still use the Z-tables for the appropriate critical region. The 
implication here is that the central limit theorem is indeed being invoked and one 
is relying on the fact that swcr. Obviously, when this is done the results must be 
viewed as being approximate. Thus a computed P-value (from the Z-distribution) 
of 0.15 may be 0.12 or perhaps 0.17, or a computed confidence interval may be a 
93% confidence interval rather than a 95% interval as desired. Now wdiat about 
situations where n < 30? The user cannot rely on s being close to a, and in order 
to take into account the inaccuracy of the estimate, the confidence interval should 
be wider or the critical value larger in magnitude. The /-distribution percentage 
points accomplish this but are correct only when the sample is from a normal 
distribution. Of course, normal probability plots can be used to ascertain some 
sense of the deviation of normality in a data set. 

For small samples, it is often difficult to detect deviations from a normal dis
tribution. (Goodness-of-fit tests are discussed in a later section of this chapter.) 
For bell-shaped distributions of the random variables Xx,X2,...,Xn, the use of 
the /-distribution for tests or confidence intervals is likely to be quite good. When 
in doubt, the user should resort to nonparametric procedures which are presented 
in Chapter 16. 

Annotated Computer Printout for Single-Sample T-Test 

It should be of interest for the reader to see annotated computer printout showing 
the result of a single-sample t-test. Suppose that an engineer is interested in testing 
the bias in a pH meter. Data are collected on a neutral substance (pH = 7.0). A 
sample of the measurements were taken with the data as follows: 

7.07 7.00 7.10 6.97 7.00 7.03 7.01 7.01 6.98 7.08 

It is, then, of interest to test 

H0: p = 7.0, 

Hi: p ^ 7.0. 

In this illustration we use the computer package MINITAB to illustrate the anal
ysis of the data set above. Notice the key components of the printout shown in 
Figure 10.12. Of course, the mean y — 7.0250, StDev is simply the sample standard 
deviation s = 0.044, and SE Mean is the estimated standard error of the mean and 
is computed as s/y/n = 0.0139. The i-value is the ratio 

(7.0250-7)/0.0139= 1.80. 

The P-value of 0.106 suggests results that are inconclusive. There is not a 
strong rejection of HQ (based on an a of 0.05 or 0.10), yet one certainly cannot 
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pH-meter 
7.07 7.00 7.10 6.97 7.00 7.03 7.01 7.01 6.98 7.08 

MTB > Onet 'pH-meter ' ; SUBO Test 7. 

One-Sample T: pH-meter Test of mu = 7 vs not = 7 
Variable N Mean StDev SE Mean 95% CI T P 
pH-meter 10 7.02500 0.04403 0.01392 (6.99350. 7.05650) 1.80 0.106 

Figure 10.12: MINITAB printout for one sample r-test for pH meter. 

truly conclude that the pH meter is unbiased. Notice that the sample size 
of 10 is rather small. An increase in sample size (perhaps another experiment) may 
sort things out. A discussion regarding appropriate sample size appears in Section 
10.9. 

10.8 Two Samples: Tests on Two Means 

The reader has already come to understand the relationship between tests and 
confidence intervals and can rely largely on details supplied by the confidence 
interval material in Chapter 9. Tests concerning two means represent a set of very 
important analytical tools for the scientist or engineer. The experimental setting 
is very much like that described in Section 9.8. Two independent random samples 
of size «i and n2, respectively, are drawn from two populations with means pi and 
p2 and variances o2 and a\. We know that the random variable 

\/o\jnx + a\jn2 

has a standard normal distribution. Here we are assuming that nx and n2 are 
sufficiently large that the central limit theorem applies. Of course, if the two 
populations are normal, the statistic above has a standard normal distribution 
even for small nx and n2. Obviously, if we can assume that ai — o2 = a, the 
statistic above reduces to 

z = (Ag - X2) - (pi - p2) 

o-y/l/nx + l / n 2 

The two statistics above serve as a basis for the development of the test procedures 
involving two means. The confidence interval equivalence and the ease in the 
transition from the case of tests on one mean provide simplicity. 

The two-sided hypothesis on two means can be written generally as 

H0: pi - p2 = do-
Obviously, the alternative can be two sided or one sided. Again, the distribu
tion used is the distribution of the test statistic under Ho. Values xx and x2 are 
computed and, for CTI and CT2 known, the test statistic is given by 

_ (xi - x2) - d0 

s/a\/m +a\/n2 
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with a two-tailed critical region in the case of a two-sided alternative. That is, 
reject Ho in favor of Hi: pi — p2 7̂  do if z > zai2 or z < —za/2. One-tailed critical 
regions are used in the case of the one-sided alternatives. The reader should, as 
before, study the test statistic and be satisfied that for, say, Hi : pi — p2 > do, 
the signal favoring Hi comes from large values of z. Thus the upper-tailed critical 
region applies. 

Unknown But Equal Variances 

The more prevalent situations involving tests on two means are those in which 
variances are unknown. If the scientist involved is willing to assume that both 
distributions are normal and that ox — o2 = a, the pooled t-test (often called the 
two-sample /-test) may be used. The test statistic (see Section 9.8) is given by the 
following test procedure. 

Two-Sample 
Pooled T-Test t = 

(xi - x2) - do 

Spy/1/ni + \/n2 

where 

2__ s\(nx - \) + s\{n2 - I) 
Sp nx + n2 - 2 

The /-distribution is involved and the two-sided hypothesis is not rejected when 

—ta/2,nl+n-2-2 <t< £n/2,ni +n2-2-

Recall from material in Chapter 9 that the degrees of freedom for the /-distribution 
are a result of pooling of information from the two samples to estimate a2. One
sided alternatives suggest one-sided critical regions, as one might expect. For 
example, for H\\ p\ — p2 > do, reject H\: pi - p2 = do when / > r.Q:„1+„2_2. 

Example 10.6:1 An experiment was performed to compare the abrasive wear of two different lami
nated materials. Twelve pieces of material 1 were tested by exposing each piece to 
a machine measuring wear. Ten pieces of material 2 were similarly tested. In each 
case, the depth of wear was observed. The samples of material 1 gave an average 
(coded) wear of 85 units with a sample standard deviation of 4, while the samples 
of material 2 gave an average of 81 and a sample standard deviation of 5. Can 
we conclude at the 0.05 level of significance that the abrasive wear of material 1 
exceeds that of material 2 by more than 2 units? Assume the populations to be 
approximately normal with equal variances. 

Solution: Let. pi and p2 represent, the population means of the abrasive wear for material 1 
and material 2, respectively. 

1. H0: pi - p2 = 2. 

2. Hf.pi -p2>2. 

3. a = 0.05. 

4. Critical region: t > 1.725. where / = (a.1~a2)~d° with v = 20 degrees of 
spS/X/n\+l/n2 

freedom. 
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5. Computations: 

Xx = 85, si = 4 , nx = 12, 

.f:2 = 81, s2 = 5, n2 = 10. 

Hence 

(ll)(16) + (9)(25) 
V 12+10-2 '*' 

t = ( 8 5 7 8 1 ) - 2 = 1.04, 
4.478^/1/12 + 1/10 

P = P(T > 1.04) w 0.16. (See Table A.4.) 

6. Decision: Do not reject Ho. We are unable to conclude that the abrasive wear 
of material 1 exceeds that of material 2 by more than 2 units. J 

Unknown But Unequal Variances 

There are situations where the analyst is not able to assume that cri = er2. Recall 
from Chapter 9 that, if the populations are normal, the statistic 

T, _ (A'i - X2) - do 

y/s\/nx + s\/n2 

has an approximate /-distribution with approximate degrees of freedom 

js'{/ni + s\/n2)
2 

V (s2/m)2/(m -l) + (s2/n2)
2/(n2 - 1)• 

As a result, the test procedure is to not reject HQ when 

~ta/2,v <t < ta/2tV, 

with v given as above. Again, as in the case of the pooled t-test, one-sided alter
natives suggest one-sided critical regions. 

Paired Observations 

When the student of statistics studies the two-sample t-test or confidence interval 
on the difference between means, he or she should realize that some elementary 
notions dealing in experimental design become relevant and must be addressed. 
Recall the discussion of experimental units in Chapter 9, where it is suggested at 
that point that the condition of the two populations (often referred to as the two 
treatments) should be assigned randomly to the experimental units. This is done 
to avoid biased results due to systematic differences between experimental units. 
In other words, in terms of hypothesis-testing jargon, it is important that the 
significant difference found (or not found) between means be due to the different 
conditions of the populations and not due to the experimental units in the study. 
For example, consider Exercise 9.40 in Section 9.9. The 20 seedlings play the role 
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of the experimental units. Ten of them are to be treated with nitrogen and 10 with 
no nitrogen. It may be very important that this assignment to the "nitrogen" and 
"no-nitrogen" treatment be random to ensure that systematic differences between 
the seedlings do not interfere with a valid comparison between the means. 

In Example 10.6, time of measurement, is the most likely choice of the experi
mental unit. The 22 pieces of material should be measured in random order. We 
need to guard against the possibility that wear measurements made close together 
in time might tend to give similar results. Systemat ic (nonrandom) differences 
in exper imenta l units are not expected. However, random assignments guard 
against the problem. 

References to planning of experiments, randomization, choice of sample size, 
and so on, will continue to influence much of the development in Chapters 13, 14, 
and 15. Any scientist or engineer whose interest lies in analysis of real data should 
study this material. The pooled /-test is extended in Chapter 13 to cover more 
than two means. 

Testing of two means can be accomplished when data are in the form of paired 
observations as discussed in Chapter 9. In this pairing structure, the conditions 
of the two populations (treatments) are assigned randomly within homogeneous 
units. Computation of the confidence interval for pi - p 2 in the situation with 
paired observations is based on the random variable 

T ._ D ~ PD 
S,i/ \fn ' 

where D and S,i are random variables representing the sample mean and stan
dard deviations of the differences of the observations in the experimental units. 
As in the case of the pooled t-test, the assumption is that the observations from 
each population are normal. This two-sample problem is essentially reduced to 
a one-sample problem by using the computed differences d\, d2,..., dn. Thus the 
hypothesis reduces to 

Ho: po — dQ. 

The computed test statistic is then given by 

a - do 
t.= 

Sd/y/n' 

Critical regions are constructed using the t-distribution with n — 1 degrees of free
dom. 

Example 10.7:1 In a study conducted in the forestry and wildlife department at Virginia Polytechnic 
Institute and State University, J. A. Wesson examined the influence of the drug 
succinylcholine on the circulation levels of androgens in the blood. Blood samples 
from wild, free-ranging deer were obtained via the jugular vein immediately after 
an intramuscular injection of succinylcholine using darts and a capture gun. Deer 
were bled again approximately 30 minutes after the injection and then released. 
The levels of androgens at time of capture and 30 minutes later, measured in 
nanograms per milliliter (ng/ml), for 15 deer are given in Table 10.2. 



1 
2 
3 
4 
5 
ii 
7 
8 
9 
10 
11 
12 
13 
14 
15 

2.76 
5.18 
2.68 
3.05 
4.10 
7.05 
6.60 
4,79 
7,39 
7.30 
11.78 
3.90 

26.00 
67.48 
17.04 
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Table 10.2: Data, for Example 10.7 

Androgen (ng/ml) 
Deer Time of Injection 30 Minutes after Injection d; 

7.02 4.26 
3.10 2.08 
5.44 2.76 
3.99 0.94 
5.21 1.11 

10.26 3.21 
13.91 7.31 
18.53 13.74 

7.91 0.52 
4.85 -2.45 

11.10 -0.68 
3.74 -0.16 

94.03 68.03 
94.03 26.55 
41.70 24.66 

Assuming that the populations of androgen at time of injection and 30 minutes 
later are normally distributed, test at the 0.05 level of significance whether the 
androgen concentrations are altered after 30 minutes of restraint. 

Solution: Let pi and p2 be the average androgen concentration at the time of injection and 
30 minutes later, respectively. We proceed as follows: 

1. HQ: px = Pa or PD = Pi - P-2 = 0. 

2. Hi; px ^ p-2 or pp = p\ - p2 ^ 0. 

3. a = 0.05. 

4. Critical region: / < -2.145 and /. > 2.145, where t = - M f e with v = 14 

degrees of freedom. 

5. Computations: The sample mean and standard deviation for the dj's are 

d = 9.848 and sd = 18.474. 

Therefore, 

= 9.848-0 = 

18.474/ v/15 
6. Though the /-statistic: is not significant at. the 0.05 level, from Table A.4, 

P= P(\T\ > 2.06) = 0.06. 

As a result, there is some evidence that there is a difference in mean circulating 
levels of androgen. 

In the case of paired observations, it is important that there be no interaction 
between the treatments and the experimental units. This was discussed in Chapter 
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9 in the development of confidence intervals. The no-interaction assumption implies 
that the effect of the experimental, or pairing, unit is the same for each of the two 
treatments. In Example 10.7, wc are assuming that the effect of the deer is the 
same for the two conditions under study, namely "at, injection'' and 30 minutes 
after injection. 

Annotated Computer Printout for Paired T-test 

Figure 10.13 displays a SAS computer printout for a paired t-test using the data 
of Example 10.7. Notice that the appearance of the printout is that of a single 
sample /-test and, of course, that is exactly what is accomplished since the test 
seeks to determine if d is significantly different from zero. 

Analysis Variable : Diff 

N Mean Std Error t Value Pr > It I 

15 9.8480000 4.7698699 2.06 0.0580 

Figure 10.13: SAS printout of paired /-test for data of Example 10.7. 

Summary of Test Procedures 

As wc complete the1 formal development of tests on population means, we offer 
Table 10.3, which summarizes the test procedure for the cases of a single mean and 
two means. Notice the approximate procedure when distributions are normal and 
variances are unknown but not assumed to be equal. This statistic was introduced 
in Chapter 9, 

10.9 Choice of Sample Size for Testing Means 

In Section 10.2 we demonstrate how the: analyst can exploit relationships among 
the sample size, the significance level o, and the power of the test to achieve a 
certain standard of quality. In most practical circumstances the experiment should 
be planned with a choice of sample size made prior to the data-taking process if 
possible. The sample size is usually made: to achieve good power for a fixed a and 
fixed specific: alternative. This fixed alternative may be in the form of p — po in 
the case of a, hypothesis involving a single: mean or ft\ — p,2 in the case of a problem 
involving two means. Specific cases will provide illustrations. 

Suppose that wc wish to test the hypothesis 

HQ : p = po, 

H] : p > po, 
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Table 10.3: Tests Concerning Means 

Ho Value of Test Statistic Hi Critical Region 

p, = po z = */!%'-, a known p < po z < —za 

p > po z> za 

p ^ po z < -zQ/2 or z > za/2 

p = Po t = 2=J&; v = n-l, p <Po t < -ta 

a unknown p. > po t > ta 

p^ po t< -ta/2 or t > taj2 

P\ - P2 = do z = }xl~S2)~t°, ; Pi - P2<d0 z < -za 
\Z"l/ni+<T^./n-2 

CTI and a2 known pi — p2 > do z > za 

P\ ~ P-2 ¥" do z < -za/2 or z > za/2 

P! -1*2 = do t = (a;~g2)~d
/
0 ~ Pi -P2<dQ t< -ta 

v = m + n2 — 2, px - p2 > do t > tn 

ai = a2 but unknown pi - p2 ^ do t < —ta/2 or t > ta/2 

2 _ ( n i - l ) g | + ( n a - l ) « l 
Jl »i+«2-2 

p1-p2 = do t'= f'~g2)"2
d; ; pi-p2<do t'<-ta 

v = rjrr ,1 , i , i i ; Pi - P2 > «o r > t a 
n 1 — 1 ' n 2 - 1 

<T[ ^ <r2 and unknown Pi — P2 ¥= do t' < —ta/2 or i ' > £Q/2 

P D = d 0 < = ~ ^ ; v = n - l PD < d0 t < -tQ 

paired P D > do t > ta 

observations PD f^ do t < —ta/2 or t > ta/2 

with a significance level a when the variance cr2 is known. For a specific alternative, 
say p = po + 5, the power of our test is shown in Figure 10.14 to be 

1 — 8 = P(X > a when p = p0 + 5). 

Therefore. 

i? = P(X < a when /t = p 0 + 0) 

= P 
A" - (po + &) ^ a - (pa +S) ' 

< / _ — when p = po + 0 cr/T/n ajy/n 

Under the alternative hypothesis p = po + o, the statistic 

X - (PQ + 5) 

ajy/n-

is the standard normal variable Z. So 

3 = p ( z < t ^ - * ) = P ( Z < Z a - * ) , 
\ a/yfn cr/y/n) \ <r/y/nj 
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^ 0 a pi0 + 8 

Figure 10.14: Testing p = //o versus // = pu + 5. 

from which we conclude that 

Sy/n 

and hence 

2~2 
Choice of sample size: n = 

(Zg + Z(i)20 

52 

a result that is also true when the alternative hypothesis is p < PQ. 
In the case of a two-tailed test we obtain the power 1 — fj for a specified alter

native when 

iZa/2 + Z,3)
202 

U * c^ ' 

Example 10.8:1 Suppose that we wish to test the hypothesis 

Ho: p. = 68 kilograms, 

H[-. p > 08 kilograms, 

for the weights of male students at a certain college using an o = 0.05 level of 
significance when it is known that a = 5. Find the sample size required if the 
power of our test is to be 0.95 when the true mean is 69 kilograms. 

Solution: Since a = 8. = 0.05. wc: have za = Zp = 1.645. For the alternative 8 = 69, wc take 
5 = 1 and then 

(1.645 +1.645)2(25) _ „ . 
n = ——- = 2/().f). 

Therefore, 271 observations are required if the test is to reject the null hypothesis 
95% of the time when, in fact, //. is as large as 69 kilograms. J 
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Two-Sample Case 

A similar procedure can be used to determine the sample size n — nx = n2 required 
for a specific power of the test in which two population means are being compared. 
For example, suppose that we wish to test the hypothesis 

H0: px - 11-2 = do, 

Hi: pi - p2 ^ d0, 

when cT| and er2 are known. For a specific: alternative, say //.j — p2 = do + S, the 
power of our test is shown in Figure 10.15 to lie 

1 — 3 = P(\Xi — X2\ > a when p.] - p2 = do + 8. 

Therefore, 

- a d0 a d0 + 8 

Figure 10.15: Testing p\ - p2 = do versus pi — p2 = do + 6. 

3 = P(-(t < A', - A'2 < a when px - p2 = d0 + 8) 

= P 
-a - (do + 8) (Xi - X2) - (d0 + 8) 

y/Wl+oD/n y/Wi + o%)/n 

a -(da+ 8) 1 
< i, •> ,?7= w n e n Ml - P2 = do + 8\ 

s/(a[ + a2) /n 
Under the alternative hypothesis px — p2 = c/o + 8, the statistic 

Xx - X-2 - (dp + 8) 

\/(a2+al)/n 

is the standard normal variable Z. New, writing 

*a/2 
- « - do , a- do 

and z,t/2 = y/ia'i + al)/n y/(a2+a2)/n 
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we have 

3 = P -ZQ/2 ========= < Z < ZQ/2 -
y/ial + o^/n ~a,z y/io(+oi)jn 

from which we conclude that 

-zg «= za/2 -
y/Taf+aJ)J7i' 

and hence 

iza/2 + zg)2(a\ + a\) 
n ^ : 

62 

For the one-tailed test, the expression for the required sample size when n = ni = 
n2 is 

iza + zg)2ia2 + a2) 
Choice of sample size: n — 

82 

When the population variance (or variances in the two-sample situation) is un
known, the choice of sample size is not straightforward. In testing the hypothesis 
p = po when the true value is p = po + <5, the statistic 

X-(p0+8) 

S/y/n 

does not follow the ^-distribution, as one might expect, but instead follows the 
noncentral ^-distribution. However, tables or charts based on the noncentral 
^-distribution do exist for determining the appropriate sample size if some estimate 
of a is available or if 8 is a multiple of a. Table A.8 gives the sample sizes needed 
to control the values of a and 0 for various values of 

A = =J£1 _ \P ~ PQ\ 
a a 

for both one- and two-tailed tests. In the case of the two-sample i-test in which the 
variances are unknown but assumed equal, we obtain the sample sizes n = rai = n2 

needed to control the values of a and 0 for various values of 

A = M _ iMi - P 2 - d 0 | 
a a 

from Table A.9. 

Example 10.9:1 In comparing the performance of two catalysts on the effect of a reaction yield, a 
two-sample t-test is to be conducted with a = 0.05. The variances in the yields 
are considered to be the same for the two catalysts. How large a sample for each 
catalyst is needed to test the hypothesis 

Ho: pi = p 2 , 

Hi: pi ^ p2, 
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if it is essential to detect a difference of O.Ser between the catalysts with probability 
0.9? 

Solution: From Table A.9, with o = 0.05 for a two-tailed test, 0 = 0.1, and 

jO.Scrl 
A = - = 0.8, 

we find the required sample size to be n = 34. J 
It is emphasized that in practical situations it might be difficult to force a 

scientist or engineer to make a commitment on information from which a value 
of A can be found. The reader is reminded that the A-value quantifies the kind 
of difference between the means that the scientist considers important, that is, a 
difference considered significant, from a scientific, not a statistical, point of view. 
Example 10.9 illustrates how this choice is often made, namely, by selecting a 
fraction of a. Obviously, if the sample size is based on a choice of \8\ that, is a small 
fraction of a, the resulting sample size may be quite large compared to what the 
study allows. 

10.10 Graphical Methods for Comparing Means 

In Chapter 1 considerable attention is directed toward displaying data in graphical 
form. Stem-and-leaf plot displays and, in Chapter 8, box-and-whisker, quantile 
plots, and quantile-quantile normal plots are used to provide a "picture" to sum
marize a set of experimental data. Many computer software packages produce 
graphical displays. As we proceed to other forms of data analysis (e.g., regression 
analysis and analysis of variance). graphical methods become even more informa
tive. 

Graphical aids used in conjunction with hypothesis testing arc not used as a 
replacement of the test procedure. Certainly, the value of the test statistic indicates 
the proper type of evidence in support of HQ or Hi. However, a pictorial display 
provides a good illustration and is often a better communicator of evidence to 
the beneficiary of the analysis. Also, a picture will often clarify why a significant 
difference was found. Failure of an important assumption may be exposed by a 
summary type of graphical display. 

For the comparison of means, side-by-side box-and-whisker plots provide a 
telling display. The reader should recall that these plots display the 25th per
centile, 75th percentile, and the median in a data set. In addition, the whiskers 
display the extremes in a data set. Consider Exercise 10.40 following this sec
tion. Plasma ascorbic acid levels were measured in two groups of pregnant women, 
smokers and nonsmokers. Figure 10.16 shows the box-and-whisker plots for both 
groups of women. Two things are very apparent. Taking into account variability, 
there: appears to be a negligible difference in the sample moans. In addition, the 
variability in the two groups appears to be somewhat different. Of course, the 
analyst must keep in mind the rather sizable differences between the sample sizes 
in this case. 

Consider Exercise 9.40 in Section 9.9. Figure 10.17 shows the multiple box-
and-whisker plot for the data of 10 seedlings, half given nitrogen and half given 
no nitrogen. The display reveals a smaller variability for the group containing no 
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Figure 10.16: Two box-and-whisker plots of Figure 10.17: Two box-and-whisker plots of 
plasma ascorbic acid in smokers and nonsmokers. seedling data. 

nitrogen. In addition, the lack of overlap of the box plots suggests a significant 
difference between the mean stem weights between the two groups. It would appear 
that the presence of nitrogen increases the stem weights and perhaps increases the 
variability in the weights. 

There are no certain rules of thumb regarding when two box-and-whisker plots 
give evidence of significant difference between the means. However, a rough guide
line is that if the 25th percentile line for one sample exceeds the median line for 
the other sample, there is strong evidence of a difference between means. 

More emphasis is placed on graphical methods in a real-life case study demon
strated later in this chapter. 

Annotated Computer Printout for Two-Sample T-Test 

Consider the data of Exercise 9.40, Section 9.9, where seedling data under condi
tions of nitrogen and no nitrogen were collected. Test 

HQ: PNIT = PNON, 

H I : PNIT > PNON, 

where the population means indicate mean weights. Figure 10.18 is an annotated 
computer printout using the SAS package. Notice that sample standard devia
tions and standard error are shown for both samples. The i-statistic under the 
assumption of "equal variance" and "unequal variance" are both given. From 
the box-and-whisker plot of Figure 10.17 it would certainly appear that the equal 
variance assumption is violated. A P-value of 0.0229 suggests a conclusion of un
equal means. This concurs with the diagnostic information given in Figure 10.18. 
Incidentally, notice that t and t' are equal in this case, since nx — n2. 
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TTEST P r o c e d u r e 
V a r i a b l e Weight 

Mineral 
No nitrogen 

Nitrogen 

Variances 
Equal 

Unequal 

N 
10 
10 

DF 
18 

11.7 

Test the 
Variable Num DF 
Weight 9 

Mean Std Dev Std Err 
0.3990 0.0728 0.0230 
0.5650 0.1867 0.0591 

t Value Pr > |t| 
2.62 0.0174 
2.62 0.0229 

Equality of Variances 
Den DF F Value Pr > F 

9 6.58 0.0098 

Figure 10.18: SAS printout for two-sample t-test. 

Exercises 

10.19 An electrical firm manufactures light bulbs 
that have a lifetime that is approximately normally 
distributed with a mean of 800 hours and a standard 
deviation of 40 hours. Test tbe hypothesis that p = 800 
hours against the alternative p ^ 800 hours if a ran
dom sample of 30 bulbs has an average life of 788 hours. 
Use a P-value in your answers. 

10.20 A random sample of 64 bags of white Ched
dar popcorn weighed, on average, 5.23 ounces with a 
standard deviation of 0.24 ounces. Test the hypothesis 
that p = 5.5 ounces against the alternative hypothesis, 
p < 5.5 ounces at the 0.05 level of significance. 

10.21 In a research report by Richard H. Weindruch 
of the UCLA Medical School, it is claimed that mice 
with an average life span of 32 months will live to be 
about 40 months old when 40% of the calories in their 
food are replaced by vitamins and protein. Is there any 
reason to believe that /z < 40 if 64 mice that are placed 
on this diet have an average life of 38 months with a 
standard deviation of 5.8 months? Use a P-value in 
your conclusion. 

10.22 The average height of females in the freshman 
class of a certain college has been 162.5 centimeters 
with a standard deviation of 6.9 centimeters. Is there 
reason to believe that there has been a change in the 
average height if a random sample of 50 females in the 
present freshman class has an average height of 165.2 
centimeters? Use a P-value in your conclusion. As
sume the standard deviation remains the same. 

10.23 It is claimed that an automobile is driven on 

the average more than 20,000 kilometers per year. To 
test this claim, a random sample of 100 automobile 
owners are asked to keep a record of the kilometers 
they travel. Would you agree with this claim if the 
random sample showed an average of 23,500 kilome
ters and a standard deviation of 3900 kilometers? Use 
a P-value in your conclusion. 

10.24 In the American Heart Association journal Hy
pertension, researchers report that individuals who 
practice Transcendental Meditation (TM) lower their 
blood pressure significantly. If a random sample of 225 
male TM practitioners meditate for 8.5 hours per week 
with a standard deviation of 2.25 hours, does that sug
gest that, on average, men who use TM meditate more 
than 8 hours per week? Quote a P-value in your con
clusion. 

10.25 Test the hypothesis that the average content 
of containers of a particular lubricant is 10 liters if the 
contents of a random sample of 10 containers are 10.2, 
9.7, 10.1, 10.3, 10.1, 9.8, 9.9, 10.4, 10.3, and 9.8 liters. 
Use a 0.01 level of significance and assume that the 
distribution of contents is normal. 

10.26 According to a dietary study, a high sodium 
intake may be related to ulcers, stomach cancer, and 
migraine headaches. The human requirement for salt 
is only 220 milligrams per day, which is surpassed in 
most single servings of ready-to-eat cereals. If a ran
dom sample of 20 similar servings of of certain cereal 
has a mean sodium content of 244 milligrams and a 
standard deviation of 24.5 milligrams, does this sug
gest at the 0.05 level of significance that the average 
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sodium content for a single serving of such cereal is 
greater than 220 milligrams? Assume the distribution 
of sodium contents to be normal. 

10.27 A study at the University of Colorado at Boul
der shows that running increases the percent resting 
metabolic rate (RMR) in older women. The average 
RMR of 30 elderly women runners was 34.0% higher 
than the average RMR of 30 sedentary elderly women 
and the standard deviations were reported to be 10.5% 
and 10.2%, respectively. Was there a significant in
crease in RMR of the women runners over the seden
tary women? Assume the populations to be approxi
mately normally distributed with equal variances. Use 
a P-value in your conclusions. 

10.28 According to Chemical Engineering an impor
tant property of fiber is its water absorbency. The aver
age percent absorbency of 25 randomly selected pieces 
of cotton fiber was found to be 20 with a standard 
deviation of 1.5. A random sample of 25 pieces of ac
etate yielded an average percent of 12 with a standard 
deviation of 1.25. Is there strong evidence that the 
population mean percent absorbency for cotton fiber is 
significantly higher than the mean for acetate. Assume 
that the percent absorbency is approximately normally 
distributed and that the population variances in per
cent absorbency for the two fibers are the same. Use a 
significance level of 0.05. 

10.29 Past experience indicates that the time for high 
school seniors to complete a standardized test is a nor
mal random variable with a mean of 35 minutes. If 
a random sample of 20 high school seniors took an 
average of 33.1 minutes to complete this test with a 
standard deviation of 4.3 minutes, test the hypothesis 
at the 0.05 level of significance that p = 35 minutes 
against the alternative that p < 35 minutes. 

10.30 A random sample of size m = 25, taken from a 
normal population with a standard deviation eri = 5.2, 
has a mean xi = 81. A second random sample of size 
ri2 = 36, taken from a different normal population with 
a standard deviation a2 = 3.4, has a mean x2 = 76. 
Test the hypothesis that p\ — p2 against the alterna
tive pi i^ pi- Quote a P-value in your conclusion. 

10.31 A manufacturer claims that the average ten
sile strength of thread A exceeds the average tensile 
strength of thread B by at least 12 kilograms. To test 
his claim, 50 pieces of each type of thread are tested 
under similar conditions. Type A thread had an av
erage tensile strength of 86.7 kilograms with known 
standard deviation of a A = 6.28 kilograms, while type 
B thread had an average tensile strength of 77.8 kilo
grams with known standard deviation of an = 5.61 
kilograms. Test the manufacturer's claim a ta = 0.05. 

10.32 Amstat News (December 2004) lists median 
salaries for associate professors of statistics at research 
institutions and at liberal arts and other institutions in 
the United States. Assume a sample of 200 associate 
professors from research institutions having an average 
salary of $70,750 per year with a standard deviation of 
S6000. Assume also a sample of 200 associate profes
sors from other types of institutions having an average 
salary of $65,200 with a standard deviation of $5000. 
Test the hypothesis that the mean salary for associate 
professors in research institutions is $2000 higher than 
for those in other institutions. Use a 0.01 level of sig
nificance. Assume equal variances. 

10.33 A study is made to see if increasing the sub
strate concentration has an appreciable effect on the 
velocity of a chemical reaction. With a substrate con
centration of 1.5 moles per liter, the reaction was run 
15 times with an average velocity of 7.5 micromoles 
per 30 minutes and a standard deviation of 1.5. With 
a substrate concentration of 2.0 moles per liter, 12 runs 
were made, yielding an average velocity of 8.8 micro-
moles per 30 minutes and a sample standard deviation 
of 1.2. Is there any reason to believe that this increase 
in substrate concentration causes an increase in the 
mean velocity by more than 0.5 micromole per 30 min
utes? Use a 0.01 level of significance and assume the 
populations to be approximately normally distributed 
with equal variances. 

10.34 A study was made to determine if the subject 
matter in a physics course is better understood when a 
lab constitutes part of the course. Students were ran
domly selected to participate in either a 3-semester-
hour course without labs or a 4-semester-hour course 
with labs. In the section with labs, 11 students made 
an average grade of 85 with a standard deviation of 4.7, 
and in the section without labs, 17 students made an 
average grade of 79 with a standard deviation of 6.1. 
Would you say that the laboratory course increases the 
average grade by as much as 8 points? Use a P-value in 
your conclusion and assume the populations to be ap
proximately normally distributed with equal variances. 

10.35 To find out whether a new serum will arrest 
leukemia, 9 mice, all with an advanced stage of the 
disease, are selected. Five mice receive the treatment 
and 4 do not. Survival times, in years, from the time 
the experiment commenced are as follows: 

Treatment 
No Treatment 

2.1 5.3 1.4 4.6 0.9 
1.9 0.5 2.8 3.1 

At the 0.05 level of significance can the serum be said 
to be effective? Assume the two distributions to be 
normally distributed with equal variances. 

10.36 A large automobile manufacturing company is 
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trying to decide whether to purchase brand A or brand 
B tires for its new models. To help arrive at a decision, 
an experiment is conducted using 12 of each brand. 
The tires are run until they wear out. The results are 

Brand A: xi = 37, 900 kilometers, 

si = 5,100 kilometers. 

Brand B: xi = 39,800 kilometers, 

,S2 = 5, 900 kilometers. 

Test the hypothesis that there is no difference in the 
average wear of 2 brands of tires. Assume the popu
lations to be approximately normally distributed with 
equal variances. Use a P-value. 

10.37 In Exercise 9.42 on page 298, test the hypothe
sis that Volkswagen mini-trucks, on the average, exceed 
similarly equipped Toyota mini-trucks by 4 kilometers 
per liter. Use a 0.10 level of significance. 

10.38 A UCLA researcher claims that the average life 
span of mice can be extended by as much as 8 months 
when the calories in their food are reduced by approx
imately 40% from the time they are weaned. The re
stricted diets are enriched to normal levels by vitamins 
and protein. Suppose that a random sample of 10 mice 
are fed a normal diet and live an average life span of 
32.1 months with a standard deviation of 3.2 months, 
while a random sample of 15 mice are fed the restricted 
diet and live an average life span of 37.6 months with 
a standard deviation of 2.8 months. Test the hypothe
sis at the 0.05 level of significance that the average life 
span of mice on this restricted diet is increased by 8 
months against the alternative that the increase is less 
than 8 months. Assume the distributions of life spans 
for the regular and restricted diets are approximately 
normal with equal variances. 

10.39 The following data represent the running times 
of films produced by 2 motion-picture companies: 

Company Time (minutes) 
1 102 86 98 109 92 
2 81 165 97 134 92 87 114 

Test the hypothesis that the average running time of 
films produced by company 2 exceeds the average run
ning time of films produced by company 1 by 10 min
utes, against the one-sided alternative that the differ
ence is less than 10 minutes. Use a 0.1 level of sig
nificance and assume the distributions of times to be 
approximately normal with unequal variances. 

10.40 In a study conducted at the Virginia Polytech
nic Institute and State University, the plasma ascorbic 
acid levels of pregnant women were compared for smok
ers versus nonsmokers. Thirty-two women in the last 

three months of pregnancy, free of major health dis
orders, and ranging in age from 15 to 32 years, were 
selected for the study. Prior to the collection of 20 ml 
of blood, the participants were told to avoid breakfast, 
forgo their vitamin supplements, and avoid foods high 
in ascorbic acid content. From the blood samples, the 
following plasma ascorbic acid values of each subject 
were determined in milligrams per 100 milliliters: 

Plasma Ascorbic Acid Values 
Nonsmokers 
0.97 
0.72 
1.00 
0.81 
0.62 
1.32 
1.24 
0.99 
0.90 
0.74 
0.88 
0.94 

1.16 
0.86 
0.85 
0.58 
0.57 
0.64 
0.98 
1.09 
0.92 
0.78 
1.24 
1.18 

Smokers 
0.48 
0.71 
0.98 
0.68 
1.18 
1.36 
0.78 
1.64 

Is there sufficient evidence to conclude that there is a 
difference between plasma ascorbic acid levels of smok
ers and nonsmokers? Assume that the two sets of data 
came from normal populations with unequal variances. 
Use a P-value. 

10.41 A study was conducted by the Department of 
Zoology at the Virginia Polytechnic Institute and State 
University to determine if there is a significant differ
ence in the density of organisms at two different sta-
tions located on Cedar Run, a secondary stream lo
cated in the Roanoke River drainage basin. Sewage 
from a sewage treatment plant and overflow from the 
Federal Mogul Corporation settling pond enter the 
stream near its headwaters. The following data give 
the density measurements, in number of organisms per 
square meter, at the two different collecting stations: 

Number of Organisms per Square 
Station 

5030 
13,700 
10,730 
11,400 

860 
2200 
4250 

15,040 

1 
4980 

11,910 
8130 

26,850 
17,660 
22,800 

1130 
1690 

M e t e r 
Station 2 

2800 
4670 
6890 
7720 
7030 
7330 

2810 
1330 
3320 
1230 
2130 
2190 

Can we conclude, at the 0.05 level of significance, that 
the average densities at the two stations are equal? 
Assume that the observations come from normal pop
ulations with different variances. 

10.42 Five samples of a ferrous-type substance are to 
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be used to determine if there is a difference between a 
laboratory chemical analysis and an X-ray fluorescence 
analysis of the iron content. Each sample was split into 
two subsamples and the two types of analysis were ap
plied. Following are the coded data showing the iron 
content analysis: 

Analysis 
X-ray 

Chemical 

1 
2.0 
2.2 

Sample 
2 3 4 

2.0 2.3 2.1 
1.9 2.5 2.3 

5 
2.4 
2.4 

Assuming that the populations are normal, test at the 
0.05 level of significance whether the two methods of 
analysis give, on the average, the same result. 

10.43 A taxi company manager is trying to decide 
whether the use of radial tires instead of regular 
belted tires improves fuel economy. Twelve cars were 
equipped with radial tires and driven over a prescribed 
test course. Without changing drivers, the same cars 
were then equipped with regular belted tires and driven 
once again over the test course. The gasoline consump
tion, in kilometers per liter, was recorded as follows: 

Kilometers per Liter 
Car 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Radial T i res 
4.2 
4.7 
6.6 
7.0 
6.7 
4.5 
5.7 
6.0 
7.4 
4.9 
6.1 
5.2 

Belted Tires 
4.1 
4.9 
6.2 
6.9 
6.8 
4.4 
5.7 
5.8 
6.9 
4.7 
6.0 
4.9 

Can we conclude that cars equipped with radial tires 
give better fuel economy than those equipped with 
belted tires? Assume the populations to be normally 
distributed. Use a P-valne in your conclusion. 

10.44 In Exercise 9.88 on page 315, use the t-
distribution to test the hypothesis that the diet re
duces a person's weight by 4.5 kilograms on the av
erage against the alternative hypothesis that the mean 
difference in weight is less than 4.5 kilograms. Use a 
P-value. 

10.45 According to the published reports, practice 
under fatigued conditions distorts mechanisms which 
govern performance. An experiment was conducted 
using 15 college males who were trained to make a con
tinuous horizontal right-to-left arm movement from a 
microswitch to a barrier, knocking over the barrier co
incident with the arrival of a clock sweephand to the 

6 o'clock position. The absolute value of the differ
ence between the time, in milliseconds, that it took to 
knock over the barrier and the time for the sweephand 
to reach the 6 o'clock position (500 msec) was recorded. 
Each participant performed the task five times under 
prefatigue and postfatigue conditions, and the sums of 
the absolute differences for the five performances were 
recorded as follows: 

Absolute Time Differences 
Subject 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Prefatigue 
158 
92 
05 
98 
33 
89 

148 
58 

142 
117 
74 
66 

109 
57 
85 

Postfatigue 
91 
59 

215 
226 
223 
91 
92 

177 
134 
116 
153 
219 
143 
164 
100 

An increase in the mean absolute time differences 
when the task is performed under postfatigue condi
tions would support the claim that practice under fa
tigued conditions distorts mechanisms that govern per
formance. Assuming the populations to be normally 
distributed, test this claim. 

10.46 In a study conducted by the Department of 
Human Nutrition and Foods at the Virginia Polytech
nic Institute and State University the following data 
on the comparison of sorbic acid residuals in parts per 
million in ham immediately after dipping in a sorbate 
solution and after 60 days of storage were recorded: 

Sorbic Acid Residuals in Ham 
Slice 

1 
2 
3 
4 
5 
6 
7 
8 

Before Storage 
224 
270 
400 
444 
590 
660 

1400 
680 

After Storage 
116 
96 

239 
329 
437 
597 
689 
576 

Assuming the populations to be normally distributed, 
is there sufficient evidence, at the 0.05 level of signifi
cance, to say that the length of storage influences sorbic 
acid residual concentrations? 

10.47 How large a sample is required in Exercise 
10.20 if the power of our test is to be 0.90 when the 
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true mean is 5.20? Assume: that a = 0.24. 

10.48 I f the distribution of life spans in Exercise: 10.21 
is approximately normal, how large a sample: is re
quired in order that the probability of committing a 
type 11 error be 0.1 when the true mean is 35.9 months? 
Assume that a = 5.8 months. 

10.49 How large a sample: is required in Exercise 
10.22 if the power of our test is to be 0.95 when the 
true average height differs from J62.5 by 3.1 centime
ters? Use: a = 0.02. 

10.50 How large should the samples be in Exercise 
10.31 if the power of our test is to be 0.95 vvlie:n the 
true difference between thread types A and B is 8 kilo-

Dog Knife S t r e n g t h 
1 
1 
2 
2 
3 
3 
4 
4 
5 
5 
6 
6 
7 
7 
8 
8 

Hot 
Cold 
Hot: 

Cold 
Hot, 

Cold 
Hot 

Cold 
Hot 

Cold 
Hot 

Cold 
Hot 

Cold 
Hot. 

Cold 

5120 
8200 

10000 
8000 

10000 
9200 

10000 
6200 

10000 
10000 
7900 
5200 

510 
885 

1020 
4G0 

10.51 How large a sample is required in Exercise 
10.24 if the power of our test is to be 0.8 when the 
true mean meditation time exceeds the hypothesized 
value by L.2ff? Use a = 0.05. 

10.52 On testing 

Ho: p = 14, 
Hi: P ? M 4 , 

an Q = 0.05 level t-test is being considered. What 
sample size is necessary in order that the probability is 
0.1 of falsely failing to reject Ho when the true popula
tion mean differs from 14 by 0.5? From a preliminary 
sample we estimate er to be 1.25. 

10.53 A study was conducted at the Department of 
Veterinary Medicine at Virginia Polytechnic Institute 
and State University to determine if the "strength" of 
a wound from surgical incision is affected by the tem
perature of the knife. Eight dogs were used in the ex
periment. The incision was performed in the abdomen 
of the animals. A "hot" and "cold" incision was made 
on each dog and the strength was measured. The re
sulting data appear below. 

(a) Write1 an appropriate: hypothesis to determine if 
there is a significant difference in strength between 
the hot and cold incisions. 

(b) Test the hypothesis using a paired /-test. Use a 
P-valne in your conclusion. 

10.54 Nine subjects were ust:el in an experiment to 
determine if an atmosphere involving exposure to car
bon monoxide has an impact on breathing capability. 
The data were collected by personnel in the Health 
and Physical Education Department at Virginia Poly
technic Institute and State University. The data were 
analyzed in the Statistics Consulting Center at Hokie 
Land. The subjects were exposed to breathing cham
bers, one of which contained a high concentration of 
CO. Several breathing measures were made for each 
subject for each chamber. The: subjects were exposed 
to the breathing chambers in random sequence. The 
data give the breathing frequency in number of breaths 
taken per minute. Make a one-sided test of the hypoth
esis that mean breathing frequency is the same for the 
two environments. Use a = 0.05. Assume that breath
ing frequency is approximately normal. 

Subject 
1 
2 
3 
4 
5 
6 
7 
8 
1) 

W i t h C O 
30 
45 
26 
25 
34 
51 
16 
:V2 
30 

W i t h o u t C O 
30 
40 
25 
23 
30 
19 

41 
35 
28 

10.11 One Sample: Test on a Single Proportion 

Tests of hypotheses concerning proportions are required in many areas. The politi
cian is certainly interested in knowing what fraction of the voters will favor him in 
the next election. All manufacturing firms tiro concerned about the proportion of 
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defective items when a shipment is made. The gambler depends on a knowledge of 
the proportion of outcomes that he or she considers favorable. 

We shall consider the problem of testing the hypothesis that the proportion 
of successes in a binomial experiment equals some specified value. That is, we 
are testing the null hypothesis HQ that p = po, where p is the parameter of the 
binomial distribution. The alternative hypothesis may be one of the usual one-sided 
or two-sided alternatives: 

p < po, p> po, or p jt po. 

The appropriate random variable on which we base our decision criterion is 
the binomial random variable X, although we could just as well use the statistic 
p = X/n. Values of X that are far from the mean p = npo will lead to the rejection 
of the null hypothesis. Because AT is a discrete binomial variable, it is unlikely that 
a critical region can be established whose size is exactly equal to a prespecified 
value of Q. For this reason it is preferable, in dealing with small samples, to base 
our decisions on P-values. To test the hypothesis 

HQ: p = Po, 

Hi: p<p0, 

we use the binomial distribution to compute the P-value 

P = P(X < x when p = p0). 

The value x is the number of successes in our sample of size n. If this P-value is 
less than or equal to a, our test is significant at the a level and we reject H0 in 
favor of Hi. Similarly, to test the hypothesis 

HQ: P = Pu, 

Hi: p > po, 

at the ei-level of significance, we compute 

P = P(X > x when p = po) 

and reject Ho in favor of Hi if this P-value is less than or equal to a. Finally, to 
test the hypothesis 

H0: P = Po, 

Hi: p^po, 
at the Q-level of significance, we compute 

P = 2P(X < x when p — po) if x < npo, or 

P = 2P(X > x when p — p0) if x > npo 

and reject Ho in favor of H\ if the computed P-value is less than or equal to a. 
The steps for testing a null hypothesis about a proportion against various al

ternatives using the binomial probabilities of Table A.l are as follows: 
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Testing a 1. HQ: p = p0-
Proportion: 2. One of the alternatives H\: p < pn, p > po, or p ^ po-

Small Samples 3. Choose a level of significance equal to a. 
4. Test statistic: Binomial variable X with p = p0 . 
5. Computations: Find x, the number of successes, and compute the appropri
ate P-value. 
6. Decision: Draw appropriate conclusions based on the P-value. 

Example 10.10:1 A builder claims that heat pumps are installed in 70% of all homes being con
structed today in the city of Richmond, Virginia. Would you agree with this claim 
if a random survey of new homes in this city shows that 8 out of 15 had heat pumps 
installed? Use a 0.10 level of significance. 

Solution: 1. HQ: p = 0.7. 

2. Hi: p 7^0.7. 

3. o = 0 . 1 0 . 

4. Test statistic: Binomial variable X with p = 0.7 and n = 15. 

5. Computations: x — 8 and np0 = (15)(0.7) = 10.5. Therefore, from Table A.l, 
the computed P-value is 

8 

P = 2P(X < 8 when p = 0.7) = 2 ^ b(x; 15,0.7) = 0.2622 > 0.10. 
x=0 

6. Decision: Do not reject HQ. Conclude that there is insufficient reason to 
doubt the builder's claim. J 

In Section 5.3. we saw that binomial probabilities were obtainable from the 
actual binomial formula or from Table A.l when n is small. For large n, approxi
mation procedures are required. When the hypothesized value po is very close to 
0 or 1, the Poisson distribution, with parameter p = npo, may be used. However, 
the normal-curve approximation, with parameters p = npo, and a2 = npoqo, is 
usually preferred for large n and is very accurate as long as po is not extremely 
close to 0 or to 1. If we use the normal approximation, the z-value for t es t ing 
p= po is given by 

x - npo p-po 

y/nPoqo y/poqo/n 

which is a value of the standard normal variable Z. Hence, for a two-tailed test 
at the o-level of significance, the critical region is z < —2Q/o or z > za/2. For the 
one-sided alternative p < po, the critical region is z < —za, and for the alternative 
p > po, the critical region is z > za. 

Example 10.11:1 A commonly prescribed drug for relieving nervous tension is believed to be only 60% 
effective. Experimental results with a new drug administered to a random sample 
of 100 adults who were suffering from nervous tension show that 70 received relief. 
Is this sufficient evidence to conclude that the new drug is superior to the one 
commonly prescribed? Use a 0.05 level of significance. 
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Solution: 1. HQ: p = 0.6. 

2. Hi: p > 0 . 6 . 

3. a = 0.05. 

4. Critical region: 2 > 1.645. 

5. Computations: x = 70. n = 100. p = 70/100 = 0.7, and 

= 2.04, P = P(Z > 2.04) < 0.0207. 
v/(0.(i)(0.4)/10(J 

6. Decision: Reject Ho and conclude that the new drug is superior. 

10.12 Two Samples: Tests on Two Proportions 

Situations often arise where we wish to test the hypothesis that two proportions 
are equal. For example, we might try to show evidence that the proportion of 
doctors who are pediatricians in one state is equal to the proportion of pediatricians 
in another state. A person may decide to give up smoking only if he or she is 
convinced that the proportion of smokers with lung cancer exceeds the proportion 
of nonsmokers with lung cancer. 

In general, we wish to test the: null hypothesis that two proportions, or bino
mial parameters, are equal. That: is, we are testing pi = p2 against one of the 
alternatives p\ < p2, pi > p2, or p\ ^ -p2- Of course, this is equivalent to testing 
the null hypothesis that, p\ — p2 = 0 against one of the alternatives pi — P2 < 0, 
Pi ~ Pa > 0, or pi — po T 0- The statistic on which we base our decision is the 
random variable Pi — P2. Independent samples of size n\ and n2 are selected at 
random from two binomial populations and the proportion of successes P] and P2 
for the two samples is computed. 

In our construction of confidence intervals for pi and P2 wc noted, for »i and n2 

sufficiently large, that the point estimator P] minus P2 was approximately normally 
distributed with mean 

P-p, - A ~Pi ~P2 

and variance 

2 P1Q1 , P2Q2 
a

P,-iX = — + — • ' 1 ' - nx ii2 

Therefore, our critical region(s) can be established by using the standard normal 
variable 

z _ ( A - P 3 ) - ( P l - P 2 ) 

\/pt f / i /»i +P2q->/i>2 

When HQ is true, we can substitute pi = p2 = p and c/i = c/2 = q (where p and 
q are the common values) in the preceding formula for Z to give the form 

z= h~h 

y/pq(\/ni + \/n.2) 
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To compute a value of Z, however, we must estimate the parameters p and q that 
appear in the radical. Upon pooling the data from both samples, the pooled 
estimate of the proportion p is 

P = 
xx + 3:2 

»i + n2' 

where xx and x2 arc the number of successes in each of the two samples. Substi
tuting p for p and q — 1 — p for q, the «-value for testing pi = p2 is determined 
from the formula 

Pi - P2 

y/pq(l/m + I/77.2) 

The critical regions for the appropriate alternative hypotheses are set up as before 
using critical points of the standard normal curve. Hence, for the alternative 
Pi f^ P2 at the Q-levcl of significance, the critical region is z < —za/2, or z > za/2. 
For a test where the alternative is pi < P2, the critical region is z < —za, and 
when the alternative is pi > p2, the critical region is z > za. 

Example 10.12:1 A vote is to be taken among the residents of a town and the surrounding county 
to determine whether a proposed chemical plant should be constructed. The con
struction site is within the town limits, and for this reason many voters in the 
county feel that the proposal will pass because of the large proportion of town 
voters who favor the construction. To determine if there is a significant difference 
in the proportion of town voters and county voters favoring the proposal, a poll is 
taken. If 120 of 200 town voters favor the proposal and 240 of 500 county residents 
favor it, would you agree that the proportion of town voters favoring the proposal is 
higher than the proportion of county voters? Use an a = 0.05 level of significance. 

Solution: Let pi and p2 be the true proportion of voters in the town and county, respectively, 
favoring the proposal. 

1. H0: Px =P2-

2. Hi: pi >p2. 

3. a = 0.05. 

4. Critical region: 2 > 1.645. 

5. Computations: 

240 
Pi = £i = i^= 0 .60, 

771 200 

p 

P2 

120 + 240 

X2 

n2 500 
= 0.48, and 

Xl +x2 

m + n2 200 + 500 
= 0.51. 

Therefore. 

0.60 - 0.48 
z = 

v/(0.51)(0.49)(l/200-

P = P(Z > 2.9) = 0.0019. 

1/500) 
= 2.9. 

6. Decision: Reject HQ and agree that, the proportion of town voters favoring 
the proposal is higher than the proportion of county voters. J j 
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Chapter 10 One- and Two-Sample Tests of Hypotheses 

10.55 A marketing expert for a pasta-making com
pany believes that 40% of pasta lovers prefer lasagna. 
If 9 out of 20 pasta lovers choose lasagna over other pas
tas, what can be concluded about the expert's claim? 
Use a 0.05 level of significance. 

10.56 Suppose that, in the past, 40% of all adults 
favored capital punishment. Do we have reason to be
lieve that the proportion of adults favoring capital pun
ishment today has increased if, in a random sample of 
15 adults, 8 favor capital punishment? Use a 0.05 level 
of significance. 

10.57 A coin is tossed 20 times, resulting in 5 heads. 
Is this sufficient evidence to reject the hypothesis that 
tile coin is balanced in favor of the alternative that 
heads occur less than 50% of the time? Quote a P-
value. 

10.58 It is believed that at least 60% of the residents 
in a certain area favor an annexation suit by a neigh
boring city. What conclusion would you draw if only 
110 in a sample of 200 voters favor the suit? Use a 0.05 
level of significance. 

10.59 A fuel oil company claims that one-fifth of the 
homes in a certain city are heated by oil. Do we have 
reason to believe that fewer than 1/5 are heated by oil 
if, in a random sample of 1000 homes in this city, it 
is found that 136 are heated by oil? Use a P-value in 
your conclusion. 

10.60 At. a certain college it is estimated that at most 
25% of the students ride bicycles to class. Does this 
seem to be a valid estimate if, in a random sample of 
90 college students, 28 are found to ride bicycles to 
class? Use a 0.05 level of significance. 

10.61 A new radar device is being considered for a 
certain defense missile system. The system is checked 
by experimenting with actual aircraft in which a kill or 
a no kill is simulated. If in 300 trials, 250 kills occur, 
accept or reject, at the 0.04 level of significance, the 
claim that the probability of a kill with the new sys
tem does not exceed the 0.8 probability of the existing 
device. 

10.62 In a controlled laboratory experiment, scien
tists at the University of Minnesota discovered that 
25% of a certain strain of rats subjected to a 20% coffee 
bean diet and then force-fed a powerful cancer-causing 

chemical later developed cancerous tumors. Would we 
have reason to believe that the proportion of rats devel
oping tumors when subjected to this diet has increased 
if the experiment were repeated and 16 of 48 rats de
veloped tumors? Use a 0.05 level of significance. 

10.63 In a study to estimate the proportion of resi
dents in a certain city and its suburbs who favor the 
construction of a nuclear power plant, it is found that 
63 of 100 urban residents favor the construction while 
only 59 of 125 suburban residents are in favor. Is there 
a significant difference between the proportion of ur
ban and suburban residents who favor construction of 
the nuclear plant? Make use of a P-value. 

10.64 In a study on the fertility of married women 
conducted by Martin O'Connell and Carolyn C. Rogers 
for the Census Bureau in 1979, two groups of child
less wives aged 25 to 29 were selected at random and 
each wife was asked if she eventually planned to have a 
child. One group was selected from among those wives 
married less than two years and the other from among 
those wives married five years. Suppose that 240 of 
300 wives married less than two years planned to have 
children some day compared to 288 of the 400 wives 
married five years. Can we conclude that the propor
tion of wives married less than two years who planned 
to have children is significantly higher than the pro
portion of wives married five years? Make use of a 
P-value. 

10.65 An urban community would like to show that 
the incidence of breast cancer is higher than in a nearby-
rural area. (PCB levels were found to be higher in the 
soil of the urban community.) If it is found that 20 of 
200 adult women in the urban community have breast 
cancer and 10 of 150 adult women in the rural commu
nity have breast cancer, can we conclude at the 0.05 
level of significance that breast cancer is more preva
lent in the urban community? 

10.66 In a winter of an epidemic flu, 2000 babies were 
surveyed by a well-known pharmaceutical company to 
determine if the company's new medicine was effective 
after two days. Among 120 babies who had the flu 
and were given the medicine, 29 were cured within two 
days. Among 280 babies who had the flu but were not 
given the medicine, 56 were cured within two days. Is 
there any significant indication that supports the com
pany's claim of the effectiveness of the medicine? 
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10.13 One- and Two-Sample Tests Concerning Variances 

In this section we arc concerned with testing hypotheses concerning population 
variances or standard deviations. One:- and two-sample tests on variances arc 
certainly not difficult to motivate. Engineers and scientists are constantly con
fronted with studies in which they arc: required to demonstrate: that measurements 
involving products or processes fall inside .specifications set by consumers. The 
specifications are often met if the process variance is sufficiently small. Attention 
is also focused on comparative experiments between methods or processes where 
inherent reproducibility or variability must formally be compared, hi addition, a 
test comparing two variances is often applied prior to conducting a t-test on two 
means. The goal is to determine if the equal variance assumption is violated. 

Lot. us first consider the problem of testing the null hypothesis HQ that the 
population variance o2 equals a specified value: CT(

2 against one of the usual alter
natives o~ < CTQ, a2 > (TQ, or a~ /• e7t

2. The appropriate statistic: on which we 
base our decision is the same chi-squareel statistic of Theorem 8.1 that is used in 
Chapter 9 to construe:! a confidence interval for a-. Therefore, if we assume that 
the distribution of the population being sampled is normal, the chi-squared value 
for testing a = OQ is given by 

2 _ (71 - 1).S2 

X — 2 ' 

where n is the sample si/.c, s2 is the sample variance, and a'2, is the: value of a2 given 
by the null hypothesis, If ffo is true, x'2 is a value of the chi-squared distribution 
with t: = 77 — 1 degrees of freedom. Hence, for a two-tailecl test at the a-levcl 
of significance, the critical region is v'2 < x\-a/2

 o r K2 > Xa/2' For the one
sided alternative a2 < ofi, the critical region is ,\2 < x'f-a

 a l K ' f°r t ' i e one-sided 
alternative <r2 > a\, the critical region is \2 > \ '- . 

Robustness of %2-Test to Assumption of Normali ty 

The reader may have discerned that various tests depend, at least, theoretically, 
on the assumption of normality. In general, many procedures in applied statistics 
have theoretical underpinnings that depend on the normal distribution. These 
procedures vary in the degree of their dependency on the assumption of normality. 
A procedure that is reasonably insensitive to the assumption is called a robus t 
p rocedure (i.e., robust to normality). The \2-fest on a single: variance is very 
noni'obiist to normality (i.e., the practical success of the procedure depends on 
normality). As a result, the P-value computed may be appreciably different from 
the actual P-value if the population sampled is not normal. Indeed, it is quite 
feasible that a statistically significant P-valuc may not truly signal Hi: a ^ exo, 
but. rather, a significant value may be a result of the violation of the normality 
assumptions. Therefore, the analyst should approach the use of this particular 
X2-test with caution. 

Example 10.13:1 A manufacturer of car batteries claims that the life of his batteries is approximately 
normally distributed with a standard deviation equal to 0.9 year. If a random 
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sample of 10 of these batteries has a standard deviation of 1.2 years, do you think 
that a > 0.9 year? Use a 0.05 level of significance. 

Solution: 1- HQ\ a2 = 0.81. 

2. Hi: <72>0.81. 

3. a = 0.05. 

4. Critical region: From Figure 10.19 we see that the null hypothesis is rejected 

when x2 > 16.919, where x2 = ^"~5 ) s , with v = 9 degrees of freedom. 

16.919 

Figure 10.19: Critical region for the alternative hypothesis a > 0.9. 

5. Computations: s2 = 1.44, n = 10, and 

(9)(1.44) 
x2 = 0.81 

= 16.0, P % 0.07. 

6. Decision: The x2-statistic is not significant at the 0.05 level. However, based 
on the P-value 0.07, there is evidence that a > 0.9. J 

Now let. us consider the problem of testing the equality of the variances a2 and 
a2 of two populations. That is, we shall test the null hypothesis HQ that a2 

against one of the usual alternatives 

2 _ „ 2 

~2 , J2. 
ai < a2, 

> CTo or *? * A 
For independent random samples of size 77] and n2, respectively, from the two 
populations, the /-value for test ing a\ — a2 is the ratio 

/ = 

where s2 and s\ are the variances computed from the two samples. If the two 
populations are approximately normally distributed and the null hypothesis is true, 
according to Theorem 8.8 the ratio / = s\/s\ is a value of the F-distribution with 
t'i = 7 7 i — l and v2 — n2 — 1 degrees of freedom. Therefore, the critical regions 
of size a corresponding to the one-sided alternatives a\ < a\ and <r2 > a\ are, 
respectively. / < f\-nivx,v2) and / > fa(vi,v2). For the two-sided alternative 
a2 j£ a2., the critical region is / < fi-a/2(vx,v2) or / > fQ/2ivx,v2). 
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Example 10.14:1 In testing for the difference in the abrasive wear of the two materials in Example 
10.6, we assumed that the two unknown population variances are equal. Were we 
justified in making this assumption? Use a 0.10 level of significance. 

Solution: Let a2 and a2 be the population variances for the abrasive wear of material 1 and 
material 2, respectively. 

1. H0: a2 = er2. 

2. Hx: a2^ a
2. 

3. a = 0.10. 

4. Critical region: From Figure 10.20, we see that /o.oo(H ;9) = 3 . 1 1 and, by 
using Theorem 8.7, 

1 
/o.95(H,9) = = 0.34. 

/u.oo(9,ll) 

Therefore, the null hypothesis is rejected when / < 0.34 or /> 3.11, where 

1/1 = 11 and v2 = 9 

Figure 10.20: Critical region for the alternative hypothesis a2 ^ erf. 

/ — s i / s l ^'ith ?'i — 11 a n d v2 = 9 degrees of freedom. 
5. Computations: s2 = 16, s2 = 25, and hence / = ±| = 0.64. 

6. Decision: Do not reject H0. Conclude that there is insufficient evidence that 
the variances differ. J 

.F-test for T e s t i n g V a r i a n c e s i n S A S 

Figure 10.18 on page 357 displays a two-sample r-test where two means were com
pared, as an exercise, with the seedling data. Box-and-whisker plots in Figure 
10.17 on page 356 suggest that variances are not homogeneous, and thus the t'-
statistic and its corresponding P-value are relevant. Note also that the printout 
displays the F-statistic for H0: ax = 02 with a P-value of 0.0098, additional evi
dence that more variability is to be expected when nitrogen is used as compared 
to the "no-nitrogen" condition. 
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Exercises 

Chapter 10 One- and Two-Sample Tests of Hypotheses 

10.67 The volume of containers of a particular lubri
cant is known to be normally distributed with a vari
ance of 0.03 liter, Test the hypothesis that a2 = 0.03 
against tbe alternative that a2 7̂  0.03 for the random 
sample of 10 containers in Exercise 10.25 011 page 357. 
Use a P-value in your conclusions. 

10.68 Past experience indicates that the time re
quired for high school seniors to complete a standard
ized test is a normal random variable with a standard 
deviation of 6 minutes. Test, the hypothesis thai 0 = 6 
against the alternative that, IT < 6 if a random sam
ple of 20 high school seniors has a standard deviations 
s = 4.51. Use a 0.05 level of significance. 

10.69 Allotoxins produced by mold on peanut crops 
in Virginia must be monitored. A sample of 61 batches 
of peanuts reveals levels of 24.17 ppm, on average, 
with a variance of 4.25 ppm. Test the hypothesis that 
a2 = 4.2 ppm with the alternative that a ^ 4.2 ppm. 
Use a P-value in your conclusions. 

10.70 Past data indicate that, the amount of money 
contributed by the working residents of a large city to 
a volunteer rescue squad is a normal random variable 
with a standard deviation of St.40. It has been sug
gested that the contributions to the rescue squad from 
just the employees of the sanitation department are 
much more variable. If the contributions of a random 
sample of 12 employees from the sanitation department 
had a standard deviation of $1.75, can we conclude at 
the 0.01 level of significance that the standard devi
ation of the contributions of all sanitation workers is 
greater than that of all workers living in this city? 

10.71 A soft-drink dispensing machine is said to be 
out of control if the variance of the contents exceeds 
1.15 deciliters. If a random sample of 25 drinks from 
this machine has a variance of 2.03 deciliters, does this 
indicate at the 0.05 level of significance that the ma
chine is out of control? Assume that the contents are 
approximately normally distributed. 

10.72 Large-Sample Test of a2 = rr0: When n > 
30 we can test the null hypothesis that a = a2, or 
a — (To, by computing 

S - CT(] 

ero /y/2n' 

which is a value of a random variable whose sampling 
distribution is approximately the standard normal dis
tribution. 
(a) With reference to Example 10.5, test, at, the 0.05 

level of significance whether a = 10.0 years against 
the alternative that <r / 10.0 years. 

(b) It is suspected that, the variance of the distribution 
of distances in kilometers achieved per 5 liters of 
fuel by a new automobile model eejuipped with a 
diesel engine is less than the variance of the dis
tribution of distances achieved by the same model 
equipped with a six-cylinder gasoline engine, which 
is known to be a2 = 6.25. If 72 test runs in the 
diesel model have a variance of 4.41, can we con
clude at the 0.05 level of significance that the vari
ance of the distances achieved by the: diesel model 
is less than that of the gasoline model? 

10.73 A study is conducted to compare the length of 
time between men and women to assemble a certain 
product. Past experience indicates that the distribu
tion of times for both men and women is approximately 
normal but the variance of the times for women is less 
than that for men. A random sample of times for 11 
men and 14 women produced the following data: 

M e n W o m e n 
7H = I I 
si =6 .1 

712 = W 

Test the hypothesis that a'i = a2 against the alterna
tive that ai > a2. Use a P-valuc in your conclusion. 

10.74 In Exercise 10.41 on page 359, test the hypoth
esis at the 0.05 level of significance that a1 = <T| against 
the alternative that, a2 ^ a2, where aj and a2 are the 
variances for the number of organisms per square meter 
at the two different locations on Cedar Run. 

10.75 With reference: to Exercise I0..'{9 on page 359, 
test the hypothesis that a\ = a\ against the alterna
tive that a\ 7̂  a\, where a\ and a2 are: the variances 
for the running times of films produced by company 1 
and company 2, respectively. Use a P-value. 

10.76 Two types of instruments for measuring the 
amount of sulfur monoxide in the atmosphere are be
ing compared in an air-pollution experiment. It is de
sired to determine whether the two types of instru
ments yield measurements having the same variability. 
The following readings were recorded for the two in
struments: 

Sulfur Monoxide 
I n s t r u m e n t A I n s t r u m e n t B 

0.86 
0.82 
0.75 
0.61 

0.87 
0.74 
0.63 
0.55 
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Sulfur Monox ide 
Instrument A 

0.89 
0.64 
0.81 
0.68 
0.65 

Instrument B 
0.76 
0.70 
0.69 
0.57 
0.53 

Assuming the populations of measurements to be ap
proximately normally distributed, test the hypothesis 
that a A = a a against the alternative that CT.-I ^ ae-
Use a P-value. 

10.77 An experiment was conducted to compare the 
alcohol contents in a soy sauce at two different pro
duction lines. Production was monitored eight times a 
day. The data are shown here. 

Production line 1: 
0.48 0.39 0.42 0.52 0.40 0.48 0.52 0.52 

Production line 2: 
0.38 0.37 0.39 0.41 0.38 0.39 0.40 0.39 

Assume both populations arc normal. It is suspected 

that production line 1 is not producing as consistently 
as production line 2 in terms of alcohol contents. Test 
the hypothesis that eri = a2 against the alternative 
that ai ^ a2. Use a P-value. 

10.78 The hydrocarbon emissions are known to have 
decreased dramatically during the 1980s. A study was 
conducted to compare the hydrocarbon emissions at 
idling speed, in parts per million (ppm), for automo
biles of 1980 and 1990. Twenty cars of each year model 
were randomly selected and their hydrocarbon emis
sion levels were recorded. The data are as follows: 

1980 models: 
141 359 247 940 882 494 306 210 105 880 
200 223 188 940 241 190 300 435 241 380 

1990 models: 
140 160 20 20 223 60 20 95 360 70 
220 400 217 58 235 380 200 175 85 65 

Test the hypothesis that en = a2 against the alter
native that o\ ^ a2. Assume both populations are 
norma]. Use a P-value. 

10.14 Goodness-of-Fit Test 

Throughout this chapter we have been concerned with the testing of statistical 
hypotheses about single population parameters such as p, a2, and p. Now we shall 
consider a test to determine if a population has a specified theoretical distribution. 
T h e test is based on how good a fit we have between the frequency of occurrence 
of observations in an observed sample and the expected frequencies obtained from 
the hypothesized distribution. 

Tabic 10.4: Observed and Expected Frequencies of 120 Tosses of a Die 

Face: 
Observed 
Expected 

1 
20 
20 

2 
22 
20 

3 
17 
20 

4 
18 
20 

5 
19 
20 

6 
24 
20 

To illustrate, consider the tossing of a die. We hypothesize t ha t the die is honest, 
which is equivalent to testing the hypothesis t ha t the distribution of outcomes is 
the discrete uniform distribution 

fix) = 
1 

x = 1,2, . . . ,6. 

Suppose tha t the die is tossed 120 times and each outcome is recorded. Theoret
ically, if the die is balanced, we would expect, each face to occur 20 times. The 
results are given in Table 10.4. By comparing the observed frequencies with the 
corresponding expected frequencies, wc must decide whether these discrepancies 
are likely to occur as a result, of sampling fluctuations and the die is balanced, or 
the die is not honest and the distribution of outcomes is not uniform. It is common 
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practice to refer to each possible outcome of an experiment as a cell. Hence, in 
our illustration, we have 6 cells. The appropriate statistic on which we base our 
decision criterion for an experiment involving k cells is defined by the following 
theorem. 

Goodness-of-Fit A goodness-of-fit test between observed and expected frequencies is based 
Test on the quantity 

2 _ V ^ iOi ~ Gj)2 

*' = £ 
where x2 iS a value of a random variable whose sampling distribution is approx
imated very closely by the chi-squared distribution with v = k — 1 degrees of 
freedom. The symbols o, and e; represent the observed and expected frequen
cies, respectively, for the ith cell. 

The number of degrees of freedom associated with the chi-squared distribution used 
here is equal to k — 1, since there are only k — 1 freely determined cell frequencies. 
That is, once k — 1 cell frequencies are determined, so is the frequency for the kth 
cell. 

If the observed frequencies are close to the corresponding expected frequencies, 
the x2-value will be small, indicating a good fit. If the observed frequencies differ 
considerably from the expected frequencies, the x2"vahie will be large and the fit 
is poor. A good fit leads to the acceptance of HQ whereas a poor fit leads to its 
rejection. The critical region will, therefore, fall in the right tail of the chi-squared 
distribution. For a level of significance equal to a, we find the critical value xa 

from Table A.5, and then \ 2 > Xa constitutes the critical region. The decision 
criterion described here should not be used unless each of the expected 
frequencies is at least equal to 5. This restriction may require the combining 
of adjacent cells resulting in a reduction in the number of degrees of freedom. 

From Table 10.4, we find the x2-value to be 

2 _ (20 - 20)2 (22 - 20)2 ( 1 7 - 2 0 ) 2 

X ~ 20 + 20 + 20 
( 1 8 - 2 0 ) 2 ( 1 9 - 2 0 ) 2 ( 2 4 - 2 0 ) 2 

20 20 20 

Using Table A.5, we find xij.05 = 11-070 for v — 5 degrees of freedom. Since 1.7 
is less than the critical value, we fail to reject HQ. We conclude that there is 
insufficient evidence that the die is not balanced. 

As a second illustration, let us test the hypothesis that the frequency distri
bution of battery lives given in Table 1.7 on page 23 may be approximated by 
a normal distribution with mean p = 3.5 and standard deviation a = 0.7. The 
expected frequencies for the 7 classes (cells), listed in Table 10.5, are obtained by 
computing the areas under the hypothesized normal curve that fall between the 
various class boundaries. 

For example, the 2-values corresponding to the boundaries of the fourth class 
are 

2 .95-3 .5 n m , 3 .45-3 .5 
zi = — = -0.79 and z2 = — = -0.07, 
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Table 10.5: Observed and Expected Frequencies of Battery Lives Assuming Nor-
malitv 

Class Boundaries 
1.45 - 1.95 
1.95 - 2.45 
2.45 - 2.95 
2.95 - 3.45 
3.45 - 3.95 
3.95 - 4.45 
4.45 - 4.95 

Oj 

2 ' 
1 
4 

15 
10 
5 
3 

| 
7 

f 

V 

ei 

0.5 
2.1 
5.9 

10.3 
10.7 
7.0 
3.5 

| 
>8.5 
1 

110.5 

From Table A.3 we find the area between zx — —0.79 and z2 = —0.07 to be 

area = P(-0 .79 < Z < -0.07) = P(Z < -0.07) - P(Z < -0.79) 

= 0.4721 - 0.2148 = 0.2573. 

Hence the expected frequency for the fourth class is 

e4 = (0.2573)(40) = 10.3. 

It is customary to round these frequencies to one decimal. 
The expected frequency for the first class interval is obtained by using the total 

area under the normal curve to the left of the boundary 1.95. For the last class 
interval, we use the total area to the right of the boundary 4.45. All other expected 
frequencies are determined by the method described for the fourth class. Note that 
we have combined adjacent classes in Table 10.5, where the expected frequencies 
are less than 5. Consequently, the total number of intervals is reduced from 7 to 
4, resulting in v = 3 degrees of freedom. The x2-value is then given by 

2 ( 7 - 8 . 5 ) 2 (15-10 .3) 2 (10-10 .7) 2 (8 - 10.5)2 

X ^S-o—-^ 10.3 + 10.7 + 10.5 = 3 " 0 5 -

Since the computed x2-value is less than Xo.os = 7.815 for 3 degrees of freedom, 
we have no reason to reject the null hypothesis and conclude that the normal 
distribution with p. = 3.5 and a — 0.7 provides a good fit. for the distribution of 
battery lives. 

The chi-squared goodness-of-fit test is an important resource, particularly since 
so many statistical procedures in practice depend, in a theoretical sense, on the 
assumption that the data gathered come from a specific distribution type. As 
we have already seen, the normality assumption is often made. In the chapters 
that follow we shall continue to make normality assumptions in order to provide a 
theoretical basis for certain tests and confidence intervals. 

There are tests in the literature that are more powerful than the chi-squared test 
for testing normality. One such test is called Geary ' s test. This test is based on a 
very simple statistic which is a ratio of two estimators of the population standard 
deviation a. Suppose that a random sample Xx,X2,..., X„ is taken from a normal 
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distribution, N(p,o). Consider the ratio 

y/^j2zZ\Xi-X\/n 
U= — i=l 

IZiXt-Xp/n 

The reader should recognize that the denominator is a reasonable estimator of a 
whether the distribution is normal or not. The numerator is a good estimator of cr 
if the distribution is normal but may overestimate or underestimate a when there 
are departures from normality. Thus values of U differing considerably from 1.0 
represent the signal that the hypothesis of normality should be rejected. 

For large samples a reasonable test is based on approximate normality of U. 
The test statistic is then a standardization of U, given by 

z = u'1 

0.2661/v/rT' 

Of course, the test procedure involves the two-sided critical region. We compute 
a value of z from the data and do not reject the hypothesis of normality when 

-za/2 < Z < za/2. 

A reference to a paper dealing with Geary's test is cited in the Bibliography. 

10.15 Test for Independence (Categorical Data) 

The chi-squared test procedure discussed in Section 10.14 can also be used to test 
the hypothesis of independence of two variables of classification. Suppose that 
we wish to determine whether the opinions of the voting residents of the state of 
Illinois concerning a new tax reform are independent of their levels of income. A 
random sample of 1000 registered voters from the state of Illinois are classified as 
to whether they are in a low, medium, or high income bracket and whether or not 
they favor a new tax reform. The observed frequencies are presented in Table 10.6, 
which is known as a contingency table. 

Table 10.6: 2 x 3 Contingency Table 

Tax Reform 
For 
Against 
Total 

Income Level 
Low Medium High 
182 213 203 
154 138 110 
336 351 313 

Total 
598 
402 
1000 

A contingency table with r rows and c columns is referred to as an r x c table 
("r x c" is read "r by c"). The row and column totals in Table 10.6 are called 
marginal frequencies. Our decision to accept or reject the null hypothesis, Ho, 
of independence between a voter's opinion concerning the new tax reform and his 
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or her level of income is based upon how good a fit wc have between the observed 
frequencies in each of the 6 cells of Table 10.6 and the frequencies that we would 
expect for each cell under the assumption that Ho is true. To find these expected 
frequencies, let us define the following events: 

L: A person selected is in the low-income level. 

M: A person selected is in the medium-income level. 

H: A person selected is in the high-income level. 

F: A person selected is for the new tax reform. 

A: A person selected is against the new tax reform. 

By using the marginal frequencies, we can list the following probability esti
mates: 

^ > = Tffir p ^ = » p<ff> = S ! ' 
1000' v ' 1000' 

Now, if HQ is true and the two variables arc independent, we should have 

^ - ^ . ( H ) ( - ) , 

™=™,=(fi)(^), 
^ - P , * ™ - ( £ ) ( £ ) . 
p(tfn.4)=p(«)P(WiiiN)(ie.y k ; v / v 7 yWQ0j i^ioooy 

The expected frequencies are obtained by multiplying each cell probability by 
the total number of observations. As before, we round these frequencies to one 
decimal. Thus the expected number of low-income voters in our sample who favor 
the new tax reform is estimated to be 

/ 336 N / 598 \ 

Vioooy V IOOO) 
( 1 0 0 0 ) . < « » - 2 0 0 . 9 , 

when HQ is true. The general rule for obtaining the expected frequency of any cell 
is given by the following formula: 

, „ (column total) x (row total) 
expected frequency = : : . 

grand total 

The expected frequency for each cell is recorded in parentheses beside the actual 
observed value in Table 10.7. Note that the expected frequencies in any row or 
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column add up to the appropriate marginal total. In our example we need to 
compute only the two expected frequencies in the top row of Table 10.7 and then 
find the others by subtraction. The number of degrees of freedom associated with 
the chi-squared test used here is equal to the number of cell frequencies that may 
be filled in freely when we are given the marginal totals and the grand total, and in 
this illustration that number is 2. A simple formula providing the correct number 
of degrees of freedom is 

u = ( r - l ) ( c - l ) . 

Table 10.7: Observed and Expected Frequencies 

Income Level 
Tax Reform Low Medium High 
For 182 (200.9) 213 (209.9) 203 (187.2) 
Against 154 (135.1) 138 (141.1) 110 (125.8) 
Total 336 351 313 

Total 
598 
402 
1000 

Hence, for our example, v — (2- 1)(3 — 1) = 2 degrees of freedom. To test the 
null hypothesis of independence, we use the following decision criterion: 

Test for Calculate 
Independence 

2 V^ i0i ~ e'')2 

*2 = £ 
where the summation extends over all re cells in the r x c contingency table. 
If X2 > Xa w i * n v = (r— l)(c— 1) degrees of freedom, reject the null hypothesis 
of independence at the a level of significance; otherwise, fail to reject the null 
hypothesis. 

Applying this criterion to our example, we find that 

a _ (182 - 200.9)2 (213 - 209.9)2 (203 - 187.2)2 

200.9 209.9 187.2 
, (154 - 135.1)2 (138-141.1)2 (110-125.8)2 

+ 135.1 + 141.1 + 125.8 
P w0.02. 

From Table A.5 we find that Xom = 5 - 9 9 1 f o r v = (2 ~ ! ) ( 3 - 1) = 2 degrees of 
freedom. The null hypothesis is rejected and we conclude that a voter's opinion 
concerning the new tax reform and his or her level of income are not independent. 

It is important to remember that the statistic on which we base our decision 
has a distribution that is only approximated by the chi-squared distribution. The 
computed x2-values depend on the cell frequencies and consequently are discrete. 
The continuous chi-squared distribution seems to approximate the discrete sam
pling distribution of \2 very well, provided that the number of degrees of freedom 
is greater than 1. In a 2 x 2 contingency table, where we have only 1 degree of 
freedom, a correction called Yates' correction for continuity is applied. The 
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corrected formula then becomes 

X
2(corrected) = ^ ( | o ^ e i | - ° - 5 ) 2 . 

e% 
t 

If the expected cell frequencies are large, the corrected and uncorrected results 
are almost the same. When the expected frequencies are between 5 and 10, Yates' 
correction should be applied. For expected frequencies less than 5, the Fisher-Irwin 
exact test should be used. A discussion of this test may be found in Basic Concepts 
of Probability and Statistics by Hodges and Lehmann (see the Bibliography). The 
Fisher-Irwin test may be avoided, however, by choosing a larger sample. 

10.16 Test for Homogeneity 

When we tested for independence in Section 10.15, a random sample of 1000 vot
ers was selected and the row and column totals for our contingency table were 
determined by chance. Another type of problem for which the method of Section 
10.15 applies is one in which either the row or column totals are predetermined. 
Suppose, for example, that we decide in advance to select 200 Democrats, 150 
Republicans, and 150 Independents from the voters of the state of North Carolina 
and record whether they are for a proposed abortion law, against it, or undecided. 
The observed responses are given in Table 10.8. 

Table 10.8: Observed and Expected Frequencies 

Political Affiliation 
Abortion Law Democrat Republican Independent 
For 82 70 62 
Against 93 62 67 
Undecided 25 18 21 
Total 200 150 150 

Total 
214 
222 
64 
500 

Now, rather than test for independence, we test the hypothesis that the popu
lation proportions within each row are the same. That is, we test the hypothesis 
that the proportions of Democrats, Republicans, and Independents favoring the 
abortion law are the same; the proportions of each political affiliation against the 
law are the same: and the proportions of each political affiliation that are unde
cided are the same. We are basically interested in determining whether the three 
categories of voters arc homogeneous with respect to their opinions concerning 
the proposed abortion law. Such a test is called a test for homogeneity. 

Assuming homogeneity, we again find the expected cell frequencies by multi
plying the corresponding row and column totals and then dividing by the grand 
total. The analysis then proceeds using the same chi-squared statistic as before. 
We illustrate this process in the following example for the data of Table 10.8. 

Example 10.15:1 Referring to the data of Table 10.8, test the hypothesis that the opinions concerning 
the proposed abortion law are the same within each political affiliation. Use a 0.05 
level of significance. 
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Solution: 1. HQ: For each opinion the proportions of Democrats, Republicans, and Inde
pendents are the same. 

2. Hi: For at least one opinion the: proportions of Democrats, Republicans, and 
Independents are not the same. 

3. o = 0.05. 

4. Critical region: \'2 > 9.488 with o = 4 degrees of freedom. 

5. Computations: Using the expected cell frequency formula on page 375, we 
need to compute the 4 cell frequencies. All other frequencies are found by 
subtraction. The observed and expected cell frequencies are displayed in Table 
10.9. 

Table 10.9: Observed and Expected Frequencies 

Abor t ion Law 
For 
Against 
Undecided 
Total 

Democra t 
82 (85.6) 
93 (88.8) 
25 (25.6) 

200 

Political Affiliai 
Republican 

70 (64.2) 
62 (66.6) 
18 (19.2) 

150 

don 
Independent 

62 (64.2) 
67 (66.6) 
21 (19.2) 

150 

Total 
214 
222 
64 

500 

Now. 

, _ (82-85.6)- (70 - 64.2)2
 i (02 - 64.2)2 

+ 

+ 

85.6 64.2 64.2 
(93 - 88.8)2 (62 - 66.6)-' (67 - 66.6)2 

88.8 ~6fi.(i 66.6 
(25-25.6)'-' (18 - 19.2)- (21 - 19.2)2 

25.6 19.2 19.2 
1.53. 

6. Decision: Do not reject HQ. There is insufficient evidence to conclude that 
the proportion of Democrats, Republicans, and Independents differs for each 
stated opinion. J 

10.17 Testing for Several Proportions 

The chi-squared statistic for testing for homogeneity is also applicable when testing 
the hypothesis that k binomial parameters have the same value. This is. therefore, 
an extension of the: test presented in Section 10.12 for determining differences 
between two proportions to a test for determining differences among k proportions. 
Hence wc are interested in testing the mill hypothesis 

HQ : pi P-2 = Pk 

against the alternative hypothesis, Hi, that the population proportions are not 
till equal. Tb perform this test, we first observe independent random samples of 
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Table 10.10: 

Sample: 
Successes 
Failures 

k Indepe 

1 
xx 

111 ~ Xl 

nclent Binomial Samples 

2 
x2 

n2 -x2 •• 

k 

Xk 

nk - Xk 

size iii,n2,... ,nk from the A: populations and arrange the data as in the 2 x k 
contingency table. Tabic 10.10. 

Depending on whether the sizes of the random samples were predetermined or 
occurred at random, the test procedure is identical to the test for homogeneity or 
the test for independence. Therefore, the expected cell frequencies are calculated as 
before and substituted together with the observed frequencies into the chi-squared 
statistic 

2 _ V^ i°i ~ d)2 

X ^ et ' 
> 

with 

v = (2 - l)(k - 1) = k - 1 

degrees of freedom. 
By selecting the appropriate upper-tail critical region of the form \ 2 > x L w e 

can now reach a decision concerning HQ. 

Example 10.16:1 In a shop study, a set of data was collected to determine whether or not the 
proportion of defectives produced by workers was the same for the day, evening, 
or night shift worked. The data were collected and shown in Table 10.11. 

Table 10.11: 

Shift: 
Defectives 
Nondefectives 

Data for Example 

Day Evening 
45 55 

905 890 

10.16 

Night 
70 

870 

Use a 0.025 level of significance to determine if the proportion of defectives is the 
same for all three shifts. 

Solution: Let /Ji,P2, and p% represent the true proportion of defectives for the day, evening, 
and night shifts, respectively. 

1. HQ: pi = p2 - p3 . 

2. Hi : p\,p2, and pa arc not all equal. 

3. a = 0.025. 

4. Critical region: \2 > 7.378 for v = 2 degrees of freedom. 

5. Computations: Corresponding to the observed frequencies oi = 45 and 02 = 
55, we find 

(950) (170) (945)(170) 
e i = 2835 = 5 ' - ° a n d C2 = 2835 = ^ ^ 
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All other expected frequencies are found by subtraction and are displayed in 
Table 10.12. 

Table 10.12: Observed and Expected Frequencies 

Shift: 
Defectives 
Nondefectives 
Total 

Day 
45 (57.0) 

905 (893.0) 
950 

Evening 
55 (56.7) 

890 (888.3) 
945 

Night 
70 (56.3) 

870 (883.7) 
940 

Total 
170 

2665 
2835 

Now 

4 5 - 5 7 . 0 ) 2 , (55-50.7) 2 (70-56.3) 2 

+ 57.0 56.7 56.3 
(905 - 893.0)2 (890-888.3)2 (870 - 883.7)2 

893.0 888.3 883. 
P «0.0I. 

= 6.29. 

6. Decision: We do not reject HQ at a — 0.025. Nevertheless, with the above 
P-value computed, it would certainly be dangerous to conclude that the pro
portion of defectives produced is the same for all shifts. 

10.18 Two-Sample Case Study 

In this section we consider a study where we show a thorough analysis using both 
graphical and formal analysis along with annotated computer printout and conclu
sions. In a data analysis study conducted by personnel at the Statistics Consulting 
Center at Virginia Tech, two different materials, say alloy A and alloy B, were 
compared in terms of breaking strength. Alloy B is more expensive, but it should 
certainly be adopted if it can be demonstrated that it is stronger than alloy A. The 
consistency of performance of the two alloys should also be taken into account. 

Random samples of beams for each alloy were selected and the strength was 
measured in a 0.001-inch deflection as a fixed force was applied at both ends of the 
beam. Twenty specimens were used for each of the two alloys. The data are given 
in Table 10.13. 

It is important that the engineer compare the two alloys. Of concern is average 
strength and reproducibility. It is of interest to determine if there is a severe 
violation of the normality assumption required of both the r- and P-tests. Figures 
10.21 and 10.22 are normal quantile-quantile plots of the samples for the two alloys. 

There does not appear to be any serious violation of the normality assumption. 
In addition, Figure 10.23 shows two box-and-whisker plots on the same graph. The 
box-and-whisker plots would suggest that there is no appreciable difference in the 
variability of deflection for the two alloys. Howrevcr, it seems that the mean of alloy 
B is significantly smaller, suggesting at feast graphically that alloy B is stronger. 
The sample means and standard deviations are 

f/A = 83.55, sA = 3.663; yB = 79.70. sB = 3.097. 



10.18 Two-Sample Case Study 381 

Table 10.13: Data for Two-Sample Case Study 

88 
79 
84 
89 
81 
83 
82 
79 

Alloy A 
82 
85 
88 
80 
85 
87 
80 
78 

87 
90 
83 
81 

75 
77 
86 
84 
80 
78 
83 
76 

Alloy B 
81 80 
78 81 
78 77 
82 78 
80 
76 
85 
79 
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Figure 10.21: Normal quantile-quantile plot of Figure 10.22: Normal quantile-quantile plot of 
data for alloy A. data for alloy B. 

The SAS printout for the PROC TTEST is shown in Figure 10.24. The P-test 
suggests no significant difference in variances (P = 0.4709) and the two-sample 
t-statistic for testing 

Ho- PA = PB, 

Hi- PA > PB-. 

(t = 3.59, P = 0.0009) rejects HQ in favor of Hi and thus confirms what the 
graphical information suggests. Here we use the t-test that pools the two-sample 
variances together in light of the results of the P-test. On the basis of this analysis, 
the adoption of alloy B would seern to be in order. 
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Figure 10.23: Box-and-Whisker plots for both alloys. 

Alloy 
Alloy A 
Alloy B 

Variances 
Equal 
Unequal 

Num DF 
"• • - • • — 19 

The TTEST Procedure 
N Mean Std Dev Std Err 
20 83.55 3.6631 0.8191 
20 79.7 3.0967 0.6924 

DF 
38 
37 

Value 
3.59 
3.59 

Equality of Variances 
Den DF F Value 

IS J^IO 

Pr > It I 
0.0009 
0.0010 

Pr > F 
0.4709 

Figure 10.24: Annotated SAS printout for alloy data. 

Statistical Significance and Engineering or Scientific Significance 

While the statistician may feel quite comfortable with the results of the comparison 
between the two alloys in the case study above, a dilemma remains for the engineer. 
The analysis demonstrated a statistically significant improvement with the use of 
alloy B. However, is the difference found really worth it since alloy B is more 
expensive? This illustration highlights a very important issue often overlooked by 
statisticians and data analysts-f/ie distinction between statistical significance and 
engineering or scientific significance. Here the average difference in deflection is 
§A — VB = 0.00385 inch. In a complete analysis the engineer must determine if 
the difference is sufficient to justify the extra cost in the long run. This is an 
economic and engineering issue. The reader should understand that a statistically 
significant difference merely implies that the difference in the sample means found 
in the data could hardly have occurred by chance. It does not imply that the 
difference in the population means is profound or particularly significant in the 
context of the problem. For example, in Section 10.7, an annotated computer 
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printout is used to show evidence tha t a pH meter was, in fact, biased. T h a t 
is, it does not demonstra te a mean pH of 7.00 for the material on which it was 
tested. But the variability among the observations in the sample is very small. 
The engineer may decide tha t the small deviations from 7.0 render the pH meter 
adequate. 

Exercises 

10.79 A die is tossed 180 times with the following 
results: 

X 

f 
1 
28 

2 
36 

3 
36 

4 
30 

5 
27 

6 
23 

Is this a halanced die? Use a 0.01 level of significance. 

10.80 In 100 tosses of a coin, 63 heads and 37 tails 
are ohserved. Is this a balanced coin? Use a 0.05 level 
of significance. 

10.81 A machine is supposed to mix peanuts, hazel
nuts, cashews, and pecans in the ratio 5:2:2:1. A can 
containing 500 of these mixed nuts was found to have 
269 peanuts, 112 hazelnuts, 74 cashews, and 45 pecans. 
At the 0.05 level of significance, test the hypothesis 
that the machine is mixing the nuts in the ratio 5:2:2:1. 

10.82 The grades in a statistics course for a particu
lar semester were as follows: 

Grade 

/ 
A 
14 

B 
18 

C 
32 

D 
20 

F 
16 

Test the hypothesis, at the 0.05 level of significance, 
that the distribution of grades is uniform. 

10.83 Three cards are drawn from an ordinary deck 
of playing cards, with replacement, and the number Y 
of spades is recorded. After repeating the experiment 
64 times, the following outcomes were recorded: 

y 
f 

0 
21 

1 
31 

2 
12 

3 
0 

Test the hypothesis of 0.01 level of significance that the 
recorded data may be fitted by the binomial distribu
tion b(y;3,1/4), y = 0 ,1,2,3. ' 

10.84 Three marbles are selected from an urn con
taining 5 red marbles and 3 green marbles. After 
recording the number X of red marbles, the marbles 
are replaced in the urn and the experiment repeated 
112 times. The results obtained are as follows: 

0 1 2 3 
1 31 55 25 

Test the hypothesis at the 0.05 level of significance that 
the recorded data may be fitted by the hypergeometric 

distribution h(x; 8,3, 5), x = 0 ,1 , 2, 3. 

10.85 A coin is thrown until a head occurs and the 
number X of tosses recorded. After repeating the ex
periment 256 times, we obtained the following results: 

X 

f 
1 
136 

2 
60 

3 
34 

4 
12 

5 
9 

6 
1 

7 
3 

8 
1 

Test the hypothesis at, the 0.05 level of significance that 
the observed distribution of X may be fitted by the ge
ometric distribution g(x; 1/2), x = 1,2,3, 

10.86 Repeat Exercise 10.83 using a new set of data 
obtained by actually carrying out the described exper
iment 64 times. 

10.87 Repeat Exercise 10.85 using a new set of data 
obtained by performing the described experiment 256 
times. 

10.88 In Exercise 1.18 on page 28, test the goodness 
of fit between the observed class frequencies and the 
corresponding expected frequencies of a normal distri
bution with p = 65 and a = 21, using a 0.05 level of 
significance. 

10.89 In Exercise 1.19 on page 28, test the goodness 
of fit between the observed class frequencies and the 
corresponding expected frequencies of a normal distri
bution with p = 1.8 and a = 0.4, using a 0.01 level of 
significance. 

10.90 In an experiment to study the dependence of 
hypertension on smoking habits, the following data 
were taken on 180 individuals: 

Non- Moderate Heavy 
smokers Smokers Smokers 

Hypertension 21 36 30 
No Hypertension 48 26 19 

Test the hypothesis that the presence or absence of hy
pertension is independent of smoking habits. Use a 
0.05 level of significance. 

10.91 A random sample of 90 adults is classified ac
cording to gender and the number of hours they watch 
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television during a week: 

Gender 
Male Female 

Over 25 hours 
Under 25 hours 

15 
27 

29 
19 

Use a 0.01 level of significance and test the hypothesis 
that the time spent watching television is independent 
of whether the viewer is male or female. 

10.92 A random sample of 200 married men, all re
tired, were classified according to education and num
ber of children: 

Education 
Elementary 
Secondary 
College 

Number of Children 
0-1 2 - 3 
14 37 
19 42 
12 17 

Over 3 
32 
17 
10 

Test the hypothesis, at the 0.05 level of significance, 
that the size of a family is independent of the level of 
education attained by the father. 

10.93 A criminologist conducted a survey to deter
mine whether the incidence of certain types of crime 
varied from one part of a large city to another. The 
particular crimes of interest were assault, burglary, 
larceny, and homicide. The following table shows the 
numbers of crimes committed in four areas of the city 
during the past year. 

Type of Crime 
District Assault Burglary Larceny Homicide 
1~~ 162 118 451 18 
2 310 196 996 25 
3 258 193 458 10 
4 280 175 390 19 

Can we conclude from these data at the 0.01 level of 
significance that the occurrence of these types of crime 
is dependent on the city district? 

10.94 A college infirmary conducted an experiment 
to determine the degree of relief provided by three 
cough remedies. Each cough remedy was tried on 50 
students and the following data recorded: 

Cough Remedy 
NyQuil Robitussin Triaminic 

No relief 
Some relief 
Total relief 

11 
32 
7 

13 
28 
9 

9 
27 
14 

Test the hypothesis that the three cough remedies are 
equally effective. Use a P-value in your conclusion. 

10.95 To determine current attitudes about prayers 
in public schools, a survey was conducted in 4 Vir
ginia counties. The following table gives the attitudes 

of 200 parents from Craig County, 150 parents from 
Giles County. 100 parents from Franklin County, and 
100 parents from Montgomery County: 

County 
Att i tude Craig Giles Franklin Mont. 
Favor 
Oppose 
No opinion 

65 
42 
93 

66 
30 
54 

40 
33 
27 

34 
42 
24 

Test for homogeneity of attitudes among the 4 counties 
concerning prayers in the public schools. Use a P-value 
in your conclusion. 

10.96 According to a Johns Hopkins University study 
published in the American Journal of Public Health, 
widows live longer than widowers. Consider the fol
lowing survival data collected on 100 widows and 100 
widowers following the death of a spouse: 

Years Lived Widow Widower 
Less than 5 
5 to 10 
More than 10 

25 
42 
33 

39 
40 
21 

Can wc conclude at the 0.05 level of significance that 
the proportions of widows and widowers are equal with 
respect to the different time periods that a spouse sur
vives after the death of his or her mate? 

10.97 The following responses concerning the stan
dard of living at the time of an independent opinion 
poll of 1000 households versus one year earlier seems 
to be in agreement with the results of a study published 
in Across the Board (June 1981): 

Standard of Living 

Period 

1980: Jan. 
May 

Sept. 
1981: Jan. 

Somewhat 
Better 

72 
63 
47 
40 

Same 

144 
135 
100 
105 

Not as 
Good Total 

84 300 
102 300 
53 200 
55 200 

Test, the hypothesis that the proportions of households 
within each standard of living category are the same 
for each of the four time periods. Use a P-value. 

10.98 A survey was conducted in Indiana, Kentucky, 
and Ohio to determine the attitude of voters concern
ing school busing. A poll of 200 voters from each of 
these states yielded the following results: 

Voter Attitude 
Do Not 

State Support Support Undecided 

Indiana 82 97 21 
Kentucky 107 66 27 
Ohio 93 74 33 
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At the 0.05 level of significance, test the null hypothe
sis that the proportions of voters within each attitude 
category are the same for each of the three states. 

10.99 A survey was conducted in two Virginia cities 
to determine voter sentiment for two gubernatorial 
candidates in an upcoming election. Five hundred vot
ers were randomly selected from each city and the fol
lowing data were recorded: 

Voter Sen t iment 
Favor A 
Favor B 
Undecided 

City 
Richmond Norfolk 

204 225 
211 198 
85 77 

At the 0.05 level of significance, test the null hypoth
esis that proportions of voters favoring candidate A, 
candidate B, or undecided are the same for each city. 

10.100 In a study to estimate the proportion of wives 
who regularly watch soap operas, it is found that 52 of 
200 wives in Denver. 31 of 150 wives in Phoenix, and 37 
of 150 wives in Rochester watch at least one soap opera. 
Use a 0.05 level of significance to test the hypothesis 
that there is no difference among the true proportions 
of wives who watch soap operas in these 3 cities. 

Review Exercises 

10.101 A geneticist is interested in the proportion of 
males and females in a population that have a cer
tain minor blood disorder. In a random sample of 100 
males, 31 are found to be afflicted, whereas only 24 of 
100 females tested appear to have the disorder. Can 
we conclude at the 0.01 level of significance that the 
proportion of men in the population afflicted with this 
blood disorder is significantly greater than the propor
tion of women afflicted? 

10.102 Consider the situation of Exercise 10.54 on 
page 361. Oxygen consumption in ml/kg/min was also 
measured on the nine subjects. 

Subject 
1 
2 
3 
4 
5 
6 
7 
8 
9 

With C O 
26.46 
17.46 
16.32 
20.19 
19.84 
20.65 
28.21 
33.94 
29.32 

Without CO 
25.41 
22.53 
16.32 
27.48 
24.97 
21.77 
28.17 
32.02 
28.96 

It is conjectured that the oxygen consumption should 
bo higher in an environment relatively free of CO. Do 
a significance test and discuss the conjecture. 

10.103 State the null and alternative hypotheses to 
be used in testing the following claims and determine 
generally where the critical region is located: 

(a) The mean snowfall at Lake George during the 
month of February is 21.8 centimeters. 

(b) No more than 20% of the faculty at the local uni
versity contributed to the annual giving fund. 

(c) On the average, children attend schools within 6.2 

kilometers of their homes in suburban St. Louis. 
(d) At least 70% of next year's new cars will be in the 

compact and subcompact category. 
(e) The proportion of voters favoring the incumbent in 

the upcoming election is 0.58. 
(f) The average rib-eye steak at the Longhorn Steak 

house is at least 340 grams. 

10.104 A study was made to determine whether more 
Italians than Americans prefer white champagne to 
pink champagne at weddings. Of the 300 Italians 
selected at random, 72 preferred white champagne, 
and of the 400 Americans selected, 70 preferred white 
champagne rather than pink. Can we conclude that 
a higher proportion of Italians than Americans prefer 
white champagne at weddings? Use a 0.05 level of sig
nificance. 

10.105 In a set of data analyzed by the Statistics 
Consulting Center at Virginia Polytechnic Institute 
and State University (VPI&SU), a group of subjects 
was asked to complete a certain task on the computer. 
The response measured was the time to completion. 
The purpose of the experiment was to test a set of fa
cilitation tools developed by the Department of Com
puter Science at VPI&SU. There were 10 subjects in
volved. With a random assignment, five were given 
a standard procedure using Fortran language for com
pletion of the task. The additional five were asked to 
do the task with the use of the facilitation tools. The 
data on the completion times for the task are given 
here. Assuming that the population distributions are 
normal and variances are the same for the two groups, 
support or refute the conjecture that the facilitation 
tools increase the speed with which the task can be 
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accomplished. 

Group 1 
(Standard Procedure) 

161 
169 
174 
158 
163 

Group 2 
(Facilitation Tool) 

132 
162 
134 
138 
133 

10.106 State the null and alternative hypotheses to 
be used in testing the following claims, and determine 
generally where the critical region is located: 

(a) At most, 20% of next year's wheat, crop will be 
exported to the Soviet Union. 

(b) On the average, American homemakers drink 3 
cups of coffee per day. 

(c) The proportion of graduates in Virginia this year 
majoring in the social sciences is at least. 0.15. 

(d) The average donation to the American Lung Asso
ciation is no more than $10. 

(e) Residents in suburban Richmond commute, on the 
average, 15 kilometers to their place of emploj'-
ment. 

10.107 If a can containing 500 nuts is selected at ran
dom from each of three different distributors of mixed 
nuts and there are, respectively, 345, 313, and 359 
peanuts in each of the cans, can we conclude at the 0.01 
level of significance that the mixed nuts of the three 
distributors contain equal proportions of peanuts? 

10.108 a-value for testing pi —p-2 = <4>: To test the 
null hypothesis Ho that p\—p2 = do, where do ^ 0, we 
base our decision on 

z = 
p~\ - j>i - do 

y/piqi/ni + p2</2/n2 

which is a value of a random variable whose distribu
tion approximates the standard normal distribution as 
long as m and n2 are both large. With reference to 
Example 10.12 on page 365, test the hypothesis that 
the percentage of town voters favoring the construction 
of the chemical plant will not exceed the percentage of 
county voters by more than 3%. Use a P-value in your 
conclusion. 

10.109 A study was made to determine whether there 
is a difference between the proportions of parents in 
the states of Maryland (MD), Virginia (VA), Georgia 
(GA), and Alabama (AL) who favor placing Bibles in 
the elementary schools. The responses of 100 parents 
selected at random in each of these states are recorded 
in the following table: 

P re fe rence 
Yes 
No 

MD 
65 
35 

S t a t e 
VA G A 
71 78 
29 22 

AL 
82 
18 

Can wc conclude that the proportions of parents who 
favor placing Bibles in the schools are the same for 
these four states? Use a 0.01 level of significance. 

10.110 A study was conducted at the Virginia-
Maryland Regional College of Veterinary Medicine 
Equine Center to determine if the performance of a 
certain type of surgery on young horses had any effect 
on certain kinds of blood ceil types in the animal. Fluid 
samples were taken from each of six foals before and af
ter surgery. The samples were analyzed for the number 
of postoperative white blood cell (WBC) leukograms. 
A preoperative measure of WBC leukograms was also 
measured. Use a paired sample t-test to determine if 
there is a significant change in WBC leukograms with 
the surgery. 

Foal Presurgery* 
1 10.80 
2 12.90 
3 9.59 
4 8.81 
5 12.00 
6 6.07 

*A11 values x KT3 . 

Pos t su rge ry* 
10.60 
16.60 
17.20 
14.00 
10.60 
8.60 

10.111 A study was conducted at the Department of 
Health and Physical Education at Virginia Polytechnic 
Institute and State University to determine if 8 weeks 
of training truly reduces the cholesterol levels of the 
participants. A treatment group consisting of 15 peo
ple were given lectures twice a week on how to reduce 
their cholesterol level. Another group of 18 people of 
similar age were randomly selected as a control group. 
All participants' cholesterol levels were recorded at the 
end of the 8-week program and are listed below. 

Treatment: 
129 131 154 172 115 126 175 191 
122 238 159 156 176 175 126 

Control: 
151 132 196 195 188 198 187 168 115 
165 137 208 133 217 191 193 140 146 

Can we conclude, at the 5% level of significance, that 
the average cholesterol level has been reduced due to 
the program? Make the appropriate test on means. 

10.112 In a study conducted by the Department of 
Mechanical Engineering and analyzed by the Statistics 
Consulting Center at the Virginia Polytechnic Insti
tute and State University, the steel rods supplied by 
two different companies were compared. Ten sample 
springs were made out of the steel rods supplied by 
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each company and the "bounciness" was studied. The 
data are as follows: 

Company A: 
9.3 8.8 6.8 
Company B: 
11.0 9.8 9.9 10.2 

8.7 8.5 6.7 8.0 6.5 9.2 7.0 

10.1 9.7 11.0 11.1 10.2 9.6 

Can you conclude that there is virtually no difference 
in means between the steel rods supplied by the two 
companies? Use a P-value to reach your conclusion. 
Should variances be pooled here? 

10.113 In a study conducted by the Water Resources 
Center and analyzed by the Statistics Consulting Cen
ter at the Virginia Polytechnic Institute and State Uni
versity, two different wastewater treatment plants are 
compared. Plant A is located where the median house
hold income is below S22,000 a year, and plant B is 
located where the median household income is above 
$60,000 a year. The amount of wastewater treated at, 
each plant (thousand gallons/day) was randomly sam
pled for 10 days. The data are as follows: 

Plant A: 
21 19 20 23 22 28 32 19 13 18 

Plant B: 
20 39 24 33 30 28 30 22 33 24 

Can we conclude, at the 5% level of significance, that 
the average amount of wastewater treated at the high-
income neighborhood is more than that from the low-
income area? Assume normality. 

10.114 The following data show the number of de
fects in 100,000 lines of code in a particular type of soft
ware program made in the United States and Japan. 
Is there enough evidence to claim that there is a signif
icant difference between the programs of the two coun
tries? Test on means. Should variances be pooled? 

U.S. 48 39 42 52 40 48 52 52 
54 48 52 55 43 46 48 52 

Japan 50 48 42 40 43 48 50 46 
38 38 36 40 40 48 48 45 

10.115 Studies show that the concentration of PCBs 
is much higher in malignant breast tissue than in 
normal breast tissue. If a study of 50 women with 
breast cancer reveals an average PCB concentration 
of 22.8 x 10 - '1 gram, with a standard deviation of 
4.8 x 10- '1 gram, is the mean concentration of PCBs 
less than 24 x 10 - '1 gram? 

10.19 Potential Misconceptions and Hazards; 
Relationship to Material in Other Chapters 

One of the easiest ways to misuse statistics relates to the final scientific, conclusion 
drawn wdien the analyst does not reject the null hypothesis Ho- In this text we 
have a t t empted to make it clear what the null hypothesis means and wdiat the 
alternative means, and that in a large sense, the alternative hypothesis is much 
more important . Pu t in the form of an example, if the engineer is a t tempt ing to 
compare two gauges and a two-sample f-test is used, and H0 is "the gauges are 
equivalent" while Hi is "the gauges are not equivalent," not rejecting H0 does 
not lead to the conclusion of equivalent gauges. In fact, a case can be made for 
never writing or saying "Accept HQ\" Not rejecting HQ merely implies insufficient 
evidence. Depending on the nature of the hypothesis, a lot of possibilities are still 
not ruled out. 

As in the case of the large-sample confidence interval discussed in Chapter 9, a 
large-sample 2-t.est tha t uses 

z = sls/n. 

with s replacing a is risky to use for n < 30. If n > 30 and the distribution is 
not normal bu t somehow close to normal, the central limit theorem is being called 
upon and one is relying on the fact tha t with n > 30, s « a. 
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Of course, any t-test is accompanied with the concomitant assumption of nor
mality. As in the case of confidence intervals, the t-test is relatively robust to 
normality. However, one should still use normal probability plotting, goodness-of-
fit tests, or other graphical procedures wdien the sample is not too small. 



Chapter 11 

Simple Linear Regression and 
Correlation 

11.1 Introduction to Linear Regression 

Often, in practice, one is called upon to solve problems involving sets of variables 
when it is known that there exists some inherent relationship among the variables. 
For example, in an industrial situation it may be known that the tar content in the 
outlet stream in a chemical process is related to the inlet temperature. It may be 
of interest to develop a method of prediction, that is, a procedure for estimating 
the tar content for various fuels of the inlet temperature from experimental infor
mation. Now, of course, it is highly likely that for many example runs in which 
the inlet temperature is the same, say 130°C, the outlet tar content will not be the 
same. This is much like what happens it we study several automobiles with the 
same engine volume. They will not all have the same gas mileage. If we consider 
houses in the same part of the country that have the same square footage of living 
space, this does not mean then all will be sold for the same price. Tar content, 
gas mileage (nipg), and the price of houses (in thousands of dollars) are natural 
dependent variables or responses in these three scenarios. Inlet temperature, 
engine volume (cubic feet), and square feet of living space are, respectively, natu
ral independent variables or regressors. A reasonable form of a relationship 
between the response Y and the regressor x is the linear relationship 

Y = a + 0x, 

where, of course, a is the intercept and 0 is the slope. The relationship is 
illustrated in Figure 11.1. 

If the relationship is exact, then it is a deterministic relationship between 
two scientific variables and there is no random or probabilistic component, to it. 
However, in the examples listed above, as well as in countless other scientific and 
engineering phenomena, the relationship is not deterministic (i.e., a given x does 
not always give the same value for Y). As a result, important problems here 
are probabilistic in nature since the relationship above cannot be viewed as being 
exact. The concept of regression analysis deals with finding the best relationship 
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Figure 11.1: A linear relationship. 

between Y and x. quantifying the strength of that relationship, and using methods 
that allow for prediction of the response values given values of the regressor ar. 

In many applications there will be more than one regressor (i.e., more than 
one independent variable t ha t helps to explain Y). For example, in the case 
where the response is the price of a house, one would expect the age of the house 
to contribute to the explanation of the price so in this case the multiple regression 
structure might, be: written 

Y = a + 0i X\ + 0\x2, 

where Y is price, xi is square footage:, and x2 is age in years. In the next chapter we 
will consider problems with multiple regressors. The resulting analysis is termed 
multiple regression while the analysis of the single regressor case is called simple 
regression. As a second illustration of multiple regression a chemical engineer 
may, in fact, be concerned with the amount of hydrogen lost from samples of a 
particular metal when the material is placed in storage. In this case there may 
be two inputs, storage time xn in hours and storage temperature x2 in degrees 
centigrade. The response would then be: hydrogen loss Y in parts per million. 

In this chapter we deal with the topic of simple linear regression, treating 
only the case of a single regressor variable. For the case of more than one regressor 
variable, the render is referred to Chapter 12. Denote a random sample of size n 
by the set {(x.j, yi); i — 1,2,..., n}. If additional samples were taken using exactly 
the same values of x. we should expect the y values to vary. Hence the value j / , in 
the ordered pair (.r,-, y,) is a value of some random variable Y,. 

11.2 The Simple Linear Regression Model 

We have already confined the terminology regression analysis to situations in which 
relationships among variables are not deterministic (i.e., not exact). In other words, 
there must be a random component to the equation that, relates the variables. 
This random component takes into account considerations that are not being mea
sured or, in fact, are not understood by the scientists or engineers. Indeed, in most 
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applications of regression the linear equation, say, Y = a + 0x is an approxima
tion that is a simplification of something unknown and much more complicated. 
For example, in our illustration involving the response Y— tar content and x = 
inlet temperature, Y = a + 0-x is likely a reasonable approximation that may be 
operative within a confined range on x. More often than not, the models that are 
simplifications of more complicated and unknown structures are linear in nature 
(i.e., linear in the parameters a and 3 or in the case of the model involving the 
price, size, and age of the house, linear in the parameters a, fix, and 02). These 
linear structures are simple and empirical in nature and are thus called empirical 
models. 

An analysis of the relationship between Y and x requires the statement of a 
statistical model. A model is often used by a statistician as a representation of 
an ideal that essentially defines how we perceive that the data were generated by 
the system in question. The model must include the set [(x;,yj); i = 1,2,... ,n] 
of data involving n pairs of (x, y) values. One must bear in mind that the value yi 
depends on ,T,- via a linear structure that also has the random component involved. 
The basis for the use of a statistical model relates to how the random variable 
Y moves with x and the random component. The model also includes what is 
assumed about the statistical properties of the random component. The statistical 
model for simple linear regression is given below. 

Simple Linear The response Y is related to the independent variable x through the equation 
Regression Model 

Y = a + 0x + e. 

In the above, a and 0 are unknown intercept and slope parameters, respectively, 
and e is a random variable that is assumed to be distributed with E(e) = 0 
and Var(e) = a2. The quantity a2 is often called the error variance or residual 
variance. 

From the model above, several things become apparent. The quantity Y is a 
random variable since e is random. The value x of the regressor variable is not 
random and, in fact, is measured with negligible error. The quantity e, often 
called a random error or random disturbance, has constant variance. This 
portion of the assumptions is often called the homogeneous variance assumption. 
The presence of this random error, e, keeps the model from becoming simply a 
deterministic equation. Now, the fact that E(e) — 0 implies that at a specific 
x the y values are distributed around the true or population regression line 
y — a + 0x. If the model is well chosen (i.e., there are no additional important 
regressors and the linear approximation is good within the ranges of the data), 
then positive and negative errors around the true regression are reasonable. We 
must keep in mind that in practice a and 0 are not known and must be estimated 
from data. In addition, the model described above is conceptual in nature. As a 
result, we never observe the actual e values in practice and thus we can never draw 
the true regression line (but we asstune it is there). We can only draw an estimated 
line. Figure 11.2 depicts the nature of hypothetical (x, y) data scattered around a 
true regression line for a case in which only n = 5 observations are available. Let 
us emphasize that what we see in Figure 11.2 is not the line that is used by the 
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scientist or engineer. Rather, the picture merely describes what the assumptions 
mean! The regression that the user has at his or her disposal will now be described. 

True" Regression Line 
E(Y) = a + f3x 

Figure 11.2: Hypothetical (x,y) data scattered around the true regression line for 
n = 5. 

The Fitted Regression Line 

An important aspect of regression analysis is, very simply, to estimate the parame
ters a and 0 (i.e., estimate the so-called regression coefficients). The method of 
estimation will be discussed in the next section. Suppose we denote the estimates 
a for a and b for ,6\ Then the estimated or fitted regression line is given by 

y = a + bx, 

where y is the predicted or fitted value. Obviously, the fitted line is an estimate of 
the true regression line. We expect that the fitted line should be closer to the true 
regression line when a large amount of data are available. In the following example 
we illustrate the fitted line for a real life pollution study. 

One of the more challenging problems confronting the water pollution control 
field is presented by the tanning industry. Tannery wastes are chemically complex. 
They are characterized by high values of biochemical oxygen demand, volatile 
solids, and other pollution measures. Consider the experimental data of Table 
11.1, which was obtained from 33 samples of chemically treated waste in the study 
conducted at the Virginia Polytechnic Institute and State University. Readings on 
x, the percent reduction in total solids, and y, the percent reduction in chemical 
oxygen demand for the 33 samples, were recorded. 

The data of Table 11.1 are plotted in Figure 11.3, showing a scatter diagram. 
From an inspection of this scatter diagram, it is seen that the points closely follow a 
straight line, indicating that the assumption of linearity between the two variables 
appears to be reasonable. 
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Table 11.1: Measures of Solids and Chemical Oxygen Demand 

rgen Solids Reduction, Chemical Oxygen 
%) x (%) Demand, y (%) 

Solids Reduction, 
x(%) 

3 
7 

11 
15 
18 
27 
29 
30 
30 
31 
31 
32 
33 
33 
34 
30 
36 

Chemical 
Demand, 

5 
11 
21 
16 
16 
28 
27 
25 
35 
30 
40 
32 
34 
32 
34 
37 
38 

36 
37 
38 
39 
39 
39 
40 
41 
42 
42 
43 
44 
45 
46 
47 
50 

34 
36 
38 
37 
36 
45 
39 
41 
40 
44 
37 
44 
46 
46 
49 
51 

& 
55 
50 
45 
40 
35 
30 
25 
20 
15 
10 
5 ^ » 

• 
* • 

• 

0 3 6 9 12 15 18 2124 27 30 33 36 39 42 45 48 5154 

Figure 11.3: Scatter diagram with regression lines. 

The fitted regression line and a hypothetical true regression line are shown on 
the scatter diagram of Figure 11.3. This example will be revisited as we move on 
to the method of estimation discussed in Section 11.3. 

Another Look at the Model Assumptions 
It may be instructive to revisit the simple linear regression model presented previ
ously and discuss in a graphical sense how it relates to the so-called true regression. 
Let us expand on Figure 11.2 by illustrating not merely where the e* fall on a graph 
but also what the implication is of the normality assumption on the e,. 
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Suppose we have a simple linear regression with n — 6 evenly spaced values of a; 
and a single y-value at each x. Consider the graph in Figure 11.4. This illustration 
should give the reader a clear representation of the model and the assumptions 
involved. The line in the graph is that of the true: regression line. The points 
plotted are actual (y,x) points which are scattered about the line:. Each point is 
on its own a normal distribution with the center of the distribution (i.e., the mean 
of (/), falling on the line. This is certainly expected since E(Y) = a + 0x. As a 
result, the true regression line goes th rough the means of the response, and 
the actual observations are on the distribution around the means. Note also that 
all distributions have the same variance which we referred to as a2. Of course, the 
deviation between an individual y and the point, on the line will be its individual 
e value. This is clear since 

yi - E(Y,) =•!,;-(a+ 0xi) = ei. 

Tims, at a given x, Y as well as the corresponding e both have variance a~. 

r«+p* 

Xi X2 X3 X4 X5 Xg 

Figure 11.4: Individual observations around true regression line. 

Note also that we: have written the true regression line here as py\x = a + 0x 
in order to reaffirm that the line goes through the mean of the Y random variable1. 

11.3 Least Squares and the Fitted Model 
In this section we discuss the method of fitting an estimated regression line to the 
data. This is tantamount to the determination of estimates a of a and b for 0. 
This of course allows for the computation of predicted values from the fitted line 
y = a+bx and other types of analyses and diagnostic information that will ascertain 
the strength of the relationship and the adequacy of the fitted model. Before we 
discuss the method of least, squares estimation, it is important to introduce the 
concept of a residual. A residual is essentially an error in the fit: of the model 
y = a + bx. 
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Residual: Error in Given a set of regression data [(XJ,yi);i = 1,2, 
Fit a + bxi, the ith residual e» is given by 

, n] and a fitted model, fa = 

a = yi i= 1,2. 

Obviously, if a set of n residuals is large, then the fit of the model is not good. 
Small residuals are a sign of a good fit. Another interesting relationship which is 
useful at times is the following: 

iji = a + bxj + Ci. 

The use of the above equation should result in clarification of the distinction be
tween the residuals, Ci, and the conceptual model errors, e,. One must bear in 
mind that the et are not observed but the e, are not only observed but also play 
an important role in the total analysis. 

Figure 11.5 depicts the line fit to this set of data, namely, y = a + bx, and the 
line reflecting the model pY\x = a + 0x. Now, of course, a and 0 are unknown 
parameters. The fitted line is an estimate of the line produced by the statistical 
model. Keep in mind that the line pyw. — a + 0x is not known. 

Figure 11.5: Comparing Cj with the residual, e*. 

The Method of Least Squares 

We shall find a and b, the estimates of ci and 3, so that the sum of the squares of 
the residuals is a minimum. The residual sum of squares is often called the sum 
of squares of the errors about the regression line and is denoted by SSE. This 
minimization procedure for estimating the parameters is called the method of 
least squares. Hence, we shall find a and 6 so as to minimize 

ti. n u 

SSE = £ e? = J2iVi - in)2 = J2iVi ~ a - bXi)
2. 

i=X i=\ i= l 
Differentiating SSE with respect to a and b, we have 

d(SSE) 
da 

- 2XXy ' -«-k*t), 
d(SSE) 

db 
= -2 22iyi -a- bXi)Xi. 
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Setting the partial derivatives equal to zero and rearranging the terms, we obtain 
the equations (called the normal equations) 

n n n n u 

na + b'Yj Xi = ] P yi, aY^Xi + bY^x2 = ^2 xrt)h 
i-\ j=l 1=1 i=X i=l 

which may be solved simultaneously to yield computing formulas for a and 6. 

Estimating the Given the sample {(:(;;. j/i); i = 1,2,.. . , n} , the least squares estimates a and b of 
Regression the regression coefficients a and 0 are computed from the formulas 

Coefficients „ / " \ / " \ 
n £ xm - I £ Xi I £ yi) £ fo - z)(j/i - V) 

»=i \ »= i / \ t = i / _ j=i 
6 = 

i=i \ i = i / i = i 

and 

£ Vi -bT,xi 
t=i i= i _ . 

a = = y — ox. 
n 

The calculations of a and tb, using the data of Table 11.1, are illustrated by the 
following example. 

Example 11.1:1 Estimate the regression line for the pollution data of Table 11.1. 
SolutioTi * 

^ ; c t = 1104, ^ j / i = 1124, ^ 2 - ^ = 41,355, ^ a r ? = 41,086 
»=i ;=i i=x i=i 

Therefore, 

(33)(41,355)-(1104)(1124) 
6 = (33)(41,086)-(1104)2 = ° - 9 0 3 6 4 3 ' 

and 

1124-(0.903643)(1104) 
33 

Thus the estimated regression line is given by 

y = 3.8296 + 0.9036a;. J 

Using the regression line of Example 11.1. we would predict a 31% reduction 
in the chemical oxygen demand when the reduction in the total solids is 30%. The 
31% reduction in the chemical oxygen demand may be interpreted as an estimate 
of the population mean py|3o or as an estimate of a new observation when the 
reduction in total solids is 30%. Such estimates, however, are subject to error. 
Even when the experiment is controlled so that the reduction in total solids is 
30%, it is unlikely that we would measure a reduction in the chemical oxygen 
demand exactly equal to 31%. In fact, the original data recorded in Table 11.1 
show that measurements of 25% and 35% were recorded for the reduction in oxygen 
demand when the reduction in total solids was kept at 30%. 
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What Is Good about Least Squares? 

It should be noted that the least squares criterion is designed to provide a fitted 
line that results in a "closeness" between the line and the plotted points. There 
are many ways of measuring closeness. For example, one may wish to determine a 

n n 
and b for which £ |y; - T/;| is minimized or for which £ \yt - y^1 '5 is minimized. 

•;=i »=i 
These are both viable and reasonable methods. Note that both of these as well 
as the least squares procedure result in forcing residuals to be "small" in some 
sense. One should remember that the residuals are the empirical counterpart to 
the e values. Figure 11.6 illustrates a set of residuals. One should note that the 
fitted line has predicted values as points on the line and hence the residuals are 
vertical deviations from points to the line. As a result, the least squares procedure 
produces a line that minimizes the sum of squares of vertical deviations 
from the points to the line. 

Exercises 

Figure 11.6: Residuals as vertical deviations. 

11.1 A study conducted at. VP1&SU to determine 
if certain static arm-strength measures have an influ
ence on the "dynamic lift" characteristics of an individ
ual. Twenty-five individuals were subjected to strength 
tests and then were asked to perform a weight-lifting 
test in which weight was dynamically lifted overhead. 
The data are given here. 
(a) Estimate a and 0 for the linear regression curve 

fiY\x = a + 0x. 
(b) Find a point estimate of /Xy|3(). 
(c) Plot the residuals versus the Xa (arm strength). 

Comment. 

Ind iv idua l 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

A r m 
S t r e n g t h , x 

17.3 
19.3 
19.5 
19.7 
22.9 
23.1 
26.4 
26.8 
27.6 
28.1 
28.2 
28.7 

D y n a m i c 
Lift, y 

71.7 
48.3 
88.3 
75.0 
91.7 

100.0 
73.3 
65.0 
75.0 
88.3 
68.3 
96.7 
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Individual 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

Arm 
Strength, x 

29.0 
29.6 
29.9 
29.9 
30.3 
31.3 
36.0 
39.5 
40.4 
44.3 
44.6 
50.4 
55.9 

Dynamic 
Lift, y 

76.7 
78.3 
60.0 
71.7 
85.0 
85.0 
88.3 

100.0 
100.0 
100.0 
91.7 

100.0 
71.7 

11.2 The grades of a class of 9 students on a midterm 
report (x) and on the final examination (y) are as fol
lows: 

.X 

y 
77 50 71 72 81 94 96 99 67 
82 66 78 34 47 85 99 99 68 

(a) Estimate the linear regression line. 
(b) Estimate the final examination grade of a student 

who received a grade of 85 on the midterm report. 

11.3 A study was made on the amount of converted 
sugar in a certain process at various temperatures. The 
data were coded and recorded as follows: 

Temperature, x Converted Sugar, y 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

8.1 
7.8 
8.5 
9.8 
9.5 
8.9 
8.6 

10.2 
9.3 
9.2 

10.5 

(a) Estimate the linear regression line. 
(b) Estimate the mean amount of converted sugar pro

duced when the coded temperature is 1.75. 
(c) Plot the residuals versus temperature. Comment. 

11.4 In a certain type of metal test specimen, the nor
mal stress on a specimen is known to be functionally 
related to the shear resistance. The following is a set 
of coded experimental data on the two variables: 

Normal Stress,a: Shear Resistance,?/ 
26.8 
25.4 
28.9 
23.6 

26.5 
27.3 
24.2 
27.1 

Normal Stress,x 
27.7 
23.9 
24.7 
28.1 
26.9 
27.4 
22.6 
25.6 

Shear Resistance,;/ 
23.6 
25.9 
26.3 
22.5 
21.7 
21.4 
25.8 
24.9 

(a) Estimate the regression line ny\x = a + ,3x. 
(b) Estimate the shear resistance for a normal stress of 

24.5 kilograms per square centimeter. 

11.5 The amounts of a chemical compound y, which 
dissolved in 100 grams of water at various temperature, 
.r, were recorded as follows: 

x (°C) y (grams) 
0 
15 
30 
45 
60 
75 

8 
12 
25 
31 
44 
48 

6 
10 
21 
33 
39 
51 

8 
14 
24 
28 
42 
44 

(a) Find the equation of the regression line. 
(b) Graph the line on a scatter diagram. 

(c) Estimate the amount of chemical that will dissolve 
in 100 grams of water at 50°C. 

11.6 A mathematics placement test is given to all en
tering freshmen at a small college. A student who re
ceives a grade below 35 is denied admission to the regu
lar mathematics course and placed in a remedial class. 
The placement test scores and the final grades for 20 
students who took the regular course were recorded as 
follows: 

Placement Test Course Grade 
50 
35 
35 
40 
55 
65 
35 
60 
90 
35 
90 
80 
60 
60 
60 
40 
55 
50 
65 
50 

53 
41 
61 
56 
68 
36 
11 
70 
79 
59 
54 
91 
48 
71 
71 
47 
53 
68 
57 
79 
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(a) Plot a scatter diagram. 
(b) Find the equation of the regression line to predict 

course grades from placement test scores. 
(c) Graph the line on the scatter diagram. 
(d) If 60 is the minimum passing grade, below which 

placement test score should students in the future 
be denied admission to this course? 

11.7 A study was made by a retail merchant to deter
mine the relation between weekly advertising expendi
tures and sales. The following data were recorded: 

Adver t i s ing Cos t s ($) Sales ($) 
40 
20 
25 
20 
30 
50 
40 
20 
50 
40 
25 
50 

385 
400 
395 
365 
475 
440 
490 
420 
560 
525 
480 
510 

(a) Plot a scatter diagram. 
(b) Find the equation of the regression line to predict 

weekly sales from advertising expenditures. 
(c) Estimate the weekly sales when advertising costs 

are $35. 
(d) Plot the residuals versus advertising costs. Com

ment. 

11.8 The following data were collected to determine 
the relationship between pressure and the correspond
ing scale reading for the purpose of calibration. 

Pressure, x (lb/sq in.) 
10 
10 
to 
10 
10 
50 
50 
50 
50 
50 

Scale Reading, y 
13 
18 
16 
15 
20 
86 
90 
88 
88 
92 

(a) Find the equation of the regression line. 
(b) The purpose of calibration in this application is to 

estimate pressure from an observed scale reading-
Estimate the pressure for a scale reading of 54 using 
x = (54 — a)/b. 

11.9 A study of the amount of rainfall and the quan

tity of air pollution removed produced the following 
data: 

Daily Rainfall, Particulate Removed, 
x (0.01 

4.3 
4.5 
5.9 
5.6 
6.1 
5.2 
3.8 
2.J 
7.5 

cm) y (Mg/m
3) 

126 
121 
116 
118 
114 
118 
132 
141 
108 

(a) Find the equation of the regression line to predict, 
the particulate removed from the amount of daily 
rainfall. 

(b) Estimate the amount of particulate removed when 
the daily rainfall is x- = 4.8 units. 

11.10 The following data are the selling prices 2 of a 
certain make and model of used car w years old: 

w (years) z (dollars) 
1 
2 
2 
3 
a 
5 

6350 
5695 
5750 
5395 
4985 
4895 

Fit a curve of the form /i-|„, = ~id'" by means of the 
nonlinear sample regression equation z = cd'". [Hint 
Write In z = In c + (In d)w = a + bw.] 

11.11 The thrust of an engine (y) is a function of 
exhaust temperature (x) in °F when other important 
variables arc held constant. Consider the following 
data. 

y 
4300 
4650 
3200 
3150 
4950 

X 

1760 
1652 
1485 
1390 
1820 

y 
4010 
3810 
4500 
3008 

X 

1665 
1550 
1700 
1270 

(a) Plot the data. 
(b) Fit a simple linear regression to the data and plot 

the line through the data. 

11.12 A study was done to study the effect of ambi
ent temperature x on the electric power consumed by 
a chemical plant, y. Other factors were held constant 
and the data were collected from an experimental pilot 
plant. 

(a) Plot the data. 
(b) Estimate the slope and intercept in a simple linear 
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regression model. 

(c) Predict power consumption for an ambient temper
ature of 65°F. 

y (BTU) 
250 
285 
320 
295 

x (°F) 
27 
45 
72 
58 

y (BTU) 
265 
298 
267 
321 

x (°F) 

31 
60 
3 1 
71 

11.13 The following is a portion of a classic data set 
called the "pilot plot data" in Fitting Equations to 
Data by Daniel and Wood, published in L971. The 
response y is the acid content of material produced by 
titration whereas the regressor X is the organic acid 
content produced by extraction and weighing. 

y 
76 
62 
66 
58 
ss 

X 

123 
55 
100 
75 
159 

y 
70 
37 
82 
88 
43 

X 

109 
48 
138 
164 
28 

(a) Plot the data; does it appear that a simple linear 
regression will be a suitable model? 

(b) Fit a simple linear regression; estimate a slope and 
intercept. 

(c) Graph the regression fine on the plot in (a). 

11.14 A professor in the School of Business in a uni
versity polled a dozen colleagues about the number of 
professional meetings professors attended in the past 
five years (X) and the number of papers submitted by 
those1 to refereed journals (Y) during the same period. 
The: summary data are given as follows: 

n= 1.2, 1 = 4, y - 12, 
ii n 

^ . i - ? = 2 3 2 . YxiVi = 318. 

Fit a simple linear regression model between x and y by 
finding out the estimates of intercept and slope. Com
ment whether attending professional meetings would 
result in publishing more papers. 

11.4 Properties of the Least Squares Estimators 
In addition to the assumptions that, the error term in the model 

Y, = a + 0Xj + e-, 

is a random variable with mean zero and constant variance a2, suppose tha t wc: 
make the further assumption that t \, t2, • •., e„. arc independent from run to run in 
the experiment. This provides a foundation for finding the means and variances 
for the estimators of a and 0. 

It is important to remember that our values of a and b, based on a given 
sample of n observations, are only est imates of true parameters cv and 3. If the 
experiment is repeated over and over again, each time using the same fixed values 
of x, the resulting estimates of a and 0 will most likely differ from experiment to 
experiment. These: different estimates may be viewed as values assumed by the: 
random variables A and B, while a. and b arc specific realizations. 

Since the values of x remain fixed, the values of A and B depend on the vari
ations in the values of y or, more precisely, on tho values of the random variables, 
Yx,Y2,..., Yn. The distributional assumptions imply that the Yi's, 2 = 1 ,2 , . . . , n, 
are also independently distributed, with mean py\xi = a + 0x.j and equal variances 
ex"; that is. 

>YU 1,2, 

Mean and Variance of Est imators 

In what follows we show that the estimator B is unbiased for 0 and demonstrate 
the variances of both A and B. This will begin a series of developments tha t lead 
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to hypothesis testing and confidence interval estimation on the intercept and slope. 
Since the estimator 

B 

Y,(xi-x)(Yi-Y) Eto-xjy* 
t = l _ i = l 

J2 (X{ - X)2 Y. ixi ~ X)2 

»=i ?=i 

is of the form YI <HYi'. where 
i=x 

Xi ~ x . 
, ?. = 1,2, . . . , n , 

Zixi-x)* 
t = i 

we may conclude from Corollary 4.4 that 

£ (x^ - x)E(Yi) £) fa - *)(a + 0Xi) 
pB = E(B) = i=L. = i=i— =a, 

Eixi-x)2 E(^-s)2 

«=1 i = l 

and then, using Corollary 4.10, 

t,iXi-S)20Yl 2 
2 i = l " 

oB = 2 
2 £(.r,-x)2l Efe-*)2 

,:=1 J ' = 1 

It can be shown (Exercise 11.15 on page 412) that the random variable A has 
the mean 

n 

PA — a and variance d\ = —^—- a2. 
n J2 ixt - x)2 

i = l 

From the foregoing results, it is apparent that the least squares estimators for 
a and 0 are both unbiased estimators. 

Part i t ion of Total Variability and Est imation of a2 

To draw inferences on a and 0, it becomes necessary to arrive at an estimate 
of the parameter a2 appearing in the two preceding variance formulas for A and 
B. The parameter a2, the model error variance, reflects random variation or 
experimental error variation around the regression line. In much of what follows 
it is advantageous to use the notation 

n ii n 

Sxx = Y2(Xi ~ x)2' Svv = Y2(yi~y^' Sxy = Y2ixi-x)(yi-y). 
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Now we may write: the error sum of squares as follows: 

SSE = Y^iVi - a - bxi)2 = Y2\(Vi ~V)~ &fa - *)f 

n n n 

= Yfr- v? - » X > " " x](!J> ~ ® +1;1 !DX* ~ x)2 

i = l i = l i = l 
= .'/.'/ — 2bbxy + 0 DXx — Syy — 0SXy, 

the final step following from the fact that b — Sxy/S,„x. 

Theorem 11.1: An unbiased estimate of a2 is 

2 _ SSE _ A (iji - y,)2 _ 

~ n - 2 ~ ^ vi - 2 
i = i 

Syy VOxy 

n - 2 ' 

The proof of Theorem 11.1 is left as an exercise (see Review Exercise 11.CI). 

The Est imator of a2 as a Mean Square Error 

One should observe: the result of Theorem 11.1 in order to gain sonic intuition about 
the estimator of a2. The parameter a2 measures variance or squared deviations 
between Y values and their mean given by jiy x (he., squared deviations between Y 
and a + 0x). Of course, the a + 0x is estimated by y = a+bx. Thus it would make 
sense that the variance a2 is best depicted as a squared deviation of the typical 
observation tjj from the estimated mean, iji, which is the corresponding point on 
the fitted line. Thus the (yi — iji)- values reveal the appropriate variance, much 
like (-iji — y)2 values measure variance: when one is sampling in a nonregression 
scenario. In other words, y estimates the mean in the latter simple situation 
whereas y-L estimates the mean of y, in a regression structure. Now, what about 
the divisor n — 2? In future sections we shall note that these are the degrees of 
freedom associated with the estimator s2 of a2. Whereas in the standard normal 
i.i.d. scenario, one degree of freedom is .subtracted from n in the denominator and 
a reasonable explanation is that one parameter is estimated, namely, the mean p 
by say y, but in the regression problem, two pa ramete r s are est imated, namely 
a and 0 by a and b. Thus the important parameter a2, estimated by 

>) 

s2 = £(.iy/-.i/;)V('»-2), 
i= i 

is called a mean squared error, depicting a type of mean (division by n — 2) of 
the squared residuals. 

11.5 Inferences Concerning the Regression Coefficients 

Aside from merely estimating the linear relationship between x and Y for purposes 
of prediction, the experimenter may also be interested in drawing certain inferences 
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about, the slope and intercept. In order to allow for the testing of hypotheses 
and the construction of confidence intervals on a and 0, one must be willing to 
make the further assumption that each Cj, i — 1,2,..., n, is normally distributed. 
This assumption implies that Yi,Y2,...,Yn are also normally distributed, each 
with probability distribution n(i/;;o + 0x,,a). Since A and B are linear functions 
of independent normal variables, we may now deduce from Theorem 7.11 that 
A and B are normally distributed with probability distributions n(a; Q,CT^) and 
n(b; 0,0/3), respectively. 

It turns out that under the normality assumption, a result very much analogous 
to that given in Theorem 8.4 allows us to conclude that (n—2)52/cr2 is a chi-squared 
variable with n — 2 degrees of freedom, independent of the random variable B. 
Theorem 8.5 then assures us that the statistic 

T=iB-0)/io/y/$xZ) _ B-0 
S/a S/^/S^ 

has a f-distribution with 11 — 2 degrees of freedom. The statistic T can be used to 
construct a 100(1 — a)% confidence interval for the coefficient 0. 

Confidence Interval A 100(1 - a)% confidence interval for the parameter ,3 in the regression line 
for ,3 PY\X — a + 3x is 

b - t,v/2 r-— < 0 <b + ttt/2-
&XX V °xx 

where tn/2 is a value of the (-distribution with n — 2 degrees of freedom. 

Example 11.2:1 Find a 95% confidence interval for 0 in the regression line pY\x = ot + 3x, based 
on the pollution data of Table 11.1. 

Solution: From the results given in Example 11.1 we find that 

Sxx = 4152.18, Sxy = 3752.09. 

In addition, we find that Syy = 3713.88. Recall that b = 0.903643. Hence, 

g2 = Syy - bSxy = 3713.88 - (0.903643)(3752.09) = 1Q m Q 

n — 2 31 

Therefore, taking the square root, we obtain s = 3.2295. Using Table A.4, we find 
£0.025 ~ 2.045 for 31 degrees of freedom. Therefore, a 95% confidence interval for 
0\s 

0.903643 - i ^ £ E = a < 0 < 0.903643 + £ 0 * 2 2 ^ . 
\/4152.18 V4152.18 

which simplifies to 

0.8012 < 0 < 1.0061. J 
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Hypothesis Testing on the Slope 

To test the null hypothesis HQ that 0 — 0o against a suitable alternative, we again 
use the (-distribution with n — 2 degrees of freedom to establish a critical region 
and then base our decision on the value of 

'x.r s/y/S~x 

The method is illustrated by the following example. 

Example 11.3:1 Using the estimated value b = 0.903643 of Example 11.1, test the hypothesis that 
0 = 1.0 against the alternative that ,3 < 1.0. 

Solution: The hypotheses are //(): 0 = 1.0 and H\: 0 < 1.0. So 

t_ 0.903643-1.0 _ _ 1 C ) ( ? 

3.2295/v/4152.18 

with n -2 = 31 degrees of freedom (P « 0.03). 
Decision: The t-value is significant at the 0.03 level, suggesting strong evidence 

that 0 < 1.0. J 
One important f-test on the slope is the test of the hypothesis 

HQ: 0 = 0, 

Hi: 0^0. 

When the null hypothesis is not rejected, the conclusion is that there is no signifi
cant linear relationship between E(y) and the independent variable x. The plot of 
the data for Example 11.1 would suggest that a linear relationship exists. However, 
in some applications in which a2 is large and thus considerable "noise" is present in 
the data, a plot, while useful, may not produce clear information for the researcher. 
Rejection of Ho above implies that a significant linear regression exists. 

Figure 11.7 displays a MINITAB printout showing the (-test for 

H0: 0 = 0, 
Hi: 0^0, 

for the data of Example 11.1. Note the regression coefficient (Coef), standard error 
(SE Coef), (-value (T), and P-value (P). The null hypothesis is rejected. Clearly, 
there is a significant, linear relationship between mean chemical oxygen demand 
and solids reduction. Note that the (-statistic is computed as 

coefficient b 
t = standard error 

The failure to reject H0 : 0 = 0 suggests that there is no linear relationship 
between Y and x. Figure 11.8 is an illustration of the implication of this result. 
It may mean that changing x has little impact on changes in Y, as seen in (a). 
However, it may also indicate that the true relationship is nonlinear, as indicated 
by (b). 
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Regression Analysis: COD versus Per_Red 
The regression equation is COD = 3.83 + 0.904 Per_Red 

Predictor Coef SE Coef T P 
Constant 3.830 1.768 2.17 0.038 
Per.Red 0.90364 0.05012 18.03 0.000 

S = 3.22954 R-Sq = 91.3% R-Sq(adj) = 91.0% 
Analysis of Variance 
Source DF SS MS F P 
Regression 1 3390.6 3390.6 325.08 0.000 
Residual Error 31 323.3 10.4 
Total 32 3713.9 

Figure 11.7: MINITAB printout for (-test for data of Example 11.1. 

Figure 11.8: The hypothesis HQ : ,3 = 0 is not rejected. 

When Ho: 0 — 0 is rejected, there is an implication that the linear term in x 
residing in the model explains a significant portion of variability in Y. The two 
plots in Figure 11.9 illustrate possible scenarios. As depicted in (a) of the figure, 
rejection of may suggest that the relationship is, indeed, linear. As indicated in 
(b), it may suggest that while the model does contain a linear effect, a better 
representation may be found by including a polynomial term (perhaps quadratic) 
(i.e., terms that supplement the linear term). 
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Figure 11.9: The hypothesis Ho : 0 = 0 is rejected. 

Statistical Inference on the Intercept 

Confidence intervals and hypothesis testing on the coefficient a may be established 
from the fact that A is also normally distributed. It is not difficult to show that 

T = 
A- a 

SJZx*/(nSxx) 

has a (-distribution with n — 2 degrees of freedom from which we may construct a 
100(1 - a)% confidence interval for a. 

Confidence Interval A 100(1 — a)% confidence interval for the parameter a in the regression line 
for a PY\X — a + 0x is 

a - (a/2 ; „ < a <a + ta 
Vm%. y/noxx 

where ta/2 is a value of the (-distribution with n — 2 degrees of freedom. 

Note that the symbol a is used here in two totally unrelated ways, first as the 
level of significance and then as the intercept of the regression line. 

Example 11.4:1 Find a 95% confidence interval for a in the regression line py\x = a + 0x, based 
on the data of Table 11.1. 

Solution: In Examples 11.1 and 11.2 we found that 

Svx = 4152.18 and s = 3.2295. 
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From Example 11.1 wc: had 

V xj = 41,086 and a = 3.829633. 
i = i 

Using Table A.4, we find (0.(125 « 2.045 for 31 degrees of freedom. Therefore, a 
95% confidence interval for n is 

(2.045) (3.2295) v/41,086 
3.829633 - i • ,V = <o < 3.829633 

v/(33)(4152.18) 
(2.045)(3.229.r))y/41.U86 

v/(33)(4152.l8) 

which simplifies to 0.2132 < a < 7.4 161. J 
To test the null hypothesis Ho that a = ao against a suitable alternative, we 

can use the (-distribution with n — 2 degrees of freedom to establish a critical region 
and then base our decision 011 the: value of 

sJT,xf/{nSxx] 

Example 11.5:1 Using the estimated value a = 3.829640 of Example 11.1, test the hypothesis that 
(\ = 0 at the 0.05 loved of significance' against the alternative that er ^ 0. 

Solution: The hypotheses are Ho', n = 0 and Hi', a / 0. So 

_ 3.829633 - 0 _ 9 

~ 3.2295v/41,086/((33)(4152.18)) ' ; 

with 31 degrees of freedom. Thus P = P-value « 0.038 and wc conclude that 
a =fi 0. Note that this is merely Coef/StDev, as wc sec in the MINITAB printout 

in Figure 11.7. The SE Coef is the standard error of the estimated intercept. J 

A Measure of Quality of Fit : Coefficient of Determinat ion 

Note in Figure 11.7 that an item denoted by R-Sq is given with a value of 91.3%. 
This quantity, R2, is called the coefficient of de te rmina t ion . This quantity is a 
measure of the propor t ion of variability explained by the fitted model . In 
Section 11.8 we slnill introduce the notion of an analysis of variance approach to 
hypothesis testing in regression. The analysis of variance approach makes use of the 

error sum of squares SSE = YI iVi — lli)2 a n ( ' the to ta l corrected sum of squares 
;=i 

u 
SST — Y2iVi —iii)2- The latter represents the variation in the response values that 

i= i 
ideally would be explained by the model. The SSE value is the variation due to 
error, or variat ion unexplained. Clearly, if SSE = 0, all variation is explained. 
The quantity that represents variation explained is SSI1 — SSE. The Rr is 

,., ... ,. , , . . n2 ., 00E 
Coeff. of determination: Rr = 1 — . 
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Note that if the fit is perfect, all residuals are zero, and thus R2 = 1.0. But if 
SSE is only slightly smaller than SST, R2 « 0. Note from the printout in Figure 
11.7 that the coefficient of determination suggests that the model fit to the data 
explains 91.3% of the variability observed in the response, the chemical oxygen 
demand. 

The plots in Figure 11.10 provide an illustration of a good fit (P 2 « 1.0) for 
plot (a) and a poor fit (P 2 « 0) for plot (b). 

(a) R? a 1.0 (b) fl2a0 

Figure 11.10: Plots depicting a very good fit and a poor fit. 

Pitfalls in the Use of B? 

Analysts quote values of R2 quite often, perhaps due to its simplicity. However 
there are pitfalls in its interpretation. The reliability of P2 is a function of the 
size of the regression data set and the type of applications. Clearly, 0 < P2 < 1 
and the upper bound is achieved when the fit to the data is perfect (i.e., all of the 
residuals are zero). What is an acceptable value for P 2 ? This is a difficult question 
to answer. A chemist, charged with doing a linear calibration of a high-precision 
piece of equipment, certainly expects to experience a very high P2-value (perhaps 
exceeding 0.99) while a behavioral scientist, dealing in data impacted by variability 
in human behavior, may feel fortunate to experience an P2 as large as 0.70. An 
experienced model fitter senses when a value is large enough, given the situation 
confronted. Clearly, some scientific phenomena lend themselves to modeling with 
more precision than others. 

The P2 criterion is dangerous to use for comparing competing models for the 
same data set. When one adds additional terms to the model (e.g., an additional 
regressor), it decreases SSE and thus increases P2 (at least not decrease it). This 
implies that R2 can be made artificially high by an unwise practice of overfltting 
(i.e., the inclusion of too many model terms). Thus, the inevitable increase in 
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P2 enjoyed by adding an additional term does not imply the additional term was 
needed. In fact, the simple model may be superior for predicting response values. 
The role of overfitting and its influence on prediction capability will be discussed 
at length in Chapter 12 as we visit the notion of models involving more than a 
single regressor. Suffice it to say at this point that one should not subscribe to 
a model selection process that solely involves the consideration of R2. 

11.6 Prediction 

There are several reasons for building a linear regression. One, of course, is to 
predict response values at one or more values of the independent variable. In this 
section the focus is on errors associated with prediction. 

The equation y = a+bx may be used to predict or estimate the mean response 
P-Y\x0

 a t x = XQ, where .To is not necessarily one of the prechosen values, or it may 
be used to predict a single value j/o of the variable YQ, when x = XQ. We would 
expect, the error of prediction to be higher in the case of a single predicted value 
than in the case where a mean is predicted. This, then, will affect the width of our 
intervals for the values being predicted. 

Suppose that the experimenter wishes to construct a confidence interval for 
PY\X0- ^ e s n a ^ u s e the point estimator YQ = A + Bx0, to estimate py\Xo = a+0x. 
It can be shown that the sampling distribution of YQ is normal with mean 

pY,xo = E(Y0) = E(A + BXQ) = a + 0xo = py \x0 

and variance 

2 2 2 2 
""Vo = aA+Bx0 ~ aY+B(x0-&) ~ ° n S-

21 

the latter following from the fact that Cov(Y,B) = 0 (see Exercise 11.16 on page 
412). Thus a 100(1 - a)% confidence interval on the mean response py\Xa can now 
be constructed from the statistic 

T = 
YQ - PY\x0 

S^l/n+ixo-xY/Sj 

which has a (-distribution with n — 2 degrees of freedom. 

Confidence Interval A 100(1 — a)% confidence interval for the mean response py\Xo is 
for py\Xli 

/ l (x0-x)2 „ / l (xo-x)2 

;</o -ta/2s\ - + 5 <VY\XU < 2/0 + ta/2S\ ~ + 5 ' 
y n J I J y ^ oXx 

where tQ/2 is a value of the (-distribution with n — 2 degrees of freedom. 

Example 11.6:1 Using the data of Table 11.1, construct a 95% confidence limits for the mean 
response py\Xo-
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Solution: From the regression equation we find for XQ — 20% solids reduction, say, 

.1/0 = 3.829633 + (0.903643) (20) = 21.9025. 

In addition, X = 33.4545, Sxx = 4152.18, s = 3.2295, and i0.036 « 2.045 for 31 
degrees of freedom. Therefore, a 95% confidence interval for //>|2o 1S 

< ! ' \/4+(2\L52,^'5)2<^l2" 

< 21.9025+ (2.045)(3.2295)t/- + ( 2 ° ~ 3 3 ' 4 5 4 5 ) 2 
v " ; V 3 3 4152.18 

or simply 20.1071 < / / r | 2 0 < 23.6979. J 
Repeating the1 previous calculations for each of several different values of a,'0, 

one can obtain the corresponding confidence limits on each py^. Figure 11.11 
displays the data points, the estimated regression line, and the upper and lower 
confidence limits on the mean of Y\x. 

y = a + bx 

0 3 6 9 12 15 18 2124 27 30 33 36 39 42 45 48 5154 

Figure I I. I I: Confidence limits for the mean value of Y\x. 

fn Example 11.6 we are 95% confident that the population chemical oxygen 
demand is between 20.1071% and 23.6979% when solid reduction is 20%. 

Predict ion Interval 

Another type of interval that is often misinterpreted and confused with that given 
for /(y-|.,. is the prediction interval for a future observed response. Actually, in 
many instances the prediction interval is more relevant to the scientist or engineer 
than the confidence interval on the mean. In the tar content and inlet tempera
ture example, cited in Section 11.1. (here would certainly" be interest not only in 
estimating the mean tar content at a specific temperature: but also in constructing 
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an interval that reflects the error in predicting a future observed amount of tar 
content at the given temperature. 

To obtain a prediction interval for any single value r/n of the variable Yo, it 
is necessary to estimate the variance of the differences between the ordinates yo, 
obtained from the computed regression lines in repeated sampling when x = xo, 
and the corresponding true ordinate y0. We can think of the difference yo — yo as 
a value of the random variable YQ — YQ, whose sampling distribution can be shown 
to be normal with mean 

Py-0_y-0 = E(YQ - YQ) = E[A + BXQ - (a + 0xo + e0)] = 0 

and variance 

2 2 2 2 
aY0-Y0 — aA+Bxa-to ~ °~?+B{x0-x)-(.u ~ ° 1 + I + te-3£ 

n oxx 

Thus a 100(1 - a )% prediction interval for a single predicted value y0 can be 
constructed from the statistic 

T = ^° " Y° 
Sy/\ + \jn + (xQ-x)2/Sxx 

which has a (-distribution with n — 2 degrees of freedom. 

Prediction Interval A 100(1 — Q ) % prediction interval for a single response yo is given by 
for y0 . 

/ 1 (XQ-X)2 . / 1 (xo-x)2 

2/o - ta/2SA 1 + - H - < y0 < go + ta/2Si 1 + - + — 5 , 
' y n Sxx Y n 5XX 

where ta/2 is a value of the (-distribution with n — 2 degrees of freedom. 

Clearly, there is a distinction between the concept of a confidence interval and 
the prediction interval described previously. The confidence interval interpretation 
is identical to that described for all confidence intervals on population parameters 
discussed throughout the book. Indeed, py\Xo is a population parameter. The 
computed prediction interval, however, represents an interval that has a probability 
equal to 1 — a of containing not a parameter but. a future value yo of the random 
variable YQ. 

Example 11.7:1 Using the data of Table 11.1, construct a 95% prediction interval for j/o when 
XQ = 20%. 

Solution: We have n = 33, x0 = 20, x = 33.4545, yo = 21.9025, Sxx = 4152.18, s = 3.2295, 
and (0.025 ~ 2.045 for 31 degrees of freedom. Therefore, a 95% prediction interval 
for yo is 

21.9025 - (2.045,(3.2295) V<T + 1 + ( 2 ° = j f ^ < »o 

< ? 1.9025 + (2.045)(3.2205) y/l + g + ^ J ^ ^ -
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which simplifies to 15.0585 < y0 < 28.7464. J 
Figure 11.12 shows another plot of the chemical oxygen demand data, with 

both the confidence interval on mean response and the prediction interval on an 
individual response plotted. The plot, reflects a much tighter interval around the 
regression line in the case of the mean response. 
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Figure 11.12: Confidence and prediction intervals for the chemical oxygen demand 
data; inside bands indicate the confidence limits for the mean responses and outside 
bands indicate the prediction limits for the future responses. 

Exercises 

11.15 Assuming that, the e,'s are normal, indepen- where the it's are independent and normally dis-
dent with zero means and common variance a2, show 
that A, the least squares estimator of a in /.iy|x. = 
a + 0x, is normally distributed with mean a and vari
ance 

a\ = 
i = l 

nJ^ixi-S)3 

i = l 

11.16 For a simple linear regression model 

Yi =a+ pXi +€i, i= 1, 2 . . . . . ii. 

tributed with zero means and equal variances a~, show 
that, Y and 

2? = 
£0»» 

1 = 1 

x)Yi 

1=1 

have zero covariance. 

11.17 With reference to Exercise 11.1 on page 397, 
(a) evaluate s , 
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(b) test; the hypothesis that 3 = 0 against the alterna
tive that 0 ,£ 0 at the 0.05 level of significance and 
interpret the resulting decision. 

11.18 With reference to Exercise 11.2 on page 398, 

(a) evaluate s2; 
(b) construct a 95% confidence interval for a; 

(c) construct a 95% confidence interval for 0. 

11.19 With reference to Exercise 11.3 on page 398, 

(a) evaluate s2; 
(b) construct a 95% confidence interval for a; 

(c) construct a 95% confidence interval for 3. 

11.20 With reference to Exercise 11.4 on page 398, 
(a) evaluate s2; 

(b) construct a 99% confidence interval for a; 
(c) construct a 99%. confidence interval for 3. 

11.21 With reference to Exercise 11.5 on page 398, 

(a) evaluate s2; 

(b) construct a 99% confidence interval for a; 

(c) construct a 99% confidence interval for 0. 

11.22 Test the hypothesis that a = 10 in Exercise 
11.6 on page 398 against the alternative that a < 10. 
Use a 0.05 level of significance. 

11.23 Test the hypothesis that 0 = 6 in Exercise 11.7 
on page 399 against the alternative that 3 < 6. Use a 
0.025 level of significance. 

11.24 Using the value of s2 found in Exercise 
11.18(a), construct a 95% confidence interval for /ly-isa 
in Exercise 11.2 on page 398. 

11.25 With reference to Exercise 11.4 on page 398, 
use the value of s2 found in Exercise 11.20(a) to com
pute 
(a) a 95% confidence interval for the menu shear resis

tance when x = 24.5; 
(b) a 95% prediction interval for a single predicted 

value of the shear resistance when x = 24.5. 

11.26 Using the value of s2 found in Exercise 
11.19(a), graph the regression line and the 95% con
fidence bands for the mean response py\x for the data 
of Exercise 11.3 on page 398. 

11.27 Using the value of s2 found in Exercise 
11.19(a), construct a 95% confidence interval for the 
amount of converted sugar corresponding to x = 1.6 in 

Exercise 11.3 on page 398. 

11.28 With reference to Exercise 11.5 on page 398, 
use the value of sa found in Exercise 11.21(a) to com
pute 
(a) a 99% confidence interval for the average amount 

of chemical that will dissolve in 100 grams of water 
at 50° C; 

(b) a 99% prediction interval for the amount of chemi
cal that will dissolve in 100 grams of water at 50°C. 

11.29 Consider the regression of mileage for certain 
automobiles, measured in miles per gallon (mpg) on 
their weight in pounds (wt). The data are from Con
sumer Reports (April 1997). Part of the SAS output 
from the procedure is shown in Figure 11.13. 
(a) Estimate the mileage for a vehicle weighing 4000 

pounds. 
(b) Suppose that the Honda engineers claim that, on 

average, the Civic (or any other model car weigh
ing 2440 pounds) gets more than 30 mpg. Based 
on the results of the regression analysis, would you 
believe that claim? Why or why not? 

(c) The design engineers for the Lexus ES300 targeted 
18 mpg as being ideal for this model (or any other 
model weighing 3390 pounds) although it is ex
pected that some variation will be experienced. Is 
it likely that this target value is realistic? Discuss. 

11.30 Show that in the case of a least, squares fit to 
the simple linear regression model 

Yi = a + 0xi + ei, i = 1 ,2 . . . . . n, 

that Y. iVi - 2/0 = £ e< = 0. 
» = i ; = i 

11.31 Consider the situation of Exercise 11.30 but 
suppose n = 2 (i.e., only two data points are available). 
Give an argument that the least squares regression line 
will result in (t/i — i/t) = (y2 — y2) = 0. Also show that 
for this case R2 = 1.0. 

11.32 There are important applications in which due 
to known scientific constraints, the regression line 
must go through the origin (i.e., the intercept must 
be zero). In other words, the model should read 

Yi = 3xi+f.i, 1.2, •, n, 

and only a simple parameter requires estimation. The 
model is often called the regression through the 
origin model. 
(a) Show that the least squares estimator of the slope 
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is 

(b) Show that er% = a2/ ( jr x'f 

(c) Show that 6 in part (a) is an unbiased estimator for 
0. That is, show E(B) = 3. 

11.33 Given the data set 

y x y x 
7 2 40 10 
50 15 70 2(1 
100 30 

(a) Plot the data. 
(b) Fit a regression line ''through the origin." 
(c) Plot the regression line on the graph with the data. 

(d) Give a general formula for (in terms of the ?/,• and 
the slope b) the estimator of a2. 

(e) Give a formula for V"«r(t/,); i = I, 2 , . . . ,n for this 
case:. 

(I) Plot 95% confidence limits Tor the mean response 
on the graph around the regression line. 

11.34 For the data in Exercise 11.33. find a 95% pre
diction interval at x = 25. 

MODEL 

GHC 
Geo 
Honda 

Hyundai 

Inf. initi 

Isuzu 

Jeep 

Land 

Lexus 

Lincoln 

Root MSE 
Dependent Mean 

Variable 

Interc 

WT 
WT 
4520 

2065 

2440 

2290 

3195 

3480 

4090 

4535 

3390 

3930 

cpt 

MPG 
15 
29 
31 
28 
23 
21 
15 
13 
22 
18 

DF 
1 
1 

: 

1.48794 

21.50000 

R-Square 0.9509 

Adj R-

Parameter Estimates 

Parameter 

Es 
44 
-0 

Predict 

13.7720 

30.6138 

28.0412 

29.0703 

22.8618 

20.9066 

16.7219 

13.6691 

21.5240 

17.8195 

timate 

.78018 

.00686 0. 

LMean 

11.9752 

28.6063 

26.4143 

27.2967 

21.7478 

19.8160 

15.3213 

11.8570 

20.4390 

16.5379 

Standard 

Error 

1.92919 

00055133 

UMoan 
15.5688 

32.6213 

29.6681 

30.8438 

23.9758 

21.9972 

18.1224 

15.4811 

22.6091 

19.1011 

-Sq 0.9447 

t Value 

23.21 

-12.44 

Lpred 

9.8988 

26.6385 

24.2439 

25.2078 

19.2543 

17.3062 

13.0158 

9.7888 

17.9253 

14.1568 

Pr > Itl 

<.0001 

<.0001 
Upred 

17.6451 

34.5891 

31.8386 

32.9327 

26.4693 

24.5069 

20.4279 

17.5493 

25.1227 

21.4822 

Residual 

1.22804 

-1.61381 

2.95877 

-1.07026 

0.13825 

0.09341 

-1.72185 

-0.66905 

0.47599 

0.18051 

Figure 11.13: SAS printout for Exercise 11.29. 

11.7 Choice of a Regression Model 

Much of what has been presented thus far on regression involving a single inde
pendent variable depends on the assumption that the model chosen is correct, the 
presumption that p.y\x is related to as linearly in the parameters. Certainly, one 
would not expect the prediction of the response to be good if there are several 
independent variables, not considered in the model, t ha t are affecting the response 
and are varying in the system. In addition, the prediction would certainly be inad
equate if the t rue structure relating py\x to x is extremely nonlinear in the range 
of the variables considered. 
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Often the simple linear regression model is used even though it is known that 
the model is something other than linear or that the true structure is unknown. 
This approach is often sound, particularly when the range of a; is narrow. Thus the 
model used becomes an approximating function that one hopes is an adequate rep-
resentation of the true: picture in the region of interest. One should note, however, 
the effect of an inadequate model on the results presented thus far. For example, 
if the true model, unknown to the experimenter, is linear in more than one x, say, 

P>Y\xuxi = Oi + 0iX] +fcx2, 

then the ordinary least squares estimate b = Sxj)/Sxx, calculated by only consider
ing .t'i in the experiment, is, under general circumstances, a biased estimate of the 
coefficient p\, the bias being a function of the additional coefficient 02 (see Exercise 
11.37 on page 423). Also, the estimate sa for a2 is biased due to the additional 
variable. 

11.8 Analysis-of-Variance Approach 

Often the problem of analyzing the quality of the estimated regression line is han
dled by an analysis-of-variance (ANOVA) approach: a procedure whereby the 
total variation in the dependent variable: is subdivided into meaningful compo
nents that arc then observed and treated in a systematic: fashion. The analysis 
of variance, discussed in Chapter 13, is a powerful resource that is used for many 
applications. 

Suppose that wc have n experimental data points in the usual form (x-i.-yi) and 
that the regression line is estimated. In our estimation of a2 in Section 11.4 we 
establish the identity 

Syy = bSxy + SSE. 

Aii alternative and perhaps more informative formulation is 

n n it 

X > - v)2 = X > - a)2 + ]T> - fc)a-
; = i i = i ?.=i 

So we have achieved a partitioning of the to ta l corrected sum of squares of y 
info two components that should reflect particular meaning to the experimenter. 
Wc: shall indicate this partitioning symbolically as 

SST = SSR + SSE. 

The first component of the right, SSR, is called the regression sum of squares 
and it reflects the amount of variation in the //-values explained by the model , 
in this case the postulated straight, line. The second component is the familiar 
error sum of squares, which reflects variation about the regression line. 

Suppose thai; we arc interested in testing the hypothesis 

HQ: /S = 0, 

HI: 0^0, 
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where the null hypothesis says essentially that the model is py\x = a. That is, the 
variation in Y results from chance or random fluctuations which are independent of 
the values of a:. This condition is reflected in Figure 11.10(b). Under the conditions 
of this null hypothesis it can be shown that SSR/o2 and SSE/a2 are values of 
independent chi-squared variables with 1 and n —2 degrees of freedom, respectively, 
and then by Theorem 7.12 it follows that SST/a2 is also a value of a chi-squared 
variable with n — 1 degrees of freedom. To test the hypothesis above, we compute 

557?./1 SSR 
i ~ SSE/ (n-2) ~ s2 

and reject HQ at the en-level of significance when / > fa(l,n — 2). 
The computations are usually summarized by means of an analysis-of-variance 

table, as indicated in Table 11.2. It is customary to refer to the various sums of 
squares divided by their respective degrees of freedom as the mean squares. 

Tabic 11.2: Analysis of Variance for Testing 0 — 0 

Source of 
Variation 

Regression 
Error 

Total 

Sum of 
Squares 

SSR 
SSE 

SST 

Degrees of 
Freedom 

1 
n - 2 

n - 1 

Mean 
Square 

557? 
„2 _ SSE 

71—2 

Computed 
/ 

SSR 
a-

When the null hypothesis is rejected, that is, when the computed F-statistic 
exceeds the critical value fQ(l,n — 2), we conclude that there is a significant 
amount of variation in the response accounted for by the postulated 
model, the straight-line function. If the F-statistic is in the failing to reject 
region, we conclude that the data did not reflect sufficient evidence to support the 
model postulated. 

In Section 11.5 a procedure is given whereby the statistic 

r__ B-0Q 

is used to test the hypothesis 

HQ: .0 = 0o, 

Hi: ,6V 3 0 , 

where T follows the f-distribution with n - 2 degrees of freedom. The hypothesis 
is rejected if \t\ > taj2, for an o-level of significance. It is interesting to note that 
in the special case in which we are testing 

HQ: 0 = 0, 

Hi: 0^0, 

the value of our [/""-statistic becomes 

b 
t= . , 
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and the hypothesis under consideration is identical to that being tested in Table 
11.2. Namely, the null hypothesis states that the variation in the response is due 
merely to chance. The analysis of variance uses the F-distribution rather than 
the (-distribution. For the two-sided alternative, the two approaches are identical. 
This we can see by writing 

.2 _ " SXx OOxy Solx 

' ~^2~~~s^~~ ~P~' 

which is identical to the /-value used in the analysis of variance. The basic relation
ship between the (-distribution with v degrees of freedom and the F-distribution 
with 1 and v degrees of freedom is 

t2 = f(l,v). 

Of course, the (-test allows for testing against a one-sided alternative while the 
F-test is restricted to testing against a two-sided alternative. 

Annotated Computer Printout for Simple Linear Regression 

Consider again the chemical oxygen demand data of Table 11.1. Figures 11.14 and 
11.15 show more complete annotated computer printouts. Again the we illustrate 
it with MINITAB PC software. The (-ratio column indicates tests for null hy
potheses of zero values on the parameter. The term "Fit" denotes y-values, often 
called fitted values. The term :'SE Fit" is used in computing confidence intervals 
on mean response. The item R2 is computed as (SSR/SST) x 100 and signifies the 
proportion of variation in y explained by the straight-line regression. Also shown 
are confidence intervals on the mean response and prediction intervals on a new 
observation. 

11.9 Test for Linearity of Regression: Data with Repeated 
Observations 

For certain kinds of experimental situations the researcher has the capability of 
obtaining repeated observations on the response for each value of x. Although it is 
not necessary to have these repetitions in order to estimate a and 0, nevertheless 
repetitions enable the experimenter to obtain quantitative information concerning 
the appropriateness of the model. In fact, if repeated observations are generated, 
the experimenter can make a significance test to aid in determining whether or not 
the model is adequate. 

Let us select a random sample of n observations using k distinct values of x, 
say xx, x2,..., xn, such that, the sample contains n\ observed values of the random 
variable Yx corresponding to xx, n2 observed values of Y2 corresponding to x2,..., 

k 
nk observed values of Yt,- corresponding to x/,-. Of necessity, n = 2~2ni-
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The regression equat 
Predictor 
Constant 
Per Red 0. 

S = 3.22954 

Source 
Regression 
Res: 

ion is COD =3.83 
Coef SE Coef 

3.830 
90364 C 
R-Sq = 

Analysis 
DF 
1 

Ldual Error 31 
Total 

Obs 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

Per Red 
3.0 

36.0 
7.0 

37.0 
11.0 
38.0 
15.0 
39.0 
18.0 
39.0 
27.0 
39.0 
29.0 
40.0 
30.0 
41.0 
30.0 
42.0 
31.0 
42.0 
31.0 
43.0 
32.0 
44.0 
33.0 
45.0 
33.0 
46.0 
34.0 
47.0 
36.0 
50.0 
36.0 

32 

COD 
5.000 

34.000 
11.000 
36.000 
21.000 
38.000 
16.000 
37.000 
16.000 
36.000 
28.000 
45.000 
27.000 
39.000 
25.000 
41.000 
35.000 
40.000 
30.000 
44.000 
40.000 
37.000 
32.000 
44.000 
34.000 
46.000 
32.000 
46.000 
34.000 
49.000 
37.000 
51.000 
38.000 

1.768 
'.05012 
91.3'/. 

T 
2.17 0. 
18.03 0. 
R-Sq(adi) 

; of Variance 
SS 

3390.6 
323.3 
3713.9 

Fit 
6.541 

36.361 
10.155 
37.264 
13.770 
38.168 
17.384 
39.072 
20.095 
39.072 
28.228 
39.072 
30.035 
39.975 
30.939 
40.879 
30.939 
41.783 
31.843 
41.783 
31.843 
42.686 
32.746 
43.590 
33.650 
44.494 
33.650 
45.397 
34.554 
46.301 
36.361 
49.012 
36.361 

MS 

I + 0.904 Per 
P 

038 
000 
= 91.0% 

F P 
3390.6 325.08 0.000 
10.4 

SE Fit 
1.627 
0.576 
1.440 
0.590 
1.258 
0.607 
1.082 
0.627 
0.957 
0.627 
0.649 
0.627 
0.605 
0.651 
0.588 
0.678 
0.588 
0.707 
0.575 
0.707 
0.575 
0.738 
0.567 
0.772 
0.563 
0.807 
0.563 
0.843 
0.563 
0.881 
0.576 
1.002 
0.576 

Residual St 
-1.541 
-2.361 
0.845 
-1.264 
7.230 
-0.168 
-1.384 
-2.072 
-4.095 
-3.072 
-0.228 
5.928 
-3.035 
-0.975 
-5.939 
0.121 
4.061 
-1.783 
-1.843 
2.217 
8.157 
-5.686 
-0.746 
0.410 
0.350 
1.506 
-1.650 
0.603 
-0.554 
2.699 
0.639 
1.988 
1.639 

.Red 

Resid 
-0.55 
-0.74 
0.29 
-0.40 
2.43 
-0.05 
-0.45 
-0.65 
-1.33 
-0.97 
-0.07 
1.87 
-0.96 
-0.31 
-1.87 
0.04 
1.28 
-0.57 
-0.58 
0.70 
2.57 
-1.81 
-0.23 
0.13 
0.11 
0.48 
-0.52 
0.19 
-0.17 
0.87 
0.20 
0.65 
0.52 

Figure 11.14: MINITAB printout of simple linear regression for chemical oxygen 
demand data; part I. 

We define 

ijij = the j th value of the random variable Y-,. 
m 

Vi. =Ti. = YlVi^ 
j=l 

Tt 
Hi 
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Obs 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

6 
36 
10 
37 
13 
38 
17 
39 
20 
39 
28 
39 
30 
39 
30 
40 
30 
41 
31 
41 
31 
42 
32 
43 
33 
44 
33 
45 
34 
46 
36 
49 
36 

Fit 
541 
361 
155 
264 
770 
168 
384 
072 
095 
072 
228 
072 
035 
975 
939 
879 
939 
783 
843 
783 
843 
686 
746 
590 
650 
494 
650 
397 
554 
301 
361 
012 
361 

SE Fit 
1.627 
0.576 
1.440 
0.590 
1.258 
0.607 
1.082 
0.627 
0.957 
0.627 
0.649 
0.627 
0.605 
0.651 
0.588 
0.678 
0.588 
0.707 
0.575 
0.707 
0.575 
0.738 
0.567 
0.772 
0.563 
0.807 
0.563 
0.843 
0.563 
0.881 
0.576 
1.002 
0.576 

95'/, 
3.223 

35.185 
7.218 

36.062 
11.204 
36.931 
15.177 
37.793 
18.143 
37.793 
26.905 
37.793 
28.802 
38.648 
29.739 
39.497 
29.739 
40.341 
30.669 
40.341 
30.669 
41.181 
31.590 
42.016 
32.502 
42.848 
32.502 
43.677 
33.406 
44.503 
35.185 
46.969 
35.185 

CI 
9.858) 

37.537) 
13.092) 
38.467) 
16.335) 
39.405) 
19.592) 
40.351) 
22.047) 
40.351) 
29.551) 
40.351) 
31.269) 
41.303) 
32.139) 
42.261) 
32.139) 
43.224) 
33.016) 
43.224) 
33.016) 
44.192) 
33.902) 
45.164) 
34.797) 
46.139) 
34.797) 
47.117) 
35.701) 
48.099) 
37.537) 
51.055) 
37.537) 

95'/. 
( -0.834 
(29.670 
( 2.943 
(30.569 
( 6.701 
(31.466 
(10.438 
(32.362 
(13.225 
(32.362 
(21.510 
(32.362 
(23.334 
(33.256 
(24.244 
(34.149 
(24.244 
(35.040 
(25.152 
(35.040 
(25.152 
(35.930 
(26.059 
(36.818 
(26.964 
(37.704 
(26.964 
(38.590 
(27.868 
(39.473 
(29.670 
(42.115 
(29.670 

PI 
13.916) 
43.052) 
17.367) 
43.960) 
20.838) 
44.870) 
24.331) 
45.781) 
26.965) 
45.781) 
34.946) 
45.781) 
36.737) 
46.694) 
37.634) 
47.609) 
37.634) 
48.525) 
38.533) 
48.525) 
38.533) 
49.443) 
39.434) 
50.362) 
40.336) 
51.283) 
40.336) 
52.205) 
41.239) 
53.128) 
43.052) 
55.908) 
43.052) 

Figure 11.15: MINITAB printout of simple linear regression for chemical oxygen 
demand data; part II. 

Hence, if 11,4 = 3, measurements of Y are made corresponding to x 
indicate these observations by 2/41,2/42, and 1/43. Then 

.T4, we would 

Pi. =2/41 +2/42 + 2/. -13-

Concept of Lack of Fit 

The error sum of squares consists of two parts: the amount due to the variation 
between the values of Y within given values of x and a component that is normally 
called the lack-of-fit contribution. The first component reflects mere random 
variation or p u r e exper imenta l error , while the second component is a measure 
of the systematic variation brought about by higher-order terms. In our case these 
are terms in x other than the linear or first-order contribution. Note that in 
choosing a linear model we are essentially assuming that this second component 
does not exist and hence our error sum of squares is completely due to random 
errors. If this should be the case, then s2 = SSE/(n — 2) is an unbiased estimate 
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of a2. However, if the model does not adequately fit the data, then the error sum 
of squares is inflated and produces a biased estimate of a2. Whether or not the 
model fits the data, an unbiased estimate of a can always be obtained when we 
have repeated observations simply by computing 

zZiyij-Vi.)2 

2 _ i= i A\ = ; i=l,2,...,k„ 
m - I 

for each of the k distinct values of x and then pooling these variances we have 

,1. 12 E("i-1)«? E E f c ' f e ) 
, 2 = i= l i = i j = i 

n — k n — k 

The numerator of s2 is a measure of the pure experimental error. A compu
tational procedure for separating the error sum of squares into the two components 
representing pure error and lack of fit is as follows: 

Computation of 1. Compute the pure error sum of squares 
Lack-of-Fit Sum of 

bquares v^V~^/ - ^ 
Z^l^hlij-Vi.)'-
7 = 1 j = l 

This sum of squares has n — k degrees of freedom associated with it and the 
resulting mean square is our unbiased estimate s2 of a2. 
2. Subtract the pure error sum of squares from the error sum of squares SSE, 
thereby obtaining the sum of squares due to lack of fit. The degrees of freedom 
for lack of fit arc also obtained by simply subtracting (n — 2) — (n — k) = k — 2. 

The computations required for testing hypotheses in a regression problem with 
repeated measurements on the response may be summarized as shown in Table 
11.3. 

Table 11.3: Analysis of Variance for Testing Linearity of Regression 

Source of 
Variation 

Sum of 
Squares 

Degrees of Mean 
Freedom Square 

Computed 
/ 

Regression 
Error 

Lack of fit 

Pure error 

Total 

557? 
SSE 

1 
n - 2 

(SSE-SSE (pure) jk-2 

^SSE (pure) \n - k 

SST n-1 

5S7? 

SSE- SSE( pure) 
fc-2 

2 ssa(pure) 

SSR 

ssE-ssE(pure) 
S2(fc-2) 

S" = n-fc 

Figures 11.16 and 11.17 display the sample points for the "correct model" and 
"incorrect model" situations. In Figure 11.16, where the py<x fall on a straight line, 
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there is no lack of fit when a linear model is assumed, so that the sample variation 
around the regression line is a pure error resulting from the variation that occurs 
among repeated observations. In Figure 11.17, where the py\x clearly do not fall 
on a straight line, the lack of fit from erroneously choosing a linear model accounts 
for a large portion of the variation around the regression line in addition to the 
pure error. 

Xi X2 X3 X4 X5 XQ 

Figure 11.16: Correct linear model with no lack-of-nt component. 

^ P * 

Xl X2 X3 X4 X5 Xg 

Figure 11.17: Incorrect linear model with lack-of-fit component. 

W h a t Is the Importance in D e t e c t i n g Lack of Fi t? 

The concept of lack of fit is extremely important in applications of regression 
analysis. In fact, the need to construct or design an experiment that will account 
for lack of fit becomes more critical as the problem and the underlying mechanism 
involved become more complicated. Surely, one cannot always be certain that his 
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or her postulated structure, in this case the linear regression model, is correct 
or even an adequate representation. The following example shows how the error 
sum of squares is partitioned into the two components representing pure error and 
lack of fit. The adequacy of the model is tested at the a-level of significance by 
comparing the lack-of-fit mean square divided by s2 with fn(k — 2,n - k). 

Example 11.8:1 Observations of the yield of a chemical reaction taken at: various temperatures were 
recorded in Table 11.4. 

Table 11.4: Data for Example 11.8 

y(%) 
77.4 
76.7 
78.2 
84.1 
84.5 
83.7 

*(°C) 
150 
150 
150 
200 
200 
200 

y(%) 
88.9 
89.2 
89.7 
94.8 
94.7 
95.9 

x(°C) 
250 
250 
250 
300 
300 
300 

Estimate the linear model py\x = a + 0x and test for lack of fit. 
Solution: Results of the computations are shown in Table 11.5. 

Table 11.5: Analysis of Variance on Yield-Temperature Data 

Source of 
Variation 

Regression 
Error 

Lack of fit 
Pure error 

Total 

Sum of 
Squares 

509.2507 
3.8660 

f 1.2060 
\ 2.6600 

513.1167 

Degrees of 
Freedom 

1 
10 

{I 
11 

Mean 
Square 

509.2507 

0.6030 
0.3325 

Computed / 

1531.58 

1.81 

P- Values 

< 0.0001 

0.2241 

Conclusion: The partitioning of the total variation in this manner reveals a 
significant variation accounted for by the linear model and an insignificant amount 
of variation due to lack of fit. Thus the experimental data do not seem to suggest 
the need to consider terms higher than first order in the model, and the null 
hypothesis is not rejected. J 

Annotated Computer Printout for Test for Lack of Fit 
Figure 11.18 is an annotated computer printout for analysis of the data of Example 
11.8. The result is a SAS printout. Note the "LOF" with 2 degrees of freedom, 
representing the quadratic and cubic contribution to the model, and the P-value 
of 0.22, suggesting that the linear (first-order) model is adequate. 
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Dependent Variable: yield 

Source 

Model 
E r r o r 
C o r r e c t e d T o t a l 

R-Square 

0 .994816 
Source 
t e m p e r a t u r e 

LOF 

DF 
3 
8 

11 

DF 

1 
2 

Sum of 

Squares Mean Square F Value 

510.4566667 170.1522222 511.74 

2.6600000 0.3325000 

513.1166667 

Coeff Var Root MSE yield Mean 

0.666751 0.576628 86.48333 

Type I SS Mean Square F Value 

509.2506667 509.2506667 1531.58 

1.2060000 0.6030000 1.81 

Pr > F 

<.0001 

Pr > F 

<.0001 

0.2241 

Figure 11.18: SAS printout, showing analysis of da t a of Example 11.8. 

Exercises 

11.35 (a) Find the least squares estimate for the pa
rameter 0 in the linear equation py\x = 3x. 

(b) Estimate the regression line passing through the 
origin for the following data: 

X 

V 

0.5 
1.3 

1.5 
3.4 

3.2 
0.7 

4.2 
8.0 

5.1 
10.0 

6.5 
13.2 

11.36 Suppose it is not known in Exercise 11.35 
whether the true regression should pass through the 
origin. Estimate the linear model fJ.y\x = a + 3x and 
test the hypothesis that a = 0 at the 0.10 level of sig
nificance against the alternative that a / 0 , 

11.37 Suppose that an experimenter postulates a 
model of the type 

Yi = a + 0xu + a, i = 1 , 2 , . . . ,n, 

when in fact an additional variable, say x2, also con
tributes linearly to the response. The true model is 
then given by 

Yi = a + 0xn + -yx-2, + <=,-, i = 1,2,. . . ,n. 

Compute the expected value of the estimator 

73 = 
Eixu~xi)Yi 
i = l 

E ( * H ~Xl)2 

11.38 Use an analysis-of-variance approach to test 
the hypothesis that 0 = 0 against the alternative hy
pothesis 3^0 in Exercise 11.3 on page 398 at the 0.05 
level of significance. 

11.39 Organophosphate (OP) compounds are used as 
pesticides. However, it is important to study their ef
fect on species that are exposed to them. In the labo
ratory study, Some Effects of Oiyanophosphate Pesti
cides on Wildlife Species, by the Department of Fish
eries and Wildlife at the Virginia Polytechnic Institute 
and State University, an experiment was conducted in 
which different dosages of a particular OP pesticide 
were administered to 5 groups of 5 mice (peromysius 
leucopus). The 25 mice were female of similar age and 
condition. One group received no chemical. The basic 
response y was a measure of activity in the brain. It 
was postulated that brain activity would decrease with 
an increase in OP dosage. The data are as follows: 

A n i m a l 
1 
2 
3 
4 
5 
(i 
7 
8 
9 

10 
It 
J2 
13 
14 
15 
16 
17 
18 
10 
20 
21 
22 
23 
2-1 
25 

D o s e , x ( m g / k g 
b o d y w e i g h t ) 

0.0 
0.0 
0.0 
0.0 
0.0 
2.3 
2.3 
2.3 
2.3 
2.3 
4.6 
4.0 
4.6 
4.6 
4.6 
9.2 
9.2 
9.2 
9.2 
9.2 

18.4 
18.4 
18.4 
18.4 
18.4 

Ac t iv i t y , y 
( m o l e s / I i t e r / m i n ) 

10.9 
10.6 
10.8 
9.8 
9.0 

11.0 
11.3 
9.9 
9.2 

10.1 
10.6 
10.4 
8.8 

11.1 
8.4 
9.7 
7.S 
9.0 
8.2 
2.3 
2.9 
2.2 
3.4 
5.4 
8.2 
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(a) Using the model 

Yt =a + 0Xi + Ci, * = 1,2,. 

is adequate. Discuss. 

,25, Temperature Conversion 

find the least squares estimates of a and 0. 
(b) Construct an analysis-of-variance table in which 

the lack of fit and pure error have been separated. 
Determine if the lack of fit is significant at the 0.05 
level. Interpret the results. 

11.40 Test for linearity of regression in Exercise 11.5 
on page 398. Use a 0.05 level of significance. Comment. 

11.41 Test for linearity of regression in Exercise 11.6 
on page 398. Comment. 

11.42 Transistor gain in an integrated circuit device 
between emitter and collector (hFE) is related to two 
variables [Myers and Montgomery (2002)] that can be 
controlled at the deposition process, emitter drive-
in time (SBI, in minutes), and emitter dose (x2, in 
ions x 1014). Fourteen samples were observed follow
ing deposition, and the resulting data shown in the 
table below. We will consider linear regression models 
using gain as the response and emitter drive-in time or 
emitter dose as the regressor variables. 

ati, (drive-in X2, (dose, y, (gain 
Obs . t ime , min) ions x lO 1 4 ) or h F E ) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

195 
255 
195 
255 
255 
255 
255 
195 
255 
255 
255 
255 
255 
340 

4.00 
4.00 
4.60 
4.60 
4.20 
4.10 
4.60 
4.30 
4.30 
4.00 
4.70 
4.30 
4.72 
4.30 

1004 
1636 
852 
1506 
1272 
1270 
1269 
903 
1555 
1260 
114C 
1276 
1225 
1321 

(a) Determine if emitter drive-in time influences gain 
in a linear relationship. That is, test Ho: 3\ = 0, 
where 0i, is the slope of the regressor variable. 

(b) Do a lack-of-fit test to determine if the linear rela
tionship is adequate. Draw conclusions. 

(c) Determine if emitter dose influences gain in a linear 
relationship. Which regressor variable is the better 
predictor of gain? 

11.43 The following data are a result of an investi
gation as to the effect of reaction temperature x on 
percent conversion of a chemical process y. [See Myers 
and Montgomery (2002).] Fit a simple linear regres
sion, and use a lack-of-fit test to determine if the model 

Observation 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

(°C), x 
200 
250 
200 
250 

189.65 
260.35 
225 
225 
225 
225 
225 
225 

%, y 
43 
78 
09 
73 
48 
78 
65 
74 
76 
79 
83 
81 

11.44 Heat, treating is often used to carburize metal 
parts such as gears. The thickness of the carburized 
layer is considered an important feature of the gear, 
and it contributes to the overall reliability of the part. 
Because of the critical nature of this feature, a lab test 
is performed on each furnace load. The test is a de
structive one, where an actual part is cross sectioned 
and soaked in a chemical for a period of time. This 
test involves runriing a carbon analysis on the surface 
of both the gear pitch (top of the gear tooth) and the 
gear root (between the gear teeth). The data below 
are the results of the pitch carbon-analysis test catch 
for 19 parts. 

Soak Time Pitch Soak Time Pitch 
0.58 
0.66 
0.66 
0.66 
0.66 
0.66 
1.00 
1.17 
1.17 
1.17 

0.013 
0.016 
0.015 
0.016 
0.015 
0.016 
0.014 
0.021 
0.018 
0.019 

1.17 
1.17 
1.17 
1.20 
2.00 
2.00 
2.20 
2.20 
2.20 

0.021 
0.019 
0.021 
0.025 
0.025 
0.026 
0.024 
0.025 
0.024 

(a) Fit a simple linear regression relating the pitch car
bon analysis y against soak time. Test Ho: 0i = 0. 

(b) If the hypothesis in part (a) is rejected, determine 
if the linear model is adequate. 

11.45 A regression model is desired relating temper
ature and the proportion of impurity from a solid sub
stance passing through solid helium. Temperature is 
listed in degrees centigrade. The data are as presented 
here. 
(a) Fit a linear regression model. 
(b) Does it appear that the proportion of impurities 

passing through helium increases the temperature 
as it approaches —273 degrees centigrade? 

(c) Find R2. 
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(d) Based on the information above, does the linear 
model seem appropriate? What additional infor
mation would you need to better answer that ques
tion? 

Temperature 
(C) 

-260.5 
-255.7 
-264.6 
-265.0 
-270.0 
-272.0 
-272.5 
-272.6 
-272.8 
-272.9 

Proportion 
of Impurity 

.425 

.224 

.453 

.475 

.705 

.860 

.935 

.961 

.979 

.990 

11.46 It is of interest to study the effect of population 
size in various cities in the United States on ozone con
centrations. The data consist of the 1999 population 
in millions and the amount of ozone present per hour 
in ppb (parts per billion). The data are as follows: 

Ozone (ppb/hour) , y Population, x 
126 
135 
124 
128 
130 
128 
126 
128 
128 
129 

0.6 
4.9 
0.2 
0.5 
1.1 
0.1 
1.1 
2.3 
0.6 
2.3 

(a) Fit the linear regression model relating ozone con
centration to population. Test Ho: 0 = 0 using 
the ANOVA approach. 

(b) Do a test for lack of fit. Is the linear model appro
priate based on the results of your test? 

(c) Test the hypothesis of part (a) using the pure mean 
square error in the F-test. Do the results change? 
Comment on the advantage of each test. 

11.47 Evaluating nitrogen deposition from the atmo
sphere is a major role of The National Atmospheric 
Deposition Program (NADP, a partnership of many 
agencies). NADP is studying atmospheric deposition 
and the effect on agricultural crops, forest surface wa

ters, and other resources. Nitrogen oxides may effect 
the ozone in the atmosphere and the amount of pure 
nitrogen in the air we breathe. The data are as follows: 

Year Nitrogen Oxide 
1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 
1991 
1992 
1993 
1994 
1995 
1996 
1997 
1998 
1999 

0.73 
2.55 
2.90 
3.83 
2.53 
2.77 
3.93 
2.03 
4.39 
3.04 
3.41 
5.07 
3.95 
3.14 
3.44 
3.63 
4.50 
3.95 
5.24 
3.30 
4.36 
3.33 

(a) Plot the data. 

(b) Fit a linear regression model and find R2. 

(c) What can you say about the trend of nitrogen ox
ides across time? 

11.48 For a particular variety of plant, researchers 
wanted to develop a formula for predicting the quan
tity of seeds (grams) as a function of the density of 
plants. They conducted a study with four levels of the 
factor X, the number of plants per plot. Four repli
cations were used for each level of X. The data are 
shown as follows: 

Plants p e r 
X 

10 
20 
30 
40 

Plot Quantity of Seeds, y 

12.6 
15.3 
17.9 
19.2 

(grams) 
11.0 12.1 10.9 
16.1 14.9 15.6 
18.3 18.6 17.8 
19.6 18.9 20.0 

Is a simple linear regression model adequate for ana
lyzing this data set? 

11.10 Data Plots and Transformations 
In this chapter we deal with building regression models where there is one in
dependent or regressor variable. In addition, we are assuming, through model 
formulation, t h a t both a; and y enter the model in a linear fashion. Often it is ad-
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visable to work with an alternative model in which either x and y (or both) enter 
in a nonlinear way. A transformation of the data may be indicated because of 
theoretical considerations inherent in the scientific study, or a simple plotting of 
the data may suggest the need to reexpress the variables in the model. The need to 
perform a transformation is rather simple to diagnose in the case of simple linear 
regression because two-dimensional plots give a true pictorial display of how each 
variable enters the model. 

A model in which x or y is transformed should not be viewed as a nonlinear 
regression model. Wc normally refer to a regression model as linear when it is 
linear in t he parameters . In other words, suppose the complexion of the data 
or other scientific information suggests that we should regress y* against x*, 
where each is a transformation on the natural variables x and y. Then the model 
of the form 

Vi =a + 3x* + Ej 

is a linear model since it is linear in the parameters a and 0. The material given 
in Sections 11.2 through 11.9 remains intact, with y* and x* replacing y^ and Xi. 
A simple and useful example is the log-log model 

logj/i =a + 0logXi + €i. 

Although this model is not linear in x and y, it is linear in the parameters and is 
thus treated as a linear model. On the other hand, an example of a truly nonlinear 
model is 

Vi = 0o + A s * + ei, 

where the parameter 02 (as well as f% and 0\) is to be estimated. The model is 
not linear in 32. 

Transformations that may enhance the fit and predictability of the model are 
many in number. For a thorough discussion of transformations, the reader is 
referred to Myers (1990, see the Bibliography). We choose here to indicate a 
few of them and show the appearance of the graphs that serve as a diagnostic. 
Consider Table 11.6. Several functions are given describing relationships between 
y and x that can produce a linear regression through the transformation indicated. 
In addition, for the sake of completeness the reader is given the dependent and 
independent variables to use in the resulting simple linear regression. Figure 11.19 
depicts functions listed in Table 11.6. These serve as a guide for the analyst in 
choosing a transformation from the observation of the plot of y against x. 

Table 11.6: Some Useful Transformations to Linearize 

Functional Form Proper Form of Simple 
Relating y to x Transformation Linear Regression 
Exponential: y = ae- y* =hxy Regress y* against x 

Power: y = ax3 y* = logy; x* = logo: Regress y* against x* 

Reciprocal: y = a + 0 [-) x* = 1 Regress y against x* 

Hyperbolic function: y = af3x y* = \\ x* = j Regress y*against x* 
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;3<0 
0<O 

(a) Exponential function 

y 

(b) Power function 

(c) Reciprocal function (d) Hyperbolic function 

Figure 11.19: Diagrams depicting functions listed in Table 11.6. 

What Are the Implications of a Transformed Model? 
The foregoing is intended as an aid for the analyst when it is apparent that a trans
formation will provide an improvement. However, before we provide an example, 
two important points should be made. The first, one revolves around the formal 
writing of the model when the data are transformed. Quite often the analyst does 
not think about this. He or she merely performs the transformation without any 
concern about the model form before and after the transformation. The exponen
tial model serves as a good illustration. The model in the natural (untransformed) 
variables that produces an additive error model in the transformed variables is 
given by 

Vi = ae3xi • ei, 

which is a multiplicative error model. Clearly, taking logs produces 

In yi = In a + 0Xi + In e*. 

As a result, it is on lnei that the basic assumptions are made. The purpose 
of this presentation is merely to remind the reader that one should not view a 
transformation as merely an algebraic manipulation with an error added. Often a 
model in the transformed variables that has a proper additive error structure is a 
result of a model in the natural variables with a different type of error structure. 

The second important point deals with the notion of measures of improvement. 
Obvious measures of comparison are, of course, R? and the residual mean square, 
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s2. (Other measures of performance in comparisons between competing models are 
given in Chapter 12.) Now, if the response y is not transformed, then clearly s2 

and R2 can be used in measuring the utility of the transformation. The residuals 
will be in the same units for both the transformed and the untransformed models. 
But when y is transformed, performance criteria for the transformed model should 
be based on values of the residuals in the metric of the untransformed response. 
Thus comparisons that are made are proper. The example that follows provides 
an illustration. 

Example 11.9:1 The pressure P of a gas corresponding to various volumes V is recorded and the 
data are given in Table 11.7. 

Table 11.7: Data for Example 11.9 

V(cm a) 
P(kg/cm^) 

50 
64.7 

60 
51.3 

70 
40.5 

90 
25.9 

100 
7.8 

The ideal gas law is given by the functional form PV7 = C, where 7 and C are 
constants. Estimate the constants C and 7. 

Solution: Let us take natural logs of both sides of the model 

PiV^C-ti, ,i = l ,2 ,3 ,4 ,5 . 

As a result, a linear model can be written 

lnPi = l n C - 7 l n V i + e*, i= 1,2,3,4,5, 

where e* = lne*. The following represents results of the simple linear regression: 

Intercept: hiC = 14.7589, 6 = 2,568,862.88, Slope: 7 = 2.65347221. 

The following represents information taken from the regression analysis. 

Pi 
64.7 
51.3 
40.5 
25.9 
7.8 

Vi 
50 
60 
70 
90 
100 

\nPi 
4.16976 
3.93769 
3.70130 
3.25424 
2.05412 

InVi 
3.91202 
4.09434 
4.24850 
4.49981 
4.60517 

-—;-
In Pi 

4.37853 
3.89474 
3.48571 
2.81885 
2.53921 

Z?=Z 

Pi 
79.7 
49.1 
32.6 
16.8 
12.7 

Si — ij 

-15.0 
2.2 
7.9 
9.1 

-4.9 

—̂  
Pi 

It is instructive to plot the data and the regression equation, Figure 11.20 
shows a plot of the data in the untransformed pressure and volume and the curve 
representing the regression equation. J 

Diagnostic Plots of Residuals: 
of Violation of Assumptions 

Graphical Detection 

Plots of the raw data can be extremely helpful in determining the nature of the 
model that should be fit to the data when there is a single independent variable. 
We have attempted to illustrate this in the foregoing. Detection of proper model 
form is, however, not the only benefit gained from diagnostic plotting. As in much 
of the material associated with significance testing in Chapter 10, plotting methods 
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Figure 11.20: Pressure and volume data and fitted regression. 

can illustrate and detect violation of assumptions. The reader should recall that 
much of what is illustrated in the chapter requires assumptions made on the model 
errors, the e». In fact, we assume that the ê  are independent N(0, a) random 
variables. Now, of course, the e, are not observed. However, the e* = yi — &, the 
residuals, are the error in the fit of the regression line and thus serve to mimic the 
ti. Thus the general complexion of these residuals can often highlight difficulties. 
Ideally, of course, the plot of the residuals are as depicted in Figure 11.21. That 
is, they should truly show random fluctuations around a value of zero. 
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Figure 11.21: Ideal residual plot. Figure 11.22: Residual plot depicting heteroge

neous error variance. 
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Nonhomogeneous Variance 

Homogeneous variance is an important assumption made in regression analysis. 
Violations can often be detected through the appearance of the residual plot. In
creasing error variance with an increase in the regressor variable is a common 
condition in scientific data. Large error variance: produces large residuals, and 
hence a residual plot like the one in Figure 11.22 is a signal of nonhomogeneous 
variance. More discussion regarding these residual plots and in formation regard
ing different types of residuals appears in Chapter L2, where we deal with multiple 
linear regression. 

Normal Probabili ty Plot t ing 

The assumption that the model errors arc normal is made when the data analyst 
deals either in hypothesis testing or confidence interval estimation. Again, the 
numerical counterpart to the E,-, namely the residuals, are subjects of diagnostic 
plotting to detect any extreme violations. In Chapter 8 we introduced normal 
quantile-quantile plots and briefly discussed normal probability plots. These plots 
on residuals are illustrated in the case study introduced in the next section. 

11.11 Simple Linear Regression Case Study 

In the manufacture of commercial wood products, it is important to estimate the 
relationship between the density of a wood product and its stiffness. A relatively 
new type of particleboard is being considered that can be formed with consider
ably more ease than the accepted commercial product. It is necessary to know 
at what density the .stiffness compares to the well-known, well-documented com
mercial product. The study was done by Terrance E. Connors, Investigation of 
Certain. Mechanical Properties of a Wood-Foam Composite (M.S. Thesis, Depart
ment of Forestry and Wildlife Management, University of Massachusetts). Thirty 
particle-boards were produced at densities ranging from roughly 8 to 26 pounds per 
cubic foot, and the stiffness was measured in pounds per square inch. Table 11.8 
shows the data. 

It is necessary for the data analyst to focus on an appropriate fit to the data 
and use: inferential methods discussed in this chapter. Hypothesis testing on the 
slope of the regression as well as confidence or prediction interval estimation may 
well be appropriate. Wc begin lay demonstrating a simple scatter plot of the raw 
data with a simple linear regression superimposed. Figure 11.23 shows this plot. 

The simple linear regression fit to the data produced the fitted model 

y = -25,133.739 + 3,884.976:r (R2 = 0.7975), 

and the residuals were computed. Figure 11.24 shows the residuals plotted against 
the measurements of density. This is hardly an ideal or healthy set of residuals. 
They do not show a random scatter around a value of zero. In fact, clusters of 
positive and negative: values might suggest that a curvilinear trend in the data 
should be investigated. 

To gain some type of idea regarding the normal error assumption, a normal 
probability plot of the residuals was generated. This is the type of plot discussed in 
Section 8.3 in which I he vertical axis represents the empirical distribution function 
on a scale that produces a straight-line plot when plotted against the residuals 
themselves. Figure: 11.25 shows the normal probability plot of the residuals. The 
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Table 11.8: Density and Stiffness for 30 Particleboards 

Density, x 
9.50 
9.80 
8.30 
8.60 
7.00 

17.40 
15.20 
16.70 
15.00 
14.80 
25.60 
24.40 
19.50 
22.80 
19.80 

Stiffness, y 
14,814.00 
14,007.00 
7,573.00 
9,714.00 
5,304.00 

43,243.00 
28.028.00 
49.499.00 
26.222.00 
26.751.00 
96,305.00 
72,594.00 
32,207.00 
70,453.00 
38,138.00 

Density, x 
8.40 

11.00 
9.90 
6.40 
8.20 

15.00 
16.40 
15.40 
14.50 
13.60 
23.40 
23.30 
21.20 
21.70 
21.30 

Stiffness, y 
17.502.00 
19,443.00 
14,191.00 
8.076.00 

10.728.00 
25.319.00 
41,792.00 
25,312.00 
22,148.00 
18,036.00 

104,170.00 
49.512.00 
48,218.00 
47,661.00 
53,045.00 
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Figure 11.23: Scatter plot of the wood density data. Figure 11.24: Residual plot for the wood density 
data. 

normal probability plot does not reflect, the straight-line appearance that one would 
like to see. This is another symptom of a faulty, perhaps overly simplistic choice 
of a regression model. 

Both types of residual plots and, indeed, the scatter plot itself suggest here 
that a somewhat complicated model would be appropriate. One possible model is 
to use a natural log transformation. In other words, one might choose to regress 
In j / against x. This produces the regression 

In j / = 8.257 + 0.125a; (R2 = 0.9016). 
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Figure 11.25: Normal probability plot of residuals for wood density data. 

To gain some insight on whether the transformed model is more appropriate, con
sider Figures 11.26 and 11.27, which reveal plots of the residuals in stiffness [i.e., 
yrantilog (Inj/)] against density. Figure 11.26 appears to be closer to a random 
pattern around zero, while Figure 11.27 is certainly closer to a straight fine. This 
in addition to the higher i?2-value would suggest that the transformed model is 
more appropriate. 

11.12 Correlation 
Up to this point we have assumed that the independent regressor variable x is a 
physical or scientific variable but not a random variable. In fact, in this context, 
x is often called a mathematical variable, which, in the sampling process, is 
measured with negligible error. In many applications of regression techniques it is 
more realistic to assume that both X and Y are random variables and the mea
surements {(xi, y,); i = 1,2,..., n} are observations from a population having the 
joint density function f(x,y). We shall consider the problem of measuring the 
relationship between the two variables A" and Y. For example, if X and Y represent 
the length and circumference of a particular kind of bone in the adult body, we 
might conduct an anthropological study to determine whether large values of X 
are associated with large values of Y, and vice versa. 

On the other hand, if X represents the age of a used automobile and Y repre
sents the retail book value of the automobile, we would expect large values of X 
to correspond to small values of Y and small values of X to correspond to large 
values of Y. Correlation analysis attempts to measure the strength of such rela
tionships between two variables by means of a single number called a correlation 
coefficient. 
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Figure 11.26: Residual plot using the log transfer- Figure 11.27: Normal probability plot of residuals 
mation for the wood density data. using the log transformation for the wood density 

data. 

In theory it is often assumed that the conditional distribution f(y\x) of Y, for 
fixed values of X, is normal with mean p.y\x = a + 0x and variance Oy<x = a2 and 

that X is likewise normally distributed with mean p, and variance a2. The joint 
density of X and Y is then 

f(x, y) = n(y\x; a + 0x, a)n(x; px, ax) 

(y — a — 0x\ ( x 1 
2itaxa exp 

Px 
o~x 

for —oo < x < oo and —oc < y < ex. 
Let us write the random variable Y in the form 

Y = a + BX + e, 

where X is now a random variable independent of the random error e. Since the 
mean of the random error e is zero, it follows that 

py = a + 0px and ay = a2 + 02a\. 

Substituting for a and a2 into the preceding expression for fix,y), we obtain the 
bivariate normal distribution 

fix,y) = 
1 

27TCT,Yay y/\ — O2 

x exp 
f l \(x-px\2 _ 2 fx-px\ (y-PY\ (V-PYV] 1 
\ 2(l-(fi)[\ ax J P \ crx J\ ay J + { ay )\f> 
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for —oo < x < oo and —oo < y < oc, where 

p2 = ! _ £_ = ,̂ 2fi 
^ Oy Oy' 

The constant /? (rho) is called the population correlation coefficient and plays 
a major role in many bivariate data analysis problems. It is important for the 
reader to understand the physical interpretation of this correlation coefficient and 
the distinction between correlation and regression. The term regression still has 
meaning here. In fact, the straight line given by py\x = a + 0x is still called 
the regression line as before, and the estimates of a and ,3 are identical to those 
given in Section 11.3. The value of p is 0 when 0 = 0, which results when there 
essentially is no linear regression; that is, the regression line is horizontal and any 
knowledge of X is useless in predicting Y. Since aY > a2, we must have p2 < 1 
and hence -1 < p < 1. Values of p — ±1 only occur when er2 = 0, in which case 
we have a perfect linear relationship between the two variables. Thus a value of p 
equal to +1 implies a perfect linear relationship with a positive slope, while a value 
of p equal to —1 results from a perfect linear relationship with a negative slope. It 
might be said, then, that sample estimates of p close to unity in magnitude imply 
good correlation or linear association between X and Y, whereas values near 
zero indicate little or no correlation. 

To obtain a sample estimate of p, recall from Section 11.4 that the error sum 
of squares is 

o*jii = *-*yy boXy-

Dividing both sides of this equation by Syy and replacing Sxy by bSxx, we obtain 
the relation 

,2 Jxx . SoE 
-q — I o • 
°yy Jyy 

The value of b2Sxx/Syy is zero when 6 = 0, which will occur when the sample 
points show no linear relationship. Since Syy > SSE, we conclude that b2Sxx/Sxy 

must be between 0 and 1. Consequently, by/Sxx/Syy must range from -1 to +1 , 
negative values corresponding to lines with negative slopes and positive values to 
lines with positive slopes. A value of -1 or +1 will occur when SSE = 0, but 
this is the case where all sample points lie in a straight line. Hence a perfect 
linear relationship appears in the sample data when by/Sxx/Syy = ±1 . Clearly, 
the quantity by/Sxx/Syy, which we shall henceforth designate as r, can be used 
as an estimate of the population correlation coefficient, p. It is customary to refer 
to the estimate r as the Pearson product-moment correlation coefficient or 
simply the sample correlation coefficient. 

Correlation The measure p of linear association between two variables X and Y is estimated 
Coefficient by the sample correlation coefficient r, where 

r - t V ~ " " ' - ^ 
^ / O ^ x O ] yy 

For values of r between —1 and +1 we must be careful in our interpretation. 
For example, values of r equal to 0,3 and 0.6 only mean that we have two positive 
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correlations, one somewhat stronger than the other. It is wrong to conclude that 
r = 0.6 indicates a linear relationship twice as good as that indicated by the value 
r = 0.3. On the other hand, if we write 

c2 
?.2 _ °xy SSR 

-~>XX'~'yy 

then r2, which is usually referred to as the sample coefficient of determination, 
represents the proportion of the variation of Syy explained by the regression of V 
on x, namely, SSR. That is. r2 expresses the proportion of the total variation in 
the values of the variable Y that can be accounted for or explained by a linear 
relationship with the values of the random variable X. Thus a correlation of 0.6 
means that 0.36, or 36%, of the total variation of the values of Kin our sample is 
accounted for by a linear relationship with values of X 

Example 11.10:1 It is important that scientific researchers in the area of forest products be able 
to study correlation among the anatomy and mechanical properties of trees. Ac
cording to the study Quantitative Anatomical Characteristics of Plantation Grown 
Loblolly Pine (Pinus Taeda L.) and Cottonwood (Populus deltoides Bart. Ex 
Marsh.) and Their Relationships to Mechanical Properties conducted by the De
partment of Forestry and Forest Products at the Virginia Polytechnic Institute and 
State University, an experiment in which 29 loblolly pines were randomly selected 
for investigation yielded the data of Table 11.9 on the specific gravity in grams/cm3 

and the modulus of rupture in kilopascals (kPa). Compute and interpret the sam
ple correlation coefficient. 

Specific Gravity, 
x (g /cm 3 ) 

0.414 
0.383 
0.399 
0.402 
0.442 
0.422 
0.466 
0.500 
0.514 
0.530 
0.569 
0.558 
0.577 
0.572 
0.548 

Table 11.9: Data of 29 Loblolly Pines for Example 

Modulus of Rupture, 
y (kPa) 
29,186 
29,266 
26,215 
30,162 
38,867 
37,831 
44,576 
46,097 
59,098 
67,705 
66,088 
78,486 
89,869 
77,369 
67,095 

Specific Gravity, 
x (g /cm 3 ) 

0.581 
0.557 
0.550 
0.531 
0.550 
0.556 
0.523 
0.602 
0.569 
0.544 
0.557 
0.530 
0.547 
0.585 

11.10 

Modulus of Rupture, 
V (kPa) 

85,156 
69,571 
84,160 
73,466 
78,610 
67,657 
74,017 
87,291 
86,836 
82,540 
81,699 
82,096 
75,657 
80,490 

Solution: From the data we find that 

Sxx = 0.11273, Syy = 11,807,324,805, Sxy = 34,422.27572. 
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Therefore, 

r= , 3 4 > 4 2 2 ' 2 7 5 7 2
 = Q.9435. 

v/(0.11273)(ll,807,3241805) 

A correlation coefficient of 0.9435 indicates a good linear relationship between X 
and Y. Since r2 = 0.8902, we can say that approximately 89% of the variation in 

the values of Y is accounted for by a linear relationship with X. J 
A test of the special hypothesis p = 0 versus an appropriate alternative is 

equivalent to testing ,3 = 0 for the simple linear regression model and therefore 
the procedures of Section 11.8 using either the ^-distribution with n — 2 degrees of 
freedom or the F-distribution with 1 and n — 2 degrees of freedom are applicable. 
However, if one wishes to avoid the analysis-of-variance procedure and compute 
only the sample correlation coefficient, it can be verified (see Exercise 11.51 on 
page 438) that the i-value 

t = 

can also be written as 

ry/n — 2 

y/T^r2 

which, as before, is a value of the statistic T having a ^-distribution with n — 2 
degrees of freedom. 

Example 11.11:1 For the data of Example 11.10, test the hypothesis that there is no linear association 
among the variables. 

Solution: 1. HQ: p = 0. 

2. Hx: p/^0. 
3. a = 0.05. 
4. Critical region: /; < -2.052 or t > 2.052. 

5 . Computations: t = j ^ " ^ = 14.79, P < 0.0001. 

6. Decision: Reject the hypothesis of no linear association. J 
A test of the more general hypothesis p = po against a suitable alternative is 

easily conducted from the sample information. If X and Y follow the bivariate 
normal distribution, the quantity 

H&) 
is a value of a random variable that follows approximately the normal distribution 
with mean ^ In j ^ and variance l / (n — 3). Thus the test procedure is to compute 

yfn 
z = — ^ l n ( i ± i V h / 1 + ^ V ^ 3 i n (l + r)(l-po) 

l-rj \l-po)\ 2 l(l-r)(l + p0) 

and compare it with the critical points of the standard normal distribution. 

Example 11.12:1 For the data of Example 11.10, test the null hypothesis that p = 0.9 against the 
alternative that p > 0.9. Use a 0.05 level of significance. 
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• • 

{a) No Association (b) Causal Relationship 

Figure 11.28: Scatter diagram showing zero correlation. 

Solution: 1. HQ: p = 0.9. 

2. Hx: p > 0.9. 

3. a = 0.05. 

4. Critical region: z > 1.645. 

5. Computations: 

z = 
V^6 

In 
(1 + 0.9435)(0.1) 
(1-0.9435)(1.9) 

= 1.51. F = 0.0655. 

6. Decision: There is certainly some evidence that the correlation coefficient does 
not exceed 0.9. J 

It should be pointed out that in correlation studies, as in linear regression 
problems, the results obtained are only as good as the model that is assumed. In 
the correlation techniques studied here, a bivariate normal density is assumed for 
the variables X and Y, with the mean value of Y at each z-value being linearly 
related to x. To observe the suitability of the linearity assumption, a preliminary 
plotting of the experimental data is often helpful. A value of the sample correlation 
coefficient close to zero will result from data that display a strictly random effect 
as in Figure 11.28(a), thus implying little or no causal relationship. It is important 
to remember that the correlation coefficient between two variables is a measure of 
their linear relationship and that a value of r = 0 implies a lack of linearity and 
not a lack of association. Hence, if a strong quadratic relationship exists between 
X and F, as indicated in Figure 11.28(b), we can still obtain a zero correlation 
indicating a nonlinear relationship. 
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Exercises 

Chapter 11 Simple Linear Regression and Correlation 

11.49 Compute and interpret the correlation coeffi
cient for the following grades of 6 students selected at 
random: 

Mathematics grade 
English grade 

70 92 80 74 65 83 

74 84 63 87 78 90 

11.50 Test the hypothesis that p = 0 in Exercise 
11.49 against the alternative that p ^ 0. Use a 0.05 
level of significance. 

11.51 Show the necessary steps in converting the 

equation r = s/ssr; 
to the equivalent form / _ .-yAT^S 

11.52 The following data were obtained in a study of 
the relationship between the weight and chest size of 
infants at birth: 

Weight (kg) Ches t Size (cm) 
27T5 29J> 
2.15 26.3 
4.41 32.2 
5.52 36.5 
3.21 27.2 
4.32 27.7 
2.31 28.3 
4.30 30.3 
3.71 28.7 

(a) Calculate r. 

(b) Test the null hypothesis that p = 0 against the al
ternative that p > 0 at the 0.0i level of significance. 

(c) What percentage of the variation in the infant chest 
sizes is explained by difference in weight? 

11.53 With reference to Exercise 11.1 on page 397, 
assume that x and y are random variables with a bi-
variate normal distribution: 
(a) Calculate r. 

(b) Test the hypothesis that p = 0 against the alterna
tive that p 7̂  0 at the 0.05 level of significance. 

11.54 With reference to Exercise 11.9 on page 399, 
assume a bivariate normal distribution for x and y. 

(a) Calculate r. 
(b) Test the null hypothesis that p = —0.5 against the 

alternative that p < —0.5 at the 0.025 level of sig
nificance. 

(c) Determine the percentage of the variation in the 
amount of particulate removed that is due to 
changes in the daily amount of rainfall. 

Review Exercises 

11.55 With reference to Exercise 11.6 on page 398, conclusions, 
construct 
(a) a 95% confidence interval for the average course 

grade of students who make a 35 on the placement 
test; 

(b) a 95% prediction interval for the course grade of a 
student who made a 35 on the placement test. 

11.56 The Statistics Consulting Center at Virginia 
Polytechnic Institute and State University analyzed 
data on normal woodchucks for the Department of Vet
erinary Medicine. The variables of interest were body-
weight in grams and heart weight in grams. It was also 
of interest to develop a linear regression equation in 
order to determine if there is a significant linear rela
tionship between heart weight and total body weight. 
Use heart weight as the independent variable and body 
weight as the dependent variable and fit a simple linear 
regression using the following data. In addition, test 
the hypothesis HQ: 3 = 0 versus Hi: 0 •£ 0. Draw 

Body Weight 
grains) 
4050 
2465 
3120 
5700 
2595 
3640 
2050 
4235 
2935 
4975 
3690 
2800 
2775 
2170 
2370 
2055 
2025 
2645 
2675 

Heart Weight 
(grams) 
11.2 
12.4 
10.5 
13.2 
9.8 
11.0 
10.8 
10.4 
12.2 
11.2 
10.8 
14.2 
12.2 
10.0 
12.3 
12.5 
11.8 
16.0 
13.8 
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11.57 The amounts of solids removed from a particu
lar material when exposed to drying periods of different 
lengths are as shown. 

x (hours) y (grams) 
4.4 
4.5 
4.8 
5.5 
5.7 
5.9 
6.3 
6.9 
7.5 
7.8 

13.1 
9.0 

10.4 
13.8 
12.7 
9.9 

13.8 
16.4 
17.6 
18.3 

14.2 
11.5 
11.5 
14.8 
15.1 
12.7 
16.5 
15.7 
16.9 
17.2 

(a) Estimate the linear regression line. 

(b) Test at the 0.05 level of significance whether the 
linear model is adequate. 

11.58 With reference to Exercise 11.7 on page 399, 
construct 

(a) a 95% confidence interval for the average weekly-
sales when $45 is spent on advertising; 

(b) a 95% prediction interval for the weekly sales when 
845 is spent on advertising. 

11.59 An experiment was designed for the Depart
ment of Materials Engineering at Virginia Polytechnic 
Institute and State University to study hydrogen ein-
brittlement properties based on electrolytic hydrogen 
pressure measurements. The solution used was 0.1 N 
NaOH, the material being a certain type of stainless 
steel. The cathodic charging current density was con
trolled and varied at four levels. The effective hydro
gen pressure was observed as the response. The data 
follow. 

Run 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
L5 

Charging Current 
Density, x 
( m A / c m 2 ) 

0.5 
0.5 
0.5 
0.5 
1.5 
1.5 
1.5 
2.5 
2.5 
2.5 
2.5 
3.5 
3.5 
3.5 
3.5 

Effective 
Hydrogen 

Pressure, y (atm) 
86.1 
92.1 
64.7 
74.7 

223.6 
202.1 
132.9 
413.5 
231.5 
466.7 
365.3 
493.7 
382.3 
447.2 
563.8 

(b) Compute the pure error sum of squares and make 
a test for lack of fit. 

(c) Does the information in part (b) indicate a need 
for a model in x beyond a first-order regression? 
Explain. 

11.60 The following data represent the chemistry 
grades for a random sample of 12 freshmen at a cer
tain college along with their scores on an intelligence 
test administered while they were still seniors in high 
school: 

Student 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Test 
Score, x 

65 
50 
55 
65 
55 
70 
65 
70 
55 
70 
50 
55 

Chemistry 
Grade, y 

85 
74 
76 
90 
85 
87 
94 
98 
81 
91 
76 
74 

(a) Run a simple linear regression of y against x. 

(a) Compute and interpret the sample correlation co
efficient. 

(b) State necessary assumptions on random variables. 

(c) Test the hypothesis that p = 0.5 against the alter
native that p > 0.5. Use a P-value in the conclu
sion. 

11.61 For the simple linear regression model, prove 
that E(s2) = a'1. 

11.62 The business section of the Washington Times 
in March of 1997 listed 21 different used computers 
and printers and their sale prices. Also listed was the 
average hover bid. Partial results from the regression 
analysis using SAS software are shown in Figure 11.29 
on page 440. 

(a) Explain the difference between the confidence in
terval on the mean and the prediction interval. 

(b) Explain why the standard errors of prediction vary 
from observation to observation. 

(c) Which observation has the lowest standard error of 
prediction? Why? 

11.63 Consider the vehicle data in Figure 11.30 from 
Consumer Reports. Weight is in tons, mileage in miles 
per gallon, and drive ratio is also indicated. A regres
sion model was fitted relating weight x to mileage y. A 
partial SAS printout in Figure 11.30 on page 441 shows 
some of the results of that regression analysis and Fig-
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ure 11.31 on page 442 gives plot of the residuals and (b) Fit the model by replacing weight with log weight. 
weight for each vehicle. 
(a) From the analysis and the residual plot, does it ap

pear that an improved model might be found by 
using a transformation? Explain. 

Comment on the results, 
(c) Fit a model by replacing mpg with gallons per 100 

miles traveled, as mileage is often reported in other 
countries. Which of the three models is preferable? 
Explain. 

R-Square Coeff Vax 
0.967472 7.923338 

Parameter Estimate 
In te rcep t 59.93749137 
Buyer 1.04731316 

Root MSE Pr ice Mean 
70.83841 

Standard 
Error 

38.34195754 

product Buyer 
IBM PS/1 486/66 420MB 
IBM ThinkPad 500 
IBM Think-Dad 755CX 
AST Pentium 90 540MB 
Dell Pentium 75 1GB 
Gateway 486/75 320MB 
Clone 586/133 1GB 
Compaq Contura 4/25 120MB 
Compaq Deskpro P90 1.2GB 
Micron P75 810MB 
Micron P100 1.2GB 
Mac Quadra 840AV 500MB 
Mac Performer 6116 700MB 
PouerBook 540c 320MB 
PowerBook 5300 500MB 
Power Mac 7500/100 1GB 
NEC Versa 486 340MB 
Toshiba 1960CS 320MB 
Toshiba 4800VCT 500MB 
HP Laser j e t I I I 
Apple Laser Writer Pro 63 

325 
450 

1700 
800 
650 
700 
500 
450 
BOO 
800 
900 
450 
700 

1400 
1350 
1150 
800 
700 

1000 
350 
750 

0.04405635 

Pr ice 
375 
625 

1850 
875 
700 
750 
600 
600 
850 
675 
975 
575 
775 

1500 
1575 
1325 

900 
825 

1150 
475 
800 

Predic t 
Value 

400.31 
531.23 

1840.37 
897.79 
740.69 
793.06 
583.59 
531.23 
897.79 
897.79 

1002.52 
531.23 
793.06 

1526.18 
1473.81 
1264.35 
897.79 
793.06 

1107.25 
426.50 
845.42 

894.0476 

t Value 
1.56 

23.77 

Pr > | t | 
0.1345 
<.0001 

Std Err Lower 95'/, Upper 95V. 
Predict 
25.8906 
21.7232 
42.7041 
15.4590 
16.7503 
16.0314 
20.2363 
21.7232 
15.4590 
15.4590 
16.1176 
21.7232 
16.0314 
30.7579 
28.8747 
21.9454 
15.4590 
16.0314 
17.8715 
25.0157 
15.5930 

Mean 
346.12 
485.76 

1750.99 
865.43 
705.63 
759.50 
541.24 
485.76 
865.43 
865.43 
968.78 
485.76 
759.50 

1461.80 
1413.37 
1218.42 
865.43 
759.50 

1069.85 
374.14 
812.79 

Mean 
454.50 
576.70 

1929.75 
930.14 
775.75 
826.61 
625.95 
576.70 
930.14 
930.14 

1036.25 
576.70 
826.61 

1590.55 
1534.25 
1310.28 
930.14 
826.61 

1144.66 
478.86 
878.06 

Lower 95'/, Upper 95'/. 
Predic t 

242.46 
376.15 

1667.25 
746.03 
588.34 
641.04 
429.40 
376.15 
746.03 
746.03 
850.46 
376.15 
641.04 

1364.54 
1313.70 
1109.13 
746.03 
641.04 
954.34 
269.26 
693.61 

Predic t 
558.17 
686.31 

2013.49 
1049.54 
893.05 
945.07 
737.79 
686.31 

1049.54 
1049.54 
1154.58 
686.31 
945.07 

1687.82 
1633.92 
1419.57 
1049.64 
945.07 

1260.16 
583.74 
997.24 

Figure 11.29: SAS printout, showing partial analysis of data of Review Exercise 11.62. 

11.64 Observations on the yield of a chemical re
action taken at various temperatures were recorded 
as follows: 

s ( °C) y(%) x(°C) y(%) 
150 
150 
200 
250 
250 
300 

75.4 
81.2 
85.5 
89.0 
90.5 
96.7 

150 
200 
200 
250 
300 
300 

77.7 
84.4 
85.7 
89.4 
94.8 
95.3 

(a) Plot the data. 
(b) Does it appear from the plot as if the relation

ship is linear? 
(c) Fit a simple linear regression and test for lack 

of fit. 

(d) Draw conclusions based on your result in (c). 

11.65 Physical fitness testing is an important as

pect of athletic training. A common measure of 
the magnitude of cardiovascular fitness is the max
imum volume of oxygen uptake during a strenuous 
exercise. A study was conducted on 24 middle-
aged men to study the influence of the time it 
takes to complete a two mile run. The oxygen 
uptake measure was accomplished with standard 
laboratory methods as the subjects performed on 
a treadmill. The work was published in "Maxi
mal Oxygen Intake Prediction in Young and Mid
dle Aged Males," Journal of Sports Medicine 9, 
1969, 17-22. The data are as presented here. 

Subject 
1 
2 
3 
4 
5 

y, Maximum 
Volume of O2 

42.33 
53.10 
42.08 
50.06 
42.45 

x, Time 
in Seconds 

918 
805 
892 
962 
968 
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Obs 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

ft-

Model 
Buick E s t a t e Wagon 

WT 
4 . 3 6 0 

Ford Country Squire Wagon 4 . 0 5 4 
Chevy Ma l i b u Wagon 
Chrys ler LeBaron Wagon 
C h e v e t t e 
Toyota Corona 
Datsun 510 
Dodge Omni 
Audi 5000 
Volvo 240 CL 
Saab 99 GLE 
Peugeot 694 SL 
Buick Century S p e c i a l 
Mercury Zephyr 
Dodge Aspen 
AMC Concord D/L 
Chevy Caprice C l a s s i c 
Ford LTP 
Mercury Grand Marquis 
Dodge St Reg i s 
Ford Mustang 4 
Ford Mustang Ghia 
Macda GLC 
Dodge Col t 
AMC S p i r i t 
VW S c i r o c c o 
Honda Accord LX 
Buick Skylark 
Chevy C i t a t i o n 
Olds Omega 
P o n t i a c Phoenix 
Plymouth Horizon 
Datsun 210 
F i a t S trada 
VW Dasher 
Datsun 810 
BMW 3 2 0 i 
VW Rabbit 

-Square Coeff Var 
0 .817244 11 .46010 

Parame s t er Es t imate 
I n t e r c e p t 48 .67928080 
WT - 8 . 3 6 2 4 3 1 4 1 

3 . 6 0 5 
3 . 9 4 0 
2 . 1 5 5 
2 . 5 6 0 
2 . 3 0 0 
2 . 2 3 0 
2 . 8 3 0 
3 . 1 4 0 
2 . 7 9 5 
3 . 4 1 0 
3 . 3 8 0 
3 . 0 7 0 
3 . 6 2 0 
3 . 4 1 0 
3 . 8 4 0 
3 . 7 2 5 
3 . 9 5 5 
3 . 8 3 0 
2 . 5 8 5 
2 . 9 1 0 
1 .975 
1 .915 
2 . 6 7 0 
1 .990 
2 . 1 3 5 
2 . 5 7 0 
2 . 5 9 5 
2 . 7 0 0 
2 . 5 5 6 
2 . 2 0 0 
2 . 0 2 0 
2 . 1 3 0 
2 . 1 9 0 
2 . 8 1 5 
2 . 6 0 0 
1 .925 

Root MSE 
2 . 8 3 7 5 8 0 

Standard 
Error 

1 .94053995 
0 .65908398 

MPG DR.RATI0 
1 6 . 9 
1 5 . 5 
1 9 . 2 
1 8 . 5 
3 0 . 0 
2 7 . 5 
2 7 . 2 
3 0 . 9 
2 0 . 3 
1 7 . 0 
2 1 . 6 
1 6 . 2 
2 0 . 6 
2 0 . 8 
1 8 . 6 
1 8 . 1 
1 7 . 0 
1 7 . 6 
1 6 . 5 
1 8 . 2 
2 6 . 5 
2 1 . 9 
3 4 . 1 
3 5 . 1 
2 7 . 4 
3 1 . 5 
2 9 . 5 
2 8 . 4 
2 8 . 8 
2 6 . 8 
3 3 . 5 
3 4 . 2 
3 1 . 8 
3 7 . 3 
3 0 . 5 
2 2 . 0 
2 1 . 5 
3 1 . 9 
MPG Mean 
2 4 . 7 6 0 5 3 

t Value 
2 5 . 0 9 

- 1 2 . 6 9 

2 . 7 3 
2 . 2 6 
2 . 5 6 
2 . 4 5 
3 . 7 0 
3 . 0 5 
3 . 5 4 
3 . 3 7 
3 . 9 0 
3 . 5 0 
3 . 7 7 
3 . 5 8 
2 . 7 3 
3 . 0 8 
2 . 7 1 
2 . 7 3 
2 . 4 1 
2 . 2 6 
2 . 2 6 
2 . 4 5 
3 . 0 8 
3 . 0 8 
3 . 7 3 
2 .97 
3 . 0 8 
3 . 7 8 
3 . 0 5 
2 . 5 3 
2 . 6 9 
2 . 8 4 
2 . 6 9 
3 . 3 7 
3 . 7 0 
3 . 1 0 
3 . 7 0 
3 . 7 0 
3 . 6 4 
3 . 7 8 

Pr > Itl 
<.0001 
<.0001 

Figure 11.30: SAS printout, showing partial analysis of data of Review Exercise 11.63. 

Subject 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

y> Maximum 
Volume of O2 

42.46 
47.82 
49.92 
36.23 
49.66 
41.49 
46.17 
46.18 
43.21 
51.81 

x, Time 
in Seconds 

907 
770 
743 

1045 
810 
927 
813 
858 
860 
760 

Subject 
16 
17 
18 
19 
20 
21 
22 
23 
24 

y, Maximum 
Volume of O2 

53.28 
53.29 
47.18 
56.91 
47.80 
48.65 
53.67 
60.62 
56.73 

x, Time 
in Seconds 

747 
743 
803 
683 
844 
755 
700 
748 
775 
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Resid I 
8 + 

6 + 

4 + 

2 + 

0 + 

-2 + 

-4 + 

-6 + 

— + — 
1.5 

Plot of Resid*WT. Symbol used is '*'. 

.-+— 
2.0 

— + — 
2.5 

— + — 
3.0 

WT 

._+— 

3.5 

— + — 
4.0 

— + — 
4.5 

Figure 11.31: SAS printout, showing residual plot of Review Exercise 11.63. 

(a) Estimate the parameters in a simple linear re- take? Use 
gression model. 

(b) Does the time it takes to run two miles have Ho'- 0 = 0, 
a significant influence on maximum oxygen up- Hi: 0^0. 

(c) Plot the residuals on a graph against x and 
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comment on the appropriateness of the simple 11.68 Consider the fictitious set of data shown 
linear model. 

11.66 Suppose the scientist postulates a model 

Yi = a + 0Xi + ti, -i — \,2,...,n, 

and a is a known value, not necessarily zero. 
(a) What is the appropriate least squares estimator 

of 01 Justify your answer. 
(b) What is the variance of the slope estimator? 

11.67 In Exercise 11.30 on page 413, the student 
n 

was required to show that YL iVi ~ Vi) — 0 f° r a 

i=i 
standard simple linear regression model. Does the 
same hold for a model with zero intercept? Show-
why or why not. 

below, where the line through the data is the fit
ted simple linear regression line. Sketch a residual 
plot. 

11.13 Potential Misconceptions and Hazards; 
Relationship to Material in Other Chapters 

Anytime in which one is considering the use of simple linear regression, a plot of 
the data not only is recommended but essential. A plot of the residuals, both 
studentized residuals and normal probability plot of residuals, is always edifying. 
All of these plots are designed to detect violation of assumptions. 

The use of ^-statistics for tests on regression coefficients is reasonably robust to 
the normality assumption. The homogeneous variance assumption is crucial, and 
residual plots are designed to detect violation. 



Chapter 12 

Multiple Linear Regression and 
Certain Nonlinear Regression 
Models 

12.1 Introduction 

In most research problems where regression analysis is applied, more than one 
independent variable is needed in the regression model. The complexity of most 
scientific mechanisms is such that in order to be able to predict an important 
response, a multiple regression model is needed. When this model is linear in 
the coefficients, it is called a multiple linear regression model. For the case of 
A:independent variables.'1:1,0:2,. •• ,Xk, the mean of Y~|a;i,.T2, • • • ,Xk is given by the 
multiple linear regression model 

PY\x,,x-j xh =00 + 0lXi H h 0kXk, 

and the estimated response is obtained from the sample regression equation 

g = 60 + M l +"- + bkXk, 

where each regression coefficient 0t is estimated by &,: from the sample data using 
the method of least squares. As in the case of a single independent variable, the 
multiple linear regression model can often be an adequate representation of a more 
complicated structure within certain ranges of the independent variables. 

Similar least squares techniques can also be applied in estimating the coefficients 
when the linear model involves, say, powers and products of the independent vari
ables. For example, when k — 1. the experimenter may feel that the means py\x do 
not fall on a straight lino but are more appropriately described by the polynomial 
regression model 

PY\x = 00 + 0\X + 02x
2 + h 0rx'\ 

and the estimated response is obtained from the polynomial regression equation 

y = b0 + bxx + b2x? + h brx
r. 
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Confusion arises occasionally when we speak of a polynomial model as a linear 
model. However, statisticians normally refer to a linear model as one in which the 
parameters occur linearly, regardless of how the independent variables enter the 
model. An example of a nonlinear model is the exponential relat ionship 

PY\X = <*&*, 

which is estimated by the regression equation 

y = abx. 

There are many phenomena in science and engineering that are inherently non
linear in nature and, when the true structure is known, an attempt should certainly 
be made to fit the actual model. The literature on estimation by least squares of 
nonlinear models is voluminous. While we do not attempt to cover nonlinear re
gression in any rigorous fashion in this text, we do cover certain specific types of 
nonlinear models in Section 12.12. The nonlinear models discussed in this chapter 
deal with nonideal conditions in which the analyst is certain that the response and 
hence the response model error are not normally distributed but, rather, have a 
binomial or Poisson distribution. These situations do occur extensively in practice. 

A student who wants a more general account of nonlinear regression should 
consult Classical and Modern- Regression with Applications by Myers (see the Bib
liography). 

12.2 Estimating the Coefficients 

In this section we obtain the least squares estimators of the parameters 0Q, 0\,..., 0k 
by fitting the multiple linear regression model 

Mri*i,*2 xk = A) + p\xi + • • • + 3kxk 

to the data points 

{(xu,X2i,...,xki,yi), i = l , 2 , . . . , n and n > k}, 

where j/* is the observed response to the values xn, X2i, • • •, Xki of the k independent 
variablesXi,x2 , . . . ,xk- Each observation (xn,x2{,... ,Xki, yi) is assumed to satisfy 
the following equation 

Multiple Linear Vi = 00 + 0ixu + 02x2i + ••• + ffixiti + U, 

Regression Model or 

Vi = Vi + Ci = b0 + byxii + b2x2i H h bkxki + e», 

where Ci and e, are the random error and residual, respectively, associated with 
the response yi and fitted value yi-

As in the case of simple linear regression, it is assumed that the e,; are indepen
dent, identically distributed with mean zero and common variance a2. 
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Table 12.1: Data for Example 12.1 

Nitrous 
Oxide, y 

0.90 
0.91 
0.96 
0.89 
1.00 
1.10 
1.15 
1.03 
0.77 
1.07 

Humidity, 
xx 

72.4 
41.6 
34.3 
35.1 
10.7 
12.9 
8.3 

20.1 
72.2 
24.0 

Temp., 
X2 

76.3 
70.3 
77.1 
68.0 
79.0 
67.4 
66.8 
76.9 
77.7 
67.7 

Pressure, 
x-s 

29.18 
29.35 
29.24 
29.27 
29.78 
29.39 
29.69 
29.48 
29.09 
29.60 

Nitrous 
Oxide, y 

1.07 
0.94 
1.10 
1.10 
1.10 
0.91 
0.87 
0.78 
0.82 
0.95 

Humidity, 
Xl 

23.2 
47.4 
31.5 
10.6 
11.2 
73.3 
75.4 
96.6 

107.4 
54.9 

Temp., 
X2 

76.8 
86.6 
76.9 
86.3 
86.0 
76.3 
77.9 
78.7 
86.8 
70.9 

Pressure, 
X3 

29.38 
29.35 
29.63 
29.56 
29.48 
29.40 
29.28 
29.29 
29.03 
29.37 

Source: Charles T. Hare, 
EPA-600/2-77-116. U.S. 

"Light-Duty Diesel Emission Correction Factors for Ambient Conditions," 
Environmental Protection Agency. 

In using the concept of least squares to arrive at estimates bo,bi,...,bk, we 
minimize the expression 

SSE = ^Te? = Z^iVi -b0- bixii - b2x2i bkXki)2 

i = \ 1 = 1 

Differentiating SSE in turn with respect to bo,bi,...,bk, and equating to zero, we 
generate the set of k + 1 normal estimation equations for multiple linear 
regression. 

nbo + bx 22xii +b2^x2i + ••• +bk^*** = ^ V i 
Normal Estimation 

Equations for 
Multiple Linear 

Regression 6o £ > „ + 6, £ Ai +h £ xux2i + +bk £ xuxki = £ xxw 

; = i ; = i j = i i = l 

i = l i = l i = l j = l i = l 

bo ^2 XM + 6 l 1>2 XkiXxi+b2 ^2 Xk%x2i + ••• +bk \\2,xli = ^ XfciJ/i 
j = 1 i=1 

These equations can be solved for b0,bi,b2,...,bk by any appropriate method for 
solving systems of linear equations. 

Example 12.1:1 A study was done on a diesel-powered-light-duty pickup truck to see if humidity, air 
temperature, and barometric pressure influence emission of nitrous oxide (in ppm). 
Emission measurements were taken at different times, with varying experimental 
conditions. The data are given in Table 12.1. The model is 

M V . T po + 3ia-i + 02x2 + 03x3, 
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or, equivalently, 

Vi = 00 + PlXli + 02X2i + 03X3i +€i, 2 = 1,2,..., 20. 

Fit this multiple linear regression model to the given data and then estimate the 
amount of nitrous oxide for the conditions where humidity is 50%, temperature is 
76°F, and barometric pressure is 29.30. 

Solution: The solution of the set of estimating equations yields the unique estimates 

b0 = -3.507778, bi = -0.002625, b2 = 0.000799, b3 = 0.154155. 

Therefore, the regression equation is 

y = -3.507778 - 0.002625 xx + 0.000799 x2 + 0.154155 x3. 

For 50% humidity, a temperature of 76°F, and a barometric pressure of 29.30, the 
estimated amount of nitrous oxide is 

y = -3.507778 - 0.002625(50.0) + 0.000799(76.0) + 0.1541553(29.30) 

= 0.9384 ppm. J 

Polynomial Regression 

Now suppose that we wish to fit the polynomial equation 

PY\X = 0o + 0\x + 02x
2 H + 0rx

r 

to the n pairs of observations {(x;,2/t); i = 1 ,2 , . . . ,n} . Each observation, yt, 
satisfies the equation 

yi = 0o + plXi + 02x\ + ••• + 0rx
r + €i 

or 

Vi = Vi + &i = b0 + biXi + b2x
2 -t r brx

r
{ + et, 

where r is the degree of the polynomial, and u, and e* are again the random error 
and residual associated with the response yi and fitted value yi, respectively. Here, 
the number of pairs, n, must be at least as large as r+1, the number of parameters 
to be estimated. 

Notice that the polynomial model can be considered a special case of the more 
general multiple linear regression model, where we set xi = x, x2 — x2,..., xr =xr. 
The normal equations assume the same form as those given on page 447. They are 
then solved for bo,b\,b2,...,br. 

Example 12.2:1 Given the data 
X 

y 

0 
9.1 

l 
7.3 

2 
3.2 

3 
4.6 

4 
4.8 

5 
2.9 

6 
5.7 

7 
7.1 

8 
8.8 

9 
10.2 
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fit a regression curve of the form pY\x — f% + 3yx + 02x
2 and then estimate py\2. 

Solution: From the data given, we> find that 

10 b0+ 45lh +285()2 =63.7, 

456o + 285fri + 2,025/>2 =307.3, 

285 UQ + 2,02511! + 15,333 b2 = 2153.3. 

Solving the normal equations, wc obtain 

6o= 8.698, bi = -2.341, b2 = 0.288. 

Therefore, 

y = 8.698 - 2.341 x + 0.288 x2. 

When x = 2, our estimate of fiy\2 is 

y = 8.698 - (2.341 )(2) + (0.288)(22) = 5.168. n 

12.3 Linear Regression Model Using Matrices (Optional) 

In fitting a multiple linear regression model, particularly when the number of vari
ables exceeds two, a knowledge of matrix theory can facilitate the mathematical 
manipulations considerably. Suppose that the experimenter has k independent 
variables X\,x2, • • •, xk and n observations i/i, y2,..., yn, each of which can be ex
pressed by the equation 

Vi — 0o + 0ixn + 02x2i H 1- 0kxki + Ci-

This model essentially represents n equations describing how the response values 
are generated in the scientific process. Using matrix notation, we can wrrite the 
following equation 

General Linear 
Model 

y = X/3 + e, 

/here 

X = 

1 ajii x2X 

1 xx2 x22 

1 Xxn X2„ 

Xkl~ 

Xk2 

Xkn. 

• P = 

~0o] 
01 

A. 

, e = 

"«l" 

e-2 

. e". 

Then the least squares solution for estimation of 0 illustrated in Section 12.2 in
volves finding b for which 

SSE = ( y - X b ) ' ( y - X b ) 

is minimized. This minimization process involves solving for b in the equation 

0 

db 
(SSE) = 0. 
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We will not present the details regarding solutions of the equations above. The 
result reduces to the solution of b in 

(X'X)b = X'y-

Notice the nature of the X matrix. Apart from the initial element, the tth row 
represents the x-values that give rise to the response y%. Writing 

A = X X = 

and 

E xu J2 x2i 

n n 
YI Xki YI XkiXu Y2 XkiX2i 

<-i=l i=\ 

E xki 

E X1i E X\i E XliX2i ••• E XliXki 
1 = 1 t '= l 7 = 1 i=X 

i - l 
"fci 

g = X'y = 

9o = E Vi 
; = 1 

9x = E xuVi 
s = l 

9k = E xkiVi 

the normal equations can be put in the matrix form 

A b = g. 

If the matrix A is nonsingular, we can write the solution for the regression 
coefficients as 

b = A- X g = ( X ' X ^ X ' y . 

Thus we can obtain the prediction equation or regression equation by solving a set 
of k + 1 equations in a like number of unknowns. This involves the inversion of 
the k + 1 by k + 1 matrix X'X. Techniques for inverting this matrix are explained 
in most textbooks on elementary determinants and matrices. Of course, there are 
many high-speed computer packages available for multiple regression problems, 
packages that not only print out estimates of the regression coefficients but also 
provide other information relevant to making inferences concerning the regression 
equation. 

Example 12.3:1 The percent survival of a certain type of animal semen, after storage, was mea
sured at various combinations of concentrations of three materials used to increase 
chance of survival. The data are given in Table 12.2. Estimate the multiple linear 
regression model for the given data. 
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Table 12.2: Data for Example 12.3 

y (% survival) 
25.5 
31.2 
25.9 
38.4 
18.4 
26.7 
26.4 
25.9 
32.0 
25.2 
39.7 
35.7 
26.5 

xi (weight %) 

1.74 
6.32 
6.22 

10.52 
1.19 
1.22 
4.10 
6.32 
4.08 
4.15 

10.15 
1.72 
1.70 

X2 (weight %) 

5.30 
5.42 
8.41 
4.63 

11.60 
5.85 
6.62 
8.72 
4.42 
7.60 
4.83 
3.12 
5.30 

x3 (weight %) 

10.80 
9.40 
7.20 
8.50 
9.40 
9.90 
8.00 
9.10 
8.70 
9.20 
9.40 
7.60 
8.20 

Solution: The least squares estimating equations, (X'X)b = X'y , are 

13 59.43 81.82 115.40 
59.43 394.7255 360.6621 522.0780 
81.82 360.6621 576.7264 728.3100 

115.40 522.0780 728.3100 1035.9600 

( X ' X ) - 1 

8.0648 -0.0826 
-0.0826 0.0085 
-0.0942 0.0017 
-0.7905 0.0037 

) 
1 

bo 
bi 
b2 

b3\ 

377.5 
1877.567 
2246.661 
3337.780 

nts of the inverse matri 

0.0942 
0.0017 
0.0166 
0. 00 21 

-0.7905 " 
0.0037 

-0.0021 
0.0886 

1 

and then, using the relation b = (X'X) 'X 'y , the estimated regression coefficients 
are 

b0 = 39.1574, h = 1.0161, b2 = -1.8616, b3 = -0.3433. 

Hence our estimated regression equation is 

y = 39.1574 + 1.0161 xi - 1.8616 x2 - 0.3433 x3. J 

Example 12.4:1 The data in Table 12.3 represent the percent of impurities that occurred at various 
temperatures and sterilizing times during a reaction associated with the manufac
turing of a certain beverage. 
Estimate the regression coefficients in the polynomial model 

Vi = 00+ 0lXxi + 32X2i + 0llX2i + 022x\i + 0l2XUX2i + £», 

for i = 1,2, . . . , 1 8 . 
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Table 12.3: Data for Example 12.4 

Exercises 

Sterilizing 
Time, x2 (min) 

15 

20 

25 

Tempi 
75 

14.05 
14.93 
16.56 
15.85 
22.41 
21.66 

srature, 
100 

10.55 
9.48 

13.63 
1L.75 
18.55 
17.98 

xx (CC) 
125 

7.55 
6.59 
9.23 
8.78 

15.93 
16.44 

Solution: bo = 56.4411, 

bu = 0 . 0 0 0 8 1 , 

bi --

099 

-0 .36190. 

0.08173, 

b2 = -2.75299, 

bv2 = 0.00314, 

and our estimated regression equation is 

y =56.4411 - 0.30190x1 - 2.75299x9 + O.OOOSlxf 

+ 0.08173a;| + 0.00314xiiE2. J 
Many of the principles and procedures associated with the estimation of poly

nomial regression functions fall into the category of response surface methodol
ogy, a collection of techniques that have been used quite successfully by scientists 
and engineers in many fields. The x2 are called pure quadratic terms and 
the XjXj (i ^ j) are called interaction terms. Such problems as selecting a 
proper experimental design, particularly in cases where a large number of variables 
are in the model, and choosing "optimum" operating conditions on xx,x2,... ,Xk 
are often approached through the use of these methods. For an extensive expo
sure the reader is referred to Response Surface Methodology: Process and Product 
Optimization Using Designed Experiments by Myers and Montgomery (see the 
Bibliography). 

12.1 Suppose in Review Exercise 11.60 on page 439 
that we are also given the number of class periods 
missed by the 12 students taking the chemistry course. 
The complete data are shown next. 

S tuden t 

1 
2 
3 
4 
5 
6 
7 
8 

Chemis t ry 
Grade , y 

Test 
Score, xi 

Classes 
Missed, x2 

85 
74 
76 
90 
85 
87 
94 
!>« 

65 
50 
55 
65 
55 
Til 

65 
70 

I 
7 
5 
2 
6 
3 
2 
5 

C h e m i s t r y Test Classes 
S tuden t G r a d e , y Score, xi Missed, x2 

9 
10 
11 
12 

81 
!)l 
76 
74 

55 
70 
50 
55 

3 
1 
4 

(a) Fit a multiple linear regression equation of the form 
y = 60 + biXi + b2x2. 

(IJ) Estimate the chemistry grade: for a student who has 
an intelligence test score of 60 and missed 4 classes. 

12.2 In Applied Spectroscopy, the infrared reflectance 
spectra properties of a viscous liquid used in the clec-
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tronics industry as a lubricant were studied. The de
signed experiment consisted of the effect of band frea-
quency Xi and film thickness x2 on optical density y 
using a Perkin-Elmer Model 621 infrared spectrometer. 
[Source: Pachansky, J., England, C. D., and Wattman, 
R. "Infrared spectroscopic studies of poly (perflouro-
propyleneoxide) on gold substrate. A classical disper
sion analysis for the refractive index." Applied Spec
troscopy, Vol. 40, No. 1, Jan. 1986, p. 9, Table 1.] 

X i X2 

0.231 
0.107 
0.053 
0.129 
0.069 
0.030 
1.005 
0.559 
0.321 
2.948 
1.633 
0.934 

740 
740 
740 
805 
805 
805 
980 
980 
980 

1,235 
1,235 
1,235 

1.10 
0.62 
0.31 
1.10 
0.62 
0.31 
1.10 
0.62 
0.31 
1.10 
0.62 
0.31 

Estimate the multiple linear regression equation 
y = bo + bixi + b2x2. 

12.3 A set of experimental runs was made to deter
mine a way of predicting cooking time y at various 
levels of oven width x i , and flue temperature x2. The 
coded data were recorded as follows: 

X l X2 

6.40 
15.05 
18.75 
30.25 
44.85 
48.94 
51.55 
61.50 

100.44 
111.42 

1.32 
2.69 
3.56 
4.41 
5.35 
6.20 
7.12 
8.87 
9.80 

10.65 

1.15 
3.40 
4.10 
8.75 

14.82 
15.15 
15.32 
18.18 
35.19 
40.40 

Estimate the multiple linear regression equation 
Myi^ ,^ =0o + 0\xi + 02X2. 

12.4 An experiment was conducted to determine if 
the weight of an animal can be predicted after a given 
period of time on the basis of the initial weight of the 
animal and the amount of feed that was eaten. The 
following data, measured in kilograms, were recorded: 

Final 
Weight, y 

95 
77 
80 

100 
97 

Initial 
Weight, xi 

42 
33 
33 
45 
39 

Feed 
Weight, X2 

272 
226 
259 
292 
311 

Final 
Weight, y 

70 
50 
80 
92 
84 

Initial 
Weight, Xi 

36 
32 
41 
40 
38 

Feed 
Weight, X2 

183 
173 
236 
230 
235 

(a) Fit a multiple regression equation of the form 

PY\x = 00 + 0ixx + 02x2. 

(b) Predict the final weight of an animal having an ini
tial weight of 35 kilograms that is fed 250 kilograms 
of feed. 

12.5 (a) Fit a multiple regression equation of the 
form pY\x = 0Q+ 0m + 0\x2 to the data of Ex
ample 11.8. 

(b) Estimate the yield of the chemical reaction for a 
temperature of 225° C. 

12.6 An experiment was conducted on a new model 
of a particular make of an automobile to determine 
the stopping distance at various speeds. The following 
data were recorded. 

Speed, v (km/hr) 35 50 65 80 95 110 
Stopping Distance, d(m) 16 26 41 62 88 119 

(a) Fit a multiple regression curve of the form up\v = 
0O + 0W+02V2. 

(b) Estimate the stopping distance when the car is 
traveling at 70 kilometers per hour. 

12.7 An experiment was conducted in order to de
termine if cerebral blood flow in human beings can be 
predicted from arterial oxygen tension (millimeters of 
mercury). Fifteen patients were used in the study and 
the following data were observed: 

Blood Flow, 
y 

84.33 
87.80 
82.20 
78.21 
78.44 
80.01 
83.53 
79.46 
75.22 
76.58 
77.90 
78.80 
80.67 
86.60 
78.20 

Arterial Oxygen 
Tension, x 

603.40 
582.50 
556.20 
594.60 
558.90 
575.20 
580.10 
451.20 
404.00 
484.00 
452.40 
448.40 
334.80 
320.30 
350.30 
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Estimate the quadratic regression equation 

PY\x = 3o + 0ix + 02X2. 

12 .8 The following is a set of coded experimental data 
on the compressive strength of a particular alloy at var
ious values of the concentration of some additive: 

scores of four tests. The data are as follows: 

Concentration, 
X 

10.0 
15.0 
20.0 
25.0 
30.0 

Compressive 

25.2 
29.8 
31.2 
31.7 
29.4 

Strength, y 

27.3 28.7 
31.1 27.8 
32.6 29.7 
30.1 32.3 
30.8 32.8 

(a) Estimate the quadratic regression equation py\x = 
0o + 0iX + p\x2. 

(b) Test for lack of fit of the model. 

12.9 The electric power consumed each month by a 
chemical plant is thought to be related to the average 
ambient temperature x i , the number of days in the 
month x2, the average product purity X3, and the tons 
of product produced X4. The past year's historical data 
are available and are presented in the following table. 

X ] X2 ak X ] 

240 
236 
290 
274 
301 
316 
300 
296 
267 
276 
288 
261 

25 
31 
45 
60 
65 
72 
80 
84 
75 
60 
50 
38 

24 
21 
24 
25 
25 
26 
25 
25 
24 
25 
25 
23 

91 
90 
88 
87 
91 
94 
87 
86 
88 
91 
90 
89 

100 
95 
110 
88 
94 
99 
97 
96 
110 
105 
100 
98 

(a) Fit a multiple linear regression model using the 
above data set. 

(b) Predict power consumption for a month in which 
xi = 75°F, x2 = 24 days, x3 = 90%, and x4 = 98 
tons. 

12.10 Given the data 

X 

y 

0 
l 

l 
4 

2 
5 

3 
3 

4 
2 

5 
3 

6 
4 

(a) Fit the cubic model fiy\x = 30 +0ix+02x
2 + 03x*. 

(b) Predict Y when x = 2. 

12.11 The personnel department of a certain indus
trial firm used 12 subjects in a study to determine the 
relationship between job performance rating (y) and 

y Xl X2 X.] 

11.2 
14.5 
17.2 
17.8 
19.3 
24.5 
21.2 
16.9 
14.8 
20.0 
13.2 
22.5 

56.5 
59.5 
69.2 
74.5 
81.2 
88.0 
78.2 
69.0 
58.1 
80.5 
58.3 
84.0 

71.0 
72.5 
76.0 
79.5 
84.0 
86.2 
80.5 
72.0 
68.0 
85.0 
71.0 
87.2 

38.5 
38.2 
42.5 
43.4 
47.5 
47.4 
44.5 
41.8 
42.1 
48.1 
37.5 
51.0 

43.0 
44.8 
49.0 
56.3 
60.2 
62.0 
58.1 
48.1 
46.0 
60.3 
47.1 
65.2 

Estimate the regression coefficients in the model 

y = bo + bixi + b2x2 + b3x3 + &4X4. 

12.12 The following data reflect information taken 
from 17 U.S. Naval hospitals at various sites around 
the world. The regressors are workload variables, that 
is, items that result in the need for personnel in a hos
pital installation. A brief description of the variables 
is as follows: 

y = monthly labor-hours, 

xi = average daily patient load, 

X2 = monthly X-ray exposures, 

X3 = monthly occupied bed-days, 

X4 = eligible population in the area/1000, 

i s = average length of patient's stay, in days. 

Site xi X2 X3 Xl X 5 y 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

15.57 
44.02 
20.42 
18.74 
49.20 
44.92 
55.48 
59.28 
94.39 
128.02 
96.00 
131.42 
127.21 
252.90 
409.20 
463.70 
510.22 

2463 
2048 
3940 
6505 
5723 
11520 
5779 
5969 
8461 

20106 
13313 
10771 
15543 
36194 
34703 
39204 
86533 

472.92 
1339.75 
620.25 
568.33 
1497.60 
1365.83 
1687.00 
1639.92 
2872.33 
3655.08 
2912.00 
3921.00 
3865.67 
7684.10 

12446.33 
14098.40 
15524.00 

18.0 
9.5 
12.8 
36.7 
35.7 
24.0 
43.3 
46.7 
78.7 
180.5 
60.9 
103.7 
126.8 
157.7 
169.4 
331.4 
371.6 

4.45 
6.92 
4.28 
3.90 
5.50 
4.60 
5.62 
5.15 
6.18 
6.15 
5.88 
4.88 
5.50 
7.00 
10.75 
7.05 
6.35 

566.52 
696.82 
1033.15 
1003.62 
1611.37 
1613.27 
1854.17 
2160.55 
2305.58 
3503.93 
3571.59 
3741.40 
4026.52 
10343.81 
11732.17 
15414.94 
18854.45 

The goal here is to produce an empirical equation that 
will estimate (or predict) personnel needs for Naval 
hospitals. Estimate the multiple linear regression equa-
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tion 

PY\xi,X2.X3,I4,x$ 

= 00 + 0Hl + 02X2 + 03X3 + 0AXI + 05X5-

12.13 An experiment was conducted to study the size 
of squid eaten by sharks and tuna. The regressor vari
ables are characteristics of the beak or mouth of the 
squid. The regressor variables and response considered 
for the study are 

xi = rostral length, in inches, 

x2 = wing length, in inches, 

X3 = rostral to notch length, in inches, 

X4 = notch to wing length, in inches, 

X5 = width, in inches, 

y = weight, in pounds. 

Xl X 2 X3 X4 

Xl X2 X3 X4 Xs y 
1.31 
1.55 
0.99 
0.99 
1.01 
1.09 
1.08 
1.27 
0.99 
1.34 
1.30 
1.33 
1.86 
1.58 
1.97 
1.80 
1.75 
1.72 
1.68 
1.75 
2.19 
1.73 

1.07 
1.49 
0.84 
0.83 
0.90 
0.93 
0.90 
1.08 
0.85 
1.13 
1.10 
1.10 
1.47 
1.34 
1.59 
1.56 
1.58 
1.43 
1.57 
1.59 
1.86 
1.67 

0.44 
0.53 
0.34 
0.34 
0.36 
0.42 
0.40 
0.44 
0.36 
0.45 
0.45 
0.48 
0.60 
0.52 
0.67 
0.66 
0.63 
0.64 
0.72 
0.68 
0.75 
0.64 

0.75 
0.90 
0.57 
0.54 
0.64 
0.61 
0.51 
0.77 
0.56 
0.77 
0.76 
0.77 
1.01 
0.95 
1.20 
1.02 
1.09 
1.02 
0.96 
1.08 
1.24 
1.14 

0.35 
0.47 
0.32 
0.27 
0.30 
0.31 
0.31 
0.34 
0.29 
0.37 
0.38 
0.38 
0.65 
0.50 
0.59 
0.59 
0.59 
0.63 
0.68 
0.62 
0.72 
0.55 

1.95 
2.90 
0.72 
0.81 
1.09 
1.22 
1.02 
1.93 
0.64 
2.08 
1.98 
1.90 
8.56 
4.49 
8.49 
6.17 
7.54 
6.36 
7.63 
7.78 

10.15 
6.88 

410 
569 
425 
344 
324 
505 
235 
501 
400 
584 
434 

late the 

69 
57 
77 
81 

0 
53 
77 
76 
65 
97 
76 

multiple 

125 
131 
141 
122 
141 
152 
141 
132 
157 
166 
141 

linear 

59.00 
31.75 
80.50 
75.00 
49.00 
49.35 
60.75 
41.25 
50.75 
32.25 
54.50 

55.66 
63.97 
45.32 
46.67 
41.21 
43.83 
41.61 
64.57 
42.41 
57.95 
57.90 

regression equation 

f*Y\ X\ ,X2,X\1 P^4 00 + /3lXl + 02X2 + /33X3 + 04X4. 

12.15 A study was performed on wear of a bearing y 
and its relationship to xi = oil viscosity and X2 = load. 
The following data were obtained. [Prom Response 
Surface Methodology, Myers and Montgomery (2002).] 

y Xl X2 y Xl X2 

193 
172 
113 

1.6 
22.0 
33.0 

851 
1058 
1357 

230 
91 

125 

15.5 
43.0 
40.0 

816 
1201 
1115 

Estimate the multiple linear regression equation 

l^Y\x\ ,X2IX3,X4,25 

= 00 + 3\Xl + 02X2 + 03X3 + /?4Xl + 05X5. 

12.14 Twenty-three student teachers took part in an 
evaluation program designed to measure teacher effec
tiveness and determine what factors are important. 
Eleven female instructors took part. The response 
measure was a quantitative evaluation made on the co
operating teacher. The regressor variables were scores 
on four standardized tests given to each instructor. 
The data are as follows: 

(a) Estimate the unknown parameters of the multiple 
linear regression equation 

f.Y\xi,x2 =00+ 0\X\ +02X2-

(b) Predict wear when oil viscosity is 20 and load is 
1200. 

12.16 An engineer at a semiconductor company 
wants to model the relationship between the device 
gain or hFE(y) and three parameters: emitter-RS (xi), 
base-RS (X2), and emitter-to-base-RS (X3). The data 
are shown below: 

X i , X2, X3, y , 
Emitter-RS cBase-RS E-B-RS h F E - l M - 5 V 

14.62 
15.63 
14.62 
15.00 
14.50 
15.25 
16.12 
15.13 
15.50 
15.13 
15.50 
16.12 
15.13 
15.63 
15.38 
15.50 

226.0 
220.0 
217.4 
220.0 
226.5 
224.1 
220.5 
223.5 
217.6 
228.5 
230.2 
226.5 
226.6 
225.6 
234.0 
230.0 

7.000 
3.375 
6.375 
6.000 
7.625 
6.000 
3.375 
6.125 
5.000 
6.625 
5.750 
3.750 
6.125 
5.375 
8.875 
4.000 

128.40 
52.62 

113.90 
98.01 

139.90 
102.60 
48.14 

109.60 
82.68 

112.60 
97.52 
59.06 

111,80 
89.09 

171.90 
66.80 
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xi, x2, x3, y, 
Emitter-RS cBase-RS E-B-RS hFE-lM-5V 

14.25 
14.50 
14.62 

224.3 
240.5 
223.7 

8.000 
10.870 
7.375 

157.11) 
208.40 
133.40 

(a) Fit a multiple linear regression to the data. 
(b) Predict hFE when x3 = 14. x2 = 220, and i::i 

[Data from Myers and Montgomery (2002)]. 

12.4 Properties of the Least Squares Estimators 

The means and variances of the estimators bo, bx,..., bk are readily obtained under 
certain assumptions on the random errors ej, e2,..., ck that are identical to those 
made in the case of simple linear regression. When we assume these errors to be 
independent, each with zero mean and variance er", it can then be shown that 
bo,b\,... ,bk arc. respectively, unbiased estimators of the regression coefficients 
0o, 0x, • • • ,3k- In addition, the variances of b's are obtained through the elements 
of the inverse of the A matrix. Note that the off-diagonal elements of A = X'X 
represent sums of products of elements in the columns of X, while the diagonal ele
ments of A represent sums of squares of elements in the columns of X. The inverse 
matrix, A - 1 , apart from the multiplier a2, represents the variance-covariance 
mat r ix of the estimated regression coefficients. That is, the elements of the matrix 
A_1er display the variances of bo, b], . . . , bk on the main diagonal and covariances 
on the off-diagonal. For example, in a A- = 2 multiple linear regression problem, 
we might write 

(X'X)-

with the elements below the main diagonal determined through the symmetry of 
the matrix. Then we can write 

of. = cao2, i = 0,1,2, 

Ob^bj = Cov(bi,bj)= CijO2, i ^ j . 

Of course, the estimates of the variances and hence flic standard errors of these 
estimators are obtained by replacing er2 with the appropriate estimate obtained 
through experimental data. An unbiased estimate of a2 is once again defined in 
terms of the error stun of squares, which is computed using the formula established 
in Theorem 12.1. In the theorem we are making the assumptions on the e-, described 
above. 

coo 
ClO 

C20 

CQl 

C - l l 

cai 

C02 

Cl2 

C22 

Theorem 12.1: Fo 

an 

r the linear regression 

unbiased estimate of o 

2 
8 = 

SSE 
n - k - l 

equation 

y = 

2 is given 

where 

X3 + 

by the 

SSE--

e, 

error 

n 

=£ 
?:=i 

or 

el 

residual 

= £> 
i = i 

mean 

-Vi? 

sepi ire 

We can see that Theorem 12.1 represents a generalization of Theorem 11.1 
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for the simple linear regression case. The proof is left for the reader. As in the 
simpler linear regression case, the estimate s2 is a measure of the variation in 
the prediction errors or residuals. Other important inferences regarding the fitted 
regression equation, based on the values of the individual residuals e^ = yi — yi, 
i = l , 2 , . . . , n, are discussed in Sections 12.10 and 12.11. 

The error and regression sum of squares take on the same form and play the 
same role as in the simple linear regression case. In fact, the sum-of-squares identity 

£ > " V? = £ > - V? + f > - Vi? 
i—l 2 = 1 ;'.= 1 

continues to hold and wc retain our previous notation, namely, 

SST = SSR + SSE 

with 

n 

SST = 2_,iy> ~ y? = t'0*8-! s u m OI squares, 
i = i 

and 

SSR = ^Jfj/i — y? = regression sum of squares. 
; = i 

There are A; degrees of freedom associated with SSR and, as always, SST has 
n — 1 degrees of freedom. Therefore, after subtraction, SSE has n — k — 1 degrees 
of freedom. Thus our estimate of er2 is again given by the error sum of squares 
divided by its degrees of freedom. All three of these sums of squares will appear 
on the printout of most multiple regression computer packages. 

Analysis of Variance in Mult iple Regression 

The partition of total sum of squares into its components, the regression and er
ror sum of squares, plays an important role. An analysis of variance can be 
conducted that sheds light on the quality of the regression equation. A useful hy
pothesis that determines if a significant amount of variation is explained by the 
model is 

#o : 0i = 02 = 1% = •• • = 0k = 0. 

The analysis of variance involves an F-test via a table given as follows: 

Source 

Regression 

Error 

Total 

Sum of Squares 

SSR 

SSE 

SST 

Degrees of Freedom 

k 

n-(k+l) 

n - 1 

Mean Squares 

MSR = ^f2 

HfQf? SSE 
MSL - n _ ( f c + 1 ) 

F 
f _ MSR 
•> MSE 
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The test involved is an upper-tailed test. Rejection of H0 implies that the 
regression equation differs from a constant. That is, at least one regressor 
variable is important. Further discussion of the use of analysis of variance appears 
in subsequent sections. 

Further utility of the mean square error (or residual mean square) lies in its use 
in hypothesis testing and confidence interval estimation, which is discussed in Sec
tion 12.5. In addition, the mean square error plays an important role in situations 
where the scientist is searching for the best from a set of competing models. Many 
model-building criteria involve the statistic s2. Criteria for comparing competing 
models are discussed in Section 12.11. 

12.5 Inferences in Multiple Linear Regression 

One of the most useful inferences that can be made regarding the quality of the 
predicted response yo corresponding to the values arm, X2Q, ..., Xko is the confidence 
interval on the mean response py\Xw,x.Jt Xka- We are interested in constructing a 
confidence interval on the mean response for the set of conditions given by 

xo = [1,xio,X2ot •••-.Xka}-

We augment the conditions on the x's by the number 1 in order to facilitate the 
matrix notation. Normality in the £{ produces normality in the bjS and the mean, 
variances, and covariances are still the same as indicated in Section 12.4. Hence 

k 

y - b°+YI bJxj° 
J = I 

is likewise normally distributed and is, in fact, an unbiased estimator for the mean 
response on which we are attempting to attach confidence intervals. The variance 
of yo, written in matrix notation simply as a function of cr2, ( X ' X ) - 1 , and the 
condition vector Xrj, is 

0$, = c72x(J(X'X)-1x0. 

If this expression is expanded for a given case, say k = 2, it is readily seen that 
it appropriately accounts for the variances and covariances of the ft/s. After re
placing er2 by s2 as given by Theorem 12.1, the 100(1 — a)% confidence interval on 
Mv|a;io.x2o....,2to c a n oe constructed from the statistic 

rp _ VO — llY\x,0,X20,--,Xk0 

Vxd(X'X)-1x0 ' 

which has a i-distribution with n — k — 1 degrees of freedom. 

Confidence Interval A 100(1 — a)% confidence interval for the mean response py\xm_, 
for PY\xla,xm,...,Xk0 

2/0 - iQ/2S\/x6(X'X)-1Xo < PY\xw,xM,...,xku <V0 + ta/2Sy/x6(X'X)-lK0, 

where ta/2 is a value of the ^-distribution with n — k — 1 degrees of freedom. 
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The quantity sy'x<5(X'X)~1x0 is often called the standard error of predic
tion and usually appears on the printout of many regression computer packages. 

Example 12.5:1 Using the data of Example 12.3, construct a 95% confidence interval for the mean 
response when xx = 3%. x2 = 8%, and x3 = 9%. 

Solution: From the regression equation of Example 12.3, the estimated percent survival when 
xx = 3%, x2 = 8%, and x3 = 9% is 

y = 39.1574+ (1.0161)(3) - (1.8616)(8) - (0.3433)(9) = 24.2232. 

Next we find that 

x 0(X'X)-
1x 0 = [1,3,8,9] 

8.0648 -0.0826 -0.0942 -0.7905 
-0.0826 0.0085 0.0017 0.0037 
-0,0942 0.0017 0.0166 -0.0021 
-0.7905 0.0037 -0.0021 0.0886 

= 0.1267. 

Using the mean square error, s2 = 4.298 or s = 2.073, and Table A.4, we see that 
£0.025 = 2.262 for 9 degrees of freedom. Therefore, a 95% confidence interval for 
the mean percent survival for xx = 3%, x2 = 8%, and X3 = 9% is given by 

24.2232 - (2.262)(2.073)\/0.1267 < py\3,s,c, 

< 24.2232 + (2.262)(2.073)V0.1267, 

or simply 22.5541 < MV|3,8,9 < 25.8923. J 
As in the case of simple linear regression, we need to make a clear distinction 

between the confidence interval on a mean response and the prediction interval on 
an observed response. The latter provides a bound within which we can say with 
a preselected degree of certainty that a new observed response will fall. 

A prediction interval for a single predicted response yo is once again established 
by considering the difference y0 — y0. The sampling distribution can be shown to 
be normal with mean 

^Oo-yo ~ 0, 

and variance 

<£-*,» ^[l + xftX'X)-1*,]. 

Thus a 100(1 - a)% prediction interval for a single prediction value yo can be 
constructed from the statistic 

T = Vo -yo 
Sy/l + x6(X'X)-W 

which has a t-distribution with n — k — 1 degrees of freedom. 
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Prediction Interval A 100(1 — a)% prediction interval for a single response i/o is given by 
for j/o 

2/0 " <Q/2*\/l+X($(X'X)-1Xo < 2/0 < VO + ta/2SV'l + X<J(X'X)-1Xo> 

where ta/2 is a value of the t-distribution with n — k — 1 degrees of freedom. 

Example 12.6:1 Using the data of Example 12.3, construct a 95% prediction interval for an indi
vidual percent survival response when xx = 3%, x2 = 8%, and x3 = 9%. 

Solution: Referring to the results of Example 12.5, we find that the 95% prediction interval 
for the response yo, when xx = 3%, x2 = 8%., and X3 = 9%, is 

24.2232 - (2.262)(2.073)\/1.1267 <y0< 24.2232 

+ (2.262)(2.073)\/l.l267, 

which reduces to 19.2459 < 2/0 < 29.2005. Notice, as expected, that the prediction 
interval is considerably wider than the confidence interval for mean percent survival 
in Example 12.5. J 

A knowledge of the distributions of the individual coefficient estimators enables 
the experimenter to construct confidence intervals for the coefficients and to test 
hypotheses about them. Recall from Section 12.4 that the b,'s (j = 0,1,2,.. ,,k) 
are normally distributed with mean 0j and variance Cjja2. Thus we can use the 
statistic 

t = 
_ bj - 0jp 

s./c 33 

with n — k — I degrees of freedom to test hypotheses and construct confidence 
intervals on 0j. For example, if we wish to test 

#0: 0j = 0jo> 
Hi'. 0j ^ 0JO, 

we compute the above i-statistic and do not reject HQ if -ta/2 < t < ta/2, where 
taj2 has n — k — 1 degrees of freedom. 

Example 12.7:1 For the model of Example 12.3, test the hypothesis that 02 = -2 .5 at the 0.05 
level of significance against the alternative that 02 > —2.5. 

Solution: H0: 02 = -2 .5 , 

Hi: 32 > -2 .5 . 

Computations: 

t = b2 - 02O = -1-8616 + 2.5 = 2 3 g o 

sy/c^ 2.073 VQ.0166 ' ' 

P = P(T > 2.390) = 0.04. 

Decision: Reject Ho and conclude that 02 > —2.5. 
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Individual T-Tests for Variable Screening 

The i-tcst most often used in multiple regression is the one which tests the impor
tance of individual coefficients (i.e., H$j — 0 against the alternative Hi: 0j ^ 0). 
These tests often contribute to what is termed variable screening where the ana
lyst attempts to arrive at the most useful model (i.e., the choice of wdiich regressors 
to use). It should be emphasized here that if a coefficient is found insignificant (i.e., 
the hypothesis H0: 0j = 0 is not rejected), the conclusion drawn is that the vari
able is insignificant (i.e., explains an insignificant amount, of variation in y), in the 
presence of the other regressors in the model. This point will be reaffirmed 
in a future discussion. 

Annotated Printout for Data of Example 12.3 

Figure 12.1 shows an annotated computer printout for a multiple linear regression 
fit to the data of Example 12.3. The package used is 5.45. 

Note the model parameter estimates, the standard errors, and the i-statistics 
shown in the output. The standard errors are computed from square roots of 
diagonal elements of (X'X)~1s2. In this illustration the variable x3 is insignificant 
in the presence of xx and x2 based on the i-test and the corresponding P-value 
= 0.5916. The terms CLM and CLI are confidence intervals on mean response 
and prediction limits on an individual observation, respectively. The /-test in the 
analysis of variance indicates that a significant amount of variability is explained. 
As an example of the interpretation of CLM and CLI, consider observation 10. 
With an observation of 25.2 and a predicted value of 26.068, we are 95% confident 
that the mean response is between 24.502 and 27.633, and a new observation will 
fall between 21.124 and 31.011 with probability 0.95. The R2 value of 0.9117 
implies that the model explains 91.17% of the variability in the response. More 
discussion about i£2-appears in Section 12.6. 

More on Analysis of Variance in Multiple Regression (Optional) 

In Section 12.4 we discussed briefly the partition of the total sum of squares 

YI iVi — 'V? m t ° its two components, the regression model and error sums of squares 
»=i 
(illustrated in Figure 12.1). The analysis of variance leads to a test of 

Ho: 0i=02=03 = --- = 0k = 0. 

Rejection of the null hypothesis has an important interpretation for the scientist 
or engineer. (For those who are interested in more treatment of the subject using 
matrices, it is useful to discuss the development of these sums of squares used in 
ANOVA.) 

First recall from the definition of y, X, and 0 in Section 12.3, as well as b, the 
vector of least squares estimators given by 

b = (X'X) - ' X ' y . 



462 Chapter 12 Multiple Linear Regression and Certain Nonlinear Regression Models 

Source 

Model 

Error 

Corrected Total 

Root MSE 
Dependent Mean 

Coeff Var 

Variable DF 

Intercept 1 

xl 
x2 
x3 

1 
1 
1 

Sum of Mean 

DF Squares Square F Value Pr > 

3 399.45437 133.: 

F 
15146 30.98 <.0001 

9 38.67640 4.29738 

12 438.13077 

2.07301 R-Square 

29.03846 Adj R-Sq 

7.13885 

Parameter 

Estimate 

39.15735 

1.01610 

-1.86165 

-0.34326 

Dependent Predicted Std Error 

Obs 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

Variable 

25.5000 

31.2000 

25.9000 

38.4000 

18.4000 

26.7000 

26.4000 

25.9000 

32.0000 

25.2000 

39.7000 

35.7000 

26.5000 

Value Mean Predict 

27.3514 1.4152 

32.2623 0.7846 

27.3495 1.3588 

38.3096 1.2818 

15.5447 1.5789 

26.1081 1.0358 

28.2532 0.8094 

26.2219 0.9732 

32.0882 0.7828 

26.0676 0.6919 

37.2524 1.3070 

32.4879 1.4648 

28.2032 0.9841 

0.9117 

0.8823 

Standard 

Error 

5.88706 

0.19090 

0.26733 

0.61705 

95'/. CL 

24.1500 

30.4875 

24.2757 

35.4099 

11.9730 

23.7649 

26.4222 

24.0204 

30.3175 

24.5024 

34.2957 

29.1743 

25.9771 

t Value 

6.65 

5.32 

-6.96 

-0.56 

Mean 

30.5528 

34.0371 

30.4234 

41.2093 

19.1165 

28.4512 

30.0841 

28.4233 

33.8589 

27.6329 

40.2090 

35.8015 

30.4294 

Pr > Itl 
<,0001 

0.0005 

<.0001 

0.5916 

95'/, CL 

21 
27 
21 
32 
9 
20 
23 
21 
27 
21 
31 
26 
23 

.6734 

.2482 

.7425 

.7960 

.6499 

.8658 

.2189 

.0414 

.0755 

.1238 

.7086 

.7459 

.0122 

Predict 

33.0294 

37.2764 

32.9566 

43.8232 

21.4395 

31.3503 

33.2874 

31.4023 

37.1008 

31.0114 

42.7961 

38.2300 

33.3943 

Residual 

-1.8514 

-1.0623 

-1.4495 

0.0904 

2.8553 

0.5919 

-1.8532 

-0.3219 

-0.0882 

-0.8676 

2.4476 

3.2121 

-1.7032 

Figure 12.1: 5.45 printout for data in Example 12.3. 

A partition of the uncorrected sum of squares 

y'y = X>2 
j = i 

into two components is given by 

y'y = b 'X 'y + (y'y - b 'X'y) 

= y 'X(X 'X) - 1 X'y + [y'y - y 'X(X 'X) - l X'y] . 

The second term (in brackets) on the right-hand side is simply the error sum of 
n 

squares Y2 iVi —Vi)2- The reader should see that an alternative expression for the 
; = i 

error sum of squares is 

SSE = y'[I„ - X(X'X)-1X']y. 
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The term y ' X ( X ' X ) - X'y is called the regression sum of squares. However, 
n 

it is not the expression YI iVi ~ V? used for testing the "importance" of the terms 
i=[ 

bx, b2,..., bk but, rather, 

y'X(X'XrxX'y = I>? 2 
i > 

i = l 

which is a regression sum of squares uncorrected for the mean. As such it would 
only be used in testing if the "regression equation differs significantly from zero." 
That is, 

H0: 0o=0i=02 = ---=0k = 0. 

In general, this is not as important as testing 

HQ: 0i=02 = --- = 0k = 0, 

since the latter states that the mean response is a constant, not necessarily zero. 

Degrees of Freedom 

Thus the partition of sums of squares and degrees of freedom reduces to 

Source Sum of Squares d.f. 

Regression £ y2 = y ' X ( X ' X ) - 1 X ' y fe + 1 
i-l 

Error YZilH ~ m? = y'fc. - X(X'X)- 1 X']y n-(k + 1) 
i = l 

Total £ yf = y'y n 
i = l 

Hypothesis of Interest 

Now, of course, the hypotheses of interest for an ANOVA must eliminate the role 
of the intercept in that described previously. Strictly speaking, if Ho : 0x = 02 = 
• • • — 0k — 0, then the estimated regression line is merely y; = y. As a result, we 
are actually seeking evidence that the regression equation "varies from a constant." 
Thus, the total and regression sums of squares must be "corrected for the mean." 
As a result, we have 

;=1 i = l i = l 

In matrix notation this is simply 

y ' [In - l f l ' l V ^ l ' l y = y ' [ X ( X ' X ) - 1 X ' - l f l ' l j - ^ y 

+ y ' ( I „ - X ( X ' X ) - 1 X ' ] y . 



464 Chapter 12 Multiple Linear Regression and Certain Nonlinear Regression Models 

In this expression 1 is merely a vector of n ones. As a result, we are merely 
subtracting 

y ' l ( l ' l ) - 1 l ' y = i ^ ^ ) 

from y 'y and from y 'X(X 'X) _ 1 X'y (i.e., correcting the total and regression sum 
of squares for the mean). 

Finally, the appropriate partitioning of sums of squares with degrees of freedom 
is as follows: 

Source Sum of Squares d.f. 

Regression £ (ft - y)2 = y T X f X ' X ) - ^ ' - l ( l ' l ) - 1 l ] y k 
i=i 

Error £ (yt - y{)
2 = y '[In - X(X'X)" 1 X']y n - (k + 1) 

1=1 

Total £ ( 2 / i -y ) 2 =y ' [ I n - l ( l / l ) - 1 l ' ] y n - 1 
i=\ 

This is the ANOVA table that appears in the computer printout of Figure 12.1. 
The expression y ' [ l ( l ' l ) - 1 l ' ] y is often called the regression sum of squares 
associated with the mean, and 1 degree of freedom is allocated to it. 

Exercises 

12.17 For the data of Exercise 12.2 on page 452, es- confidence interval for the mean compressive strength 
timate a2. when the concentration is x = 19.5 and a quadratic 

model is used. 
12.18 For the data of Exercise 12.3 on page 453, es
timate a2. 12.24 Using the data of Exercise 12.9 on page 454 

and the estimate of a2 from Exercise 12.19, compute 
12.19 For the data of Exercise 12.9 on page 454, es- 95% confidence intervals for the predicted response and 
timate a . the mean response when xi = 75, x2 = 24, x3 = 90, 

and X4 = 98. 
12.20 Obtain estimates of the variances and the co-
variance of the estimators bx and b2 of Exercise 12.2 on 1 2 . 2 5 For the model of Exercise 12.7 on page 453, 
page 452. t e s t t h e hypothesis that 02 = 0 at the 0.05 level of 

significance against the alternative that 02 ^ 0. 
12.21 Referring to Exercise 12.9 on page 454, find the 
estimate of 1 2 . 2 6 For the model of Exercise 12.2 on page 452, 
(a) a2

2, test the hypothesis that 0i = 0 at the 0.05 level of 
(b) Cov(bi 64). significance against the alternative that 0i / 0, 

, . . , „ , i U , . r „ ,„ . . , . 1 2 . 2 7 For the model of Exercise 12.3 on page 453, 
12.22 Using the data of Exercise 12.2 on page 452 . . .. , ., .. . a „ . . ., ,. .<.• 

j .1. ... j. e 2c -^ • -in,-. test the hypotheses that 3\ = 2 against the alternative and the estimate of er" from Exercise 12.17. compute ,, , 0 ,,„„ „ D , „,„„ . „ „ . „„„„,„• „ r n r „ , . t , , , ,. t , K , pi * 2. Use a /•'-value in your conclusion. 
95% confidence intervals for the predicted response and ' 
the mean response when xi = 900 and x2 = 1.00. 1 2 2 8 Q ^ ^ t h e f o l l o w i n g d a U t h a t ig l i s t e d f a 

„ „ . „ „ ,_ . -, Exercise 12.15 on page 455. 
12.23 For Exercise 12.8 on page 4o4, construct a 90% H b 



y (wear) 
193 
230 
172 
91 

113 
125 

Xi ( o 1 viscosii 
1.6 

15.5 
22.0 
43.0 
33.0 
40.0 

ty) x< (load) 
851 
816 

1058 
1201 
1357 
1115 
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(a) Ho: 01 = 0 versus // , : 3i # 0; 
(b) H0: 02 = 0 versus Hi: 32 5* 0. 
(c) Do you have any reason to believe that the model 

in Exercise 12.28 should be changed? Why or win-
not? 

, , , - , , . 2 ... , , 12.30 Using the data from Exercise 12.16 on page 
(aj Estimate er using multiple regression of y on ;r:i . r , 

and x2. ' „ 
,, , „ ,. , , „,fw „ , . . (a) Estimate o using the multiple regression of y on 
ID) Compute predicted values, a 95% confidence; inter- , , e i n,n/ i- • i xi. Xi. and 2:3: 

val tor mean wear, and a 95% prediction interval 
for observed wear if xi = 20 and x2 = 1000. (u) Compute a 95%. prediction interval for the observed 

device gain for the three regressors tit Xi = 15.0, 
12.29 Using the data from Exercise 12.28, teat, tit. X2 = 2 2 0 ' 0 ' a i l d x* = 6*0, 

level 0.05 

12.6 Choice of a Fitted Model Through Hypothesis Testing 

In many regression situations, individual coefficients are of importance to the ex
perimenter. For example, in an economics application, 0x,p\, • • • might have some 
particular significance, and thus confidence intervals and tests of hypotheses on 
these parameters are of interest to the economist. However, consider an industrial 
chemical situation in which the postulated model assumes that reaction yield is de
pendent linearly on reaction temperature and concentration of a certain catalyst. 
It is probably known that this is not the true model but an adequate approxima
tion, so the interest is likely not to be in the individual parameters but rather in 
the ability of the entire function to predict the true response in the range of the 
variables considered. Therefore, in this situation, one would put more emphasis on 
er? confidence intervals on the mean response, and so forth, and likely deemphasize 
inferences on individual parameters. 

The experimenter using regression analysis is also interested in deletion of vari
ables when the situation dictates that, in addition to arriving at a workable pre
diction equation, he or she: must find the ''best regression" involving only variables 
that are useful predictors. There are a number of available computer programs that 
sequentially arrive at the so-called best regression equation depending on certain 
criteria. We discuss this further in Section 12.9. 

One criterion that is commonly used to illustrate the adequacy of a fitted re
gression model is the coefficient of mult iple de te rmina t ion : 

SSR g ,<» ' - T J ) 2 SSE 

" « " • " £ < » - « • " ~ s s r 

/ - - 1 

Note tha t this parallels the description of R2 in Chapter 11. At this point the 
explanation might be more clear since we now focus on SSR. as the v a r i a b i l i t y 
e x p l a i n e d . The quanti ty R2 merely indicates what proportion of the total vari
ation in the response Y is explained by the fitted model. Often an experimenter 
will report R2 x 100% and interpret the result as percentage variation explained by 
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the postulated model. The square root of R2 is called the multiple correlation 
coefficient between Kand the set x\,x2,..., Xk- In Example 12.3, the value of R2 

indicating the proportion of variation explained by the three independent variables 
Xi, x2, and x3 is found to be 

55H = 399:45 = 
1 SST 438.13 J 

which means that 91.17% of the variation in percent survival has been explained 
by the linear regression model. 

The regression sum of squares can be used to give some indication concerning 
whether or not the model is an adequate explanation of the true situation. We can 
test the hypothesis HQ that the regression is not significant by merely forming 
the ratio 

SSR/k SSR/k 
} ~ SSE/{n-k-\)~ s2 

and rejecting Ho at the a-level of significance when / > fa{k, n — k — 1). For the 
data of Example 12.3 we obtain 

' 4.298 

From the printout of Figure 12.1 the P-value is less than 0.0001. This should not 
be misinterpreted. Although it does indicate that the regression explained by the 
model is significant, this does not rule out the possibility that 

1. The linear regression model in this set of x's is not the only model that can 
be used to explain the data; indeed, there may be other models with trans
formations on the x's that may give a larger value of the F-statistic. 

2. The model may have been more effective with the inclusion of other variables 
in addition to Xi, x2, and x3 or perhaps with the deletion of one or more of 
the variables in the model, say x3, which displays P = 0.5916. 

The reader should recall the discussion in Section 11.5 regarding the pitfalls 
in the use of R2 as a criterion for comparing competing models. These pitfalls 
are certainly relevant in multiple linear regression. In fact, the dangers in its 
employment in multiple regression are even more pronounced since the temptation 
to overfit is so great. One should always keep in mind the fact an R? « 1.0 can 
always be achieved at the expense of error degrees of freedom when an excess of 
model terms is employed. However, an R2 = 1, describing a model with a near 
perfect fit, does not always result in a model that predicts well. 

The Adjusted Coefficient of Determination (Adjusted R2) 

In Chapter 11 several figures displaying computer printout from both SAS and 
MINITAB featured a statistic called adjusted R? or adjusted coefficient of de
termination. Adjusted R? is a variation on R? that provides an adjustment for 
degrees of freedom. The coefficient of determination as defined on page 407 
cannot decrease as terms are added to the model. In other words. R2 does not 



12.6 Choice of a Fitted Model through Hypothesis Testing 467 

decrease as the error degrees of freedom n — A: — 1 are reduced, the latter result 
being produced by an increase in k, the number of model terms. Adjusted R2 

is computed by dividing SSE and SST by their respective values of degrees of 
freedom (i.e., adjusted R2 is as follows). 

Adlui i idP? SSE/jn-k-1) 
adj SST/(n-l) ' 

To illustrate the use of R2
d<, Example 12.3 is revisited. 

How Are R2 and i?^dj Affected by Removal of a;3? 

The t (or corresponding F) test for £3, the weight percent of ingredient 3, would 
certainly suggest that a simpler model involving only Xx and x2 may well be an 
improvement. In other words, the complete model with all the regressors may
be an overfitted model. It is certainly of interest to investigate R2 and R2

dt for 
both the full (xx,x2,x3) and restricted (x\,x2) models. We already know that 
HfM = 0.9117 by Figure 12.1. The SSE for the reduced model is 40.01 and thus 
^restricted = 1 — .i38°i3 = 0-9087. Thus more variability is explained with 2:3 in 
the model. However, as wre have indicated, this will occur even if the model is 
an overfitted model. Now, of course, R\Ai is designed to provide a statistic that 
punishes an overfitted model so we might expect to favor the restricted model. 
Indeed, for the full model 

2 38.6764/9 4.2974 
K»d> - l ~ 438.1308/12 " l ~ 3U5109 " °M26, 

whereas for the reduced model (deletion of x3) 

2 40.01/10 4.001 n o n n i 
R°*> = * " 438.1308/12 = l ~ 36^109 = °-8 9°4-

Thus R2
d- does indeed favor the restricted model and, indeed confirms the evidence 

produced by the t- and F-tests that suggests that the reduced model is preferable 
to the model containing all three regressors. The reader may expect that other 
statistics may suggest the rejection of the overfitted model. See Exercise 12.40 on 
page 474. 

Tests on Subsets and Individual Coefficients 

The addition of any single variable to a regression system -will increase the re
gression sum squares and thus reduce the error sum of squares. Consequently, we 
must decide whether the increase in regression is sufficient to warrant using it in 
the model. As we might expect, the use of unimportant variables can reduce the 
effectiveness of the prediction equation by increasing the variable of the estimated 
response. We shall pursue this point further by considering the importance of £3 
in Example 12.3. Initially, we can test 

H0: 03 = O, 

Hi: 03^O 
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by using the (-distribution with 9 degrees of freedom. We have 

6 3 - O -0.3433 
t Sy/^sl 2.073v

/0l)886 
-0.556, 

which indicates that p\ does not differ significantly from zero, and hence we may 
very well feel justified in removing x3 from the model. Suppose that we consider 
the regression of y o n the set (xi,x2), the least squares normal equations now 
reducing to 

13 59.43 81.82 
59.43 394.7255 360.6621 
81.82 360.6621 576.7264 

bo 
61 
b2 

= 

377.50 
1877.5670 
2246.6610 

The estimated regression coefficients for this reduced model are 

/>o = 36.094, bx = 1.031, b2 = -1.870, 

and the resulting regression sum of squares with 2 degrees of freedom is 

Ri0i,02) = 398.12. 

Here we use the notation R(0x,02) to indicate the regression sum of squares of 
the restricted model and it is not to be confused with SSR, the regression sum of 
squares of the original model with 3 degrees of freedom. The new error sum of 
squares is then 

SST - R(0x,02) = 438.13 - 398.12 = 40.01, 

and the resulting mean square error with 10 degrees of freedom becomes 

, 40.01 
10 

= 4.001. 

Does a Single Variable T-Test Have an JF Counterpar t? 

The amount of variation in the response, the percent survival, which is attributed 
to x3, the weight percent of the third additive, in the presence of the variables xx 
and x2, is 

Ri03\0\,02) = SSR - R(3i,02) = 399.45 - 398.12 = 1.33, 

which represents a small proportion of the entire regression variation. This amount 
of added regression is statistically insignificant, as indicated by our previous test 
on 03. An equivalent test involves the formation of the ratio 

/ 
RiM^M = 1-33 

s2 4.298 
0.309. 

which is a value of the F-distribution with 1 and 9 degrees of freedom. Recall that 
the basic relationship between the (-distribution with v degrees of freedom and the 
F-distribution with 1 and v degrees of freedom is 

t2 = f(l,v), 
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and we note that the /-value of 0.309 is indeed the: square of the (-value of —0.56. 
To generalize the concepts above, we can assess the work of an independent 

variable ;r, in the general multiple linear regression model 

/ ' >> , ,X3,...,Xk = 00 + 0lX\ + r- 0kXk 

by observing the amount of regression attributed to Xi over and above tha t 
a t t r i bu t ed to the o ther variables, that is, the regression on Xi adjusted for the 
other variables. This is computed by subtracting the regression sum of squares for 
a model with x; removed from SSR. For example, we say that as] is assessed by-
calculating 

R{0i\02,0:i 0k) = SSR - R(02,3:i, ...,0k.), 

where R(02Jh, • • • ,3k) is the regression sum of squares with p\xi removed from 
the model. To test, the hypothesis 

HQ: 0I = 0. 

Hi: 0i+ 0, 

compute 

R.(0i \32,0:i,...,0k) 
J _9 ! 

and compare it with / „ ( l , n - k — 1). 
In a similar manner we can test, for the significance of a set of the variables. 

For example, to investigate simultaneously the importance of including x\ and x2 

in the model, wc test the hypothesis 

HQ: 3i — 02 = 0, 

Hi'. 0i and 0\ are not both zero, 

by computing 

. [R.(0i,02\03-.04,-..:0k)}/2 [SSR-R(03,34,...,0k)}/2 
J s2 ,s2 

and comparing il with fa(2,n—k — l). The number of degrees of freedom associated 
with the numerator, in this case 2, equals the number of variables in the set being 
investigated. 

12.7 Special Case of Orthogonality (Optional) 

Prior to our original development of the general linear regression problem, the 
assumption was made that the independent variables arc measured without error 
and arc often controlled by the experimenter. Quite often they occur as a result 
of an elaborately designed experiment. In fact, wc can increase the effectiveness of 
the resulting prediction equation with the use of a suitable experimental plan. 
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Suppose that we once again consider the X matrix as defined in Section 12.3. 
We can rewrite it to read 

X = [ l ,X 1 (X2,. . . ,X k ] , 

where 1 represents a column of ones and Xj is a column vector representing the 
levels of Xj. If 

XpXq = 0, for p + q, 

the variables xv and xq are said to be orthogonal to each other. There are certain 
obvious advantages to having a completely orthogonal situation whereby x,Jxq = 0 
for all possible p and q,p + q, and, in addition, 

n 

^ £ j i = 0 , j = l,2,...,k. 
i=l 

The resulting X 'X is a diagonal matrix and the normal equations in Section 12.3 
reduce to 

nbo = \V^yi, 
t = i 

n n 

&i YI x i ' = ]L xuyu 

i=X i=X 

bkJ2Xli =YsXkiyi' 
i=l i=X 

An important advantage is that one is easily able to partition SSR into single-
degree-of-freedom components , each of which corresponds to the amount of 
variation in Y accounted for by a given controlled variable. In the orthogonal 
situation we can write 

n n 

SSR = ]T(& - y? = Y^ib° + bixu + •'• + hxki - b0)
2 

t = i i = i 
n n n 

= b2YJx\i+blY,x2
2i + --- + b2

k^4i 
i=\ r= l i = l 

= R(0i) + R(02) + • • • + R(0k)-

The quantity R(0i) is the amount of regression sum of squares associated with a 
model involving a single independent variable Xi. 

To test simultaneously for the significance of a set of m variables in an orthog
onal situation, the regression sum of squares becomes 

R.(0X, 02, -•-, 0m\0m+l, 0m+2, • • • , 0k) = Ri0x) + Ri02) + •" + «(/?m), 
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and thus we have the further simplification 

R(0i\02,03,...,0k) = Ri0i) 

when evaluating a single independent variable. Therefore, the contribution of a 
given variable or set of variables is essentially found by ignoring the other variables 
in the model. Independent evaluations of the worth of the individual variables are 
accomplished using analysis-of-variance techniques as given in Table 12.4. The 
total variation in the response is partitioned into single-degree-of-freedom compo
nents plus the error term with n — k — 1 degrees of freedom. Each computed /-value 
is used to test one of the hypotheses 

HQ: 3i = 01 . _ . „ , 
Hi: A ' ^ O j ' - 1 ^ - - - ^ -

by comparing with the critical point fa(\,n — k — 1) or merely interpreting the 
F-value computed from the /-distribution. 

Table 12.4: Analysis of Variance for Orthogonal Variables 

Source of 
Variation 

A 

02 

0k 

Error 

Total 

Sum of 
Squares 

Rifii)=b\t*2u 
i=X 

Ri02) = b2±x2., 
i= l 

RiM = b\±xl 
SSE 

»50i = iJyy 

Degrees of 
Freedom 

1 

1 

1 

n - k -

n - 1 

1 

Mean 
Square 

R(9x) 

R{02) 

Ri0k) 
n2 _ SSE 
b ~ n-k-[ 

Computed 
/ 

R(fli) 
s2 

R(32) 
> 

8* 

Example 12.8:1 Suppose that a scientist takes experimental data on the radius of a propellant grain 
Fas a function of powder temperature x\, extrusion rate x2, and die temperature 
x3. Fit a linear regression model for predicting grain radius, and determine the 
effectiveness of each variable in the model. The data are given in Table 12.5. 

Solution: Note that each variable is controlled at two levels, and the experiment represents 
each of the eight possible combinations. The data on the independent variables 
are coded for convenience by means of the following formulas: 

powder temperature — 170 
X, = 20 ' 

extrusion rate — 18 
x2 = - , 

die temperature — 235 
X3 = 15 • 
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Table 12.5: Data for Example 12.8 

Grain Radius 

82 
93 

114 
124 
111 
129 
157 
164 

Powder 
Temperature 

150 
190 
150 
150 
190 
190 
150 
190 

(-1) 
(+1) 
(-1) 
(-1) 
(+1) 
(+1) 
(-1) 
(+1) 

Extrusion 
Rate 

12 
12 
24 
12 
24 
12 
24 
24 

(-1) 
(-1) 
(+1) 
(-1) 
(+1) 
(-1) 
(+1) 
(+1) 

Die 
Temperature 

220 (-1) 
220 (-1) 
220 (-1) 
250 (+1) 
220 (-1) 
250 (+1) 
250 (+1) 
250 (+1) 

The resulting levels of Xx, x2, and x3 take on the values -1 and +1 as indicated 
in the table of data. This particular experimental design affords the orthogonality 
that we are illustrating here. A more thorough treatment of this type of experi
mental layout is discussed in Chapter 15. The X matrix is 

X = 

1 - ] 
1 1 
1 - ] 
1 -1 
1 1 
1 ] 
1 - ] 
1 1 

[ - 1 
I - 1 
I 1 
1 - 1 
1 1 
[ - 1 
1 1 
i 1 

- 1 
- 1 
- 1 

1 
- 1 

1 
1 
1 

and the orthogonality conditions are readily verified. We can now compute coeffi
cients 

6° = 5 X > = 12L75' 6l = \ !>«» = T = 2-5' 
t = i ? ' = 1 

3 2 = 

8 

YI x-aVi 
i=l 118 

14.75. 

8 

2-i X'iiVi 1 _ . 

so in terms of the coded variables, the prediction equation is 

y = 121.75 +2.5 Xi + 14.75 x2 + 21.75 £3. 

The analysis-of-variance Table 12.6 shows independent contributions to SSR for 
each variable. The results, when compared to the /o.05(l-4) critical point of 7.71, 
indicate that £1 does not contribute significantly at the 0.05 level, whereas vari
ables £2 and £3 are significant. In this example the estimate for a2 is 23.1250. As 
for the single-independent-variable case, it is pointed out that this estimate does 
not solely contain experimental error variation unless the postulated model is cor
rect. Otherwise, the estimate is "contaminated" by lack of fit in addition to pure 
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Table 12.6: Analysis of Variance for Grain Radius Data 

Source of Sum of Degrees of Mean Computed 
Variation Squares Freedom Square / P- Value 

01 

02 

03 
Error 

Total 

(2.5)2(8) = 50 

(14.75)2(8) = 1740.50 

(21.75)2(8) = 3784.50 

92.5 

5667.50 

1 

1 

1 

4 

7 

50 

1740.50 

3784.50 

23.1250 

2.16 

75.26 

163.65 

0.2156 

0.0010 

0.0002 

Exercises 

error, and the lack of fit can be separated only if we obtain multiple experimental 
observations at the various (xi,x2,x3) combinations. 

Since £i is not significant, it can simply be eliminated from the model without 
altering the effects of the other variables. Note that £2 and £3 both impact the 
grain radius in a positive fashion, with £3 being the more important factor based 
on the smallness of the P-value. J j 

12.31 Compute and interpret the coefficient of multi
ple determination for the variables of Exercise 12.3 on 
page 453. 

12.32 Test whether the regression explained by the 
model in Exercise 12.3 on page 453 is significant at the 
0.01 level of significance. 

12.33 Test whether the regression explained by the 
model in Exercise 12.9 on page 454 is significant at the 
0.01 level of significance. 

12.34 For the model of Exercise 12.11 on page 454, 
test the hypothesis 

H0: 0i=0i= 0, 
Hy. 0i and 02 are not both zero. 

12.35 Repeat Exercise 12.26 on page 464 using an 
F-statistic. 

12.36 A small experiment was conducted to fit a mul
tiple regression equation relating the yield y to temper
ature xi, reaction time x2, and concentration of one 
of the reactants 23. Two levels of each variable were 
chosen and measurements corresponding to the coded 
independent variables were recorded as follows: 

y 
7.6 
8.4 
9.2 

10.3 
9.8 

11.1 
10.2 
12.6 

Xl 

—1 

— 1 
— 1 

— 1 

* 2 

- 1 
- 1 

1 
- 1 

1 
- 1 

1 
1 

x3 
- 1 
- 1 
- 1 

1 
- 1 

1 
1 
1 

(a) Using the coded variables, estimate the multiple 
linear regression equation 

V-Ylxx 00 + 0\Xl + 82X2 + 03X3. 

(b) Partition SSR, the regression sum of squares, 
into three single-degree-of-freedom components at
tributable to £1, X2, and x3, respectively. Show an 
analysis-of-variance table, indicating significance 
tests on each variable. 

12.37 Consider the electric power data of Exercise 
12.9 on page 454. Test Ho '• 0i = 02 = 0 making use of 
Ri0i, 32\03,04). Give a P-value, and draw conclusions. 

12.38 Consider the data for Exercise 12.36. Compute 
the followings 

R(0i\0o), R(0i\0o,02,03), 

R(02\0o,3i), R(02\0o,0i,03), 

R(03\3o,0l,02). 
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Comment. 

12.39 Consider the data of Exercise 11.63 on page 
439. Fit a regression model using weight and drive ra
tio as explanatory variables. Compare this model with 
the SLR (simple linear regression) model using weight 
alone. Use R2, R2^j, and any I- (or F)-statistics you 
may need to compare the SLR with the multiple re
gression model. 

12.40 Consider Example 12.3. Figure 12.1 on page 
462 displays a SAS printout of an analysis of the 
model containing variables xi, x2, and £3. Focus on 
the confidence interval of the mean response fiy at the 
(xi,x2,x3) locations representing the 13 data points. 
Consider an item in the printout indicated by C.V. 
This is the coefficient of variation, which is defined 
by 

C.V. = - • 100. 
y 

where s = y/s^ is the root mean squared error. The 
coefficient of variation is often used as yet another crite
rion for comparing competing models. It is a scale-free 
quantity which expresses the estimate of a, namely s, 
as a percent of the average response y. In competition 
for the "best" among a group of competing models, one 
strives for the model with a "small" value of C.V. Do 
a regression analysis of the data set shown in Exam
ple 12.3 but eliminate x3. Compare the full (xi,x2,x3) 
model with the restricted model (a.-), x2) and focus on 
two criteria: (i) C.V.; (ii) the widths of the confidence 
intervals on fiy- For the second criterion you may want 
to use the average width. Comment. 

12.41 Consider Example 12.4 on page 451. Compare 
the two competing models 

First order: yi = 0o + 0ixu + 02x2i + £>, 

Second order: j/j = 0o + 0ixu + 82x21 

+ 0\\X2u + 822x\i + 0\2XliX2i + et. 

Use i?adj in your comparison in addition to testing 
Ho : 0n = 022 = 0n = 0. In addition, use C.V. 
discussed in Exercise 12.40. 

12.42 In Example 12.8 on page 471 a case is made for 
eliminating x\, powder temperature, from the model 
since the P-value based on the .F-test is 0.2154 while 
P-values for x2 and £3 are near zero. 

(a) Reduce the model by eliminating xi, thereby pro
ducing a full and restricted (or reduced) model and 
compare them on the basis of R2

d}. 

(b) Compare the full and restricted models using the 
width of the 95% prediction intervals on a new ob
servation. The "best" of the two models would be 
that with the "tightened" prediction intervals. Use 
the average of the width of the prediction intervals. 

12.43 Consider the data of Exercise 12.15 on page 
455. Can the response, wear, be explained adequately 
by a single variable (either viscosity or load) in an SLR 
rather than with the full two-variable regression? Jus
tify your answer thoroughly through tests of hypothe
ses as well as the comparison of three competing mod
els. 

12.44 For the data set given in Exericise 12.16 on 
page 455, can the response be explained adequately by 
any two regressor variables? Discuss. 

12.8 Categorical or Indicator Variables 

An extremely important special case application of multiple linear regression oc
curs when one or more of the regressor variables are categorica l or indicator 
variables . In a chemical process the engineer may wish to model the process yield 
against regressors such as process temperature and reaction time. However, there 
is interest in using two different catalysts and somehow including "the catalyst" in 
the model. The catalyst effect cannot be measured on a continuum and is hence 
a categorical variable. An analyst may wish to model the price of homes against 
regressors tha t include square feet of living space £1 , the land acreage x2, and age 
of the house £3. These regressors are clearly continuous in nature. However, it 
is clear tha t cost of homes may vary substantially from one area of the country 
to another. Thus, da ta may be collected on homes in the east, midwest, south, 
and west. As a result, we have an indicator variable with four categories . In 
the chemical process example, if two catalysts are used, we have an indicator vari
able with two categories. In a biomedical example a drug is to be compared to a 
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placebo and all subjects have several continuous measurements such as age, blood 
pressure, and so on, observed as well as gender, which of course is categorical with 
two categories. So, included along with the continuous variables are two indicator 
variables, treatment at two categories (active drug and placebo) and gender at two 
categories (male and female). 

Model with Categorical Variables 

Let us use the chemical processing example to illustrate how indicator variables 
are involved in the model. Suppose y = yield and xx = temperature and £2 = 
reaction time. Now let us denote the indicator variable by z. Let z = 0 for catalyst 
1 and z = 1 for catalyst 2. The assignment of the (0,1) indicator to the catalyst 
is arbitrary. As a result, the model becomes 

Vi = 0o + 0ix\i + 02x2i + 03Zi + ti, i - 1 ,2 , . . . ,n . 

Three Categories 

The estimation of coefficients by the method of least squares continues to apply. 
In the case of three levels or categories of a single indicator variable, the model will 
include two regressors, say zx and z2, where the (0,1) assignment is as follows: 

"1 
1 

1 

0 

0 

0 

0 

22 
0 
0 

0 

1 

1 

0 

0 

In other words, if there are t categories, the model includes £ — 1 actual model 
terms. 

It may be instructive to look at a graphical appearance of the model with 3 
categories. For the sake of simplicity, let us assume a single continuous variable x. 
As a result, the model is given by 

Vi = '00 + 0\Xi + 32zii + 03z2i + €i. 

Thus Figure 12.2 reflects the nature of the model. The following are model expres-
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sions for the three categories. 

E(Y) = (0o + 02) + 0ix, category 1, 

E(Y) = (0o +1%) + 0xx, category 2, 

E(Y) = 0o + 0ix, category 3. 

As a result, the model involving categorical variables essentially involves a change 
in the intercept as we change from one category to another. Here of course we 
are assuming that the coefficients of continuous variables remain the same 
across the categories. 

Category 1 

Category 2 

Category 3 

Figure 12.2: Case of three categories. 

Example 12.9:1 Consider the data in Table 12.7. The response y is the amount of suspended 
solids in a coal cleansing system. The variable x is the pH of the system. Three 
different polymers are used in the system. Thus "polymer" is categorical with 
three categories and hence produces two model terms. The model is given by 

Vi = 0o + 0\Xi + 02zxi + 33z2i + e.i, i = 1,2, .18. 

Here we have 

z\ 
• f t 

for polymer 1, 

otherwise, 
and <-2 — 

1, for polymer 2, 

0. otherwise. 

Some comments are worth noting concerning the conclusions drawn from the 
analysis in Figure 12.3. The coefficient bi for pH is the estimate of the common 
slope that is assumed in the regression analysis. All model terms are statistically 
significant. Thus pH and the nature of the polymer have an impact on the amount 
of cleansing. The signs and magnitudes of the coefficients of z\ and z2 indicate 
that polymer 1 is most effective (producing higher suspended solids) for cleansing, 

followed by polymer 2. Polymer 3 is least effective. J 
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Table 12.7: Data for Example 12.9 
x (pH) y (Amount of suspended solids) Polymer 
6.5 
6.9 
7.8 
8.4 
8.8 
9.2 

292 1 
329 1 
352 1 
378 1 
392 1 
410 1 

6.7 
6.9 
7.5 
7.9 
8.7 
9.2 
6.5 
7.0 
7.2 
7.6 
8.7 
9.2 

198 
227 
277 
297 
364 
375 
167 
225 
247 
268 
288 
342 

2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 

Source DF 
Model 3 
Error 14 

Corrected Total 17 

Sum of 
Squares 

80181.73127 
5078.71318 
85260.44444 

Mean Square 
26727.24376 
362.76523 

F Value 
73.68 

Pr > F 
<.0001 

R-Square 
0.940433 

Coeff Var 
6.316049 

Parameter Estimate 
Intercept -161.8973333 

x 54.2940260 
zl 89.9980606 
z2 27.1656970 

Root MSE 
19.04640 

Error t Value 
37.43315576 -4.32 
4.75541126 11.42 
11.05228237 8.14 
11.01042883 2.47 

y Mean 
301.5556 

Standard 
Pr > It I 
0.0007 
<.0001 
<.0001 
0.0271 

Figure 12.3: SAS printout for Example 12.9. 

Slope May Vary with Indicator Categories 

In the discussion given here we have assumed that the indicator variable model 
terms enter the model in an additive fashion. This suggests that the slopes as in 
Figure 12.2 are constant across categories. Obviously, this is not always going to 
be the case. We can account for the possibility of varying slopes and indeed test 
for this condition of parallelism by the inclusion of product or interaction terms 
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between indicator terms and continuous variables. For example, suppose a model 
with one continuous regressor and an indicator variable with two levels was chosen. 
We have the model 

y = 0o + 0xx + 02z + 03xz + e, 

The previous model suggests that for category 1 (z = 1), 

Eiy) = (0o + 02) + i0x + 03)x, 

while for category 2 (z = 0), 

E(y) = 0o + 0xx. 

Thus, we allow for varying intercept and slopes for the two categories. Figure 12.4 
displays the regression lines with varying slopes for the two categories. 

Category 1 - slope = (/3, + ft) 

Category 2 - slope = (ft) 

Exercises 

Figure 12.4: Nonparallelism in categorical variables. 

In this case, 0Q, 0\, and 02 are positive while 33 is negative with \03\ < 0x. Ob
viously, if the interaction coefficient 03 is insignificant, we are back to the common 
slope model. 

12.45 A study was done to assess the cost effectives- sedan. 
ness of driving a four door sedan instead of a van or an (b) Which type of vehicle appears to get the best gas 
SUV (sports utility vehicle). The continuous variables mileage?* 
are odometer reading and octane of the gasoline used 
The response variable is miles per gallon. The data are 
presented here. 
(a) Fit a linear regression model including two indi

cator variables. Use 0, 0 to denote the four-door 

(c) Discuss the difference in a van and an SUV in terms 
of gas mileage performance. 
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MPG 
3 1.5 
33.3 
30.4 
32.8 
35.0 
29.0 
32.5 
29.6 
16.8 
19.2 
22.6 
24.4 
20.7 
25.1 
18.8 
15.8 
17.4 
15.6 
17.3 
20.8 
22.2 
16.5 
21.3 
20.7 
24.1 

Car Type 
sedan 
sedan 
sedan 
sedan 
sedan 
sedan 
sedan 
sedan 
van 
van 
van 
van 
van 
van 
van 
van 
van 
SUV 
SUV 
SUV 
SUV 
SUV 
SUV 
SUV 
SUV 

Odometer 
75000 
00000 
88000 
15000 
25000 
35000 
102000 
98000 
56000 
72000 
11500 
22000 
66500 
3.5000 
97500 
65500 
42000 
65000 
55500 
26500 
11500 
38000 
77500 
19500 
87000 

Octane 
87.5 
87.5 
78.0 
78.0 
90.0 
78.0 
90.0 
87.5 
87.5 
90.0 
87.5 
90.0 
78.0 
90.0 
87.5 
78.0 
78.0 
78.0 
87.5 
87.5 
90.0 
78.0 
90.0 
78.0 
90.0 

12.46 A study was done to determine whether gen
der of the credit card holder was an import ant factor 
in generating profit for a certain credit card company. 

The variables considered were income, the number of 
family members, and gender of the card holder. The 
data are as follows: 

Family 
Profit Income Gender Members 

2 
I 
3 
1 

4 
1 
2 
1 
I 
1 
3 
2 
3 
2 
1 
1 
I 
1 
2 

(a) Fit a linear regression model using the variables 
available. Based on the fitted model, would the 
company prefer male or female customers? 

(b) Would you say that income was an important fac
tor in explaining the variability in profit? 

157 
181 
253 
158 
75 
202 
451 
146 
89 
357 
522 
78 
5 

177 
123 
251 
-56 
453 
288 
104 

45000 
55000 
15800 
38000 
75000 
99750 
28000 
39000 
54350 
32500 
36750 
42500 
34250 
36750 
24500 
27500 
18000 
24500 
88750 
19750 

M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 

12.9 Sequential Methods for Model Selection 

At times the significance tests outlined in Section 12.6 are quite adequate in deter
mining which variables should be used in the final regression model. These tests 
are certainly effective if the experiment can be planned and the variables are or
thogonal to each other. Even if the variables are not orthogonal, the individual 
i-tests can be of some use in many problems where the number of variables under 
investigation is small. However, there are many problems where it is necessary 
to use more elaborate techniques for screening variables, particularly when the 
experiment exhibits a substantial deviation from orthogonality. Useful measures 
of multicollinearity (linear dependency) among the independent variables are 
provided by the sample correlation coefficients rXiXi. Since we are concerned only 
with linear dependency among independent variables, no confusion will result if we 
drop the afs from our notation and simply write rXiXj = rij, where 

rn = y/SitSj 

Note that the ry 's do not give true estimates of population correlation coef
ficients in the strict sense, since the x's are actually not random variables in the 
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context discussed here. Thus the term correlation, although standard, is perhaps 
a misnomer. 

When one or more of these sample correlation coefficients deviate substantially 
from zero, it can be quite difficult to find the most effective subset of variables for 
inclusion in our prediction equation. In fact, for some problems the multicollinear-
ity will be so extreme that a suitable predictor cannot be found unless all possible 
subsets of the variables are investigated. Informative discussions of model selection 
in regression by Hocking are cited in the Bibliography. Procedures for detection of 
multicollinearity are discussed in the textbook by Myers (1990), also cited. 

The user of multiple linear regression attempts to accomplish one of three ob
jectives: 

1. Obtain estimates of individual coefficients in a complete model. 

2. Screen variables to determine which have a significant effect on the response. 

3. Arrive at the most effective prediction equation. 

In (1) it is known a priori that all variables are to be included in the model. In 
(2) prediction is secondary, while in (3) individual regression coefficients are not 
as important as the quality of the estimated response y. For each of the situations 
above, multicollinearity in the experiment can have a profound effect on the success 
of the regression. 

In this section some standard sequential procedures for selecting variables are 
discussed. They are based on the notion that a single variable or a collection 
of variables should not appear in the estimating equation unless they result in a 
significant increase in the regression stun of squares or, equivalently, a significant 
increase in R2, the coefficient of multiple determination. 

Illustration of Variable Screening in the Presence of Collinearity 

Example 12.10:1 Consider the data of Table 12.8, where measurements were taken for 9 infants. The 
purpose of the experiment was to arrive at a suitable estimating equation relating 
the length of an infant to all or a subset of the independent variables. The sample 
correlation coefficients, indicating the linear dependency among the independent 
variables, are displayed in the symmetric matrix 

Xx 
1.0000 
0.9523 
0.5340 
0.3900 

£2 

0.9523 
1.0000 
0.2626 
0.1549 

£3 

0.5340 
0.2626 
1.0000 
0.7847 

£ 4 

0.3900 
0.1549 
0.7847 
1.0000 

Note that there appears to be an appreciable amount of multicollinearity. Using the 
least squares technique outlined in Section 12.2, the estimated regression equation 
using the complete model was fitted and is 

y = 7.1475 + 0.1000£i + 0.7264.T2 + 3.0758£3 - 0.0300£4. 

The value of s2 with 4 degrees of freedom is 0.7414, and the value for the coefficient 
of determination for this model is found to be 0.9908. Regression sum of squares 
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Table 12.8: Data Relating to Infant Length* 

Infant Length, 
y (cm) 

57.5 
52.8 
61.3 
67.0 
53.5 
62.7 
56.2 
68.5 
69.2 

Age, 
Xx (days) 

78 
69 
77 
88 
67 
80 
74 
94 

102 

Length at 
Bi r th , x2 (cm) 

48.2 
45.5 
46.3 
49.0 
43.0 
48.0 
48.0 
53.0 
58.0 

Weight 
Bi r th , a:.i 

2.75 
2.15 
4.41 
5.52 
3.21 
4.32 
2.31 
4.30 
3.71 

a t 
(kg) 

Chest Size at 
Bi r th , XA (cm) 

29.5 
26.3 
32.2 
36.5 
27.2 
27.7 
28.3 
30.3 
28.7 

*Data analyzed by the Statistical Consulting Center, Virginia Polytechnic Institute and State University, 
Blacksburg, Virginia. 

Table 12.9: t-Values for the Regression Data of Table 12.8 

Variable x\ Variable x2 Variable 0:3 Variable £i 
R(0i\02,8a,0.i) R(32\0i,03,3i) R(0-A\0i,02,0.i) R(04\0i,02,03) 

= 0.0644 =0.6334 =6.2523 =0.0241 
I. = 0.2947 I. = 0.9243 t = 2.9040 t = -0.1805 

measuring the variation attributed to each individual variable in the presence of 
the others, and the corresponding /-values, are given in Table 12.9. 

A two-tailed critical region with 4 degrees of freedom at the 0.05 level of sig
nificance is given by \t\ > 2.776. Of the four computed /-values, only variable £3 
appears to be significant. However, recall that although the /-statistic described 
in Section 12.6 measures the worth of a variable adjusted for all other variables, 
it docs not detect the potential importance of a variable in combination with a 
subset of the variables. For example, consider the model with only the variables 
x2 and £3 in the equation. The data analysis gives the regression function 

j) = 2.1833 - 0.9576.T2 + 3.3253£3, 

with R2 = 0.9905, certainly not a substantial reduction from R2 = 0.9907 for the 
complete model. However, unless the performance characteristics of this particular 
combination had been observed, one would not be aware of its predictive poten
tial. This, of course, lends support for a methodology that observes all possible 
regressions or a systematic sequential procedure designed to test several subsctsJ 

Stepwise Regression 

One standard procedure for searching for the "optimum subset'' of variables in the 
absence of orthogonality is a technique calleel s tepwise regression. It is based 
on the procedure of sequentially introducing the variables into the model one at 
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a time. The description of the stepwise routine will be better understood if the 
methods of forward selection and backward elimination are described first. 

Forward selection is based on the notion that variables should be inserted 
one at a time until a satisfactory regression equation is found. The procedure is as 
follows: 

STEP 1. Choose the variable that gives the largest regression sum of squares 
when performing a simple linear regression with y or, equivalently, that wdiich 
gives the largest value of R2. We shall call this initial variable £i. 

STEP 2. Choose the variable that when inserted in the model gives the largest 
increase in R2, in the presence of x\, over the R2 found in step 1. This, of 
course, is the variable Xj, for which 

R(0j\0x) = R(0i,0j)-R(0x) 

is largest. Let us call this variable x2. The regression model with Xi and x2 

is then fitted and R2 observed. 

STEP 3. Choose the variable Xj that gives the largest value of 

Ri0i\0x,02) = Ri0i,S2,0i) - Ri0i,02), 

again resulting in the largest increase of R.2 over that given in step 2. Calling 
this variable £3, we now have a regression model involving x\, x2, and £3, 

This process is continued until the most recent variable inserted fails to induce a 
significant increase in the explained regression. Such an increase can be determined 
at each step by using the appropriate F-test or i-test. For example, in step 2 the 
value 

RiMh) 
1 s2 

can be determined to test the appropriateness of x2 in the model. Here the value 
of s2 is the mean square error for the model containing the variables X\ and x2. 
Similarly, in step 3 the ratio 

. _ - R ( W , & ) 
sz 

tests the appropriateness of £3 in the model. Now, however, the value for s2 is the 
mean square error for the model that contains the three variables xi, x2, and £3. 
If / < fa(l,n — 3) at step 2, for a prechosen significance level, x2 is not included 
and the process is terminated, resulting in a simple linear equation relating y and 
X\, However, if / > / Q ( l , n — 3) we proceed to step 3. Again, if / < fa(l,n — 4) 
at step 3, £3 is not included and the process is terminated with the appropriate 
regression equation containing the variables xx and x2. 

Backward elimination involves the same concepts as forward selection except 
that one begins with all the variables in the model. Suppose, for example, that 
there are five variables under consideration. The steps are as follows: 
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STEP 1. Fit a regression equation with all five variables included in the 
model. Choose the variable that gives the smallest value of the regression 
sum of squares adjusted for the others. Suppose that this variable is x2. 
Remove x2 from the model if 

,_- f t ( f t | f t ,&, /?4,&) 
} s2 

is insignificant. 

STEP 2. Fit a regression equation using the remaining variables xi, x3, £4, 
and £5, and repeat step 1. Suppose that variable £5 is chosen this time. Once 
again if 

Rj05\0i,03,.04) 
J s2 

is insignificant, the variable X5 is removed from the model. At each step the 
s2 used in the F-test is the mean square error for the regression model at that 
stage. 

This process is repeated until at some step the variable with the smallest ad
justed regression sum of squares results in a significant /-value for some predeter
mined significance level. 

Stepwise regression is accomplished with a slight but important modification 
of the forward selection procedure. The modification involves further testing at 
each stage to ensure the continued effectiveness of variables that had been inserted 
into the model at an earlier stage. This represents an improvement over forward 
selection, since it is quite possible that a variable entering the regression equation 
at an early stage might have been rendered unimportant or redundant because 
of relationships that exist between it and other variables entering at later stages. 
Therefore, at a stage in which a new variable has been entered into the regression 
equation through a significant increase in R2 as determined by the F-test, all the 
variables already in the model are subjected to F-tcsts (or, equivalently, to /-tests) 
in light of this new variable and are deleted if they do not display a significant 
/•value. The procedure is continued until a stage is reached where no additional 
variables can be inserted or deleted. We illustrate the stepwise procedure by the 
following example. 

Example 12.11:1 Using the techniques of stepwise regression, find an appropriate linear regression 
model for predicting the length of infants for the data of Table 12.8. 

Solution: STEP 1. Considering each variable separately, four individual simple linear 
regression equations are fitted. The following pertinent regression sums of 
squares arc computed: 

R(0i) = 288.1468, R(02) = 215.3013, 

R(03) = 186.1065, R(04) = 100.8594. 

Variable xi clearly gives the largest regression sum of squares. The mean 
square error for the equation involving only £1 is s2 = 4.7276, and since 
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which exceeds /o.oo(l,7) = 5.59. the variable x\ is entered into the model. 

STEP 2. Three regression equations are fitted at this stage, all containing xx. 
The important results for the combinations (£i,£2), (£i,£3) and (£i,£\i) are 

Rifa\0i) = 23.8703, Ri03\0i) = 29.3086, R(04\0x) = 13.8178. 

Variable £3 displays the largest regression sum of squares in the presence of 
xx- The regression involving £1 and £3 gives a new value of s2 = 0.6307, and 
since 

R(03\0x) _ 29-3086 
1 " s2 0.6307 ~ ' 

which exceeds /o.os(L6) = 5.99, the variable £3 is included along with £x in 
the model. Now we must subject xi in the presence of £3 to a significance 
test. We find that Ri0x\03) = 131.349, and hence 

R{0i\jh) 131.349 
f - — ^ ~ 0.6307 - 2 ° 8 - 2 6 ' 

which is highly significant. Therefore, £1 is retained along with £3. 

STEP 3. With £1 and £3 already in the model, we now require R(32\0x,03) 
and R(04\0i,03) in order to determine which, if any, of the remaining two 
variables is entered at this stage. From the regression analysis using £2 along 
with x.x and £3, we find R(02\0i,03) = 0.7948, and when £4 is used along 
with £1 and £3, we obtain R(04\0x,03) = 0.1855. The value of s2 is 0.5979 
for the (£i,£2,£3) combination and 0.7198 for the (£i,£2,£4) combination. 
Since neither /-value is significant at the a = 0.05 level, the final regression 
model includes only the variables £1 and £3. The estimating equation is found 
to be 

y = 20.1084 + 0.4136.£i + 2.0253£3, 

and the coefficient of determination for this model is R2 = 0.9882. 

Although (£^£3) is the combination chosen by stepwise regression, it is not nec
essarily the combination of two variables that gives the largest value of R2. In 
fact, we have already observed that the combination (£2, £3) gives an R? = 0.9905. 
Of course, the stepwise procedure never actually observed this combination. A 
rational argument could be made that there is actually a negligible difference in 
performance between these two estimating equations, at least in terms of percent 
variation explained. It is interesting to observe, however, that the backward elimi
nation procedure gives the combination (x2,x3) in the final equation (see Exercise 

12.49 on page 496). J 

Summary 
The main function of each of the procedures explained in this section is to expose 
the variables to a systematic methodology designed to ensure the eventual inclusion 
of the best combinations of the variables. Obviously, there is no assurance that this 
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will happen in all problems, and, of course, it is possible that the multicollinearity 
is so extensive that one has no alternative but to resort to estimation procedures 
other than least squares. These estimation procedures arc discussed in Myers 
(1990), listed in the Bibliography. 

The sequential procedures discussed here represent three of many such methods 
that have been put forth in the literature and appear in various regression computer 
packages that are available. These methods are: designed to be computationally 
efficient but, of course, do not give results for all possible subsets of the variables. 
As a result, the procedures are most effective in data sets that involve a large 
number of variables. In regression problems involving a relatively small number 
of variables, modern regression computer packages allow for the computation and 
summarization of quantitative information on all models for every possible subset 
of the variables. Illustrations are provided in Section 12.11. 

12.10 Study of Residuals and Violation of Assumptions (Model 
Checking) 

It was suggested earlier in this chapter that, the residuals, or errors in the regression 
fit, often carry information that can be very informative to the data analyst. The 
ei — Vi — Vh i = \,2,...,n, which are the numerical counterpart to the Cj's, 
the model errors, often shed light on the possible: violation of assumptions or the 
presence of "suspect" data points. Suppose that wc: let the vector x; denote the 
values of the regressor variables corresponding to the v'th data point, supplemented 
by a 1 in the initial position. That is, 

X; = {l,XU,X2i,-..,Xki}-

Consider the quantity 

hu = x'i(X'X)-1xi, i. = 1,2,...,n. 

The reader should recognize that hu is used in the computation of the confidence 
intervals on the mean response in Section 12.5. Apart from er2, hu represents the 
variance of the fitted value y\. The hu values are the diagonal elements of the 
HAT matrix 

H = X ( X ' X ) _ 1 X ' , 

which plays an important role in any study of residuals and in other modern aspects 
of regression analysis (see the reference to Myers, 1990, listed in the Bibliography). 
The term HAT matrix is derived from the fact that H generates the il?/-hats" or 
the fitted values when multiplied by the vector y of observed responses. That is, 
y = Xb and thus 

y = X ( X ' X ) - 1 X ' y = Hy, 

where y is the vector whose ith element is y.,. 
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If we make the usual assumptions that the £j's are independent and normally 
distributed with zero mean and variance er2, the statistical properties of the resid
uals are readily characterized. Then 

E(et) = E(yi - m) = 0, and a2 - (1 - hu)a2, 

for i = 1,2,.. . , n. (See the Myers, 1990, reference for details.) It can be shown 
that the HAT diagonal values are bounded according to the inequality 

- < hu < I-
n 

n 

In addition, Y2 hii — k + 1. the number of regression parameters. As a result, any 
t = i 

data point whose HAT diagonal element is large, that is, well above the average 
value of (A; + l ) /n , is in a position in the data set where the variance of y< is 
relatively large, and the variance of a residual is relatively small. As a result, the 
data analyst can gain some insight on how large a residual may become before its 
deviation from zero can be attributed to something other than mere chance. Many 
of the commercial regression computer packages produce the set of studentized 
residuals. 

Studentized „ _ e» • _ , 0 „ 
Residual sy/l - hu ' 

Here each residual has been divided by an es t imate of its s t andard de
viation, creating a t-like statistic that is designed to give the analyst a scale-free 
quantity that provides information regarding the size of the residual. In addition, 
standard computer packages often provide values of another set of studentized-type 
residuals, called the il-Student values. 

^-Student Residual . _ e» • _ -, 0 
H — H , • <• — 1, 4, . . . |T» 

S-iy/1 - hu 
where s_j is an estimate of the error standard deviation, calculated with the ith 
data point deleted. 

There are three types of violations of assumptions that are readily detected 
through use of residuals or residual plots. While plots of the raw residuals, the ei, 
can be helpful, it is often more informative to plot the studentized residuals. The 
three violations are as follows: 

1. Presence of outliers 

2. Heterogeneous error variance 

3. Model misspecification 

In case 1, we choose to define an outlier as a data point where there is a 
deviation from the usual assumption E(ti) = 0 for a specific value of i. If there is 
a reason to believe that a specific data point is an outlier exerting a large influence 
on the fitted model, r-j or ti may be informative. The E-Student values can be 
expected to be more sensitive to outliers than the r,- values. 

In fact, under the condition that F(ej) = 0, U is a value of a random variable 
following a /-distribution with n— l — (k+l) = n — k — 2 degrees of freedom. Thus 
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a two-sided /-test can be used to provide information for detecting whether or not 
the tth point is an outlier. 

Although the /2-Student statistic /, produces an exact /-test for detection of 
an outlier at a specific data location, the /-distribution would not apply for si
multaneously testing for outliers at all locations. As a result, the studentized 
residuals or /{-Student values should be used strictly as diagnostic tools without 
formal hypothesis testing as the mechanism. The implication is that these statis
tics highlight data points where the error of fit is larger than wdiat is expected by 
chance. Large /{-Student values in magnitude suggest a need for "checking" the 
data with whatever resources are possible. The practice of eliminating observa
tions from regression data sets should not be done indiscriminately. (For further 
information regarding the use of outlier diagnostics, see Myers, 1990, listed in the 
Bibliography.) 

Illustration of Outlier Detection 

Example 12.12:1 In a biological experiment conducted at the Virginia Polytechnic Institute and 
State University by the Department of Entomology, n experimental runs were 
made with two different methods for capturing grasshoppers. The methods are: 
drop net catch and sweep net catch. The average number of grasshoppers caught 
in a set of field quadrants on a given date is recorded for each of the two methods. 
An additional regressor variable, the average plant height in the quadrants, was 
also recorded. The experimental data are given in Table 12.10. 

Table 12.10: Data Set for Example 12.12 

Observation 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

Drop Net 
Catch, y 

18.0000 
8.8750 
2.0000 

20.0000 
2.3750 
2.7500 
3.3333 
1.0000 
1.3333 
1.7500 
4.1250 

12.8750 
5.3750 

28.0000 
4.7500 
1.7500 
0.1333 

Sweep Net 
Catch, xi 

4.15476 
2.02381 
0.15909 
2.32812 
0.25521 
0.57292 
0.70139 
0.13542 
0.12121 
0.10937 
0.56250 
2.45312 
0.45312 
6.68750 
0.86979 
0.14583 
0.01562 

Plant 
Height, £2 (cm) 

52.705 
42.069 
34.766 
27.622 
45.879 
97.472 

102.062 
97.790 
88.265 
58.737 
42.386 
31.274 
31.750 
35.401 
64.516 
25.241 
36.354 
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The goal is to be able to estimate grasshopper catch by using only the sweep 
net method, which is less costly. There was some concern about the validity of 
the fourth data point. The observed catch that was reported using the net drop 
method seemed unusually high given the other conditions and, indeed, it was felt 
that the figure might be erroneous. Fit a model of the type 

Pi =0O+0lXx + f%X2 

to the 17 data points and study the residuals to determine if data point 4 is an 
outlier. 

Solution: A computer package generated the fitted regression model 

y = 3.6870 + 4.1050.fi - 0.0367£2 

along with the statistics R2 = 0.9244 and s2 = 5.580. The residuals and other 
diagnostic information were also generated and recorded in Table 12.11. 

Table 12.11: Residual Information for the Data Set of Example 12.12 

Obs. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

Vi 

18.000 
8.875 
2.000 

20.000 
2.375 
2.750 
3.333 
1.000 
1.333 
1.750 
4.125 

12.875 
5.375 

28.000 
4.750 
1.750 
0.133 

Vi 
18.809 
10.452 
3.065 

12.231 
3.052 
2.464 
2.823 
0.656 
0.947 
1.982 
4.442 

12.610 
4.383 

29.841 
4.891 
3.360 
2.418 

Vi - Vi 
-0.809 
-1.577 
-1.065 

7.769 
-0.677 

0.286 
0.510 
0.344 
0.386 

-0.232 
-0.317 

0.265 
0.992 

-1.841 
-0.141 
-1.610 
-2.285 

hu 

0.2291 
0.0766 
0.1364 
0.1256 
0.0931 
0.2276 
0.2669 
0.2318 
0.1691 
0.0852 
0.0884 
0.1152 
0.1339 
0.6233 
0.0699 
0.1891 
0.1386 

Sy/1 — hu 

2.074 
2.270 
2.195 
2.209 
2.250 
2.076 
2.023 
2.071 
2.153 
2.260 
2.255 
2.222 
2.199 
1.450 
2.278 
2.127 
2.193 

n 
-0.390 
-0.695 
-0.485 

3.517 
-0.301 

0.138 
0.252 
0.166 
0.179 

-0.103 
-0.140 

0.119 
0.451 

-1.270 
-0.062 
-0.757 
-1.042 

U 

-0.3780 
-0.6812 
-0.4715 

9.9315 
-0.2909 

0.1329 
0.2437 
0.1601 
0.1729 

-0.0989 
-0.1353 

0.1149 
0.4382 

-1.3005 
-0.0598 
-0.7447 
-1.0454 

As expected, the residual at the fourth location appears to be unusually high, 
namely, 7.769. The vital issue here is whether or not this residual is larger than one 
would expect by chance. The residual standard error for point 4 is 2.209. The R-
Student value t4 is found to be 9.9315. Viewing this as a value of a random variable 
having a /-distribution with 13 degrees of freedom, one would certainly conclude 
that the residual of the fourth observation is estimating something greater than 0 
and that the suspected measurement error is supported by the study of residuals. 
Notice that no other residual results in an /{-Student value that produces any cause 
for alarm. J 

http://1050.fi
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Plot t ing Residuals 

In Chapter 11 wc discuss, in some detail, the usefulness of plotting residuals in 
regression analysis. Violation of model assumptions can often be detected through 
these plots. In multiple regression normal probability plotting of residuals or plots 
of residuals against y may be useful. However, it is often preferable to plot stu
dentized residuals. 

Keep in mind that the preference of the studentized residuals over ordinary 
residuals for plotting purposes stems from the fact that since the variance of the 
ith residual depends on the ith HAT diagonal, variances of residuals will differ 
if there is a dispersion in the HAT diagonals. Thus the appearance of a plot of 
residuals may depict heterogeneity because the residuals themselves do not behave, 
in general, in an ideal way. The purpose of using studentized residuals is to provide 
a standardization. Clearly, if a were known, then under ideal conditions (i.e., a 
correct model and homogeneous variance), we have 

E 
[oy/T^hTi) 

= 0, and Var 
ay/\ — hi 

= 1. 

So the studentized residuals produce a set of statistics that behave in a standard 
way under ideal conditions. Figure 12.5 shows a plot of the /{-Student values 
for the grasshopper data of Example 12.12. Note how the value for observation 4 
stands out from the rest. The /{-Student plot was generated by SAS software. The 
plot shows the residual against the y-values. 

T 
10 15 20 

Predicted Value of Y 

T 
25 30 

Figure 12.5: /{-Student values plotted against predicted values for grasshopper 
data of Example 12.12. 
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Normality Checking 

The reader should recall the importance of normality checking through the use of 
normal probability plotting as discussed in Chapter 11. The: same recommendation 
holds for the case of multiple linear regression. Normal probability plots can be 
generated using standard regression software. Again, however, they can be more 
effective when one does not use ordinary residuals but, rather, studentized residuals 
or /{-Student values. 

12.11 Cross Validation, Cp, and Other Criteria for Model 
Selection 

For many regression problems the experimenter must choose between various al
ternative models or model forms that are developed from the same data set. Quite 
often, in fact, the model that best predicts or estimates mean response is required. 
The experimenter should fake into account the relative sizes of the .s,2-values for 
the candidate models and certainly the general nature of the confidence intervals 
on the mean response. One must also consider how well the model predicts re
sponse values that were not used in building the candidate models. The 
models should be subjected to cross validation. What, is required, then, are 
cross-validation errors rather than fitting errors. Such errors in prediction are the 
PRESS residuals 

Si = Vi ~§i,-i, i = 1,2, 

where ?/,;._,• is the prediction of the ith data point by a model that did not. make 
use of the ith point in the calculation of the coefficients. These PRESS residuals 
are calculated from the formula 

fc-i-Ar-. i=l,2,...,n, 
1 - li.,t 

(The derivation can be found in the regression textbook by Myers, 1990). 

Use of the PRESS Statistic 

The motivation for PRESS and the utility of PRESS residuals is very simple to 
understand. The purpose of extracting or setting aside data, points one at a time is 
to allow the use; of separate methodologies for fitting and assessment of a specific 
model. For assessment of a model the "—f indicates that the PRESS residual 
gives a prediction error where the observation being predicted is independent of 
the model, fit. 

Criteria that make use of the PRESS residuals are given by 

Y,\5i\ and PRESS = J^«f. 
2 = 1 

The term PRESS is an acronym for the prediction sum of squares. We suggest 
that both of these criteria be used. It is possible for PRESS to be dominated by one 
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n 
or only a few large PRESS residuals. Clearly, the criteria YI \°i\ }S l e s s sensitive 

i = l 
to a small number of large values. 

In addition to the PRESS statistic itself, the analyst can simply compute an 
"R2-hke" statistic reflecting prediction performance. The statistic is often called 
R2

d and is given as follows: 

R? of Prediction Given a fitted model with a specific value for PRESS, R2
red is given by 

PRESS 
R2 - 1 
•"•pred ± 

Zivi-v)2 

i=X 

Note that. /{2
 (1 is merely the ordinary R2 statistic with SSE replaced by the 

PRESS statistic. 
In the following example a "case-study" illustration is provided in which many-

candidate models are fit to a set of data and the best model is chosen. The 
sequential procedures described in Section 12.9 are not used. Rather, the role of 
the PRESS residuals and other statistical values in selecting the best regression 
equation is illustrated. 

Example 12.13:1 Case S tudy Leg strength is a necessary ingredient of a successful punter in 
American football. One measure of the quality of a good punt is the "hang time." 
This is the time that the ball hangs in the air before being caught by the punt 
returner. To determine what leg strength factors influence hang time and to de
velop an empirical model for predicting this response, a study on The Relationship 
Between Selected Physical Performance Variables and Football Punting Ability was 
conducted by the Department of Health, Physical Education, and Recreation at 
the Virginia Polytechnic Institute and State University. Thirteen punters were 
chosen for the experiment and each punted a football 10 times. The average hang 
time, along with the strength measures used in the analysis, were recorded in Table 
12.12. 

Each regressor variable is defined as follows: 

1. RLS, right leg strength (pounds) 

2. LLS, left leg strength (pounds) 

3. RHF, right hamstring muscle flexibility (degrees) 

4. LHF, left hamstring muscle flexibility (degrees) 

5. Power, Overall leg strength (foot-pounds) 

Determine the most appropriate model for predicting hang time. 
Solution: In the search for the "best" of the candidate models for predicting hang time, the 

information in Table 12.13 was obtained from a regression computer package. The 
models are ranked in ascending order of the values of the PRESS statistic. This 
display provides enough information on all possible models to enable the user to 
eliminate from consideration all but a few models. The model containing x2 and £5 
(LL5and Power), denoted by £2£s, appears to be superior for predicting punter 
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Table 12.12: Data for Example 12.13 

Punter 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

Hang Time, 
V (sec) 

4.75 
4.07 
4.04 
4.18 
4.35 
4.16 
4.43 
3.20 
3.02 
3.64 
3.68 
3.60 
3.85 

RLS, 
Xx 
170 
140 
180 
160 
170 
150 
170 
110 
120 
130 
120 
140 
160 

LLS, 
X2 

170 
130 
170 
160 
150 
150 
180 
110 
110 
120 
140 
130 
150 

RHF, 
x3 

106 
92 
93 

103 
104 
101 
108 
86 
90 
85 
89 
92 
95 

LHF, 
£4 

106 
93 
78 
93 
93 
87 

106 
92 
86 
80 
83 
94 
95 

Power, 
£5 

240.57 
195.49 
152.99 
197.09 
266.56 
260.56 
219.25 
132.68 
130.24 
205.88 
153.92 
154.64 
240.57 

hang time. Also note that all models with low PRESS, low .s2, low Y2 \^i\, and 
t= i 

high /{2-values contain these two variables. 
In order to gain some insight from the residuals of the fitted regression 

Pi =bo + b2x2i +b5x5i, 

the residuals and PRESS residuals were generated. The actual prediction model 
(see Exercise 12.47 on page 496) is given by 

y = 1.10765 + 0.01370.X-2 + 0.00429£5. 

Residuals, hat diagonal values, and PRESS values are listed in Table 12.14. 
Note the relatively good fit of the two-variable regression model to the data. 

The PRESS residuals reflect the capability of the regression equation to predict 
hang time if independent predictions were to be made. For example, for punter 
number 4, the hang time of 4.180 would encounter a prediction error of 0.039 if the 
model constructed by using the remaining 12 punters were used. For this model, 
the average prediction error or cross-validation error is 

1=1 

0.1489 second, 

which is small compared to the average hang time for the 13 punters. J 
We indicate in Section 12.9 that the use of all possible subset regressions is often 

advisable when searching for the best model. Most commercial statistics software 
packages contain all possible regressions routine. These algorithms compute various 
criteria for all subsets of model terms. Obviously, criteria such as R2, s2, and 
PRESS are reasonable for choosing among candidate subsets. Another very popular 
and useful statistic, particularly for areas in the physical sciences and engineering, 
is the Cp statistic, described below. 
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Table 12.13: Comparing Different Regression Models 

Model £1*1 PRESS R2 

The Cv 

X2X5 

£l£'2£5 

X2X4X$ 

x2x3x5 

XiX2X.lX5 

£ l £ 3 £ 3 £ 5 

£2 £3 £4^5 

£l £3.1:5 

£l £.l£5 

Xixr, 
x2x3 

XiX3 

XxX2X3X4Xs 

£2 

£3*5 

£l£2 

x3 

£l£3£.-l 

£2«3X4 

X2X,i 

X\X2X3 

X3X<\ 

X1X4 

X\ 

£ 1£ 3£4£ 3 

£l£2£4 

£3£.l£5 

£l£2£3£4 

£5 

£.l£5 

£.1 

Statistic 

0.036907 
0.041001 
0.037708 
0.039636 
0.042265 
0.044578 
0.042421 
0.053664 
0.056279 
0.059621 
0.056153 
0.059400 
0.048302 
0.066894 
0.065678 
0.068402 
0.074518 
0.065414 
0.062082 
0.063744 
0.059670 
0.080605 
0.069965 
0.080208 
0.059169 
0.064143 
0.072505 
0.066088 
0.111779 
0.105648 
0.186708 

1.93583 
2.06489 
2.18797 
2.09553 
2.42194 
2.26283 
2.55789 
2.65276 
2.75390 
2.99434 
2.95310 
3.01436 
2.87302 
3.22319 
3.09474 
3.09047 
3.06754 
3.36304 
3.32392 
3.59101 
3.41287 
3.28004 
3.64415 
3.31562 
3.37362 
3.89402 
3.49695 
3.95854 
4.17839 
4.12729 
4.88870 

0.54683 
0.58998 
0.59915 
0.66182 
0.67840 
0.70958 
0.86236 
0.87325 
0.89551 
0.97483 
0.98815 
0.99697 
1.00920 
1.04564 
1.05708 
1.09726 
1.13555 
1.15043 
1.17491 
1.18531 
1.26558 
1.28314 
1.30194 
1.30275 
1.36867 
1.39834 
1.42036 
1.52344 
1.72511 
1.87734 
2.82207 

0.871300 
0.871321 
0.881658 
0.875606 
0.882093 
0.875642 
0.881658 
0.831580 
0.823375 
0.792094 
0.804187 
0.792864 
0.882096 
0.743404 
0.770971 
0.761474 
0.714161 
0.794705 
0.805163 
0.777716 
0.812730 
0.718921 
0.756023 
0.692334 
0.834936 
0.798692 
0.772450 
0.815633 
0.571234 
0.631593 
0.283819 

Quite often the choice of the most appropriate model involves many considerations. 
Obviously, the number of model terms is important; the matter of parsimony is 
a consideration that cannot be ignored. On the other hand, the analyst cannot 
be pleased with a model that is too simple, to the point where there is serious 
underspecification. A single statistic that represents a nice compromise in this 
regard is the Cp statistic. (See the Mallows reference in the Bibliography.) 

The Cv statistic appeals nicely to common sense and is developed from con
siderations of the proper compromise between excessive bias incurred when one 
underfits (chooses too few model terms) and excessive prediction variance pro
duced when one overfits (has redundancies in the model). The Cp statistic is a 
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Table 12.14: PRESS Residuals 

Punter 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

Vi 
4.750 
4.070 
4.040 
4.180 
4.350 
4.160 
4.430 
3.200 
3.020 
3.640 
3.680 
3.600 
3.850 

Vi 
4.470 
3.728 
4.094 
4.146 
4.307 
4.281 
4.515 
3.184 
3.174 
3.636 
3.687 
3.553 
4.196 

e* =Vi ~ Vi 
0.280 
0.342 

-0.054 
0.034 
0.043 

-0.121 
-0.085 

0.016 
-0.154 

0.004 
-0.007 

0.047 
-0.346 

hu 
0.198 
0.118 
0.444 
0.132 
0.286 
0.250 
0.298 
0.294 
0.301 
0.231 
0.152 
0.142 
0.154 

Si 

0.349 
0.388 

-0.097 
0.039 
0.060 

-0.161 
-0.121 

0.023 
-0.220 

0.005 
-0.008 

0.055 
-0.409 

simple function of the total number of parameters in the candidate model and the 
mean square error s2. 

We will not present the entire development of the Cp statistic. (For details the 
reader is referred to the textbook by Myers in the Bibliography.) The Cp for a 
particular subset model is an estimate of the following: 

i n 1 n 

r(p) = ^ £ V a r ^ ) + 3 E ( B i a s &¥• 
i= l t=l 

It turns out that under the standard least squares assumptions indicated earlier 
in this chapter, and assuming that the "true" model is the model containing all 
candidate variables. 

1 -
—̂  Y j Var(yi) = p (number of parameters in the candidate model) 

t = i 

(see Review Exercise 12.61) and an unbiased estimate of 

- l ^ B i a s y , ) 2 is given by ±fffi* yt? = ^JZSf^A. 
i=l i=l 

In the above, s2 is the mean square error for the candidate model, and CJ2 is the 
population error variance. Thus if we assume that some estimate a2 is available 
for er2, Cp is given by 

Cp Statistic (s2 - a2)(n - p) 
Cp = p+ ^2 , 

where p is the number of model parameters, s2 is the mean square error for the 
candidate model, and CT2 is an estimate of a2. 
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Table 12.15: Data for Example 12.14 

District 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Promotional 
Accounts, £i 

5.5 
2.5 
8.0 
3.0 
3.0 
2.9 
8.0 
9.0 
4.0 
6.5 
5.5 
5.0 
6.0 
5.0 
3.5 

Active 
Accounts, x2 

31 
55 
67 
50 
38 
71 
30 
56 
42 
73 
60 
44 
50 
39 
55 

Competing 
Brands, x3 

10 
8 

12 
7 
8 

12 
12 
5 
8 
5 

11 
12 
6 

10 
10 

Potential, 
X\ 

8 
6 
9 

16 
15 
17 
8 

10 
4 

16 
7 

12 
6 
4 
4 

Sales, y 
(Thousands) 

$ 79.3 
200.1 
163.2 
200.1 
146.0 
177.7 
30.9 

291.9 
160.0 
339.4 
159.6 
86.3 

237.5 
107.2 
155.0 

Obviously, the scientist should adopt models with small values of Cp. The 
reader should note that, unlike the PRESS statistic, Cp is scale-free. In addition, 
one can gain some insight concerning adequacy of a candidate model by observing 
its value of Cp. For example, Cp > p indicates a model that is biased due to being 
an underfitted model, whereas Cp ~ p indicates a reasonable model. 

There is often confusion concerning wdiere d2 comes from in the formula for Cp. 
Obviously, the scientist or engineer does not have access to the population quantity 
<j2. In applications where replicated runs are available, say in an experimental 
design situation, a model-independent estimate of cr2 is available (see Chapters 11 
and 15). However, most software packages use cr2 as the mean square error from 
the most complete model. Obviously, if this is not a good estimate, the bias portion 
of the Cp statistic can be negative. Thus Cp can be less than p. 

Example 12.14:1 Consider the data set in Table 12.15, in which a maker of asphalt shingles is 
interested in the relationship between sales for a particular year and factors that 
influence sales. (The data were taken from Neter, Wassermann, and Kutner; see 
the Bibliography.) 

Of the possible subset models, three are of particular interest. These three are 
£2£3, £i£2£3, and £i£2£3£4- The following represents pertinent information for 
comparing the three models. We include the PRESS statistics for the three models 
to supplement the decision making. 

Model R2 R? PRESS 

£ 2 £ 3 

£ l £ 2 * 3 
XXX2X3X4 

0.9940 
0.9970 
0.9971 

0.9913 
0.9928 
0.9917 

44.5552 
24.7956 
26.2073 

782.1896 
643.3578 
741.7557 

11.4013 
3.4075 
5.0 
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Dependent V a r i a b l e : s a l e s 
Number in 

Model 

3 
4 
2 
3 
3 
2 
2 
1 
3 
2 
2 
1 
2 
1 
1 

C(p) 

3.4075 
5.0000 

11.4013 

13.3770 

1053.643 

1082.670 

1215.316 

1228.460 

1653.770 

1668.699 

1685.024 

1693.971 

3014.641 

3088.650 
3364.884 

R-Square 

0.9970 

0.9971 

0.9940 

0.9940 

0.6896 

0.6805 

0.6417 

0.6373 

0.5140 

0.5090 

0.5042 

0.5010 

0.1151 

0.0928 
0.0120 

Adjusted 

R-Square 

0.9961 
0.9959 

0.9930 

0.9924 

0.6049 

0.6273 

0.5820 

0.6094 

0.3814 

0.4272 

0.4216 

0.4626 
-.0324 

0.0231 

-.0640 

MSE 

24.79560 

26.20728 

44.55518 

48.54787 

2526.96144 

2384.14286 

2673.83349 

2498.68333 

3956.75275 

3663.99357 

3699.64814 

3437.12846 

6603.45109 

6248.72283 

6805.59568 

Variables i 

xl 
xl 
x2 
x2 
xl 
x3 
xl 
x3 
xl 
xl 
x2 
x2 
xl 
x4 
xl 

x2 
x2 
x3 
x3 
x3 
x4 
x3 

x2 
x2 
x4 

x4 

x3 
x3 x4 

x4 
x4 

x4 

Figure 12.6: SAS printout of all possible subsets on sales da ta for Example 12.14. 

It seems clear from the information in the table that the model xi,x2,x3 is 
preferable to the other two. Notice that , for the full model, Cp = 5.0. This occurs 
since the bias portion is zero, and a2 = 26.2073 is the mean square error from the 
full model. J 

Figure 12.6 is a 5.45 PROC REG annotated printout showing information for 
all possible regressions. Here we are able to show comparisons of other models with 
(xi,x2,x3). Note that (xi,X2,Xs) appears to be quite good when compared to all 
models. 

As a final check on the model (xi>X2,X3), Figure 12.7 shows a normal proba
bility plot of the residuals for this model. 

Exercises 

12.47 Consider the "hang time" punting data given 
in Example 12.13, using only the variables x2 and x3. 

(a) Verify the regression equation shown on page 492. 
(b) Predict punter hang time for a punter with LLS = 

180 pounds and Power = 260 foot-pounds. 
(c) Construct a 95% confidence interval for the mean 

hang time of a punter with LLS = 180 pounds and 
Power = 260 foot-pounds. 

12.48 For the data of Exercise 12.11 on page 454, use 
the techniques of 

(a) forward selection with a 0.05 level of significance to 
choose a linear regression model; 

(b) backward eliniinalion with a 0.05 level of signifi
cance to choose a linear regression model; 

(c) stepwise regression with a 0.05 level of significance 
to choose a linear regression model. 

12.49 Use the techniques of backward elimination 
with a = 0.05 to choose a prediction equation for the 
data of Table 12.8. 
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- 1 0 1 

Theoretical Quantiles 

Figure 12.7: Normal probability plot of residuals using the model £i£2£3 for Ex
ample 12.14. 

12.50 For the punter data in Example 12.13, an addi
tional response, "punting distance," was also recorded. 
The following are average distance values for each of 
the 13 punters: 

Punter 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

Distance, y (ft) 

162.50 
144.00 
147.50 
163.50 
192.00 
171.75 
162.00 
104.93 
105.67 
117.59 
140.25 
150.17 
165.16 

(a) Using the distance data rather than the hang times, 
estimate a multiple linear regression model of the 
type 

PY\xi,X2,X3,x4,X5 

= 00 + j3lXl + 32^2 + 03X3 + #ia\] + 05X3 

for predicting punting distance. 
(b) Use stepwise regression with a significance level of 

0.10 to select a combination of variables. 
13 

(c) Generate values for s2, R2, PRESS, and YI l&l f o r 

the entire set of 31 models. Use this information 
to determine the best combination of variables for 
predicting punting distance. 

(d) For the final model you choose plot the standard
ized residuals against. Y and do a normal probabil
ity plot of the ordinary residuals. Comment. 

12.51 The following is a set of data for y, the amount 
of money (thousands of dollars) contributed to the 
alumni association at Virginia Tech by the Class of 
1960, and x, the number of years following graduation: 

y 
812.52 
822.50 
1211.50 
1348.00 
1301.00 
2567.50 
2526.50 

X 

1 
2 
3 
4 
8 
9 
10 

y 
2755.00 
4390.50 
5581.50 
5548.00 
6086.00 
5764.00 
8903.00 

X 

11 
12 
13 
14 
15 
16 
17 

(a) Fit a regression model of the type 

PY\x = 00 +0lX. 

(b) Fit a quadratic model of the type 

HY\x =0o + 0\x + 3nx . 

(c) Determine which of the models in (a) or (b) is 
preferable. Use s2, R2, and the PRESS residuals 
to support your decision. 
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12.52 For the model of Exercise 12.50(a), test the hy
pothesis 

Ho: 34 = 0, 

Hi: 3,i # 0. 

Use a P-value in your conclusion. 

12.53 For the quadratic model of Exercise 12.51(b), 
give estimates of the variances and covariances of the 
estimates of 0\ and 0i i. 

12.54 In an effort to model executive compensation 
for the year 1979, 33 firms were selected, and data were 
gathered on compensation, sales, profits, and employ
ment. Consider the model 

yt =0o + 0i lnrnii + 02 \nx2i 

+ 03\nx3i + ei, i = 1,2 33. 

(a) Fit the regression with the model above. 
(b) Is a model with a subset of the variables preferable 

to the full model? 

12.55 Rayon whiteness is an important factor for sci
entists dealing in fabric quality. Whiteness is affected 
by pulp quality and other processing variables. Some 
of the variables include acid bath temperature, °C (xi); 
cascade acid concentration, % (a^); water temperature, 
°C (x3); sulfide concentration, % (aii); amount of chlo
rine bleach, lb/min (xs)\ blanket finish temperature, 
°C (.%). A set of data taken on rayon specimens is 
given here. The response, y, is the measure of white
ness. 

(a) Use the criteria MSE, Cp, and PRESS to give the 
best model from among all subset models. 

(b) Do a normal probability plot of residuals for the 
"best" model. Comment. 

Firm 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

Compen
sation, y Sales, xi 

(thousands) (millions) 
$450 
387 
368 
277 
676 
454 
507 
496 
487 
383 
311 
271 
524 
498 
343 
354 
324 
225 
254 
208 
518 
406 
332 
340 
698 
306 
613 
302 
540 
293 
528 
456 
417 

$4,600.6 
9,255.4 
1,526.2 
1,683.2 
2. 752.8 
2.205.8 
2.384.6 
2.746.0 
1,434.0 

470.6 
1,508.0 

464.4 
9,329.3 
2,377.5 
1,174.3 

409.3 
724.7 
578.9 
966.8 
591.0 

4,933.1 
7,613.2 
3,457.4 

545.3 
22,862.8 

2,361.0 
2,614.1 
1,013.2 
4,560.3 

855.7 
4,211.6 
5, 440.4 
1.229.9 

Profits, x2 
(millions) 

$128.1 
783.9 
136.0 
179.0 
231.5 
329.5 
381.8 
237.9 
222.3 

63.7 
149.5 
30.0 

577.3 
250.7 

82.6 
61.5 
90.8 
63.3 
42.8 
48.5 

310.6 
491.6 
228.0 

54.6 
3011.3 

203.0 
201.0 
121.3 
194.6 
63.4 

352.1 
655.2 

97.5 

Employ
ment , x3 

48. 000 
55.900 
13.783 
27.765 
34.000 
26.500 
30.800 
41.000 
25.900 
8.600 

21.075 
6,874 

39,000 
34,300 
19.405 
3.586 
3.905 
4.139 
6,255 

10,605 
65, 392 
89,400 
55, 200 

7,800 
337.119 

52, 000 
50, 500 
18, 625 
97,937 
12,300 
71,800 
87, 700 
14,600 

y X\ X2 £ l X.l X5 X6 

88.7 
89.3 
75.5 
92.1 
83.4 
44.8 
50.9 
78.0 
86.8 
47.3 
53.7 
92.0 
87.9 
90.3 
94.2 
89.5 

43 
42 
47 
46 
52 
50 
43 
49 
51 
51 
48 
46 
43 
45 
53 
47 

0.211 
0.604 
0.450 
0.641 
0.370 
0.526 
0.486 
0.504 
0.609 
0.702 
0.397 
0.488 
0.525 
0.486 
0.527 
0.601 

85 
89 
87 
90 
93 
85 
83 
93 
90 
80 
92 
88 
85 
84 
87 
95 

0.243 
0.237 
0.198 
0.194 
0.198 
0.221 
0.203 
0.279 
0.220 
0.198 
0.231 
0.211 
0.199 
0.189 
0.245 
0.208 

0.606 
0.600 
0.527 
0.500 
0.485 
0.533 
0.510 
0.489 
0.462 
0.478 
0.411 
0.387 
0.437 
0.499 
0.530 
0.500 

48 
55 
61 
6a 
54 
60 
57 
49 
64 
63 
61 
88 
63 
58 
65 
67 

12.56 A client from the Department of Mechanical 
Engineering approached the Consulting Center at Vir
ginia Polytechnic Institute and State University for 
help in analyzing an experiment dealing with gas tur
bine engines. Voltage output of engines was measured 
at various combinations of blade speed and voltage 
measuring sensor extension. The data are as follows: 

y 
(volts) 

1.95 
2.50 
2.93 
1.69 
1.23 
3.13 
1.55 
1.94 
2.18 
2.70 
1.32 
1.60 
1.89 

Speed , £i 
(in. / sec ) 

6336 
7099 
8026 
6230 
5369 
8343 
6522 
7310 
7974 
8501 
6646 
7384 
8000 

Extension, 
X2 ( in . ) 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.006 
0.006 
0.006 
0.006 
0.012 
0.012 
0.012 
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(a) Fit a regression model using all independent vari
ables. 

(b) Use stepwise regression with input significance level 
0.25 and removal significance level 0.05. Give your 
final model. 

(c) Use all possible regression models and compute R.~, 
Cv, s~, adjusted R~ for all models. 

(d) Give final model. 

(e) For your model in part (d), plot studentized resid
uals (or fl-Student) and comment. 

y 
(volts) 

2.15 
1.09 
1.26 
1.57 
1.92 

Speed, xi 
( in . /sec) 

8545 
6755 
7362 
7934 
8554 

Ex tens ion , 
xj ( in . ) 

0.012 
0.018 
0.018 
0.018 
0.018 

(a) Fit a multiple linear regression to the data, 
(h) Compute (-tests on coefficients. Give P-values. 
(c) Comment on the quality of the fined mode:!. 

12.57 The pull strength of a wire bond is an inipor- 1 2 5 8 F()|. B x ( T c i s ( , l 2 .57, test H0: 0i = f% = 0. Give 
taut, characteristic. rIhe table below gives Information p.values and comment 
on pull strength y, die height xi, post height x2, loop 
height Xi, wire length a*, bond width on the die xr,, 12.59 In Exercise- 12.28, page 464, we have the fol-
anel bond width on the post x6. [Data from Myers and lowing data concerning wear of a bearing: 
.Montgomery (2002).] 

y (wear) £j (oil viscosity) x2 ( load) 
1. Ei x- ^ ^1 S 5 L _ 193 1.0 851 

230 15.5 816 
172 22.0 1058 
91 43.0 1201 

113 33.0 1357 
125 40.0 1115 

(a) The following model may be considered to describe 
this data: 

yi = 00 + 0\Xl, + ,32X21 + 0\2XUX2i + «,, 

8.0 
8.3 
8.5 
8.8 
9.0 
9.3 
9.3 
9.5 
9.8 

10.0 
10.3 
10.5 
10.8 
11.0 
11.:', 
11.5 
11.8 
12.3 
12.5 

5.2 
5.2 
5.8 
6.4 
5.8 
5.2 
5.6 
6.0 
5.2 
5.8 
0.4 
6.0 
6.2 
6.2 
6.2 
5.6 
6.0 
5.8 
5.6 

19.6 
19.8 
19.6 
19.4 
18.6 
18.8 
20.4 
19.0 
20.8 
19.9 
18.0 
20.6 
20.2 
20.2 
19.2 
17.0 
19.8 
18.8 
18.6 

29.6 
32.4 
31.0 
32.4 
28.6 
30.6 
32.4 
32.6 
32.2 
31.8 
32.6 
33.4 
31.8 
32.4 
31.4 
33.2 
35.4 
34.0 
34.2 

94.9 
89.7 
96.2 
95.6 
86.5 
84.5 
88.8 
85.7 
93.6 
86.0 
87.1 
93.1 
83.4 
94.5 
83.4 
85.2 
84.1 
80.9 
83.0 

2.1 
2.1 
2.0 
2.2 
2.0 
2.1 
2.2 
2.1 
2.3 
2.1 
2.0 
2.1 
2.2 
2.1 
1.9 
2.1 
2.0 
2.1 
1.9 

2.3 
1.8 
2.0 
2.1 
1.8 
2.1 
1.9 
1.9 
2.1 
1.8 
1.(1 
2.1 
2.1 
1.9 
1.8 
2.1 
1.8 
1.8 
2.0 

for i = 1 ,2 , . . . ,6 . The %\X2 is an "interaction"' 
term. Fit this model and estimate the parameters. 

(b) Use the models (x\), (£1,12), (x2). (xi ,£2,£i£a) 
and compute PRESS, Cp, and s" to determine the 
'best'' model. 

12.12 Special Nonlinear Models for Nonideal Conditions 

In much of the preceding material in this chapter and in Chapter 11 wc have 
benefited substantially from the assumption tha t the model errors, the ei, are 
normal with mean zero and constant variance o . However, there are many real-
life situations in which the response is clearly nonnormal. For example, a wealth 
of applications exist where the r e s p o n s e is b i n a r y (0 or 1) and hence Bernoulli 
in nature . In the1 social sciences the problem may be to develop a model to predict 
whether or not an individual is a good credit risk or not (0 or 1) as a function of 
certain socioeconomic regressors such as income, ago, gender and level of education. 
In a biomedical drug trial the response is often whether or not the patient responds 
positively to a drug while regressors may include drug dosage as well as biological 
factors such us age, weight, and blood pressure. Again the response is binary 
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in nature. Applications are also abundant in manufacturing areas where certain 
controllable factors influence whether a manufactured item is defective or not. 

A second type of nonnormal application on which we will touch briefly has to do 
with count data. Here the assumption of a Poisson response is often convenient. 
In biomedical applications the number of cancer cell colonies may be the response 
which is modeled against drug dosages. In the textile industry the number of 
imperfections per yard of cloth may be a reasonable response which is modeled 
against certain process variables. 

Nonhomogeneous Variance 

The reader should note the comparison of the ideal (i.e., the normal response) 
situation with that of the Bernoulli (or binomial) or the Poisson response. We 
have become accustomed to the fact that the normal case is very special in that 
the variance is independent of the mean. Clearly this is not the case for either 
Bernoulli or Poisson responses. For example, if the response is 0 or 1, suggesting a 
Bernoulli response, then the model is of the form 

p = f(x.0), 

where p is the probability of a success (say response = 1). The parameter 
p plays the role of py\x in the normal case. However, the Bernoulli variance is 
»(1 - p), which, of course, is also a function of the regressor x. As a result, the 
variance is not constant. This rules out the use of standard least squares that we 
have utilized in our linear regression work up to this point. The same is true for 
the Poisson case since the model is of the form 

X = fix,0), 

with Var(y) = uv = A. which varies with x. 

Binary Response (Logistic Regression) 

The most popular approach to modeling binary responses is a technique entitled 
logistic regression. It is used extensively in the biological sciences, biomedical 
research, and engineering. Indeed, even in the social sciences binary responses are 
found to be plentiful. The basic distribution for the response is either Bernoulli or 
binomial. The former is found in observational studies where there are no repeated 
runs at each regressor level while the latter will be the case when an experiment is 
designed. For example, in a clinical trial in which a new drug is being evaluated 
the goal might be to determine the dose of the drug that provides efficacy. So 
certain doses will be employed in the experiment and more than one subject will 
be used for each dose. This case is called the grouped case. 

W h a t Is the Model for Logistic Regression? 

In the case of binary responses the mean response is a probability. In the preceding 
clinical trial illustration, we might say that we wish to estimate the probability that 
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the patient responds properly to the drug (P(success)). Thus the model is written 
in terms of a probability. Given regressors x, the logistic function is given by 

P = 
1 

1 + e-* '" ' 

The portion x'3 is called the linear predictor and in the case of a single regressor 
x it might be written x'0 = 0O + 0ix. Of course, we do not rule out involving 
multiple regressors and polynomial terms in the so-called linear predictor. In the 
grouped case the model involves modeling the mean of a binomial rather than a 
Bernoulli and thus we have the mean given by 

np = 
n 

1+e -x'3' 

Characteristics of Logistic Function 

A plot of the logistic function reveals a great deal about its characteristics and 
why it is utilized for this type of problem. First, the function is nonlinear. In 
addition, the plot in Figure 12.8 reveals the S-shape with the function approaching 
p = 1.0 as an asymptote. In this case 0i > 0. Thus we would never experience an 
estimated probability exceeding 1.0. 

Figure 12.8: The logistic function. 

The regression coefficients in the linear predictor can be estimated by the 
method of maximum likelihood as described in Chapter 9. The solution to the 
likelihood equations involves an iterative methodology that will not be described 
here. However, we will present an example and discuss the computer printout and 
conclusions. 

Example 12.15: The data set in Table 12.16 is an example of the use of logistic regression to analyze 
a single agent quantal bioassay of a toxicity experiment. The results show the effect 
of different doses of nicotine on the common fruit fly. 

The purpose of the experiment was to use logistic regression to arrive at an 
appropriate model relating probability of "kill" to concentration. In addition, the 



502 Chapter 12 Multiple Linear Regression and Certain Nonlinear Regression Models 

Table 12.16: Data Set for Example 12.15 

X 

Concentration 
(g rams/100 

0.10 
0.15 
0.20 
0.30 
0.50 
0.70 
0.95 

cc) 

iy 
Number of 

Insects 
47 
53 
55 
52 
46 
54 
52 

y 
Number 

Killed 

8 
14 
24 
32 
38 
50 
50 

Percent 
Killed 

17.0 
26.4 
43.6 
61.5 
82.6 
92.6 
96.2 

analyst sought the so-called effective dose (ED), that is, the concentration of 
nicotine that results in a certain probability. Of particular interest is the ED50, 
the concentration that produces a 0.5 probability of "insect kill." 

This example is grouped and thus the model is given by 

E(Yi) = mpi = 
1 4. e-(%+&\Xi)' 

Estimates of 0Q and 0\ and their standard errors are found by maximum likeli
hood. Tests on individual coefficients are found using x2-statistics rather than 
^-statistics since there is no common variance a2. The x2-statistic is derived from 
/ coeff \ 2 

\ standard error/ 
Thus we have the following from a SMS PROC LOGIST printout. 

00 
01 

df 
1 
1 

Estimate 
-1.7361 

6.2954 

Analysis of Parameter Estimates 
Standard Error Chi-Squared 

0.2420 51.4482 
0.7422 71.9399 

P-value 

< 0.0001 
< 0.0001 

Both coefficients are significantly different from zero. Thus the fitted model used 
to predict the probability of "kill" is given by 

1 
P = 1 _|_ e-(-1.73(il+0.2954x) ' 

Est imate of Effective Dose 

The estimate of ED50 is found very simply from the estimate 60 for 0Q and 61 for 
0x. From the logistic function, we see that 

\og(-^-\=0Q+0xx. 

As a result for p = 0.5, an estimate of x is found from 

60 + bxx = 0. 
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Thus the ED50 is given by 

x = - ( ~ j = 0.276 grams/100 cc. 

Concept of Odds Ratio 

Another form of inference tha t is conveniently accomplished using logistic regres
sion is derived from the use of the odds rat io. The odds rat io is designed to 

Definition 12.1: 

determine how the o d d s of succes s = j ^ — increases as certain changes in regres
sor values occur. For example, in the case of Example 12.15 we may wish to know 
how the odds increases if one were to increase dosage by, say, 0.2 gram/lOOcc. 

In 
to 

logistic regression 
that of condition 

an odds ratio is 
1 in the regressort 

b/(i-
b/U-

the ratio of odds of 
, that is, 

P)h 
p)W 

success at condition 2 

This allows the analyst to ascertain a sense of the utility of changing the regressor 

by a certain number of units. Now since ( j ^ - ) = eth+f>\--r^ (-uen for o u r Example 

12.15, the rat io reflecting the increase in odds of success when dosage of nicotine 
is increased by 0.2 grams/100 cc is given by 

gO.26, _ e(0.2)(6.2954) _ 3 ^2. 

The implication of an odds ratio of 3.522 is t ha t the odds of success is enhanced 
by a factor of 3.522 when the nicotine dose is increased by 0.2 g rams/100 cc. 

Review Exercises 

12.60 In the Department of Fisheries and Wildlife at 
Virginia Polytechnic Institute and State University, an 
experiment was conducted to study the effect of stream 
characteristics on fish biomass. The regressor variables 
are as follows: average depth (of 50 cells) (xi): area of 
in-stream cover (i.e., undercut banks, logs, boulders, 
etc.) (as); percent canopy cover (average of 12) (x3); 
area> 25 centimeters in depth (x4). The response is y, 
the fish biomass. The data are as follows: 

Obs . y Xl X2 Xa X.l 

1 
2 
3 
4 
5 
6 
7 
8 

100 
388 
755 

1288 
230 

0 
551 
345 

14.3 
19.1 
54.6 
28.8 
16.1 
10.0 
28.5 
13.8 

15.0 
29.4 
58.0 
42.6 
15.9 
56.4 
95.1 
60.6 

12.2 
26.0 
24.2 
26.1 
31.6 
23.3 
13.0 
7.5 

48.0 
152.2 
469.7 
485.9 

87.6 
6.9 

192.9 
105.8 

Obs. V Xi X2 Xi X l 

9 0 10.7 35.2 40.3 0.0 
10 348 25.9 52.0 40.3 116.6 

(a) Fit a multiple linear repression including all four 
regression variables. 

(b) Use Cp , R2, and s to determine the best subset of 
variables. Compute these statistics for all possible 
subsets. 

(c) Compare the appropriateness of the models in parts 
(a) and (b) for predicting fish biomass. 

12.61 Show that, in a multiple linear regression data 
set, 

53 /j« = ?'• 
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12.62 A small experiment is conducted to fit a mul
tiple regression equation relating the yield y to tem
perature Xi, reaction time x2, and concentration of one 
of the reactants xs. Two levels of each variable were 
chosen and measurements corresponding to the coded 
independent variables were recorded as follows: 

y X\ 3>2 X3 

efficient response 

7.6 
5.5 
9.2 

10.3 
11.6 
11.1 
10.2 
14.0 

- 1 
1 

- 1 
- 1 

1 
1 

- 1 
1 

- 1 
- 1 

1 
- 1 

1 
- 1 

1 
1 

- 1 
- 1 
- 1 

1 
- 1 

1 
1 
1 

(a) Using the coded variables, estimate the multiple 
linear regression equation 

UY\x = 3a + 01-t'l + 02'-t2 + 53J3. 

(b) Partition SSR, the regression sum of squares, 
into three single3-degree-of-freedom components at
tributable to x i , 2-2, and x3, respectively. Show an 
analysis-of-variance table, indicating significance 
tests on each variable. Comment of the results. 

12.63 In a chemical engineering experiment dealing 
with heat transfer in a shallow fluidized bed, data are 
collected on the following four regressor variables: flu-
idizing gas flow rate, lb/hr (xi); supernatant gas flow 
rate, lb/hr (X2); supernatant gas inlet nozzle opening, 
millimeters (as); supernatant gas inlet temperature, °F 
(x4). The responses measured are heat transfer effi
ciency (yi): thermal efficiency (1/2). The data are as 
follows: 

Obs . 2/i 2/2 Xl X-2 X.l XA 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

41.852 
155.329 
99.628 
49.409 
72.958 
107.702 
97.239 
105.856 
99.348 
111.907 
100.008 
175.380 
117.800 
217.409 
41.725 
151.139 
220.630 
131.666 
80.537 
152.966 

38.75 
51.87 
53.79 
53.84 
49.17 
47.61 
64.19 
52.73 
51.00 
47.37 
43.18 
71.23 
49.30 
50.87 
54.44 
47.93 
42.91 
66.60 
64.94 
43.18 

69.69 
113.46 
113.54 
118.75 
119.72 
168.38 
169.85 
169.85 
170.89 
171.31 
171.43 
171.59 
171.63 
171.93 
173.92 
221.44 
222.74 
228.90 
231.19 
236.84 

170.83 
230.06 
228.19 
117.73 
117.69 
173.46 
169.85 
170.86 
173.92 
173.34 
171.43 
263.49 
171.63 
170.91 
71.73 
217.39 
221.73 
114.40 
113.52 
167.77 

45 
25 
65 
65 
25 
45 
45 
45 
80 
25 
45 
45 
45 
10 
45 
65 
25 
25 
65 
45 

219.74 
181.22 
179.06 
281.30 
282.20 
216.14 
223.88 
222.80 
218.84 
218.12 
219.20 
168.62 
217.58 
219.92 
296.60 
189.14 
186.08 
285.80 
286.34 
221.72 

l/i i =00 + 5 3 0jXji + ^ 0}jX2i 
J = l 

+ 5 3 5 Z PiiXii*" + e«"> « = 1,2,.. . , 20. 

n 
(a) Compute PRESS and YI \yt — yt,-i\ for the least 

i—l 
squares regression fit to the model above, 

(b) Fit a second-order model with x4 completely elim
inated (i.e., deleting all terms involving £1). Com
pute the prediction criteria for the reduced model. 
Comment on the appropriateness of x4 for predic
tion of the heat transfer coefficient. 

(c) Repeat parts (a) and (b) for thermal efficiency. 

12.64 In exercise physiology, an objective measure of 
aerobic fitness is the oxygen consumption in volume 
per unit body weight per unit time. Thirty-one indi
viduals were used in an experiment in order to be able 
to model oxygen consumption against: age in years 
(11); weight in kilograms (as); time to run l | miles 
(3:3); resting pulse rate (x4); pulse rate at the end of 
run (as); maximum pulse rate during run (2$). 

ID y Xl x3 214 XQ xa 

Consider the model for predicting the heat transfer co-

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

44.609 
45.313 
54.297 
59.571 
49.874 
44.811 
45.681 
49.091 
39.442 
60.055 
50.541 
37.388 
44.754 
47.273 
51.855 
49.156 
40.836 
46.672 
46.774 
50.388 
39.407 
46.080 
45.441 
54.625 
45.118 
39.203 
45.790 
50.545 

44 
40 
44 
42 
38 
47 
40 
13 
44 
38 
44 
45 
•15 
47 
54 
49 
51 
51 
48 
49 
57 
54 
52 
50 
51 
54 
51 
57 

89.47 
75.07 
85.84 
68.15 
89.02 
77.45 
75.98 
81.19 
81.42 
81.87 
73.03 
87.66 
66.45 
79.15 
83.12 
81.42 
69.63 
77.91 
91.63 
73.37 
73.37 
79.38 
76.32 
70.87 
67.25 
91.63 
73.71 
59.08 

11.37 
10.07 
8.65 
8.17 
9.22 
11.63 
11.95 
10.85 
13.08 
8.63 
10.13 
14.03 
11.12 
10.60 
10.33 
8.95 
10.95 
10.00 
10.25 
10.08 
12.63 
11.17 
9.63 
8.92 
11.08 
12.88 
10.47 
9.93 

62 
62 
45 
40 
55 
58 
70 
64 
63 
48 
45 
56 
51 
47 
50 
44 
57 
48 
48 
76 
58 
62 
48 
48 
48 
44 
59 
49 

178 182 
185 185 
156 168 
166 172 
178 180 
176 176 
176 180 
162 170 
174 176 
170 186 
168 168 
186 192 
176 176 
162 164 
166 170 
180 185 
168 
162 

172 
168 

162 164 
168 168 
174 176 
156 165 
164 166 
146 155 
172 172 
168 172 
186 188 
148 155 
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ID y Xl x2 X-s XA X$ 

29 48.673 
30 47.920 
31 47.467 

49 
48 
52 

76.32 
61.24 
82.78 

9.40 
11.50 
10.50 

xe 
56 186 188 
52 170 176 
53 170 172 

(a) Do a stepwise regression with input significance 
level 0.25. Quote the final model. 

(b) Do all possible subsets using s2, Cp, R2, and JR^JJ. 
Make a decision and quote the final model. 

12.67 An article in the Journal of Pharmaceutical 
Sciences (Vol. 80, 1991) presents data on the mole 
fraction solubility of a solute at a constant tempera
ture. Also measured are the dispersion a;i, and dipolar 
and hydrogen bonding solubility parameters as, and 
3:3. A portion of the data is shown in the table below. 
In the model, y is the negative logarithm of the mole 
fraction. Fit the model 

12.65 Consider the data of Review Exercise 12.62. 
Suppose it is of interest to add some "interaction" 
terms. Namely, consider the model 

Vi = 0o+ 0iXu + 32X2i + 03X3i + 0\2xiiX2i 

+ 013'XliX3i + 023X2iX3i + 0l23XliX2iX3i + Ci-

(a) Do we still have orthogonality? Comment. 

(b) With the fitted model in part (a), can you find 
prediction intervals and confidence intervals on the 
mean response? Why or why not? 

(c) Consider a model with ,6"i23a:ia:2.T3 removed. To 
determine if interactions (as a whole) are needed, 
test 

Ho'- 0\1 = A3 = #23 = 0. 

Give P-value and conclusions. 

12.66 A carbon dioxide (CO2) flooding technique is 
used to extract crude oil. The CO2 floods oil pockets 
and displaces the crude oil. In the experiment, flow 
tubes are dipped into sample oil podcets containing a 
known amount of oil. Using three different values of 
flow pressure and three different values of dipping an
gles the oil pockets are flooded with CO2, and the per
centage of oil displaced recorded. Consider the model 

2/t =0o + 0\Xu + 02x2i + 0nx2u 

+ 022X2i + 0l2XuX2i + €,. 

Fit the model above to the data, and suggest any model 
editing that may be needed. 

Pressure 
lb / in 2 , xi 

1000 
1000 
1000 
1500 
1500 
1500 
2000 
2000 
2000 

Source: Wang, G. 
Flooding Process," 

Dipping 
Angle, 

0 
15 
30 
0 

15 
30 
0 

15 
30 

X2 

C. "Microscopic 

Oil Recovery, 

%, v 
60.58 
72.72 
79.99 
66.83 
80.78 
89.78 
69.18 
80.31 
91.99 

: Investigations of ' 
Journal of Petroleum Technology, 

Vi = 00 + 0\Xli + 02X2i + 33X3i + €i, 

fori = 1,2, . . . , 20. 

(a) Test H0: 0i = p\ = 03 = 0. 
(b) Plot studentized residuals against xi, x2, and X3 

(three plots). Comment. 
(c) Consider two additional models that are competi

tors to the models above: 

Model 2: 

Model 3: 

Add Xi, x2, x3 

Add Xi,x2,x3,xix2,xiX3,X2X3. 

With these three models use PRESS and Cv to ar
rive at the best among the three. 

Obs. y Xl X2 x3 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

0.2220 
0.3950 
0.4220 
0.4370 
0.4280 
0.4670 
0.4440 
0.3780 
0.4940 
0.4560 
0.4520 
0.1120 
0.4320 
0.1010 
0.2320 
0.3060 
0.0923 
0.1160 
0.0764 
0.4390 

7.3 
8.7 
8.8 
8.1 
9.0 
8.7 
9.3 
7.6 

10.0 
8.4 
9.3 
7.7 
9.8 
7.3 
8.5 
9.5 
7.4 
7.8 
7.7 

10.3 

0.0 
0.0 
0.7 
4.0 
0.5 
1.5 
2.1 
5.1 
0.0 
3.7 
3.6 
2.8 
4.2 
2.5 
2.0 
2.5 
2.8 
2.8 
3.0 
1.7 

0.0 
0.3 
1.0 
0.2 
1.0 
2.8 
1.0 
3.4 
0.3 
4.1 
2.0 
7.1 
2.0 
6.8 
6.6 
5.0 
7.8 
7.7 
8.0 
4.2 

34, N0.8, Aug. 1982. 

12.68 A study was conducted to determine whether 
lifestyle changes could replace medication in reducing 
blood pressure among hypertensives. The factors con
sidered were a healthy diet with an exercise program, 
the typical dosage of medication for hypertension, and 
no intervention. The pretreatment body mass index 
(BMI) was also calculated because it is known to affect 
blood pressure. The response considered in this study 
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Dependent 

Source 
Model 
Error 
Corrected 

Var iable 

Var iab le : y 
A n a l y s i s 

DF 
5 

11 
Tota l 16 

Root MSE 
Dependent Mean 
Coeff Var 

Label 
I n t e r c e p t I n t e r c e p t 
x l 
x2 
x3 
x4 

x5 

of Variance 
Sum of 

Squares 
490177488 

4535052 
494712540 

642 .08838 
4978.48000 

12.89728 
Parameter 

DF 

Average D a i l y P a t i e n t Load 1 
Monthly X-Ray Exposure 1 
Monthly Occupied Bed Days 1 
E l i g i b l e Popula t ion 
Area/100 

i n the 1 

Average Length of P a t i e n t s 1 
Stay in Days 

Mean 
Square 

98035498 
412277 

R-Square 
Adj R-Sq 

Est imates 

F Value 
237 .79 

0 .9908 
0 .9867 

Parameter Standard 
Estimate Error t Value 

1962.94816 1071.36170 1 .83 
-15 .85167 

0 .05593 
1.58962 

-4 .2 1 8 6 7 

97 .65299 - 0 . 1 6 
0 .02126 2 . 6 3 
3 .09208 0 .51 
7 .17656 - 0 . 5 9 

-394 .31412 209 .63954 - 1 . 8 8 

Pr > F 
<.0001 

Pr > | t | 
0 .0941 
0 .8740 
0 .0234 
0 .6174 
0 .5685 

0 .0867 

Figure 12.9: 5.45 output for Review Exercise 12.69; part I. 

was change in blood pressure. The variable group has 
the following levels. 

1 = Healthy diet and an exercise program 

2 = Medication 

3 = No intervention 

C h a n g e i n 
B l o o d P r e s s u r e 

- 3 2 
- 2 1 
- 2 6 
- 1 6 
- 1 1 
- 1 9 
- 2 3 

- 5 
- 6 

5 
- 1 1 

14 

G r o u p 

1 
1 
1 
1 
2 
2 
2 
2 
3 
3 
3 
3 

BMI 
27.3 
22.1 
26.1 
27.8 
19.2 
26.1 
28.6 
23.0 
28.1 
25.3 
26.7 
22.3 

(a) Fit an appropriate model using the data above. 
Doess it appear that exercise and diet could be effec
tively useid to lower blood pressure? Explain your 
answer from the results. 

(b) Would exercise and diet be an effective alternative 
to medication? 

(Hint. You may wish to form the model in more than 
one way to answer both of these questions.) 

12.69 Case S tudy : Consider the data set for Exer
cise 12.12, page 454 (hospital data). The data set is 
repeated here. 

(a) The SAS PR.OC REG outputs provided in Figures 
12.9 and 12.10 supply a considerable amount of in
formation. Goals are to do outlier detection and 
eventually determine which model terms are to be 
used in the final model. 

(b) Comment, on what other analyses should be run. 
(c) Run appropriate analyses and write your conclu

sions concerning the final model. 

Site xi X2 X3 X.\ 3 5 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

15.57 
44.02 
20.42 
18.74 
49.20 
44.92 
55.48 
59.28 
94.39 

128.02 
96.00 

131.42 
127.21 
252.90 
409.20 
463.70 
510.22 

2463 
2048 
3940 
6505 
5723 

11520 
5779 
5969 
8461 

20106 
13313 
10771 
15543 
36194 
34703 
39204 
86533 

472.92 
1339.75 
620.25 
568.33 

1497.60 
1365.83 
1687.00 
1639.92 
2872.33 
3655.08 
2912.00 
3921.00 
3865.67 
7684.10 

12446.33 
14098.40 
15524.00 

18.0 
9.5 

12.8 
36.7 
35.7 
24.0 
43.3 
46.7 
78.7 

180.5 
60.9 

103.7 
126.8 
157.7 
169.4 
331.4 
371.6 

4.45 
6.92 
4.28 
3.90 
5.50 
4.60 
5.62 
5.25 
6.18 
6.15 
5.88 
4.88 
5.50 
7.00 

10.75 
7.05 
6.35 

566.52 
696.82 

1033.15 
1003.62 
1611.37 
1613.27 
1854.17 
2160.55 
2305.58 
3503.93 
3571.59 
3741.40 
4026.52 

10343.81 
11732.17 
15414.94 
18854.45 



Review Exercises 507 

Obs 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

Dependent 
Variable 
566.5200 
696.8200 

1033 
1604 
1611 
1613 
1854 
2161 
2306 
3504 
3572 
3741 
4027 
10344 
11732 
15415 
18854 

Predicted 
Value 

775 
740 

0251 
6702 
1104 
1240 
1564 
2151 
1690 
1736 
2737 
3682 
3239 
4353 
4257 
8768 
12237 
15038 
19321 

Obs Residual 
1 -208 
2 -43 
3 -70 
4 363 
5 46 
6 -538 
7 164 
8 424 
9 -431 
10 -177 
11 332 
12 -611 
13 -230 
14 
15 -504 
16 376 
17 -466 

5051 
8502 
7734 
1244 
9483 
0017 
4696 
3145 
4090 
.9234 
6011 
9330 
5684 
1576 
8574 
5491 
2470 

Std Error 
Mean Predict 

241 
331 
278 
268 
211 
279 
218 
468 
290 
585 
189 
328 
314 
252 
573 
585 
599 

Std Error 
Residual 

595.0 
550.1 
578.5 
583.4 
606.3 
577.9 
603.6 
438.5 
572.6 
264.1 
613.6 
551.5 
560.0 
590.5 
287.9 
263.1 
228.7 

2323 
1402 
5116 
1298 
2372 
.9293 
.9976 
9903 
4749 
2517 
0989 
8507 
0481 
2617 
9168 
7046 
9780 

95% CL 
244.0765 
11.8355 
490.9234 
650.3459 

1099 
1535 
1208 

703.9948 
2098 
2394 
2823 
3630 
3566 
8213 
10974 
13749 
18000 

Student 
Residual 

•0.350 
-0.0797 
-0.122 
0.622 
0.0774 
-0.931 
0.272 
0.968 
-0.753 
-0.674 
0.542 
-1.110 
-0.412 
2.669 
-1.753 
1.431 
-2.039 

Mean 
1306 
1470 
1717 
1831 
2029 
2767 
2172 
2768 
3376 
4970 
3655 
5077 
4948 
9323 
13500 
16328 
20641 

-2-1 0 1 

1 * 

* 1 

1* 
* i 
* 1 
1* 

**| 

95'/, CL Predict 
-734.6494 
-849.4275 
-436.5244 
-291.0028 
76.6816 
609.5796 
196.5345 
-13.8306 

1186 
1770 
1766 
2766 
2684 
7249 
10342 
13126 
17387 

2 

|***** | 
***| 

|*« 
T *l* T* "̂  1 

2285 
2331 
2644 
2772 
3052 
3693 
3183 
3486 
4288 
5594 
4713 
5941 
5830 
10286 
14133 
16951 
21255 

Figure 12.10: SAS output for Review Exercise 12.69; pa r t II. 

12.70 Show that in choosing the so-called best subset 
model from a series of candidate models, if the model 
is chosen that has the smallest s2, this is equivalent to 
choosing the model with the smallest R2

vi\. 

12.71 From a set of streptonignic dosorcsponse data. 

an experimenter desires to develop a relationship be
tween the proportion of lymphoblasts sampled that 
contain aberrations and the dosage of streptonignic. 
Five dosage levels were applied to the rabbits used for 
the experiment. The data are 
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Dose 
( m g / k g ) 

0 
30 
60 
75 
90 

Number of 
Lymphoblas t s 

600 
500 
600 
300 
300 

N u m b e r with 
A b e r r a t i o n s 

15 
96 

187 
100 
145 

See Myers, 1990, in the bibliography. 
(a) Fit a logistic regression to the data set and thus 

estimate 0o and 0i in the model 

1 
1 + e-O3„+0iz) ' 

where n is the number of lymphoblasts, x is the 
dose, and p is the probability of an aberration. 

(b) Show results of x2-tests revealing the significance 
of the regression coefficients 0o and 3\. 

(c) Estimate the ED50 and give interpretation. 

12.72 In an experiment to ascertain the effect of load, 

x, in lb/inches on the probability of failure of speci
mens of a certain fabric type, an experiment was con
ducted in which numbers of specimens were exposed to 
load ranging from 5 lb/in.2 to 90 lb/in. . The numbers 
of ''failures" were observed. The data are as follows: 

Load 

5 
35 
70 
80 
90 

N u m b e r of 
Specimens 

600 
500 
600 
300 
300 

Number of 
Failures 

13 
95 

189 
95 

130 

(a) Use: logistic regression to fit the model 

1 
!' = 1 4- e-(jSb+j8i«) ' 

where p is the probability of failure and x is load. 
(b) Use the odds ratio concept to determine the in

crease in odds of failure that results by increasing 
the load by 20 lb/in.2. 

12.13 Potential Misconceptions and Hazards; 
Relationship to Material in Other Chapters 

There arc several procedures discussed in this chapter for use in the "at tempt" to 
find the best model. However, one of the: most important misconceptions under 
which naive scientists or engineers labor is tha t there is a t rue linear m o d e l and 
that it, can be found. In most scientific phenomena, relationships between scientific 
variables are nonlinear in nature and the true: model is unknown. Linear statistical 
models are: empir ica l a p p r o x i m a t i o n s . 

At times the choice of the model to be adopted may depend on what information 
needs to be derived from the model. Is it to be used for prediction? Is it to be 
used for the purpose of explaining the role of each regressor? This ''choice" can 
be made difficult in the presence of collincarity. It is true that for many regression 
problems there are multiple models that arc very similar in performance. See the 
Myers reference (1990) for details. 

One of the most damaging misuses of the material in this chapter is to apply too 
much importance to R2 in the choice of the so-called best model. It is important 
to remember that for any da ta set, one can obtain an R2 as large as one desires, 
within the constraint 0 < R2 < 1. Too m u c h a t t e n t i o n to R2 of ten leads to 
overfitt ing. 

Much attention is given in this chapter to outlier detection. A classical serious 
misuse of statistics may center around the decision made concerning the detection 
of outliers. We hope it, is clear that the analyst should absolutely not carry out the 
exercise of detecting outliers, eliminate them from the da ta set, fit a new model, 
report outlier detection, and so on. This is a tempting and disastrous procedure 
for arriving at a model that fits the data well, with the result, being an example 
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of how to lie with statistics. If an outlier is detected, the history of the data 
should be checked for possible clerical or procedural error before it is eliminated 
from the data set. One must remember that an outlier by definition is a data point 
that the model did not fit well. The problem may not be in the data but rather in 
the model selection. A changed model may result in the point not being detected 
as an outlier. 



Chapter 13 

One-Factor Experiments: General 

13.1 Analysis-of-Variance Technique 

In the estimation and hypotheses testing material covered in Chapters 9 and 10, we 
arc restricted in each case to considering no more than two population parameters. 
Such was the case, for example, in testing for the equality of two population means 
using independent samples from normal populations with common but unknown 
variance, where it was necessary to obtain a pooled estimate of a2. 

This material dealing in two-sample inference represents a special case of what 
we call the one-factor problem. For example, in Exercise 35, Section 10.8, the 
survival time is measured for two samples of mice where one sample received a new 
serum for leukemia treatment and the other sample received no treatment. In this 
case we say that there is one factor, namely treatment, and the factor is at two 
levels. If several competing treatments were being used in the sampling process, 
more samples of mice would be necessary. In this case the problem would involve 
one factor with more than two levels and thus more than two samples. 

In the fe > 2 sample problem, it will be assumed that there are k samples from 
k populations. One very common procedure used to deal with testing population 
means is called the analysis of variance, or ANOVA. 

The analysis of variance is certainly not a new technique if the reader has fol
lowed the material on regression theory. We used the analysis-of-variance approach 
to partition the total sum of squares into a portion due to regression and a portion 
due to error. 

Suppose in an industrial experiment that an engineer is interested in how the 
mean absorption of moisture in concrete varies among 5 different concrete aggre
gates. The samples are exposed to moisture: for 48 hours. It, is decided that 6 
samples are to be tested for each aggregate, requiring a total of 30 samples to be 
tested. The data are recorded in Table 13.1. 

The model for this situation is considered as follows. There are 6 observations 
taken from each of 5 populations with means jti,fi2- • • • , Ms- respectively. We may 
wish to test 

H Q : i n = 1 1 - 2 = • - • = / ' 5 , 

II [-. At least two of the means are not equal. 
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Table 13.1: Absorption of Moisture in Concrete Aggregates 

Aggregate: 

Total 
Mean 

1 

551 
457 
450 
731 
499 
632 

3320 
553.33 

2 

595 
580 
508 
583 
633 
517 

3416 
569.33 

3 

639 
615 
511 
573 
648 
677 

3663 
610.50 

4 

417 
449 
517 
438 
415 
555 

2791 
465.17 

5 

563 
631 
522 
613 
656 
679 

3064 
610.67 

16,854 
561.80 

In addition, we may be interested in making individual comparisons among these 
5 population means. 

Two Sources of Variability in the Data 

In the analysis-of-variance procedure, i! is assumed that whatever variation exists 
between the aggregate averages is attributed to (1) variation in absorption among 
observations within aggregate types, and (2) variation due to aggregate types, that 
is, due to differences in the chemical composition of the aggregates. The within 
aggregate variation is. of course, brought about by various causes. Perhaps 
humidity and temperature conditions were not kept entirely constant throughout 
the experiment. It is possible that there was a certain amount of heterogeneity in 
the batches of raw materials that were used. At any rate, we shall consider the 
within-sample variation to be chance or random variation, and part of the goal 
of the analysis of variance is to determine if the differences among the 5 sample 
means are what wc would expect due to random variation alone. 

Many pointed questions appear at this stage concerning the preceding problem. 
For example, how many samples must be tested for each aggregate? This is a 
question that continually haunts the practitioner. In addition, what if the within-
sample variation is so large that it is difficult for a statistical procedure to detect 
the systematic differences? Can we systematically control extraneous sources of 
variation and thus remove them from the portion wc call random variation? We 
shall attempt to answer these and other questions in the: following sections. 

13.2 The Strategy of Experimental Design 

In Chapters 9 and 10 the notion of estimation and testing for the two-sample 
case is covered under the important backdrop of the way the experiment is con
ducted. This falls into the broad category of design of experiments. For example, 
for the pooled M,est discussed in Chapter 10, it is assumed that the factor lev
els (treatments in the mice exercise) are assigned randomly to the experimental 
units (mice). The notion of experimental units is discussed in Chapters 9 and 
10 and is illustrated through examples. Simply put, experimental units are the 
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units (mice, patients, concrete specimens, time) that provide t h e heterogene
ity t ha t leads to exper imenta l error in a scientific investigation. The random 
assignment eliminates bias that could result by systematic assignment. The goal 
is to distribute uniformly among the factor levels the risks brought about by the 
heterogeneity of the experimental units. A random assignment best simulates the 
conditions that are assumed by the model. In Section 13.8 we discuss blocking in 
experiments. The notion of blocking is presented in Chapters 9 and 10, when com
parisons between means was accomplished with pairing, that is, the division of 
the experimental units into homogeneous pairs called blocks. The factor levels or 
treatments are then assigned randomly within blocks. The purpose of blocking is 
to reduce the effective experimental error. In this chapter we naturally extend the 
pairing to larger block sizes, with analysis of variance being the primary analytical 
tool. 

13.3 One-Way Analysis of Variance: 
Completely Randomized Design (One-Way ANOVA) 

Random samples of size n are selected from each of k populations. The k differ
ent populations are classified on the basis of a single criterion such as different 
treatments or groups. Today the term t r e a t m e n t is used generally to refer to 
the various classifications, whether they be different aggregates, different analysts, 
different fertilizers, or different regions of the country. 

Assumptions and Hypotheses in One-Way ANOVA 

It is assumed that the k populations are independent and normally distributed 
with means fix,Pi »P-k a i l (l common variance a2. As indicated in Section 13.2, 
these assumptions are made more palatable by randomization. We wish to derive 
appropriate methods for testing the hypothesis 

Ho' in = / ' 2 = ••• = Pk-. 

H\: At least two of the means arc not equal. 

Let. yij denote the j th observation from the ith treatment and arrange the data as 
in Table 13.2. Here, Y',. is the total of all observations in the sample from the ith 
treatment, y,, is the mean of all observations in the sample from the ith treatment, 
Y„ is the total of all nk observations, and y_. is the mean of all nk observations. 

M o d e l for O n e - W a y A N O V A 

Each observation may be written in the form 

Yij = IM. + t ' J ' 

where £y measures the deviation of the jth observation of the ith sample from the 
corresponding treatment mean. The ey-term represents random error and plays 
the same role as the error terms in the regression models. An alternative and 
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Table 13.2: k Random Samples 

Treatment: 

Total 
Mean 

1 
Vn 

J/12 

S/ln Vi. 

Si. 

2 . 
2/21 • 

2/22 

2/2n ' 

Y2. 
2/2. 

i 
- S/»i • 

2/i2 

2/tn - Y. • 
• Vi. • 

k 

• Vki 

Vk2 

Vkn • Yk. 
2/fc. 

Y, 

v.. 

preferred form of this equation is obtained by substituting m = p. + ai, subject to 
k 

the constraint Y^, on = 0. Hence we may write 
f=i 

Yij = p + Oti + €ij, 

where p. is just the grand mean of all the /i,'s; that is, 

1 * 

t = i 

and ait is called the effect of the ith treatment. 
The null hypothesis that the k population means are equal against the alter

native that at least two of the means are unequal may now be replaced by the 
equivalent hypothesis. 

HQ : a, = o2 = • • • = afr = 0, 

Hi: At least one of the a, 's is not equal to zero. 

Resolution of Total Variability into Components 

Our test will be based on a comparison of two independent estimates of the common 
population variance a2. These estimates will be obtained by partitioning the total 
variability of our data, designated by the double summation 

EBi*-*..)8, 
t = i j = i 

into two components. 

Theorem 13.1: Sum-of-Squares Identity 

k n k k n 

E J > y - V-? = n£>i. - y..? + E J > y - Vi.? 
i=X j ' = l i = l i—X j '= l 

It will be convenient in what follows to identify the terms of the sum-of-squares 
identity by the following notation: 
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Three Important k n 
Measures of SST = £ E iVij ~ V..)2 = total sum of squares, 

Variability '~ J~ 

SSA = n 2~2 iVi. ~ y..)2 — treatment sum of squares. 
»=i 

k n 

SSE — ^Z YI iVij ~ Vi-? — error sum of squares. 
i = l j ' = l 

The sum-of-squares identity can then be represented symbolically by the equa
tion 

SST = SSA + SSE. 

The identity above expresses how between-treatment and within-treatment 
variation add to the total sum of squares. However, much insight can be gained by 
investigating the expected value of both SSA and SSE. Eventually, we shall 
develop variance estimates that formulate the ratio to be used to test the equality 
of population means. 

Theorem 13.2: k 
2 E(SSA) = (k-l)a2 + nY,°<'2i 

f = i 

The proof of the theorem is left as an exercise (see Exercise 13.2 on page 521). 
If HQ is true, an estimate of a2, based on k — 1 degrees of freedom, is provided 

by the expression 

Treatment Mean SSA 
Square s i = , _ . • 

If HQ is true and thus each Q,- in Theorem 13.2 is equal to zero, we see that 

and s2 is an unbiased estimate of a2. However, if Hi is true, we have 

r,fSSA\ 2 n ^ 2 

i = i 

and s2 estimates a2 plus an additional term, wdiich measures variation due to the 
systematic effects. 

A second and independent estimate of a2, based on k(n— 1) degrees of freedom, 
is the familiar formula 

Error Mean SSE 
S c i u a r e fi2 = k(n-lY 
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It is instructive to point out the importance of the expected values of the mean 
squares indicated above. In the next section we discuss the use of an F-ratio with 
the treatment mean square residing in the numerator. It turns out that when Hi 
is true, the presence of the condition E(s2) > E(s2) suggests that the F-ratio be 
used in the context of a one-sided upper-tailed test. That is, when Hi is true, 
we would expect the numerator s2 to exceed the denominator. 

Use of F-Test in ANOVA 

The estimate s2 is unbiased regardless of the truth or falsity of the null hypothesis 
(see Exercise 13.1 on page 521). It is important to note that the sum-of-squares 
identity has partitioned not only the total variability of the data, but also the total 
number of degrees of freedom. That is, 

nk- l = k-l + k(n-l). 

F-Ratio for Testing Equality of Means 

When HQ is true, the ratio / = s\/s2 is a value of the random variable F having the 
F-distribution with k — 1 and k(n — 1) degrees of freedom. Since s2 overestimates 
cr2 when H0 is false, we have a one-tailed test with the critical region entirely in 
the right tail of the distribution. 

The null hypothesis HQ is rejected at the Q-level of significance when 

/ > / * [ * - 1 , * ( « - ! ) ] • 

Another approach, the P-value approach, suggests that the evidence in favor of 
or against HQ is 

P = P[f[k-l,k(n-l)]>f}. 

The computations for an analysis-of-variance problem are usually summarized in 
tabular form as shown in Table 13.3. 

Table 13.3: Analysis of Variance for the One-Way ANOVA 

Source of Sum of Degrees of Mean Computed 
Variation Squares Freedom Square / 

SSA £? 
k-X ^ 

Treatments 

Error 

Total 

SSA 

SSE 

SST 

k-l 

k{n - 1) 

kn-1 

„2 _ SSA 
s i - ¥=T 

„2 _ SSE 

Example 13.1:1 Test the hypothesis pi = u2 = • • • = pt, at the 0.05 level of significance for the data 
of Table 13.1 on absorption of moisture by various types of cement aggregates. 

Solution: H0: Ux = u2 = • • • = /X5. 

Hi: At least two of the means are not equal. 

Q = 0.05. 
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Critical region: / > 2.76 with t'i 
sum-of-squarcs computations give 

4 and v2 = 25 degrees of freedom. The 

55P=209,377, 

554=85,356, 

55£=209,377 - 85,356 = 124,021. 

These results and the remaining computations are exhibited in Figure 13.1 in the 
SAS ANOVA procedure. 

The GLH Procedure 
Dependent Var iable : moisture 

Source 

Model 

Error 

Corrected Total 

R-Square 

0.407669 

Source 

aggregate 

DF 
4 
25 
29 

Coeff Var 

12.53703 

DF 
4 

Squares 

85356.4667 

124020.3333 

209376.8000 

Root MSE 

70.43304 

Type I SS 

85356.46667 

Sum of 

Mean Square F Value 

21339.1167 4.30 

4960.8133 

moisture Mean 

561.8000 

Mean Square F Value 

21339.11667 4.30 

Pr > F 

0.0088 

Pr > F 

0.0088 

Figure 13.1: SAS output for the Analysis-of-variance procedure. 

Decision: Reject Ho and conclude that the aggregates do not have the same mean 

absorption. The P-value for / = 4.30 is smaller than 0.01. J 
During experimental work one often loses some of the desired observations. Ex

perimental animals die, experimental material may be damaged, or human subjects 
may drop out of a study. The previous analysis for equal sample size will still be 
valid by slightly modifying the sum of squares formulas. We now assume the A: 
random samples to be of size rix,n2,..., nk, respectively. 

Sum of Squares; je, „,. ft 
Unequal Sample SST = *T ^(Vij - y..)2, SSA = J^m(y i . - y..)2, SSE = SST - SSA 

Sizes f=i j = i 

The degrees of freedom are then partitioned as before: N — 1 for SST, k — 1 for 
k 

SSA, and N - 1 - (k - 1) = N - k for SSE, where N = £ n;. 
t = i 

Example 13.2:1 Part of a study conducted at the Virginia Polytechnic Institute and State University 
was designed to measure serum alkaline phosphatase activity levels (Bessey-Lowry 
Units) in children with seizure disorders who were receiving anticonvulsant therapy 
under the care of a private physician. Forty-five subjects were found for the study 
and categorized into four drug groups: 
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G-l: Control (not receiving anticonvulsants and having no history of seizure disor
ders) 

G-2: Phenobaibilal 

G-3: Carbamazepine 

G-4: Other anticonvulsants 

From blood samples collected on each subject the serum alkaline phosphatase activ
ity level was determined and recorded as shown in Table 13.4. Test the hypothesis 
at the 0.05 level of significance that the average serum alkaline phosphatase activity 
level is the same for the four drug groups. 

Table 13.4: Serum Alkaline: Phosphatase Activity Level 

G-
49.20 
44.54 
45.80 
95.84 
30.10 
30.50 
82.30 
87.85 

105.00 
95.22 

1 
97.50 

105.00 
58.05 
86.60 
58.35 
72.80 

116.70 
45.15 
70.35 
77.40 

G-2 
97.07 
73.40 
68.50 
91.85 

106.60 
0.57 
0.79 
0.77 
0.81 

G-3 
62.10 
94.95 

142.50 
53.00 

175.00 
79.50 
29.50 
78.40 

127.50 

G-4 
110.60 
57.10 

117.60 
77.71 

150.00 
82.90 

111.50 

Solution: HQ : pi = p2 = p3 = fi4, 

Hi: At least two of the means are not equal. 

cv = 0.05. 

Critical region: / > 2.836, by interpolating in Tabic A.6. 
Computations: V',. = 1460.25, Y2. = 440.36, F3. = 842.45, Y4. = 707.41 and 
Y = 3450.47. The analysis of variance is shown in the MINITAB output of 
Figure 13.2. 
Decision: Reject Ho and conclude that i he average serum alkaline phosphatase 
activity levels for the four drug groups are not all the same. The P-value is 0.02J 

In concluding our discussion on the analysis of variance for the one-way classi
fication, we state the advantages of choosing equal sample sizes over the choice of 
unequal sample sizes. The first advantage is that the /-ratio is insensitive to slight 
departures from the assumption of equal variances for the k populations when the 
samples are of equal size. Second, the choice of equal sample size minimizes the 
probability of committing a type II error. 

13.4 Tests for the Equality of Several Variances 

Although the /-ratio obtained from the: analysis-of-variance procedure is insensitive 
to departures from the assumption of equal variances for the k normal populations 
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One-way ANOVA: G-l, G-2, G-3, G-4 

Source DF SS MS F P 
Factor 3 13939 4646 3.57 0.022 
Error 41 53376 1302 
Total 44 67315 

S = 36.08 R-Sq = 20.71% R-Sq(adj) = 14.90% 

Indiv idual 95% CIs For Mean Based on 
Pooled StDev 

Level N Mean StDev —+ + + + 
G-l 20 73.01 25.75 ( * ) 
G-2 9 48.93 47.11 ( * ) 
G-3 9 93.61 46.57 ( * ) 
G-4 7 101.06 30.76 ( * ) 

—+ + + + 

30 60 90 120 

Pooled StDev = 36.08 

Figure 13.2: MINITAB analysis of Table 13.4. 

when the samples are of equal size, we may still prefer to exercise caution and 
run a preliminary test for homogeneity of variances. Such a test would certainly 
be advisable in the case of unequal sample sizes if there is a reasonable doubt 
concerning the homogeneity of the population variances. Suppose, therefore, that 
we wish to test the null hypothesis 

W . „2 _ „2 _ _ „2 

H Q . O X - a 2 - • • • = a k 

against the alternative 

Hi: The variances are not all equal. 

The test that we shall use, called Ba r t l e t t ' s tes t , is based on a statistic whose 
sampling distribution provides exact critical values when the sample sizes are equal. 
These critical values for equal sample sizes can also be used to yield highly accurate 
approximations to the critical values for unequal sample sizes. 

First, we compute the k sample variances s2,s2,.. .,s2 from samples of size 
k 

nx,n2,...,nk, with YI n* — ^- Second, combine the sample variances to give the 
i= l 

pooled estimate 

S P = ^ m ^ ( n < - 1 ) ^ ' 
t•=l 



520 Chapter 13 One-Factor Experiments: General 

Now 

[(^)"--i(^r2-i'--(4)nfc-1]1/(-v-fe) 

s2 

is a value of a random variable B having the Bartlett distribution. For the 
special case where m = 712 = • • • = "A- = n, we reject Ho at the o-level of 
significance if 

6< bkia;n), 

where 0^(0; n) is the critical value leaving an area of size a in the left tail of the 
Bartlett distribution. Table A.10 gives the critical values, frfc(a;n), for a = 0.01 
and 0.05; k = 2 , 3 , . . . , 10; and selected values of n from 3 to 100. 

When the sample sizes are unequal, the null hypothesis is rejected at the o-level 
of significance if 

b< bkia;ni.n2,...,nk), 

where 

, , v n-xbkia; ni) + n2bk(a; n2) + • • • + nkbk(a;nk) 
bk(a;ni,n2,...,nk) « r-r • 

As before, all the bk(a; m) for sample sizes m , n 2 , . . . , nk are obtained from Table 
A.10. 

Example 13.3:1 Use Bartlett's test to test the hypothesis at the 0.01 level of significance that the 
population variances of the four drug groups of Example 13.2 are equal. 

Solution: Ho'- a2 = a2 = a\ = a\, 

Hi: The variances are not equal. 

a = 0.01. 

Critical region: Referring to Example 13.2, we have n.j = 20, n2 = 9, ri3 = 9, 
n4 = 7, N = 45, and k = 4. Therefore, we reject when 

b < 64(0.01; 20,9,9,7) 

_ (20)(0.8586) + (9)(0.6892) + (9)(0.6892) + (7)(0.6045) 
45 

= 0.7513. 

Computations: First compute 

s? = 662.862, s\ = 2219.781, s | = 2168.434, s2, = 946.032, 

and then 

2 _ (19)(662.862) + (8)(2219.781) + (8)(2168.434) + (6)(946.032) 
SP- 41 

= 1301.861. 
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Now 

b = 
[(662.862) 19(2219.781)8(2168.434)8(946.032)c]1/41 

1301.861 
0.8557. 

Decision: Do not reject the hypothesis, and conclude that the population variances 

of the four drug groups are not significantly different. _l 
Although Bartlett's test is most often used for testing of homogeneity of vari

ances, other methods are available. A method due to Cochran provides a compu
tationally simple procedure, but it is restricted to situations in which the sample 
sizes are equal. Cochran's test is particularly useful for detecting if one variance 
is much larger than the others. The statistic that is used is 

G = 
largest Sf 

k ' 

ESf 
i-l 

and the hypothesis of equality of variances is rejected if g > gQ where the value of 
ga is obtained from Table A.11. 

To illustrate Cochran's test, let us refer again to the data of Table 13.1 on 
moisture absorption in concrete aggregates. Were we justified in assuming equal 
variances when we performed the analysis of variance of Example 13.1? We find 
that 

,2 si = 12,134, si = 2303, s^ = 3594, si = 3319, s£ = 3455. 

Exercises 

Therefore. 

12,134 
24,805 

= 0.4892, 

which does not exceed the table value #0.05 = 0.5065. Hence we conclude that the 
assumption of equal variances is reasonable. 

13.1 Show that the mean square error 

2 _ SSE 
8 - f c ( n - l ) 

for the analysis of variance in a one-way classification 
is an unbiased estimate of a2. 

13.2 Prove Theorem 13.2. 

13.3 Six different machines are being considered for 
use in manufacturing rubber seals. The machines are 
being compared with respect, to tensile strength of the 
product. A random sample of 4 seals from each ma
chine is used to determine whether the mean tensile 

strength varies from machine to machine. The follow
ing are the tensile-strength measurements in kilograms 
per square centimeter x 10~': 

Machine 
1 

17.5 
16.9 
15.8 
18.G 

2 
16.4 
19.2 
17.7 
15.4 

3 
20.3 
15.7 
17.8 
18.9 

4 
14.6 
16.7 
20.8 
18.9 

5 
17.5 
19.2 
16.5 
20.5 

6 
18.3 
16.2 
17.5 
20.1 

Perform the analysis of variance at the 0.05 level of sig
nificance and indicate whether or not the mean tensile 
strengths differ significantly for the 6 machines. 

13.4 The data in the following table represent the 
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number of hours of relief provided by 5 different brands 
of headache tablets administered to 25 subjects expe
riencing fevers of 38°C or more. Perforin the: analysis 
of variance and test the hypothesis at the 0.05 level 
of significance that, the mean number of hours of relief 
provided by the tablets is the same for all 5 brands. 
Discuss the results. 

Tablet 
A 
5.2 
4.7 
8.1 
6.2 
3.0 

B 
9.1 
7.1 
8.2 
6.0 
9.1 

C 
3.2 
5.8 
2.2 
3.1 
7.2 

D 
2.4 
3.4 
4.1 
1.0 
4.0 

E 
7.1 
6.6 
9.3 
4.2 
7.0 

13.5 In an article Shelf-Space Strategy in Retailing, 
published in the Proceedings: Southern Marketing As
sociation, the effect of shelf height on the supermarket 
sales of canned dog food is investigated. An experiment 
was conducted at a small supermarket for a period of 
8 days on the sales of a single brand of clog food, re
ferred to as Arf dog food, involving three levels of shelf 
height: knee level, waist level, and eye level. During 
each day the shelf height of the canned clog food was 
randomly changed on three different occasions. The re
maining sections of the gondola that housed the given 
brand were filled with a mixture of dog food brands 
that were both familiar and unfamiliar to customers 
in this particular geographic area. Sales, in hundreds 
of dollars, of Arf dog food per day for the three shelf 
heights are as follows: 

Shelf Height 
Knee Level Waist Level Eye Level 

77 
82 
86 
78 
81 
86 
77 
81 

88 
94 
93 
90 
91 
94 
90 
87 

85 
85 
87 
81 
80 
79 
87 
93 

Is there a significant difference in the average daily sales 
of this dog food based on shelf height? Use a, 0.01 level 
of significance. 

13.6 Immobilization of free-ranging white-tailed deer 
by drugs allows researchers the opportunity to closely 
examine deer and gather valuable physiological in
formation. In the study Influence of Physical. Re
straint and Restraint Facilitating Drugs on Blood Mea
surements of White-Tailed Deer and Other Selected 
Mammals conducted at the Virginia Polytechnic In
stitute and State University, wildlife biologists tested 
the "knockdown" time (time from injection to immobi
lization) of three different immobilizing drugs. Immo
bilization, in this case, is defined as the point where 
the animal no longer has enough muscle control to 

remain standing. Thirty male white-tailed deer were 
randomly assigned to each of three treatments. Group 
A received 5 milligrams of liquid succinylcholine chlo
ride (SCC); group B received 8 milligrams of powdered 
SCC; and group C received 200 milligrams of phency-
clidine hydrochloride. Knockdown times, in minutes, 
were recorded here. Perform an analysis of variance at 
the 0.01 level of significance and determine whether or 
not the average knockdown time for the 3 drugs is the 
same. 

Group 

A 
ll 
5 
14 
7 
10 
7 
23 
4 
11 
11 

B 
10 
7 
16 
7 
7 
5 
10 
10 
6 
12 

c 4 
4 
6 
3 
5 
C 
8 
3 
7 
3 

13.7 It has been shown that the fertilizer magnesium 
ammonium phosphate, MgNH^POi, is an effective sup
plier of the nutrients necessary for plant growth. The 
compounds supplied by this fertilizer are highly solu
ble in water, allowing the fertilizer to be applied di
rectly on the soil surface or mixed with the growth 
substrate during the potting process. A study on the 
Effect, of Magnesium Ammonium Phosphate on Height 
of Chrysanthemums was conducted at George Mason 
University to determine a possible optimum level of 
fertilization, based on the enhanced vertical growth re
sponse of the chrysanthemums. Forty chrysanthemum 
seedlings were divided into 4 groups each containing 10 
plants. Each was planted in a similar pot containing a 
uniform growth medium. To each group of plants an 
increasing concentration of .\lgNH4PO4, measured in 
grains per bushel, was added. The 4 groups of plants 
were grown under uniform conditions in a greenhouse 
for a period of four weeks. The treatments and the re
spective changes in heights, measured in centimeters, 
are shown in the following table: 

Treatment 
50 g/bu 100 g/bu 200 g/bu 400 g/bu 

13.2 
12.4 
12.8 
17.2 
13.0 
14.0 
14.2 
21.6 
15.0 
20.0 

16.0 
12.6 
14.8 
13.0 
14.0 
23.6 
14.0 
17.0 
22.2 
24.4 

7.8 
14.4 
20.0 
15.8 
17.0 
27.0 
19.6 
18.0 
20.2 
23.2 

21.0 
14.8 
19.1 
15.8 
18.0 
26.0 
21.1 
22.0 
25.0 
18.2 

file:///lgNH4PO4
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Can wc conclude at the 0.05 level of significance that 
different concentrations of Mg'NH.iPO.i affect the av
erage attained height of chrysanthemums'' How much 
Mg'NH.iPO.i appears to be best? 

13.8 A study measures the sorption (either absorp
tion or adsorption) rate of three different types of or
ganic chemical solvents. These solvents are used to 
clean industrial fabricated-metal parts and are poten
tial hazardous waste. Independent samples of solvents 
from each type were tested and their sorption rates 
were recorded as a mole percentage. [See McClave, 
Dietrich, and Sincich (1997).] 

Aroma t i c s 
1.06 0.95 
0.79 0.65 
0.82 1.15 
0.89 1.12 
1.05 

Chloroalkanes 
1.58 1.12 
1.45 0.91 
0.57 0.83 
1.16 0.43 

0.29 
0.06 
0.44 
0.55 
0.61 

Esters 
0.43 
0.51 
0.10 
0.53 
0.34 

0.06 
0.09 
0.17 
0.17 
0.60 

Is there a significant difference in the mean sorption 
rate for the three solvents? Use a P-value for your 
conclusions. Which solvent would you use? 

13.9 The mitochondrial enzyme NAPH:NAD tran-
shydrogenase of the common rat tapeworm (lly-
menolepiasis diminuta) catalyzes hydrogen in trans
fer from NADYH to NAD, producing NADH. This 
enzyme is known to serve a vital role in the tape
worm's anaerobic metabolism, and it has recently been 
hypothesized that it may serve as a proton exchange 
pump, transferring protons across the mitochondrial 

membrane. A study on Effect of Various Substrate 
Concentrations on the Conformational Variation of 
the, NADPII:NAD Transhydrogenase of Hymenolepia-
sis diminutaconducted at Bowling Green State: Univer
sity was designed to assess the ability of this enzyme 
to undergo conformation or shape changes. Changes in 
the specific activity of the enzyme caused by variations 
in the concentration of NADP could be interpreted as 
supporting the theory of conformational change. The 
enzyme in question is located in the inner membrane of 
the tapeworm's mitochondria. These tapeworms were 
homogenized, and through a series of centrifugations, 
the enzyme was isolated. Various concentrations of 
NADP were then added to the isolated enzyme solu
tion, and the mixture was then incubated in a water 
bath at 56°C for 3 minutes. The enzyme was then 
analyzed on dualbeam spectrophotometer, and the fol
lowing results were calculated in terms of the specific 
activity of the: enzyme in nanomoles per minute per 
milligram of protein: 

N A D P Concen t r a t i on (ran) 
0 

11.01 
12.09 
10.55 
11.26 

80 
11.38 
10.07 
12.33 
10.08 

160 
11.02 
10.67 
11.50 
10.31 

360 
6.04 10.31 
8.65 8..'it) 
7.76 9.48 

10.13 8.89 
9.36 

Test the hypothesis at the 0.01 level that the: average 
specific activity is the same for the four concentrations. 

13.10 For the data set in Exercise 13.7, use Bartlett's 
test to check whether the variances are equal. 

13.5 Single Degree of Freedom Comparisons 

The analysis of variance in a one-way classification, or tho one-factor experiment, as 
it, is often called, merely indicates whether or not the hypothesis of equal t reatment 
means can be rejected. Usually, an experimenter would prefer his or her analysis 
to probe deeper. For instance, in Example 13.1, by rejecting the null hypothesis 
we concluded tha t the means are not all equal, but we still do not know where 
the differences exist among the aggregates. The engineer might have the- feeling a 
priori t h a t aggregates 1 and 2 should have similar absorption properties and tha t 
the same is t rue for aggregates 3 and 5. However, it is of interest to s tudy the 
difference between the two groups. It would seem, then, appropriate to test the 
hypothesis 

H 0 : px +fi2 - / / / j 

Hi: pi + ft2 - //,! 

- M6 = 0, 

- pr, ? 0. 

We notice that the hypothesis is a linear function of the population means where 
the coefficients sum to zero. 
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Definition 13.1: Any linear function 

k 

where YI Ci = 0 , is 
i = i 

of the form 

k 

t = i 

called a comparison 

Pi, 

or contrast in the treatment means. 

The experimenter can often make multiple comparisons by testing the significance 
of contrasts in the treatment means, that is, by testing a hypothesis of the type 

Hypothesis for a 
Contrast HQ: 22 c*A*j = 0, 

i = l 

k 

Hi: Y^ ciP-i ¥> °i 
( = i 

where YI ci — 0. 
» = i 

The test is conducted by first computing a similar contrast in the sample means, 

fc 
'«•' = ^Cilji.. 

i-l 

Since Y\,,Y2.,... ,Yk. are independent random variables having normal distribu
tions with means p.i,p.2,...,pk and variances a2/nx,o2/n2,... ,o2/nk, respec
tively, Theorem 7.11 assures us that w is a value of the normal random variable 
W with mean 

Pw = 22 CiP{ 

i=i 

and variance 

J2 _ _2 V ^ Ci 

i = l 

Therefore, when HQ is true, u\y = 0 and, by Example 7.5, the statistic 

W2 £ ciY. 
i = i 

°w *2£(c?M) 
i=X 

is distributed as a chi-squared random variable with 1 degree of freedom. Our 
hypothesis is tested at the o-level of significance by computing 
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Test Statistic for 
Testing a 
Contrast 

YH^/m) 
:i=X 

Definition 13.2: 

f £ Civ,. 

s2Zic2/n,) S
2 £ ( c ? / n 0 

i= l i-\ 

SSw 

Here / is a value of the random variable F having the F-distribution with 1 and 
Ar — k degrees of freedom. 

When the sample sizes are all equal to n, 
2 

SSw = kc'n)' 
t = l 

The quantity SSw, called the contrast sum of squares, indicates the portion of 
SSA that is explained by the contrast in question. 

This sum of squares will be used to test the hypothesis that the contrast 

k 

^ dpi = 0. 
7 = 1 

It is often of interest to test multiple contrasts, particularly contrasts that are 
linearly independent or orthogonal. As a result, we need the following definition: 

The two contrasts 

wi = \V2 biPi and ^ 2 = ^ CiPi 

i=X t = l 

are said to be orthogonal if £ biCi/n, = 0 or, when the n;'s arc all equal to n, 
i-l 

if 

^ f c ; c ; = 0. 
; = i 

If W] and LJ2 are orthogonal, then the quantities 55u'i and SSw2 are compo
nents of 55.4, each with a single degree of freedom. The treatment sum of squares 
with A: — 1 degrees of freedom can be partitioned into at most A: — 1 independent 
single-degrec-of-freedom contrast sum of squares satisfying the identity 

SSA = SSwi + SSw2 + ••• + SSwk-i, 

if the contrasts are orthogonal to each other. 

Example 13.4:1 Referring to Example 13.1, find the contrast sum of squares corresponding to the 
orthogonal contrasts 

Wi = fix + fl2 - p3 - P5, U>2 = pi+ fi2 + ps - 4u4 + fl-5, 
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and carry out appropriate tests of significance. In this case it is of interest a 
priori, to compare the two groups (1,2) and (3,5). An important and independent 
contrast is the comparison between the set of aggregates (1,2,3,5) and aggregate 
4. 

Solution: It is obvious that the two contrasts are orthogonal, since 

(1)(1) + (1)(1) + (-1)(1) + (0)(-4) + (-1)(1) = 0. 

The second contrast indicates a comparison between aggregates (1,2,3, and 5) and 
aggregate 4. We can write two additional contrasts orthogonal to the first two, 
namely: 

w.3 — IH — P2 (aggregate 1 versus aggregate 2), 

OJ4 = p-i - Pb (aggregate 3 versus aggregate 5). 

From the data of Table 13.1, we have 

(3320 + 3416 - 3663 - 3664)2
 1 , r r o 

SSWi = 6[(l)» + (l)* + ( - l )» + ( - l ) ] = M ' d d 3 : 

_ [3320 + 3416 + 3663 + 3664 - 4(2791)]2 _ 
A " " Q[(l)2 + (l)2 + (l)2 + (l)2 + (-4y\ ~ W^°-

A more extensive analysis-of-variance table is shown in Table 13.5. We note that 
the two contrast sum of squares account for nearly all the aggregate sum of squares. 
There is a significant difference between aggregates in their absorption properties, 
and the contrast U/'i is marginally significant. However, the /-value of 14.12 for u}2 

is more significant and the hypothesis 

HQ: px + p2 + p3 + (is = 4p4 

is rejected. 

Table 13.5: Analysis of Variance Using Orthogonal Contrasts 

Source of 
Variation 
Aggregates 
(1,2) vs. (3,5) 
(1,2,3,5) vs. 4 

Error 
Total 

Sum of 
Squares 

85,356 
J 14,553 
\ 70,035 

124,021 
209,377 

Degrees of 
Freedom 

4 

l: 
25 
29 

Mean 
Square 
21,339 

J14,533 
j70,035 

4,961 

Computed 
/ 

4.30 
2.93 

14.12 

Orthogonal contrasts allow the practitioner to partition the treatment variation 
into independent components. There are several choices available in selecting the 
orthogonal contrasts except for the last one. Normally, the experimenter would 
have certain contrasts that are of interest to him or her. Such was the ease in 
our example, where a priori considerations suggest, that aggregates (1,2) and (3,5) 
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constitute distinct groups with different absorption properties, a postulation that 
was not strongly supported by the significance test. However, the second compar
ison supports the conclusion that aggregate 4 seems to ilstand out" from the rest. 
In this case the complete partitioning of 55.4 was not necessary, since two of the 
four possible independent comparisons accounted for a majority of the variation in 
treatments. 

Figure: 13.3 shows a 5.45 GLM procedure that displays a complete set of or
thogonal contrasts. Note that the sum of squares for the four contrasts adds to the 
aggregate sum of squares, Also, that the latter two contrasts (1 versus 2, 3 versus 
5) reveal insignificant comparisons. J 

Dependent Variable 

Source 

Model 
Error 

Corrected 

R-
0. 

Source 

aggregate 

Source 

aggregate 

Contrast 

(1,2,3,5) 

(1,2) vs. 

1 vs. 2 

3 vs. 5 

Total 

-Square 

.407669 

vs. 4 

(3,5) 

The GLM Procedure 

: moisture 

DF 
4 
25 
29 

C 

DF 
4 

DF 
4 

DF 
1 
1 
1 
1 

Sum of 
Squares 

85356.4667 

124020.3333 
209376.8000 

loeff Var 

12.53703 

Type I SS 

85356.46667 

Type III SS 

85356.46667 

Contrast SS 

70035.00833 

14553.37500 

768.00000 

0.08333 

Mean Square F 

21339.1167 
4960.8133 

Value Pr > F 
4.30 0.0088 

Root MSE moisture Mean 

70.43304 

Mean Square 

21339.11667 

Mean Square 

21339.11667 

Mean Square 

70035.00833 

14553.37500 

768.00000 
0.08333 

561.8000 

F Value 

4.30 

F Value 

4.30 

F Value 

14.12 

2.93 

0.15 

0.00 

Pr > F 

0.0088 

Pr > F 

0.0088 

Pr > F 

0.0009 

0.0991 

0.6973 

0.9968 

Figure 13.3: A set of orthogonal procedures 

13.6 Multiple Comparisons 

The analysis of variance is a powerful procedure for testing the homogeneity of 
a set of means. However, if we reject the null hypothesis and accept the stated 
alternative that the means are not all equal wc still do noi know which of the 
population means are equal and which arc different. 

In Section 13.5 we describe the use of orthogonal contrasts to make compar
isons among sets of factor levels or treatments. The: notion of orthogonality allows 
the analyst to make tests involving independent contrasts. Thus the variation 
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among treatments, 55/1, can be partitioned into single-degree-of-freedom compo
nents, and then proportions of this variation can be attributed to specific contrasts. 
However, there are situations in which the use of contrasts is not an appropriate 
approach. Often it is of interest to make several (perhaps all possible) paired com
parisons among the treatments. Actually, a paired comparison may be viewed as 
a simple contrast, namely, a test of 

H0: fn - p.j = 0, 

Hf. pi - p.j ji 0, 

for all i 7̂  j. All possible paired comparisons among the means can be very 
beneficial when particular complex contrasts are not known a priori. For example, 
in the aggregate data of Table 13.1, suppose that we wish to test 

HQ: pi - u$ = 0, 

Hi: pi - ps 7^0, 

The test is developed through use of an F, t, or a confidence interval approach. 
Using the t. we have 

where s is the square root of the mean square error and n = 6 is the sample size 
per treatment, In this case 

553.33-610.67 , „ 
t = — . = -1 .41 . 

^/4lm^Sl/3 
The P-value for the <-test with 25 degrees of freedom is 0.17. Thus there is not 
sufficient evidence to reject HQ. 

Relationship between t and F 

In the foregoing we displayed the use of a pooled t-test along the lines of that 
discussed in Chapter 10. The pooled estimate comes from the mean square error 
in order to enjoy the degrees of freedom that are pooled across all five samples. In 
addition, we have tested a contrast. The reader should note that if the lvalue is 
squared, the result is exactly of the form of the value of / for a test on a contrast 
discussed in the preceding section. In fact, 

, _ im.-Vs.)2 __ (553.33-610.67)2 

1 *2(l/6 + l/6) 4961(1/3) ' 

which, of course, is t2. 

Confidence Interval Approach to a Paired Comparison 

It is straightforward to solve the same problem of a paired comparison (or a con
trast) using a confidence interval approach. Clearly, if we compute a 100(1 — o)% 
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confidence interval on pi — p$, we have 

Si. -So . ±tD t«/2S\j-, 

where tn/2 is the upper 100(1 - a/2)% point of a /.-distribution with 25 degrees 
of freedom (degrees of freedom coming from s2). This straightforward connection 
between hypothesis testings and confidence intervals should be obvious from dis
cussions in Chapters 9 and 10. The test of the simple contrast u-x - Po involves 
no more than observing whether or not the confidence interval above covers zero. 
Substituting the numbers, we have as the 95% confidence interval 

(553.33 - 610.67) ± 2.060\/496Ti/i = -57.34 ± 83.77. 

Thus, since the interval covers zero, the contrast is not significant. In other words, 
we do not. find a significant difference between the means of aggregates 1 and 5. 

Experiment-Wise Error Rate 

Tukey's Test 

We have demonstrated that a simple contrast (i.e., a comparison of two means) 
can be made through an F-test as demonstrated in Section 13.5, a i-test, or by 
computing a confidence interval on the difference between the two means. How
ever, serious difficulties occur when the analyst attempts to make many or all 
possible paired comparisons. For the case of k means, there will be, of course, 
r — k(k — l ) /2 possible paired comparisons. Assuming independent comparisons, 
the experiment-wise error rate (i.e., the probability of false rejection of at least 
one of the hypotheses) is given by 1 — (1 — a)r, where a is the selected probability 
of type I error for a specific comparison. Clearly, this measure of experiment-wise 
type I error can be quite large. For example, even if there are only 6 comparisons, 
say, in the case of 4 means, and o = 0.05, the experiment-wise rate is 

1 - (0.95)6 ss 0.26. 

With the task of testing many paired comparisons there is usually the need to make 
the effective contrast on a single comparison more conservative. That is, using the 
confidence interval approach, the confidence intervals would be much wider than 
the ±ta/2s\/2/n used for the case where only a single comparison is being made. 

There are several standard methods for making paired comparisons that sustain 
the credibility of the type I error rate. We shall discuss and illustrate two of thern 
here. The first one, called Tukey's procedure, allows formation of simultaneous 
100(1 — a)% confidence intervals for all paired comparisons. The method is based 
on the studentized range distribution. The appropriate percentile point is a function 
of a, k, and v = degrees of freedom for s2. A list of upper percentage points for 
Q = 0.05 is shown in Table A. 12. The method of paired comparisons by Tukey 
involves finding a significant difference between means i and j (i ^ j) if |jfe. — y~jm\ 

exceeds 17(0-, k, v] J ̂ -. 
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Tukey's procedure is easily illustrated. Consider a hypothetical example where 
we have 6 treatments in a one-factor completely randomized design with 5 obser
vations taken per treatment. Suppose that the mean square error taken from the 
analysis-of-variance table is s2 = 2.45 (24 degrees of freedom). The sample means 
are in ascending order. 

])2. Vo. Vi. V'i. Ve. VA. 

14.50 16.75 19.84 21.12 22.90 23.20. 

With a = 0.05, the value of <7(0.05,6,24) = 4.37. Thus all absolute differences arc-
to be compared to 

4 . 3 7 1 / - ^ = 3.059. 

As a result, the following represent moans found to be significantly different using 
Tukey's procedure: 

4 and 1, 4 and 5, 4 and 2, 6 and 1, 6 and 5, 
6 and 2, 3 and 5, 3 and 2, 1 and 5, 1 and 2. 

Where Does the a-Level Come from in Tukey's Test? 

We briefly alluded to the concept of s imultaneous confidence intervals that 
arc employed for Tukey's procedure. The reader will gain a useful insight into the 
notion of multiple comparisons if he or she gains an understanding of what is meant 
by simultaneous confidence intervals. 

In Chapter 9 we learned that if we compute a confidence interval on, say, a mean 
p, then the probability that the interval covers the true mean p is 0.95. However, as 
we have discussed for the case of multiple comparisons, the effective probability of 
interest is tied to the experiment-wise error rate and it should be emphasized that 
the confidence intervals of the type y,. — fjj. ± q[a, k, v]sy/l/n are not independent 
since they all involve s and many involve the use of the same averages, the pi,. 
Despite the difficulties, if we use the q(0.05. k,v), the simultaneous confidence level 
is controlled at 95%. The same holds for q(0.01, k, v), namely the confidence level 
is controlled at 99%. In the case of a = 0.05, there is a probability of 0.05 that at 
least one pair of measures will be falsely found to be different (false rejection of at 
least one hypothesis). In the a = 0.01 case the corresponding probability will be 
0.01. 

Duncan's Test 
The second procedure we shall discuss is called Duncan's procedure or Dun
can's multiple-range test. This procedure is also based on the general notion 
of studentized range. The range of any subset of p sample means must exceed a 
certain value before any of the p means are found to be different. This value is 
called the least significant range for the p means and is denoted as Rp, where 
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The values of the quantity rp, called the1 least significant s tudent ized range, 
depend on the desired level of significance and the number of degrees of freedom 
of the mean square error. These values may be obtained from Tabic A.13 for 
p = 2 , 3 , . . . 11.0 means. 

To illustrate the multiple-range test procedure, let us consider the hypothetical 
example where G treatments are compared with 5 observations per treatment. This 
is the same example as that used to illustrate Tukey's test. We obtain R.v by 
multiplying each rp by 0.70. The results of these computations are summarized as 
follows: 

V 

l'l> 

2 

2.919 
2.043 

3 

3.06G 
2.146 

1 

3.160 
2.212 

5 

3.226 
2.258 

6 

3.276 
2.293 

Comparing these least: significant ranges with the differences in ordered means, we 
arrive at the following conclusions: 

1. Since v/4. — f/2. = 8.70 > /?Q = 2.293, we conclude: that //,[ and p2 are signifi
cantly differenl. 

2. Comparing y4, - 1/5. and i/,;. — y2, with /?.-,, we conclude that ft,\ is significantly 
greater than fir, and fio is significantly greater than p2. 

3. Comparing y4, — yi., j/y. — j/5., and y-j, — y2. with R4, wc conclude that each 
difference is significant. 

4. Comparing j/4, — y-.i,. yo, — yi,, fj-.i. — v/r,., and 1/1. — [/•>. with R.-.i, we find all 
differences significant except for m — p3. Therefore, fi3, p4, and po constitute 
a subset of homogeneous means. 

5. Comparing y:!. - [/],. yi, — yr,., and §5. — S2. with R2- wc conclude that only 
ps and ft-i are not significantly different. 

It is customary to summarize the conclusions above by drawing a lino under any 
subset of adjacent means that are not significantly different. Thus wc have 

in. TJTJ. S I . S3. Se. Vi. 
14.50 16.75 19.84 21.12 22.90 23.20 

It is clear that in this case the results from Tukey's and Duncan's procedures 
are very similar. Tukey's procedure did not detect a difference between 2 and 5, 
whereas Duncan's did. 

13.7 Comparing Treatments with a Control 

In many scientific and engineering problems one is not interested in drawing infer
ences regarding' all possible comparisons among the treatment means of the type 
Pi — fij. Rather, the experiment often dictates the need for comparing simultane
ously each treatment with a control. A test procedure developed by C. W. Dunnett 
determines significant differences between each treatment mean and the control, at 
a single joint, significance level a. To illustrate Dunnett's procedure, let us consider 
the experimental data of Tabic 13.6 for the one-way classification where the effect 
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Table 13.6: Yield of Reaction 

Control 
50.7 
51.5 
49.2 
53.1 
52.7 

So. = 51.44 

Catalyst 1 

Si. 

54.1 
53.8 
53.1 
52.5 
54.0 

= 53.50 

Catalyst 2 

S2. 

52.7 
53.9 
57.0 
54.1 
52.5 

= 54.04 

Catalyst 3 

2/3 

51.2 
50.8 
49.7 
48.0 
47.2 

= 49.38 

of three catalysts on the yield of a reaction is being studied. A fourth treatment, 
no catalyst, is used as a control. 

In general, wc wish to test the k hypotheses 

Ho- Po = pA i = 1 ) 2 ) . . . ) j f c ) 
Hi: po^Pi) 

where po represents the mean yield for the population of measurements in which 
the control is used. The usual analysis-of-variance assumptions, as outlined in 
Section 13.3, are expected to remain valid. To test the null hypotheses specified 
by Ho against two-sided alternatives for an experimental situation in which there 
are A: treatments, excluding the control, and n observations per treatment, we first 
calculate the values 

, Vi. - SO. . - i n I, 
di = —; , t = 1,2,...,K. 

y/2^Jn 
The sample variance s2 is obtained, as before, from the mean square error in the 
analysis of variance. Now, the critical region for rejecting Ho, at the a-level of 
significance, is established by the inequality 

\di\ > da/2(k,v), 

where v is the number of degrees of freedom for the mean square error. The values 
of the quantity dn/2(k, v) for a two-tailed test are given in Table A. 14 for o = 0.05 
and a = 0.01 for various values of k and v. 

Example 13.5:1 For the data of Table 13.6, test hypotheses comparing each catalyst with the 
control, using two-sided alternatives. Choose a = 0.05 as the joint significance 
level. 

Solution: The mean square error with 16 degrees of freedom is obtained from the analysis-
of-variance table, using all k + 1 treatments. The mean square error is given by 

, 36.812 
s2 = —— = 2.30075, 

16 

and 

m?om=0i9593> 
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Hence 

, 5 3 . 5 0 - 5 1 . 4 4 
(h= 0.9593 =2M'< 

«fe- 5 4 - ° 4 - . 5 . 1 - 4 4 = 2.710, 
0.9593 

49.38 - 51.44 
-2.147. 

0.9593 

From Table A. 14 the critical value for a = 0.05 is found to be 

do.025(3,16) = 2.59. 

Since \dx\ < 2.59, and \d3\ < 2.59, wc conclude that only the mean yield for catalyst 

2 is significantly different from the mean yield of the reaction using the control. J 
Many practical applications dictate the need for a one-tailed test for comparing 

t reatments with a control. Certainly, when a pharmacologist is concerned with the 
comparison of various dosages of a drug on the effect, of reducing cholesterol level, 
and his control is zero dosage, it. is of interest to determine if each dosage produces 
a significantly larger reduction than that of the control. Table A. 15 shows the 
critical values o{d„(k,v) for one-sided alternatives. 

Exercises 

13.11 Consider the data of Review Exercise 13.58 on 
page 568. Make significance tests on the following con
trasts: 

(a) B versus A, C, and D; 

(b) C versus A and D\ 

(c) A versus D. 

13.12 The study Loss of Nitrogen Through Sweat by 
Preadolescent Boys Consuming Three Levels of Dietary 
Protein was conducted by the Department of Human 
Nutrition and Foods at the Virginia Polytechnic In
stitute and State University to determine perspiration 
nitrogen loss at, various dietary protein levels. Twelve 
preadolescent boys ranging in age from 7 years, 8 
months to !) years, 8 months, and judged to be clin
ically healthy, were used in the experiment. Each boy 
was subjected to one of three controlled diets in which 
29. 54, or 84 grams of protein per day were: consumed. 
The following data represent, the body perspiration ni
trogen loss, in milligrams, collected during the last two 
days of the experimental period: 

P r o t e i n Level 
29 G r a m s 

190 
266 
270 

54 G r a m s 
318 
295 
271 
438 

84 G r a m s 
390 
321 
390 
399 

(a) 
402 

Perform an analysis of variance at the 0.05 level 
of significance: to show that the mean perspiration 
nitrogen losses at the three protein levels arc dif
ferent. 
Use a single' degree-of-freedom contrast with a = 
0.05 to compare the mean perspiration nitrogen loss 
for boys who consume 29 grams of protein per day 
versus boys who consume 54 and 84 grams of pro
tein. 

13.13 The purpose of the study The Incorporation of 
a. Chelating Agent into a Flame Retardant Finish of a 
Cotton Flannelette and the Evaluation of Selected Fab
ric Properties conducted at the Virginia Polytechnic 
Institute and State University was to evaluate: the use 
of a chelating agent as part of the flamc-ictardant fin
ish of cotton flannelette by determining its effects upon 
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flammability after the fabric is laundered under specific 
conditions. Two baths were prepared, one with car-
boxyinethyl cellulose and one without. Twelve pieces 
of fabric were laundered 5 times in bath I, and 12 other 
pieces of fabric were laundered 10 times in bath I. This 
was repeated using 24 additional pieces of cloth in bath 
II. After the washings the lengths of fabric: that burned 
and the burn times were measured. For convenience, 
let us define the following treatments: 

Treatment 1: 5 launderings in bath I, 

Treatment 2: 5 launderings in bath II, 

Treatment 3: 10 launderings in bath I, 

Treatment 4: 10 launderings in bath II. 

Burn times, in seconds, were recorded as follows: 

Treatment 

Blend 

1 
13.7 
23.0 
15.7 
25.5 
15.8 
14.8 
14.0 
29.4 
9.7 

14.0 
12.3 
12.3 

2 
6.2 
5.4 
5.0 
4.4 
5.0 
3.3 

16.0 
2.5 
1.6 
3.9 
2.5 
7.1 

3 
27.2 
16.8 
12.9 
14.9 
17.1 
13.0 
10.8 
13.5 
25.5 
14.2 
27.4 
11.5 

4 
18.2 
8.8 

14.5 
14.7 
17.1 
13.9 
10.6 
5.8 
7.3 

17.7 
18.3 
9.9 

(a) Perforin an analysis of variance using a 0.01 level 
of significance and determine whether there are any 
significant differences among the treatment means. 

(b) Use single-degree-of-freedom contrasts with a = 
0.01 to compare the mean burn time of treatment 
1 versus treatment 2 and also treatment 3 versus 
treatment 4. 

13.14 Use Tukey's test, with a 0.05 level of signifi
cance, to analyze the means of the 5 different brands 
of headache tablets in Exercise 13.4 on page 521. 

13.15 For the data used in Review Exercise 13.58 on 
page 568, perform Tukey's test with a 0.05 level of 
significance to determine which laboratories differ, on 
average, in their analysis. 

13.16 An investigation was conducted to determine 
the source of reduction in yield of a certain chemical 
product. It was known that the loss in yield occurred 
in the mother liquor, that is. the material removed at 
the filtration stage. It was felt that different blends of 
the original material may result in different yield re
ductions at the mother liquor stage. The following are 
results of the percent reduction for 3 batches at each 
of 4 preselected blends: 

25.0 
24.3 
27.9 

25.2 
28.6 
24.7 

20.8 
26.7 
22.2 

31.6 
29.8 
34.3 

(a) Perform the analysis of variance at the a = 0.05 
level of significance. 

(b) Use Duncan's multiple-range test to determine 
which blends differ. 

(c) Do part, (b) using Tukey's test. 

13.17 In the study An Evaluation of the Removal 
Method for Estimating Benthic Populations and Diver
sity conducted by the Virginia Polytechnic Institute 
and State University on the Jackson River, 5 differ
ent sampling procedures were used to determine the 
species count. Twenty samples were selected at ran
dom and each of the 5 sampling procedures were re
peated 4 times. The species counts were recorded as 
follows: 

Sampling Procedure 

Deple
tion 
85 
55 
40 
77 

Modified 
Hess 

75 
45 
35 
67 

Surber 
31 
20 
9 

37 

Substrate 
Removal Kick-
Kicknet net 

43 17 
21 10 
15 8 
27 15 

(a) Is there a significant difference in the average 
species count for the different sampling procedures? 
Use a P-value in your conclusion. 

(b) Use Tukey's test with a = 0.05 to find which sam
pling procedures differ. 

13.18 The following data are values of pressure (psi) 
in a torsion spring for several settings of the angle be-
tween the legs of the spring in a free position: 

Angle (°) 
67 
83 
85 

71 
84 
85 
85 
86 
86 
87 

75 
86 87 
87 87 
88 88 
88 88 
88 89 
90 

79 
89 
90 
90 
91 

83 
90 
92 

Compute a one-way analysis of variance for this exper
iment and state your conclusion concerning the effect 
of angle on the pressure in the spring. (C. R. Hicks, 
Fundamental Concepts in the Design of Experiments, 
Holt, Rinebart and Winston, New York, 1973.) 

13.19 In the following biological experiment 4 con
centrations of a certain chemical are used to enhance 
the growth of a certain type of plant over time. Five 
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plants are used at each concentration and the growth 
in each plant is measured in centimeters. The following 
growth data are taken. A control (no chemical) is also 
applied. 

Concen t r a t i on 
Con t r 

6.8 
7.3 
6.3 
0.9 
7.1 

ol 1 
8.2 
8.7 
9.4 
9.2 
8.6 

2 
7.7 
8.4 
8.6 
8.1 
8.0 

3 
6.9 
5.8 
7.2 
6.8 
7,1 

4 
5.9 
6.1 
( i . ' . i 

5.7 
6.1 

Use Dunnett's two-sided 
icance to simultaneously 
with the control. 

test at the 0.05 level of signif-
compare the concentrations 

13.20 The following table (A. Ilald, Statistical. The
ory with Engineering Applications. John Wiley fc Sons. 
New York. 1952) gives tensile1 si lengths of deviations 
from 340 for wires taken from nine cables to be used 
for a high-voltage network. Each cable is made from 12 
wires. We want to know whether the mean strengths of 
the wires in the nine cables are the same. If the cables 
are different, which ones differ? Use a /'-value in your 
analysis of variance. 

Cable Tensile S t r e n g t h 

1 
2 • 
3 
4-
5 
6 
7 
8 
9 

5 -
- 1 1 -

0-
-12 

7 
1 

- 1 
- 1 

2 

-13 
-13 
-1.0-

4 
1 
0 
0 
0 
6 

- 5 
- 8 
-15-

2 
5 

- 5 
2 
7 
7 

- 2 -
8 

-12 
10 
0 

- 4 
I 
5 
8 

-III 
- 3 -
- 2 
- 5 
10 

- 1 
- 4 
III 
15 

- 6 
-12-
- 8 
- 8 -

6 
0 
2 
8 

11 

- 5 
-12 -
- 5 
-12 

5 
2 
7 
1 

—7 

0 - 3 2 
-10 5 - 6 -

0 - 4 - 1 
0 - 5 - 3 
2 0 - 1 -
5 1 - 2 
5 1 0 
2 - 3 6 
7 10 7 

- 7 
-12-
—5 -
- 3 

-10 
6 

- 4 
0 
8 

—5 
-10 
-11 

0 
_2 

7 
2 
5 
I 

13.21 The printout information in Figure 13.4 on 
page 530 gives Duncan's test using PROC GLM in SAS 
for the aggregate data in Example 13.1. Give conclu
sions regarding paired comparisons using Duncan's test 
results. 

13.22 The financial structure of a firm refers to the 
way the firm's assets are divided by equity and debt, 
and the financial leverage refers to the percentage of 
assets financed by debt. In the paper The Effect of 
Financial Leverage on Return, Tai Ma of the Virginia 

Polytechnic Institute: and State University claims that 
financial leverage can be used to increase the rate of re
turn on equity. To say it another way, stockholders can 
receive higher returns on equity with the same amount, 
of investment by the use: of financial leverage. The fol
lowing data show the rates of return on equity using 3 
different levels of financial leverage' and a control level 
(zero debt) for 24 randomly selected firms: 

F inanc ia l Leverage 
Con t r 

2.1 
5.6 
3.0 
7.8 
5.2 
2.6 

ol Low 
6.2 
4.0 
8.4 
2.8 
4.2 
5.0 

M e d i u m 
9.6 
8.0 
5.5 

12.6 
7.0 
7.8 

High 
10.3 
6.9 
7.8 
5.8 
7.2 

12.0 
Source: Standard & Poor's Machinery Indus
try Survey, 1975. 

(a) Perform the analysis of variance at the 0.05 level of 
significance. 
Use Dunnett's test at the 0.01 level of significance 
to determine whether the mean rates of return on 
equity at the low, medium, and high levels of finan
cial leverage are higher than at the control level. 

(b 

13.23 It is suspected that the environmental temper
ature in which batteries are: activated affects their life. 
Thirty homogeneous batteries were tested, six at each 
of five temperatures, and the data are shown below 
(activated life in seconds). Analyze and interpret the 
data. (C. R. Hicks, Fundamental Concepts in Design, of 
Experiments, Holt. Rinehart and Winston. New York, 
1973.) 

T e m p e r a t u r e (°C) 
0 
55 
55 
57 
54 
54 
56 

25 
60 
61 
60 
60 
60 
60 

50 
70 
72 
72 
08 
77 
77 

75 
72 
72 
72 
70 
68 
69 

100 
65 
66 
60 
64 
65 
65 

13.24 Do Duncan's test for paired comparisons for 
the data of Exercise 13.8 on page 523. Discuss the 
results. 

13.8 Comparing a Set of Treatments in Blocks 

In Section 13.2 we discuss the idea of blocking, tha t is, isolating sets of experimental 
units that arc reasonably homogeneous and randomly assigning t reatments to these 
units. This is an extension of the "pairing" concept that is discussed in Chapters 
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The GLM Procedure 
Duncan's Multiple Range Test for moisture 

NOTE: This t e s t cont ro l s the Type I comparisonwise e r ro r r a t e , 
not the experimentwise e r ro r r a t e . 

Alpha 0.05 
Error Degrees of Freedom 25 
Error Mean Square 4960.813 

Number of Means 2 3 4 5 
C r i t i c a l Range 83.75 87.97 90.69 92.61 

Means with the same l e t t e r a re not s i g n i f i c a n t l y d i f f e r e n t . 
Duncan Grouping Mean N aggregate 

A 610.67 6 5 
A 
A 610.50 6 3 
A 
A 569.33 6 2 
A 
A 553.33 6 1 

B 465.17 6 4 

Figure 13.4: SAS printout for Exercises 13.21. 

9 and 10 and is done to reduce experimental error, since the units in blocks have 
characteristics that are more common than units that are in different blocks. 

The reader should not view blocks as a second factor, although this is a tempting 
way of visualizing the design. In fact, the main factor (treatments) still carries the 
major thrust of the experiment. Experimental units are still the source of error, 
just as in the completely randomized design. We merely treat sets of these units 
more systematically when blocking is accomplished. In this way, we say there are 
restrictions in randomization. For example, for a chemical experiment designed 
to determine if there is a difference in mean reaction yield among four catalysts, 
samples of materials to be tested are drawn from the same batches of raw materials, 
while other conditions, such as temperature and concentration of reactants, are held 
constant. In this case the time of day for the experimental runs might represent 
the experimental units, and if the experimenter feels that, there could possibly be a 
slight time effect, he or she would randomize the assignment of the catalysts to the 
runs to counteract the possible trend. This type of experimental strategy is the 
completely randomized design. As a second example of such a design, consider 
an experiment to compare four methods of measuring a particular physical property 
of a fluid substance. Suppose the sampling process is destructive; that is, once a 
sample of the substance has been measured by one method, it cannot be measured 
again by any of the other methods. If it is decided that 5 measurements are to be 
taken for each method, then 20 samples of the material are selected from a large 
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batch at random and are used in the experiment to compare the four measuring 
devices. The experimental units are the randomly selected samples. Any variation 
from sample to sample will appear in the error variation, as measured by s2 in the 
analysis. 

What Is the Purpose of Blocking4! 

If the variation due to heterogeneity in experimental units is so large that the 
sensitivity of detecting treatment differences is reduced due to an inflated value of 
s2, a better plan might be to "block off" variation due to these units and thus reduce 
the extraneous variation to that accounted for by smaller or more homogeneous 
blocks. For example, suppose that in the previous catalyst illustration it is known 
a priori that there definitely is a significant, day-to-day effect on the yield and that 
we can measure the yield for four catalysts on a given day. Rather than assign the 4 
catalysts to the 20 test runs completely at random, we choose, say, 5 days and run 
each of the 4 catalysts on each day, randomly assigning the catalysts to the runs 
within days. In this way the day-to-day variation is removed in the analysis and 
consequently the experimental error, which still includes any time trend within 
days, more accurately represents chance variation. Each day is referred to as a 
block. 

The most straightforward of the randomized block designs is one in which we 
randomly assign each treatment, once to every block. Such an experimental layout 
is called a randomized complete block design, each block constituting a single 
replication of the treatments. 

13.9 Randomized Complete Block Designs 

A typical layout for the randomized complete block design (RCB) using 3 mea
surements in 4 blocks is as follows: 

Block 1 Block 2 Block 3 Block 4 

t2 

u 
h 

tx 
h 
t2 

t3 

t2 

tx 

t2 

tx 
h 

The t's denote the assignment to blocks of each of the 3 treatments. Of course, 
the true allocation of treatments to units within blocks is done at random. Once 
the experiment has been completed, the data can be recorded as in the following 
3 x 4 array: 

Treatment 
1 
2 
3 

Block: 1 

Vn 
J/21 

2/31 

2 

2/12 

2/22 

2/32 

3 

2/13 

2/23 

2/33 

4 

2/14 

2/24 

J/34 

where yn represents the response obtained by using treatment 1 in block 1, yi2 

represents the response obtained by using treatment 1 in block 2, . . . , and y34 

represents the response obtained by using treatment 3 in block 4. 
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Let us now generalize and consider the case of k treatments assigned to b blocks. 
The data may be summarized as shown in the k x b rectangular array of Table 
13.7. It will be assumed that the y^, i = 1, 2 , . . . , k and j = 1,2,..., b, are values 
of independent random variables having normal distributions with means p-ij and 
common variance a2. 

Table 13.7: k x b Array for the RCB Design 

Treatment 

1 
2 

1 

2/ii 

2/21 

2 

J/12 

2/22 

Block: 
j 

... yij .. 

... y2j . . 

6 

V2b 

T o t a l 

Ti. 

T-2. 

M e a n 

2/i. 
y-2. 

yn yt2 ••• yu • • • y*b T. 

k 

Total 

Mean 

2/fci 

Ti 

V-i 

2/fc2 
T2 .. 

y.2 •• 

' 2/fej ' 

• T.j •• 

• v., • 

ykb 

•• T.b 

•• y.b 

Tk. 

T. 
Vk. 

V-

Let pi. represent the average (rather than the total) of the b population means 
for the ith treatment. That is, 

1 b 

^-= 1^2^' 
j=X 

Similarly, the average of the population means for the j th block, p.j, is defined by 

1 k 

i=\ 

and the average of the bk population means, u, is defined by 

1 k b 

^=^EE^-
»=i j = i 

To determine if part of the variation in our observations is due to differences among 
the treatments, we consider the test 

Hypothesis of 
ttment 
Means Hx: The /Zj.'s are not all equal. 

Equal Treatment H*' (l1- ~ f'2- **» 

Model for the RCB Design 

Each observation may be written in the form 

Vij — Pij + eij) 
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where e-,j measures the deviation of the observed value yy from the population 
mean pij. The preferred form of this equation is obtained by substituting 

Pij = p + ai + 0j, 

where ct< is, as before, the effect of the ith treatment and 3j is the effect of the j t h 
block. It is assumed that the treatment and block effects are additive. Hence we 
may write 

Vij = P + a> + Pj + Uy 

Notice that the model resembles that of the one-way classification, the essential 
difference being the introduction of the block effect 0j. The basic concept is much 
like that of the one-way classification except that we must account in the analysis 
for the additional effect due to blocks, since we are now systematically controlling 
variation in two directions. If we now impose the restrictions that 

k b 

] T o , = 0 and ^ ^ = 0 , 
;=1 j=\ 

then 

and 

1 b 

ii. = 7 E ^ + ai + "•>) = fl + Q '» b 

1 k 

The null hypothesis that the A: treatment means //,.'s are equal, and therefore equal 
to p, is now equivalent to testing the hypothesis: 

H0: ai = a2 = • • • = ak = 0, 

H\: At least one of the Q,'S is not equal to zero. 

Each of the tests on treatments will be based on a comparison of independent 
estimates of the common population variance a2. These estimates will be obtained 
by splitting the total sum of squares of our data into three components by means 
of the following identity. 

Theorem 13.3: Sum- of-Squares Identity 

EI>-3-) 2 

i= l j = l 
=&X>'-^")2 

i = l 
k b 

+EE(^-
i=i j=\ 

b 

+ kY,iy~3-y-)2 

- m. - y.j + y..f 

The proof is left to the reader. 
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The sum-of-sqtiares identity may be presented symbolically by the equation 

SST = SSA + SSB + SSE, 

where 

SST 

SSA 

SSB 

SSE 

k b 

i=i j = i 

i = i 

i=i 
fc b 

-ED* 
i = l j=l 

- y.)2 

v..)2 

y.f 

- Hi. - V-3 + v..? 

= total sum 

= treatment 

= block sum 

= error sum 

of squares, 

sum of squares, 

of squares, 

of squares. 

Following the procedure outlined in Theorem 13.2, where we interpret the sum 
of squares as functions of the independent random variables, Yu, Yi2,..., Y^i,, we 
can show that the expected values of the treatment, block, and error stun of squares 
are given by 

E(SSA) = (k-l)o2+bJ2a2, 
i = i 

b 

E(SSB) = (b-l)o2 + kJ2 3], 
j = i 

E(SSE) = (b-l)(k-l)o2. 

As in the case of the one-factor problem, we have the treatment mean square 

S, = 
SSA 
k-l' 

If the treatment effects Qi = a2 = • • • = a*, = 0, s2 is an unbiased estimate of a2. 
However, if the treatment effects are not all zero, we have 

Expected 
Treatment Mean 

Square 
E 

fSSA\ W / l \ 0 O V—v 9 

' i = i 

and s\ overestimates er2. A second estimate of a2, based on b— 1 degrees of freedom, 
is 

2 SSB 
S2 = b^T' 

The estimate .s2, is an unbiased estimate of a2 if the block effects 3i = b\ = • • • = 
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,3i, = 0. If the block effects are not all zero, then 

_{SSB\ 9 k 
E 

and s2 will overestimate a2. A third estimate of <72, based on (k— l)(b — 1) degrees 
of freedom and independent of s2 and s2, is 

2 SSE 
s — (k-l)(b-l)-

which is unbiased regardless of the truth or falsity of either null hypothesis. 
To test the null hypothesis that the treatment effects are all equal to zero, we 

compute the ratio f\ = s2/s2, which is a value of the random variable Fi having 
an F-distribution with k-l and (k — l)(b - 1) degrees of freedom when the null 
hypothesis is true. The null hypothesis is rejected at the a-Ievel of significance 
when 

/ i > / « [ f c - l , ( * - l ) ( 6 - l ) ] . 

In practice, we first compute SST, SSA, and SSB, and then, using the sum-
of-squares identity, obtain SSE by subtraction. The degrees of freedom associated 
with SSE are also usually obtained by subtraction; that is, 

(A: - l)(b - 1) = kb - 1 - (k - 1) - (b - 1). 

The computations in an analysis-of-variance problem for a randomized complete 
block design may be summarized as shown in Table 13.8. 

Table 13.8: Analysis of Variance for the Randomized Complete Block Design 

Source of Sum of Degrees of Mean Computed 
Variation Squares Freedom Square / 

Treatments SSA k-l *i = f r f / i = f* 
Blocks SSB 6 - 1 s\ = | f f 

Error SSE (fe - l)(b - 1) s2 = ( j d r f h ) 

Total SST kb -1 

Example 13.6:1 Four different machines, Mi, M2, M3, and M4, are being considered for the assem
bling of a particular product. It is decided that 6 different operators are to be used 
in a randomized block experiment to compare the machines. The machines are as
signed in a random order to each operator. The operation of the machines requires 
physical dexterity, and it is anticipated that there will be a difference among the 
operators in the speed with which they operate the machines (Table 13.9). The 
amount of time (in seconds) were recorded for assembling the product: 
Test the hypothesis HQ , at the 0.05 level of significance, that the machines perform 
at the same mean rate of speed. 
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Table 13.9: Time, in Seconds, to Assemble Product 

Operator 
Machine 

1 
2 
3 
4 

Total 

1 

42.5 
39.8 
40.2 
41.3 
1G3.8 

2 

39.3 
40.1 
40.5 
42.2 

162.1 

3 

39.6 
40.5 
41.3 
43.5 

164.9 

4 

39.9 
42.3 
43.4 
44.2 

169.8 

5 

42.9 
42.5 
44.9 
45.9 
176.2 

6 

43.6 
43.1 
45.1 
42.3 

174.1 

Total 
247.8 
248.3 
255.4 
259.4 

1010.9 

Solution: HQ: O] = o_2 = 0 3 = a4 = 0 (machine effects are zero), 

Hi: At least one of the Oj's is not equal to zero. 

The sum-of-squares formulas shown on page 540 and the degrees of freedom 
are used to produce the analysis of variance in Table 13.10. The value / = 3.34 is 
significant at P = 0.048. If we use a = 0.05 as at least an approximate yardstick, 
we conclude that the machines do not perform at the same mean rate of speed. _l 

Table 13.10: Analysis of Variance for the Data of Table 13.9 

Source of 
Variation 

Machines 
Operators 
Error 

Total 

Sum of 
Squares 

15.93 
42.09 
23.84 

81.86 

Degrees of 
Freedom 

3 
5 

15 
23 

Mean 
Square 

5.31 
8.42 
1.59 

Computed 
/ 

3.34 

Further Comments Concerning Blocking 

In Chapter 10 we present a procedure for comparing means when the observa
tions were paired. The procedure involved "subtracting out" the effect due to the 
homogeneous pair and thus working with differences. This is a special case of a 
randomized complete block design with k = 2 treatments. The n homogeneous 
units to which the treatments were assigned take on the role of blocks. 

If there is heterogeneity in the experimental units, the experimenter should not 
be misled into believing that it is always advantageous to reduce the experimental 
error through the use of small homogeneous blocks. Indeed, there may be instances 
where it would not be desirable to block. The purpose in reducing the error variance 
is to increase the sensitivity of the test for detecting differences in the treatment 
means. This is reflected in the power of the test procedure. (The power of the 
analysis-of-variance test procedure is discussed more extensively in Section 13.13.) 
The power for detecting certain differences among the treatment means increases 
with a decrease in the error variance. However, the power is also affected by the 
degrees of freedom with which this variance is estimated, and blocking reduces the 
degrees of freedom that are available from k(b — 1) for the one-way classification 
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CD 

C 
O 

CL 
O 
0_ 

Block 1 

h 

Treatments 
(a) 

c 
CO 
CD 

C o 
Block 2 ts 

C L 
O 

Block 1 

Block 2 

h 
Treatments 

(b) 

Figure 1.3.5: Population means for (a) additive results, and (b) interacting effects. 

to (k — l)(b — 1). So one could lose power by blocking if there is not a significant 
reduction in the error variance. 

Interaction between Blocks and Treatments 
Another important assumption that is implicit in writing the moelol for a random
ized complete block design is that the treatment and block effects are assumed to 
be additive. This is equivalent to stating that 

tHj - fHj' = I'fj - Pi'j' Pij ~ Pi'j = Pi p « 3 

for every value of i, /', j , and j ' . That is, the difference between the population 
means for blocks j and f is the same for every treatment and the difference between 
the population means for treatments i and i! is the same for every block. The 
parallel lines of Figure 13.5(a) illustrate a Bet of mean responses lor which the 
treatment and block effects are additive, whereas the intersecting lines of Figure 
13.5(b) show a situation in which treatment and block effects arc said to interact . 
Referring to Example L3.6, if operator 3 is 0.5 seconds faster on the average than 
operator 2 when machine 1 is used, then operator 3 will still be 0.5 seconds faster on 
the average than operator 2 when machine 2, 3, or 4 is used. In many experiments 
the assumption of additivity does not hold and the analysis of Section 13.9 leads to 
erroneous conclusions. Suppose, for instance, that operator 3 is 0.5 seconds faster 
on the average than operator 2 when machine: 1 is used but is 0.2 second slower on 
the average than operator 2 when machine 2 is used. The operators and machines 
are now interacting. 

An inspection of Table 13.9 suggests the presence of possible interaction. This 
apparent interaction may be real or it may be due to experimental error. The 
analysis of Example 13.G was based on the assumption that the apparent interaction 
was due entirely to experimental error. If the total variability of our data was in 
part due to an interaction effect, this source of variation remained a part of the 
error sum of squares, causing the mean square e r ror to overes t imate er2, 
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and thereby increasing the probability of committing a type II error. We have, in 
fact, assumed an incorrect model. If we let (c\3)jj denote the interaction effect of 
the rth treatment and the j th block, we can write a more appropriate model in the 
form 

yij = p +cn + 8j + (a8)ij + eij, 

on which we impose the additional restrictions 

k I, 

J>/?)«i = £ > ; % = 0. 
(=i j=\ 

We can now readily verify that 

SSE 
E 

( 6 - l ) ( * - l ) 

1 k t> 

(6-D(*-uEEMft-

Thus the mean square error is seen to be a biased es t imate of a2 when existing 
interaction has been ignored. It would seem necessary at this point to arrive at 
a procedure for the detection of interaction for cases where there is suspicion that 
it exists. Such a procedure requires the availability of an unbiased and independent 
estimate of er2. Unfortunately, the randomized block design docs not lend itself 
to such a test unless the experimental setup is altered. This subject is discussed 
extensively in Chapter 14. 

13.10 Graphical Me thods and Model Checking 

In several chapters we make reference to graphical procedures displaying data and 
analytical results. In early chapters we used stem-and-leaf and box-and-whisker 
plots as visuals that aid in summarizing samples. We use similar diagnostics to 
better understand the data in two sample problems in Chapters 9 and 10. In 
Chapter 9 we introduce the notion of residual plots (ordinary and studentized 
residuals) to detect violations of standard assumptions. In recent years much 
attention in data analysis has centered on graphical methods . Like regression, 
analysis of variance lends itself to graphics that aid in summarizing data as well 
as detecting violations. For example, a simple plotting of the raw observations 
around each treatment mean can give the analyst a feel for variability between 
sample means and within samples, Figure 13.6 depicts such a plot, for the aggregate 
data of Table 13.1. By the appearance of the plot one might even gain a graphical 
insight about, which aggregates (if any) stand out from the others. It is clear 
that aggregate 4 stands out from the others. Aggregates 3 and 5 certainly form a 
homogeneous group, as do aggregates 1 and 2. 

As in the case of regression, residuals can be helpful in analysis of variance 
in providing a diagnostic that may detect violations of assumptions. To form the 
residuals, we merely need to consider the model of the one-factor problem, namely 

ijij =pi + eij. 
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Figure 13.6: Plot of data around the mean for the aggregate data of Table 13.1. 
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Figure 13.7: Plots of residuals for five aggregates, using data in Table 13.1. 

It is straightforward to determine that the estimate of pi is y~i.. Hence the ijth 
residual is y~i. — ij... This is easily extendable to the randomized complete block 
model. It may be instructive to have the residuals plotted for each aggregate in 
order to gain some insight regarding the homogeneous variance assumption. This 
plot is shown in Figure 13.7. 

Trends in plots such as these may reveal difficulties in some situations, par
ticularly when the violation of a particular assumption is graphic. In the case of 
Figure 13.7, the residuals seem to indicate that the within-treatment variances are 
reasonably homogeneous apart from aggregate 1. There is some graphical evidence 
that the variance for aggregate 1 is larger than the rest. 

What Is a Residual for a RCB Design? 
The randomized complete block is another experimental situation in which graph
ical displays can make the analyst feel comfortable with an "ideal picture," or 
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perhaps highlight difficulties. Recall that the model for the randomized complete 
block is 

Vij =p + a, + 33- + e,j, i = l,...,k, j = l,...,b, 

with the imposed constraints 

fc /, 

£a, = 0, E ^ = 0-
i=i j=i 

To determine what indeed constitutes a residual, consider that 

Qi = Pi. - P, 8j = P.j - P 

and that p is estimated by y.., fn. is estimated by j / , . , and p.j is estimated by y.j. 
As a result, the predicted or fitted value tjij is given by 

Vij = A + ®i + 3j = yi. + y.j -y.., 

and thus the residual at the (i,j) observation is given by 

Vij - Vij - Vij - vi. - y.j + y..-

Note that y,j, the fitted value, is an estimate of the mean u, j . This is consistent 
with the partitioning of variability given in Theorem 13.3, where the error sum of 
squares is 

SSE = EE<»« - ft-_ y-i+v -)2-

The visual displays in the randomized complete block involve plotting the resid
uals separately for each treatment, and for each block. The analyst should expect 
roughly equal variability if the homogeneous variance assumption holds. The reader 
should recall that in Chapter 12 we discuss plots where the residuals are plotted 
for the purpose of detecting model misspecification. In the case of the randomized 
complete block, the serious model misspecification may be related to our assump
tion of additivity (i.e., no interaction). If no interaction is present, a random 
pattern should appear. 

Consider the data of Example 13.6, in which treatments are four machines and 
blocks are six operators. Figures 13.8 and 13.9 give the residual plots for separate 
treatments and separate blocks. Figure 13.10 shows a plot of the residuals against 
the fitted values. Figure 13.8 reveals that the error variance may not be the same 
for all machines. The same may be true for error variance at each of the six 
operators. However, two unusually large residuals appear to produce the apparent 
difficult}'. Figure 13.10 reveals a plot of residuals that shows reasonable evidence 
of a random behavior. However, the two large residuals displayed earlier still stand 
out. 
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13.11 Data Transformations in Analysis of Variance 

In Chapter 11 considerable attention was given to transformation of the response: 
y in situations for which a linear regression model was being fit to a set of data. 
Obviously, the same concepts apply to multiple linear regression though it was 
not discussed in Chapter 12. In the regression modeling discussion, emphasis was 
placed on the transformations of y that would produce a model that fit the data 
better than that described by the model in which y enters linearly. As an example, 
if the "time" structure is exponential in nature, then a log transformation on y 
linearizes the structure and thus more success is anticipated when one uses the 
transformed response. 

While the primary purpose for data transformation discussed thus far has been 
to improve the lit of the model, there arc certainly other reasons to transform 
or reexpress the response y, and many of them are related to assumptions that 
are being made (i.e.. assumptions on which the validity of the analysis depends). 
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One very important assumption in analysis of variance is the homogeneous variance 
assumption discussed quite early in Section 13.4. We assume a common variance 
ex2. If the variance differs a great deal from treatment to treatment and we perform 
the standard ANOVA discussed in this chapter (and future chapters), the results 
can be substantially flawed. In other words, the analysis of variance is not robust 
to the assumption of homogeneous variance. As we have discussed thus far, this 
is the center piece of motivation for the residual plots discussed in last section 
and illustrated in Figures 13.8, 13.9, and 13.10. These plots allow us to detect 
nonhomogeneous variance problems. However, what do we do about them? How 
can we accommodate them? 

Where Does Nonhomogeneous Variance Come From? 

Often, but not always, nonhomogeneous variance in ANOVA is present because 
of the distribution of the responses. Now, of course we assume normality in the 
response. But there certainly are situations in which tests on means are needed 
even though the distribution of the response is one of those nonnormal distributions 
discussed in Chapters 5 and 6, e.g., Poisson, lognormal. exponential, gamma, and 
so on. ANOVA-type problems certainly exist with count data, time to failure data 
and so on. 

Wc demonstrated in Chapters 5 and 6 that, apart from the normal case, the 
variance of a distribution will often be a function of the mean, say a2 = g(pi)- For 
example, in the Poisson case Var(Yi) = pi = a2 (i.e., the variance is equal to the 
mean). In the case of the exponential distribution, the Var(Yj) — a2 — p2 (i.e., 
the variance is equal to the square of the m.ean). For the case of the lognormal a 
log transformation produces a normal distribution with constant variance a2. 

The same concepts that we used in Chapter 4 to determine the variance of a 
nonlinear function can be used as an aid to determine the nature of the variance 
stabilizing transformation g(yt). Recall from the first order Taylor Series expansion 
0 1 oiVi) around j/,- = p, when g'(pi) — %'"' . The transformation function 

I »* liji=iii 

g(y) must be independent of p in order that it suffice as the variance stabilizing 
transformation. From the above 

Var[g(Ui)} = [g'(pi)}2af. 

As a result, g(yi) must be such that g'ipi) oc £. Thus, if we suspect that the 

response is Poisson distributed, ai = uj , so g'(fii) ex - ^ j . Thus the variance 
t*i 

stabilizing transformation becomes g(yi) = yi . From this illustration and similar 
manipulation for the exponential and gamma distributions, we have the following. 

Distribution Variance Stabilizing Transformations 
Poisson g(y) = y1/2 

Exponential g(y) = lnt/ 
Gamma g(y) = lny 
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13.12 Latin Squares (Optional) 

The randomized block design is very effective for reducing experimental error by 
removing one source of variation. Another design that is particularly useful in con
trolling two sources of variation, while reducing the required number of treatment 
combinations, is called the Latin square. Suppose that we are interested in the 
yields of 4 varieties of wheat using 4 different fertilizers over a period of 4 years. 
The total number of treatment combinations for a completely randomized design 
would be 64. By selecting the same number of categories for all three criteria of 
classification, we may select a Latin square design and perform the analysis of vari
ance using the results of only 16 treatment combinations. A typical Latin square, 
selected at random from all possible 4 x 4 squares, is the following: 

Column 
Row 1 2 3 

1 A B C D 
2 D A B C 
3 C D A B 
4 B C D A 

The four letters, A, B, C, and D, represent the 4 varieties of wheat that are 
referred to as the treatments. The rows and columns, represented by the 4 
fertilizers and the 4 years, respectively, are the two sources of variation that we 
wish to control. We now see that each treatment occurs exactly once in each row 
and each column. With such a balanced arrangement the analysis of variance 
enables one to separate the variation due to the different fertilizers and different 
years from the error sum of squares and thereby obtain a more accurate test for 
differences in the yielding capabilities of the 4 varieties of wheat. When there 
is interaction present between any of the sources of variation, the /-values in the 
analysis of variance are no longer valid. In that case, the Latin square design would 
be inappropriate. 

Generalization to the Latin Square 

We now generalize and consider an r x r Latin square where y^ denotes an 
observation in the ith row and j t h column corresponding to the fcth letter. Note 
that once i and j are specified for a particular Latin square, we automatically know 
the letter given by k. For example, when i = 2 and j = 3 in the 4 x 4 Latin 
square above, we have k = B. Hence k is a function of i and j. If a» and 0j are 
the effects of the ith row and j t h column, TA, the effect of the kth treatment, u the 
grand mean, and e;jfc the random error, then we can write 

Vijk = p + on + 3j +rk + djk, 

where we impose the restrictions 

T,^ = J2^ = E^ = ̂  
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As before, the yjjk are assumed to be values of independent random variables 
having normal distributions with means 

Pijk = fl + Cti+ 0j + Tk 

and common variance a2. The hypothesis to be tested is as follows: 

HQ: Ti = r2 = • • • = r r = 0, 

Hi: At least one of the r;'s is not equal to zero. 

This test will be based on a comparison of independent estimates of a2 provided 
by splitting the total sum of squares of our data into four components by means of 
the following identity. The reader is asked to provide the proof in Exercise 13.37 
on page 554. 

Theorem 13.4: Sum-of-Squares Identity 

EEEfow*-&. . ) a = r E(f t - " y-)2+rJ2^- -ft-)2 

1 j k i j 

+r E(ft* - ft-)2 + /)2'Y2E^y* - ft- ~ y-j- - y-k+2^-)2 

Symbolically, we write the sum-of-squares identity as 

SST = SSR + SSC + SSTr + SSE, 

where SSR and SSC are called the row sum of squares and column sum of 
squares, respectively; SSTr is called the treatment sum of squares; and SSE is 
the error sum of squares. The degrees of freedom are partitioned according to the 
identity 

r2 - 1 = (r - 1) + (r - 1) + (r - 1) + (r - l)(r - 2). 

Dividing each of the sum of squares on the right side of the sum-of-squares identity 
by their corresponding number of degrees of freedom, we obtain the four indepen
dent estimates 

SSR. , SSC - SSTr , SSE 
s2 = 

r-l' r-l r-l" 
s2 = 

( r - l ) ( r - 2 ) 

of a2. Interpreting the sums of squares as functions of independent random vari
ables, it is not difficult to verify that 

E(S2) = E 

E(Sl) = E 

E(S2) = E 

E(S2) = E 

SSR 

r - l 

SSC 

r - l 

SSTr 

= a2 + 

= a2 + 

T E«* 

r - l 

SSE 

3 

= - +—iX<T^ 

L(r- l )(r-2)J 
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The analysis of variance (Tabic 13.11) indicates the appropriate F-test. for treat
ments. 

Table: 13.11: Analysis of Variance for an r x r Latin Square 

Source of 
Variation 

Rows 

Columns 

Treatments 

Error 

Total 

Stun of 
Squares 

SSR 

SSC 

SSTr 

SSE 

SST 

Degrees of 
Freedom 

r- I 

r - 1 

r - l 

( r - l ) ( r -

r2 - 1 

-2) 

M e a n 
Square 

.2 SSR 
•st - 7 = T 
„2 _ SSC 
S2 - ,-1 

•2 _ SSTr 
\ ' i - , _ | 

„2 _ SSE 
" - (r-l)t>-2) 

C o m p u t e d 
/ 

/ = 4 

Example 13.7:1 To illustrate the analysis of a Latin square design, let us return to the experiment 
where the letters A, B, C. and D represent 1 varieties of wheat: the rows represent 
4 different fertilizers; and the columns account for 4 different, years. The data in 
Table 13.12 arc the yields for the 4 varieties of wheat, measured in kilograms per 
plot. It is assumed that the various sources of variation do not interact. Using 
a 0.05 level of significance, test the hypothesis Ho'. There is no difference in the 
average yields of the 4 varieties of wheat. 

Table 13.12: Yields of Wheat (kilograms per plot) 

Fertilizer Treatment 1981 1982 1983 1984 
h 
t-2 
h 
h 

A: 70 
D: 66 
C: 59 
B: 41 

B: 75 
A: 59 
D: 66 
C: 57 

C:68 
B: 55 
A: 39 
D: 39 

D: 81 
C: 63 
B: 12 
D: 55 

Solution: HQ: TI = r2 = r3 = T, = 0, 

Hi'. At least one of the n's is not equal to zero. 

The sum of squares and degrees-of-freedom layout of Table 13.11 is used. The 
sum of squares formulas appear in Theorem 13.4. Here, of course, the analysis-of-
variance tabic (Table 13.13) must reflect variability accounted for due to fertilizer, 
years, and treatment types. The / = 2.02 is on 3 and 6 degrees of freedom. The 
P-value of approximately 0.2 is certainly too large to conclude that wheat varieties 
significantly affect wheat yield. J 

Exercises 

13.25 Show that the computing formula for SSB, in in the identity of Theorem 13.3. 
the analysis of variance of the randomized complete 
block design, is equivalent to the corresponding term 13.26 For the randomized block design with k treat-
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Table 13.13: Analysis of Variance for the Da ta of Table 13.12 

Source o f S u m o f D e g r e e s o f M e a n 
Variat ion Squares F r e e d o m Square 

C o m p u t e d 
/ P-Value 

Fertilizer 
Year 
Treatments 
Error 

Total 

1557 
4 1 8 

264 

261 

2500 

3 

3 

3 

6 

15 

519.000 
139.333 
88.000 
43.500 

2.02 0.21 

ments and b blocks, show that 

i, 

E(SSB) = (b- l)o2 + k^2$• 
j = i 

13.27 Four kinds of fertilizer f\,f2,fa, and f4 are 
usesd to study the yield of beans. The soil is divided 
into 3 blocks each containing 4 homogeneous plots. 
The yields in kilograms per plot and the corresponding 
treatments are as follows: 

Analyst 1 Analyst. 2 Analyst 3 Analyst 4 Analyst 5 

Block 1 Block 2 

fi = 42.7 
h = 48.5 
/., = 32.8 
f2 = 39.3 

h = 50.9 
h = 50.0 
h = 38.0 
h = 40.2 

Block 3 

u 
h 
h 
h 

= 51.1 
= 46.3 
= 51.9 
= 53.5 

(a) Conduct an analysis of variance at the 0.05 level of 
significance using the randomized complete block 
model. 

(b) Use single-degree-of-freedom contrasts and a 0.01 
level of significance to compare the fertilizers 
(/1./3) versus (f2,f4) and /1 versus /3- Draw con
clusions. 

13.28 Three varieties of potatoes are being compared 
for yield. The experiment is conducted by assigning 
each variety at random to 3 equal-size plots at each of 
4 different locations. The following yields for varieties 
A, B, and C, in 100 kilograms per plot, were recorded: 

Location 1 Location 2 Location 3 Location 4 
B; 
A: 
C: 

13 
18 
12 

C : 
A: 
B: 

21 
20 
23 

C 
B: 
A: 

9 
12 
14 

A: 
C: 
B: 

11 
10 
17 

Perform a randomized block analysis of variance to test 
the hypothesis that there is no difference in the yield
ing capabilities of the 3 varieties of potatoes. Use a 
0.05 level of significance. Draw conclusions. 

13.29 The following data are the percents of foreign 
additives measured by 5 analysts for 3 similar brands 
of strawberry jam, A, B, and C: 

B: 
C: 
A: 

2.7 
3.6 
3.8 

C: 
A: 
B: 

7.5 
L.O 
5.2 

B: 
A: 
C: 

2.8 
2.7 
6.4 

A: 
B: 
C: 

1.7 
1,9 
2.6 

C: 
A: 
B: 

8.1 
2.0 
4.8 

Perform the analysis of variance and test the hypoth
esis, at the 0.05 level of significance, that the percent 
of foreign additives is the same for all 3 brands of jam. 
Which brand of jam appears to have fewer additives? 

13.30 The following data represent the final grades 
obtained by 5 students in mathematics, English, 
French, and biology: 

Subject 
Student 

1 
2 
3 
4 
5 

M a t h 

G8 
83 
72 
55 
92 

English 
57 
94 
81 
73 
68 

French Biology 
73 61 
91 86 
63 59 
77 66 
75 87 

Test the hypothesis that the courses are of equal dif
ficulty. Use a P-value in your conclusions and discuss 
your findings. 

13.31 In a study on The Periphyton of the South 
River, Virginia: Mercury Concentration, Productivity, 
and Autoimpic Index Studies conducted, by the De
partment of Environmental Sciences and Engineering 
at the Virginia Polytechnic Institute and State Uni
versity, the total mercury concentration in periphyton 
total solids is being measured at 6 different stations on 
6 different, days. The following data were recorded: 

Station 
Date 
April 8 
June 23 
July 1 
July 8 
July 15 
July 23 

CA 

0.45 
0.10 
0.25 
0.09 
0.15 
0.17 

CB 

3.24 
0.10 
0.25 
0.06 
0.16 
0.39 

El 

1.33 
0.99 
1.65 
0.92 
2.17 
4.30 

£ 2 

2.04 
4.31 
3.13 
3.66 
3.50 
2.91 

E3 

3.93 
9.92 
7.39 
7.88 
8.82 
5.50 

E4 

5.93 
6.49 
4.43 
6.24 
5.39 
4.29 

Determine whether the mean mercury content is signif-
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icantly different between the stations, 
and discuss your findings. 

Use a P-value 

13.32 A nuclear power facility produces a vast 
amount of heat which is usually discharged into aquatic 
systems. This heat raises the temperature of the 
aquatic system, resulting in a greater concentration 
of chlorophyll o, which in turn extends the growing 
season. To study this effect, water samples were col
lected monthly at 3 stations for a period of 12 months. 
Station A is located closest to a potential heated wa
ter discharge, station C is located farthest away from 
the discharge, and station B is located halfway be
tween stations A and C The following concentrations 
of chlorophyll a were recorded. 

Station 
Month 

January 
February 
March 
April 
May 
June 
July 
August 
September 
October 
November 
December 

A 

9.867 
14.035 
10.700 
13.853 
7.067 

11.670 
7.357 
3.358 
4.210 
3.630 
2.953 
2.640 

B 

3.723 
8.416 

20.723 
9.168 
4.778 
9.145 
8.463 
4.086 
4.233 
2.320 
3.843 
3.610 

C 

4.410 
11.100 
4.470 
8.010 

34.080 
8.990 
3.350 
4.500 
6.830 
5.800 
3.480 
3.020 

Perform an analysis of variance and test the hypoth
esis, at the 0.05 level of significance, that there is no 
difference in the mean concentrations of chlorophyll a 
at the 3 stations. 

13.33 In a study conducted by the Department of 
Health and Physical Education at the Virginia Poly
technic Institute and State University, 3 diets were as
signed for a period of 3 days to each of 6 subjects in 
a randomized block design. The subjects, playing the 
role of blocks, were assigned the following 3 diets in a 
random order: 

Diet 1: mixed fat and carbohydrates, 
Diet 2: high fat, 
Diet 3: high carbohydrates. 

At the end of the 3-day period each subject was put 
on a treadmill and the time to exhaustion, in seconds, 
was measured. The following data were recorded: 

Subject 

Diet 

Perform the analysis of variance, separating out the 
diet, subject, and error sum of squares. Use a P-value 

1 
2 
3 

1 
84 
91 

122 

2 
35 
48 
53 

3 
91 
71 

110 

4 
57 
45 
71 

5 
56 
61 
91 

6 
45 
61 

122 

to determine if there are significant differences among 
the diets. 

13.34 Organic arsenicals are used by forestry person
nel as silvicides. The amount of arsenic that is taken 
into the body when exposed to these silvicides is a ma
jor health problem. It is important that the amount of 
exposure be determined quickly so that a field worker 
with a high level of arsenic can be removed from the 
job. In an experiment reported in the paper, "A Rapid 
Method for the Determination of Arsenic Concentra
tions in Urine at Field Locations," published in the 
Amer. Ind. Hyg. Assoc. J. (Vol. 37, 1976), urine 
specimens from 4 forest service personnel were divided 
equally into 3 samples so that each individual could be 
analyzed for arsenic by a university laboratory, by a 
chemist using a portable system, and by a forest em
ployee after a brief orientation. The following arsenic 
levels, in parts per million, were recorded: 

Ana lys t 
Ind iv idua l E m p l o y e e C h e m i s t L a b o r a t o r y 

0.05 
0.05 
0.04 
0.15 

0.05 
0.05 
0.04 
0.17 

0.04 
0.04 
0.03 
0.10 

Perform an analysis of variance and test the hypoth
esis, at the 0.05 level of significance, that there is no 
difference in the arsenic levels for the 3 methods of 
analysis. 

13.35 Scientists in the Department of Plant Pathol
ogy at Virginia Tech devised an experiment in which 
5 different treatments were applied to 6 different lo
cations in an apple orchard to determine if there were 
significant differences in growth among the treatments. 
Treatments 1 through 4 represent different herbicides 
and treatment 5 represents a control. The growth pe
riod was from May to November in 1982, and the new 
growth, measured in centimeters, for samples selected 
from the 6 locations in the orchard were recorded as 
follows: 

Treatment 
1 
2 
3 
4 
5 

Perform an analysis of variance, separating out the 
treatment, location, and error sum of squares. De
termine if there are significant differences among the 
treatment means. Quote a P-valuc. 

13.36 In the paper "Self-Control and Therapist 
Control in the Behavioral Treatment of Overweight 

1 
455 
622 
695 
607 
388 

2 
72 
82 
56 

650 
263 

Locations 
3 
61 

444 
50 

493 
185 

4 
215 
170 
443 
257 
103 

5 
695 
437 
701 
490 
518 

6 
501 
134 
373 
262 
622 
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Women," published in Behavioral Research and Ther
apy (Vol. 10, 1972), two reduction treatments and a 
control treatment were studied lor their effects on the 
weight change of obese women. The two reduction 
treatments involved were, respectively, a self-induced 
weight reduction program and a therapist-controlled 
reduction program. Each of 10 subjects were assigns*! 
to the 3 treatment programs in a random order and 
measured for weight loss. The following weight changes 
were recorded: 

Treatment 
Subject Control Self-induced Therapist Worker 

13.40 A manufacturing firm wants to investigate the 
effects of 5 color additives on the setting time of a new 
concrete mix. Variations in the setting times can be 
expected from day-to-day changes in temperature and 
humidity and also from the different workers who pre
pare the test molds. To eliminate these extraneous 
sources of variation, a 5 x 5 Latin square design was 
used in which the letters A, B, C, D, and E represent 
the 5 additives. The setting times, in hours, for the 25 
molds are shown in the following table. 

Day 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1.00 
3.75 
0.00 

-0.25 
-2.25 
-1.00 
-1.00 

3.75 
1.50 
0.50 

-2.25 
-6.00 
-2.00 
-1.50 
-3.25 
-1.50 

-10.75 
-0.75 

0.00 
-3.75 

-10.50 
-13.50 

0.75 
-4.50 
-6.00 

4.00 
-12.25 

-2.75 
-6.75 
-7.00 

Perform an analysis of variance and test the hypothesis, 
at the 0.01 level of significance, that there is no differ
ence in the mean weight losses for the 3 treatments. 
Which treatment was best? 

13.37 Verify the sum-of-squares identity of Theorem 
13.4 on page 550. 

13.38 For the r x r Latin square design, show that 

E(SSTr) = (r l)cr2 + r ^ r l . 

13.39 The mathematics department of a large uni
versity wishes to evaluate the teaching capabilities of 4 
professors. In order to eliminate any effects due to dif
ferent mathematics courses and different times of the 
day, it was decided to conduct an experiment using a 
Latin square design in which the letters A, B, C, and 
D represent the 4 different professors. Each professor 
taught one section of each of 4 different courses sched
uled at each of 4 different times during the day. The 
following data show the grades assigned by these pro
fessors to 16 students of approximately equal ability. 
Use a 0.05 level of significance to test the hypothesis 
that different professors have no effect on the grades. 

Course 
Time 

1 
2 
3 
4 

Algebra 
A: 84 
B: 91 
C:59 
D: 75 

Geometry 
B: 79 
C: 82 
D: 70 
A: 91 

Statistics 
C: 63 
D: 80 
A: 77 
B: 75 

Calculus 
D: 97 
A: 93 
B: 80 
C: 68 

D: 10.7 E: 10.3 
E:11.3 C:10.5 
A: 11.8 B:10.9 
B: 14.1 A: 11.6 
C: 14.5 D:11.5 

B: 11.2 
D:12.0 
C: 10.5 
E: 11.0 
A: 11.5 

A: 10.9 C: 10.5 
B:11.5 A: 10.3 
D:11.3 E: 7.5 
G11.7 D:11.5 
E: 12.7 B: 10.9 

At the 0.05 level of significance, can we say that the 
color additives have any effect on the setting time of 
the concrete mix? 

13.41 In the book Design of Experiments for the 
Quality Improvement published by the Japanese Stan
dards Association (1989), a study on the amount of dye 
needed to get the best color for a certain type of a fab
ric was conducted. The three amounts of dye, \% wof 
( 1 % of the weight of a fabric), 1% wof, and 3% wof, 
were each administered at two different plants. The 
color density of a fabric was then observed four times 
for each level of dye at each plant. 

Plant 1 

Plant 2 

1/3% 
5.2 6.0 
5.9 5.9 
6.5 5.5 
6.4 5.9 

Amount of Dye 
1% " 3% 

12.3 10.5 
12.4 10.9 
14.5 11.8 
16.0 13.6 

22.4 17.8 
22.5 18.4 
29.0 23.2 
29.7 24.0 

Perform an analysis of variance to test the hypothesis, 
at the 0.05 level of significance, that there is no differ
ence in the color density of a fabric for the three levels 
of dye. Consider plants to be blocks. 

13.42 An experiment was conducted to compare 
three types of coating materials for copper wire. The 
purpose of the coating is to eliminate "flaws" in the 
wire. Ten different specimens of length five millime
ters were randomly assigned to receive each coating 
process and the thirty specimens were subjected to an 
abrasive wear type process. The number of flaws was 
measured for each and the results are as follows: 

Material 
1 2 3 

6 
7 
7 

8 
7 
8 

4 
9 

5 
6 

3 
2 
4 

3 
4 
3 

5 
4 

4 
5 

12 
18 
8 

8 
6 
5 

7 
7 

14 
18 



13.13 Random Effects Models 555 

Show whatever findings suggest a conclusion. 
Suppose it is assumed that the Poisson process applies (c) Do a plot of the residuals and comment, 
and thus the model is Ytj = fit + ey. where fn is the (d) G i v e t h e p u r p o S e 0f your data transformation, 
mean of a Poisson distribution and at = «;. , , ,,., , .. . , . . , , t. 

*•' (ej What additional assumption is made here that may 
(a) Do an appropriate transformation on the data and not have been completely satisfied by your trans-

perform an analysis of variance. formation? 
(b) Determine whether or not there is sufficient evi- (f) Comment on (e) after doing a normal probability 

dence to choose one coating material over the other. plot on the residuals. 

13.13 Random Effects Models 

Throughout this chapter we deal with analysis-of-variance procedures in which the 
primary goal is to study the effect on some response of certain fixed or predeter
mined treatments. Experiments in which the treatments or treatment levels are 
preselected by the experimenter as opposed to being chosen randomly are called 
fixed effects experiments or model I experiments. For the fixed effects model, 
inferences are made only on those particular treatments used in the experiment. 

It is often important that the experimenter be able to draw inferences about 
a population of treatments by means of an experiment in which the treatments 
used are chosen randomly from the population. For example, a biologist may be 
interested in whether or not there is a significant variance in some physiological 
characteristic due to animal type. The animal types actually used in the exper
iment are then chosen randomly and represent the treatment effects. A chemist 
may be interested in studying the effect of analytical laboratories on the chemi
cal analysis of a substance. He is not concerned with particular laboratories but 
rather with a large population of laboratories. He might then select a group of 
laboratories at random and allocate samples to each for analysis. The statistical 
inference would then involve (1) testing whether or not the laboratories contribute 
a nonzero variance to the analytical results, and (2) estimating the variance due 
to laboratories and the variance within laboratories. 

Model and Assumptions for Random Effects Model 

The one-way random effects model, often referred to as model II, is written 
like the fixed effects model but with the terms taking on different meanings. The 
response 

Vij= p + CM + tij 

is now a value of the random variable 

Yij =fi + Ai + Eij, 

with i = 1,2,... ,k and j = 1,2,... ,n where the A»'s are normally and indepen
dently distributed with mean zero and variance a2 and are independent of the 
Eij's. As for the fixed effects model, the Ey's are also normally and independently-
distributed with mean zero and variance a2. Note that for a model II experiment, 
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Theorem 13.5: 

k k 
the random variable ^ Ai assumes the value J2 ai'-> anc^ the constraint that these 

t'=l i = l 

Q,'s sum to zero no longer applies. 

For the one-way random effects analysis-of-variance model, 

E(SSA) = (k- l)a2 + n(k - l)o£ and E(SSE) = k(n - 1)<T2. 

Table 13.14 shows the expected mean squares for both a model I and a model 
II experiment. The computations for a model II experiment are carried out in 
exactly the same way as for a model I experiment. That is, the sum-of-squares, 
degrees-of-freedom, and mean-square columns in an analysis-of-variance table are 
the same for both models. 

Table 13.14: Expected Mean Squares for the One-Factor Experiment 

Source of 
Variation 
Treatments 

Error 
Total 

Degrees of 
Freedom 

k-l 

k{n - 1) 
nk - 1 

Mean 
Squares 

4 
s2 

Expected Mean Squares 
Model I Model II 

*2 + F ^ £ ° ? o2+na2
a 

i 

a2 a2 

For the random effects model, the hypothesis that the treatment effects are all 
zero is written as follows: 

Hypothesis for a 
Model II 

Experiment 

HQ: a2
a = 0, 

Hi: oifiO. 

This hypothesis says that the different treatments contribute nothing to the 
variability of the response. It is obvious from Table 13.14 that s2 and s2 are both 
estimates of a2 when HQ is true and that the ratio 

s4 

is a value of the random variable F having the F-distribution with k—l and k(n — 1) 
degrees of freedom. The null hypothesis is rejected at the a-level of significance 
wdien 

/>/Q[fc-l ,fc(n-l)] . 

In many scientific and engineering studies, interest is not centered on the jF-test. 
The scientist knows that the random effect does, indeed, have a significant effect. 
What is more important is estimation of the various variance components. This 
produces a sense of ranking in terms of what factors produce the most variability 
and by how much. In the present context it may be of interest to quantify how 
much larger the single-factor variance component is than that produced by chance 
(random variation). 
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Estimation of Variance Components 

Table 13.14 can also be used to estimate the variance components a2 and a2^. 
Since s\ estimates a2 +na2 and s2 estimates a2, 

a2 = s2. a2 = 
s2 - s2 

n 

Example 13.8:1 The data in Table 13.15 are coded observations on the yield of a chemical process, 
using 5 batches of raw material selected randomly. 

Table 13.15: Data for Example 13.8 

Batch: 2 
9.7 
5.6 
8.4 
7.9 
8.2 
7.7 
8.1 

10.4 
9.6 
7.3 
6.8 
8.8 
9.2 
7.6 

15.9 
14.4 
8.3 

12.8 
7.9 

11.6 
9.8 

8.6 
11.1 
10.7 
7.6 
6.4 
5.9 
8.1 

9.7 
12.8 
8.7 

13.4 
8.3 

11.7 
10.7 

Total 55.6 59.7 80.7 58.4 75.3 329.7 

Show that the batch variance component is significantly greater than zero and 
obtain its estimate. 

Solution: The total, batch, and error stun of squares are 

SST = 194.64, SSA = 72.60, SSE = 194.64 - 72.60 = 122.04. 

These results, with the remaining computations, are shown in Table 13.16. 

Table 13.16: Analysis of Variance for Example 13.8 

Source of 
Variation 

Batches 
Error 
Total 

Sum of 
Squares 

72.60 
122.04 
194.64 

Degrees of 
Freedom 

4 
30 
34 

Mean 
Square 

18.15 
4.07 

Computed 
/ 

4.46 

The /-ratio is significant at the a = 0.05 level, indicating that the hypothesis of 
a zero batch component is rejected. An estimate of the batch variance component 
is 

<f>-=»=M.-uz. 
Note that while the batch variance component is significantly different from 
zero, when gauged against the estimate of a2, namely a2 = MSE = 4.07, it 
appears as if the batch variance component is not appreciably large. J 
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Randomized Block Design with Random Blocks 

In a randomized complete block experiment where the blocks represent days, it is 
conceivable that the experimenter would like the results to apply not only to the 
actual days used in the analysis but to every day in the year. He or she would then 
select at. random the days on which to run the experiment as well as the treatments 
and use the random effects model 

Yij = p + Ai + Bj+eij, 1,2,... , k, and j = l , 2 , . . . , 6 , 

with the Ai, Bj, and etj being independent random variables with means zero and 
variances a2, a2, and a2, respectively. The expected mean squares for a model II 
randomized complete block design are obtained, using the same procedure as for the 
one-factor problem, and are presented along with those for a model I experiment 
in Table 13.17. 

Table 13.17: Expected Mean Squares for the Randomized Complete Block Design 

Source of Degrees of Mean Expected Mean Squares 
Variation Freedom Squares Model I Model II 

Treatments k — 1 

Blocks b - 1 

Error (A: - 1)(6 - 1) 

a2 + '-l2Zaf a2 + ba2
a 

°2 + £itp* a2 + ka\ 

Total kb-l 

Again the computations for the individual sum of squares and degrees of free
dom are identical to those of the fixed effects model. The hypothesis 

HQ: a2
x=0, 

Hi: a2^0, 

is carried out by computing 

/ .•2' 

and rejecting HQ when / > fa[k - 1, (b - l)(k - l)\. 
The unbiased estimates of the variance components are 

a2 „1 Si 

ai = — 
r? _ 9? - «2 

~i ' "3 ~ i • 
b ' k 

For the Latin square design, the random effects model is written 

Yijk = p + Af + Bj + Tk + eijk, 

for i = 1,2,. . . , r, j = 1,2,.. . ,r, and fc = A,B, C,..., with A,-, Bj, Tk, and eyfe 
being independent random variables with means zero and variances a2, a'i, a2, 
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Table 13.18: Expected Mean Squares for a Latin Square Dewign 

Source of Degrees of Mean Expec ted mean squares 
variat ion freedom squares Model I Model II 

2 2 i r V^ 2 } i 2 

i 

j 
2 ^ , r "̂̂  i '> , 2 

fe 
2 — 2 2 

A'" r r - CT 

Rows r — I 

Columns r — 1 

Treatments r — 1 

Error ( r - l ) ( r - 2 ) 

Total T* - 1 

and a2, respectively. The derivation of the expected mean squares for a model II 
Latin square design is straightforward and, for comparison, we present them along 
with those for a model I experiment in Table: 13.18. 

Tests of hypotheses concerning the various variance components arc made by 
computing the ratios of appropriate mean squares as indicated in Tabic 13.18, and 
comparing with corresponding /-values from Table A.6. 

13.14 Power of Analysis-of-Variance Tests 

As we indicated earlier, the research worker is often plagued by the problem of 
not knowing how large a sample to choose. In planning a one-factor completely 
randomized design with n observations per treatment, the main objective is to test 
the hypothesis of equality of treatment means. 

H Q : e i ' i = a 2 = • • • O k = 0 , 

Hx'. At least one of the a,-'s is not equal to zero. 

Quite often, however, the experimental error variance a2 is so large that the test 
procedure will be insensitive to actual differences among the k treatment means. 
In Section 13.3 the expected values of the mean squares for the one-way model are 
given by 

E(S2) = E 
SSA 
k - I 

^Y.o2. E(S2)=E 
? = i 

SSE 

kin- 1) 

Thus, for a given deviation from the null hypothesis HQ, as measured by 

n ^ ., 
• 3 T 2 > ' 

i=l 

large values of a2 decrease the chance of obtaining a value / = s2/s2 that is in 
the critical region for the test. The sensitivity of the test describes the ability of 
the procedure to detect differences in the population means and is measured by 
the power of the test (sec Section 10.2), which is merely 1 — 3, where ,3 is the 
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probability of accepting a false hypothesis. We can interpret the power of our 
analysis-of-variance tests, then, as the probability that the F-statistic is in the 
critical region when, in fact, the null hypothesis is false and the treatment means 
do differ. For the one-way analysis-of-variance test, the power, 1 — 3, is 

l-0 = P 
S2 

-^ > faivuv-i) when Hx is true 

S2 k 

^ > faivi,v2) when ^ a f = 0 
i=\ 

The term fa(v\, v2) is, of course, the upper-tailed critical point of the F-distribution 
k 

with vx and v2 degrees of freedom. For given values of ]T ct2/(k - 1) and a2, the 
t = i 

power can be increased by using a larger sample size n. The problem becomes 
one of designing the experiment with a value of n so that the power requirements 

k 
are met. For example, we might require that for specific values of 52 a2 =£ 0 and 

j = i 

a2, the hypothesis be rejected with probability 0.9. When the power of the test 
is low, it severely limits the scope of the inferences that can be drawn from the 
experimental data. 

Fixed Effects Case 

In the analysis of variance the power depends on the distribution of the F-ratio 
under the alternative hypothesis that the treatment means differ. Therefore, in 
the case of the one-way fixed effects model, we require the distribution of S2/S2 

when, in fact. 

5>^0' 
i=\ 

Of course, when the null hypothesis is true, a; = 0 for i = 1,2, ...,k, and the 
statistic follows the F-distribution with k — 1 and N — k degrees of freedom. If 

k 
53 a2 T̂  0, the ratio follows a noncentral F-distribution. 
i = l 

The basic random variable of the noncentral Fis denoted by F . Let fa(vx, v2, A) 
be a value of F with parameters Vi, v2, and A. The parameters vi and v2 of the 
distribution are the degrees of freedom associated with S2 and S2, respectively, 
and A is called the noncentrality parameter. When A = 0, the noncentral F 
simply reduces to the ordinary F-distribution with vi and v2 degrees of freedom. 

For the fixed effects, one-way analysis of variance with sample sizes m, n2,..., n/t 
we define 

1 k 

= ^ 2 £ n ^ ' 2er2 

i= i 
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If we have tables of the noncentral F at our disposal, the power for detecting a 
particular alternative is obtained by evaluating the following probability: 

i - a = p 
S2 1 k 

•^ > faik - I, N - k) when A = — ^ m a 2 

i=i 

= P(F'>fa(k.-l,N-k)}. 

Although the noncentral F is normally defined in terms of A, it is more convenient, 
for purposes of tabulation, to work with 

2 2A 
V Vi + 1 

Table A.16 shows graphs of the power of the analysis of variance as a function of 
(f> for various values of t'i, v2, and the significance level a. These power charts 
can be used not only for the fixed effects models discussed in this chapter, but 
also for the multifactor models of Chapter 14. It remains now to give a procedure 
whereby the noncentrality parameter A, and thus d>, can be found for these fixed 
effects cases. 

The noncentrality parameter A can be written in terms of the expected values 
of the numerator mean square of the F-ratio in the analysis of variance. We 
have 

and thus 

Expressions for A and 4>2 for the one-way model, the randomized complete block 
design, and the Latin square design are shown in Table 13.19. 

Table 13.19: Noncentrality Parameter A and <p2 for Fixed Effects Model 

One-way Randomized Latin 
Classification Complete Block Square 

°2'- ktztnta2 ^ £ « ? ^£T2 

i i k 

Note from Table A. 16 that for given values of vi and t'2, the power of the test 
increases with increasing values of <f>. The value of A depends, of course, on a2, 
and in a practical problem one may often need to substitute the mean square error 
as an estimate in determining o2. 

A 

^2 
v — 

vi\E(S2)\ 
2er2 

[E(S2)-a2\ 
a2 i 

Vl 

2 

Vl 

' i + l 

Example 13.9:1 In a randomized block experiment 4 treatments are to be compared in 6 blocks, 
resulting in 15 degrees of freedom for error. Are 6 blocks sufficient if the power 
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of our test for detecting differences among the treatment means, at the 0.05 level 
of significance, is to be at least 0.8 when the true means are p\. = 5.0, p2. = 7.0, 
p3, = 4.0, and p4. = 4.0? An estimate of a2 to be used in the computation of the 
power is given by a2 = 2.0. 

Solution: Recall that the treatment means are given by pi. = p. + a;. If we invoke the 
4 

restriction that 52 o» = 0- w e have 
«=i 

-I 

M= j ^2 Hi. =5 .0 , 
<=i 

and then Q] = 0, 02 = 2.0, a3 = —1.0, and a4 = —1.0. Therefore, 

2 b ^ 2 (6)(6) 

1 = 1 

from wdiich we obtain <b = 2.121. Using Table A. 16, the power is found to be 
approximately 0.89, and thus the power requirements are met. This means that if 

<i 

the value of 52 of = 6 and a2 = 2.0, the use of 6 blocks will result in rejecting the 
i=l 

hypothesis of equal treatment means with probability 0.89. J 

Random Effects Case 

In the fixed effects case, the computation of power requires the use of the noncentral 
F-distribution. Such is not, the case in the random effects model. In fact, the 
power is computed very simply by the use of the standard F-tables. Consider, for 
example, the one-way random effects model, n observations per treatment, with 
the hypothesis 

H0: crl = 0, 

Hi: o**0. 

When H\ is true, the ratio 

SSA/[(k-l)(a2 + na2
a)] s2 

f SSE/[k(n - l)a2] s 2(! + nal/a2) 

is a value of the random variable F having the F-distribution with k— 1 and k(n— 1) 
degrees of freedom. The problem becomes one, then, of determining the probability 
of rejecting Ho under the condition that the true treatment variance component 
a2 j£ 0. We have then 

1 - 0 = p | | | > fa[k - 1,k(n - 1)] when Hi is t rue! 

S2
 s /a[fc-l,fc(n-l)n = P{-

\S ,2(l-rner2
v/CT2) l + na2/a2 

I 1 + nalja2 J 
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Note that, as n increases, the value /a[fe — 1, k.(n — 1)]/(1 + no2./a2) approaches 
zero, resulting in an increase in the power of the test. An illustration of the power 
for this kind of situation is shown in Figure; 13.11. The lighter shaded area is the 
significance level a, while the entire shaded area is the power of the test. 

0 fa(v„ „2)/<1 +nar*fo*) 4(vi, vz) 

Figure 13.11: Power for the random effects one-way analysis of variance. 

Example 13.10:1 Suppose in a one-factor problem that it is of interest to test for the significance 
of the variance component a2. Four treatments arc to be used in the experiment, 
with 5 observations pê r treatment. What will be the probability of rejecting the 
hypothesis a2 = 0, when in fact the treatment variance component is (3/4)<r2? 

Solution: Using an a = 0.05 significance level, we have 

1-3-P F> 
/o.or,(3,16) 

l + (5)(3)/4j 

= P(F > 0.682) =0.58. 

= P F > 
./0.Q5(3,16) 

4.75 
P[F> 

3.24 

4.75 

Therefore, only about 58% of the time will the test procedure detect a variance 

component that is (3/4)ff2. J 

13.15 Case Study 

Personnel in the Chemistry Department of Virginia Tech were called upon to an
alyze a data set that was produced to compare 4 different methods of analysis of 
aluminum in a certain solid igniter mixture. To get a broad range of analytical lab
oratories involved, 5 laboratories were used in the experiment. These laboratories 
were selected because they are generally adept in doing these types of analyses. 
Twenty samples of igniter material containing 2.70% aluminum were assigned ran
domly, 4 to each laboratory, and directions were given on how to carry out the 
chemical analysis using all 4 methods. The data retrieved are as follows: 
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Labora tory 

Me thod 

A 
IS 
C 
D 

1 

2.67 
2.71 
2.76 
2.65 

2 

2.69 
2.74 
2.76 
2.69 

3 

2.62 
2.69 
2.70 
2.60 

4 

2.66 
2.70 
2.76 
2.64 

5 

2.70 
2.77 
2.81 
2.73 

Mean 

2.668 
2.722 
2.758 
2.662 

The laboratories are not considered as random effects since they were not se
lected randomly from a larger population of laboratories. The data were analyzed 
as a randomized complete block design. Plots of these data are sought to determine 
if an additive model of the type 

Vij nii +lj + e-,j 

is appropriate: in other words, a model with additive effects. The randomized 
block is not. appropriate when interaction between laboratories and methods exist. 
Consider the plot shown in Figure 13.12. Although this plot is a bit difficult 
to interpret because each point is a single observation, there: appears to be no 
appreciable interaction between methods and laboratories. 

co . 

o 
oo. 

o 
r- . 
cxi 

B C 

Method 

Residual Plots 

Figure 13.12: Interaction plot for data of case study. 

Residual plots were used as diagnostic indications regarding the homogeneous vari
ance assumption. Figure 13.13 shows a plot of residuals against analytical methods. 
The variability depicted in the residuals seems to be remarkably homogeneous. To 
be complete, a normal probability plot of the residuals is shewn in Figure 13.14. 

The residual plots show no difficulty with either the assumption of normal errors 
or homogeneous variance. SAS PR.0C GLM was used to conduct the analysis of 
variance. Figure 13.15 shows the annotated computer printout. 
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Figure 13.13: Plot of residuals against method for Figure 13.14: Normal probability plot of residuals 
the da t a of case study. for da ta of case study. 

The computed f- and P-values do indicate a significant difference between an
alytical methods. This analysis can be followed by a multiple comparison analysis 
to determine where the differences are among the methods. 

Exercises 

13.43 The following data show the effect of 4 oper
ators, chosen randomly, on the output of a particular 
machine: 

Operator 

Block 

4 
175.4 168.5 170.1 175.2 
171.7 162.7 173.4 175.7 
173.0 165.0 175.7 180.1 
170.5 164.1 170.7 183.7 

(a) Perform a model II analysis of variance at the 0.05 
level of significance. 

(b) Compute an estimate of the operator variance com
ponent and the experimental error variance compo
nent. 

13.44 Assuming a random effects model, show that 

E(SSB) = (b- l)o-2 + k(b - l)a} 

for the randomized complete block design. 

13.45 An experiment is conducted in which 4 treat
ments are to be compared in 5 blocks. The following 
data are generated: 

Treatment 
1 
2 
3 
4 

1 
12.8 
11.7 
11.5 
12.6 

2 
10.6 
14.2 
14.7 
16.5 

3 
11.7 
11.8 
13.6 
15.4 

4 
10.7 
9.9 

10.7 
9.6 

5 
11.0 
13.8 
15.9 
17.1 

(a) Assuming a random effects model, test the hypoth
esis at the 0.05 level of significance that there is no 
difference between treatment means. 

(b) Compute estimates of the treatment and block vari
ance components. 

13.46 Assuming a random effects model, show that 

E(SSTr) = (r- l)(a2 + rcr2) 

for the Latin square design. 

13.47 (a) Using a regression approach for the ran
domized complete block design, obtain the normal 
equations Ab = g in matrix form. 

(b) Show that 

R(,3i ,82,...,,3h\ai,a2,..., ak) = SSB. 
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The GLM Procedure 
Class Level Information 

Class Levels Values 

Dependen 

Source 

Model 

Error 

Method 

Lab 
4 A B C D 

5 1 2 3 4! 

Number of Observations Read 

Number of Observations Used 

t Variable: Response 
Sum of 

DF Squares 

7 0.05340500 

12 0.00217000 

Corrected Total 19 0.05557500 

R-Square 

0.960954 

Source 

Method 

Lab 

Observat: ion 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Coeff Var Root 

Mean Square F 

0.00762929 

0.00018083 

MSE Response 

5 
20 
20 

Value Pr > F 

42.19 <.0001 

Mean 

0.497592 0.013447 2.702500 

DF Type III SS 

3 0.03145500 

4 0.02195000 

Observed 

2.67000000 

2.71000000 

2.76000000 

2.65000000 
2.69000000 

2.74000000 

2.76000000 

2.69000000 

2.62000000 

2.69000000 

2.70000000 
2.60000000 
2.66000000 

2.70000000 

2.76000000 
2.64000000 

2.70000000 
2.77000000 

2.81000000 

2.73000000 

Mean Square 

0.01048500 

0.00548750 

Predicted 

2.66300000 

2.71700000 

2.75300000 

2.65700000 
2.68550000 

2.73950000 

2.77550000 

2.67950000 

2.61800000 

2.67200000 

2.70800000 
2.61200000 
2.65550000 

2.70950000 

2.74550000 
2.64950000 

2.71800000 
2.77200000 

2.80800000 

2.71200000 

F Value Pr > F 

57.98 <.0001 

30.35 <.0001 

Residual 

0.00700000 

-0.00700000 

0.00700000 
-0.00700000 

0.00450000 

0.00050000 

-0.01550000 

0.01050000 

0.00200000 
0.01800000 

-0.00800000 
-0.01200000 
0.00450000 

-0.00950000 

0.01450000 
-0.00950000 
-0.01800000 

-0.00200000 

0.00200000 

0.01800000 

Figure 13.15: SAS printout for data of case study. 
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13.48 In Exercise 13.43, if we are interested in test
ing for the significance of the operator variance compo
nent, do we have large enough samples to ensure with a 
probability as large as 0.95 a significant variance com
ponent if the true a\ is 1.5ej2? If not, how many runs 
are necessary for each operator? Use a 0.05 level of 
significance. 

13.49 If one assumes a fixed effects model in Exercise 
13.45 and uses an a = 0.05 level test, how many blocks 
are needed in order that we accept the hypothesis of 
equality of treatment means with probability 0.1 when, 
in fact, 

±±a2 = 2.0? 
t = i 

13.50 Verify the values given for A and o2 in Table 
13.19 for the randomized complete block design. 

13.51 Testing patient blood samples for HIV antibod
ies, a spectrophotometer determines the optical density 
of each sample. Optical density is measured as the 
absorbance of light at a particular wavelength. The 
blood sample is positive if it exceeds a certain cutofr 
value that is determined by the control samples for that 
run. Researchers are interested in comparing the lab
oratory variability for the positive control values. The 
data represent positive control values for 10 different 
runs at 4 randomly selected laboratories. 

(a) Write an appropriate model for this experiment. 
(b) Estimate the laboratory variance component and 

the variance within laboratories. 

Run 
Laboratory 

Laboratory 
Run 

1 
2 
3 
4 
5 
6 
7 

0.888 
0.983 
1.047 
1.087 
1.125 
0.997 
1.025 

1.065 
1.226 
1.332 
0.958 
0.816 
1.015 
1.071 

1.325 
1.069 
1.219 
0.958 
0.819 
1.140 
1.222 

1.232 
1.127 
1.051 
0.897 
1.222 
1.125 
0.990 

8 
9 

10 

0.969 
0.898 
1.018 

0.905 
1.140 
1.051 

0.995 
0.928 
1.322 

0.875 
0.930 
0.775 

13.52 Five "pours" of metals have had 5 core samples 
each analyzed for the amount of a trace element. The 
data for the 5 randomly selected pours are as follows: 

Pour 
Core 

1 
2 
3 
4 
5 

1 
0.98 
1.02 
1.57 
1.25 
1.16 

2 
0.85 
0.92 
1.16 
1.43 
0.99 

3 
1.12 
1.68 
0.99 
1.26 
1.05 

4 
1.21 
1.19 
1.32 
1.08 
0.94 

5 
1.00 
1.21 
0.93 
0.86 
1.41 

(a) The intent is that the pours be identical. Thus, 
test that the "pour" variance component is zero. 
Draw conclusions. 

(b) Show a complete ANOVA along with an estimate 
of the within-pour variance. 

13.53 A textile company weaves a certain fabric on 
a large number of looms. The managers would like 
the looms to be homogeneous so that their fabric is of 
uniform strength. It is suspected that there may be sig
nificant variation in strength among looms. Consider 
the following data for the 4 randomly selected looms. 
Each observation is a determination of strength of the 
fabric in pounds per square inch. 

Loom 
1 

99 
97 
97 
96 

2 
97 
96 
92 
98 

3 
94 
95 
90 
92 

4 
93 
94 
90 
92 

(a) Write a model for the experiment. 
(b) Does the loom variance component differ signifi

cantly from zero? 
(c) Comment on the suspicion. 

Review Exercises 

13.54 An analysis was conducted by the Statistics 
Consulting Center at Virginia Polytechnic Institute 
and State University in conjunction with the Depart
ment of Forestry. A certain treatment was applied to a 
set of tree stumps. The chemical Garlon was used with 
the purpose of regenerating the roots of the stumps. A 
spray was used with four levels of Garlon concentra
tion. After a period of time, the height of the shoots 
was observed. TVeat the following data as a one-factor 
analysis of variance. Test to see if the concentration 

of Garlon has a significant impact on the height of the 
shoots. Use a = 0.05. 

Garlon Level 

2.87 
2.31 
3.91 
2.04 

3.27 
2.66 
3.15 
2.00 

2.39 
1.91 
2.89 
1.89 

3.05 
0.91 
2.43 
0.01 
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13.55 Consider the aggregate data of Example 13.1. 
Perform Bartlett's test to determine if there is hetero
geneity of variance among the aggregates, 

13.56 In 1983 the Department of Dairy Science at 
the Virginia Polytechnic Institute and State Univer
sity conducted an experiment to study the effect of feed 
rations, differing by source of protein, on the average 
daily milk production of cows. There were 5 rations 
used in the experiment. A 5 x 5 Latin square was used 
in which the rows represented different cows and the 
columns were different lactation periods. The follow
ing data, recorded in kilograms, were analyzed by the 
Statistical Consulting Center at Virginia Tech. 

Lac ta t ion Pe r iods 
Cows 

1 
2 
3 
4 
5 

1 
A: 33.1 
B: 34.4 
C: 26.4 
D: 34.6 
E: 33.9 

C: 
D: 
E: 
A: 
B: 

2 
30.7 
28.7 
24.9 
28.8 
28.0 

3 
D: 28.7 
E: 28.8 
A: 20.0 
B: 31.9 
C: 22.7 

4 
E: 31.4 
A: 22.3 
B: 18.7 
C: 31.0 
D: 21.3 

B: 
C: 
D: 
E: 
A: 

5 
28.9 
22.3 
15.8 
30.9 
19.0 

At the 0.01 level of significance can we conclude that 
rations with different sources of protein have an effect 
on the average daily milk production of cows? 

13.57 Three catalysts are used in a chemical process 
with a control (no catalyst) being included. The fol
lowing are yield data from the process: 

Catalyst 
Control 

74.5 
76.1 
75.9 
78.1 
76.2 

1 
77.5 
82.0 
80.6 
84.9 
81.0 

2 
81.5 
82.3 
81.4 
79.5 
83.0 

3 
78.1 
80.2 
81.5 
83.0 
82.1 

Use Dunnett's test at the a = 0.01 level of significance 
to determine if a significantly higher yield is obtained 
with the catalysts than with no catalyst. 

13.58 Four laboratories are being used to perform 
chemical analysis. Samples of the same material are 
sent to the laboratories for analysis as part of the study 
to determine whether or not they give, on the average, 
the same results. The analytical results for the four 
laboratories are as follows: 

A 
58.7 
61.4 
60.9 
59.1 
58.2 

Laboratory 
B 

62.7 
64.5 
63.1 
59.2 
60.3 

C 
55.9 
56.1 
57.3 
55.2 
58.1 

D 
60.7 
60.3 
60.9 
61.4 
62.3 

laboratory variances are not significantly different 
at the Q = 0.05 level of significance. 

(b) Perform the analysis of variance and give conclu
sions concerning the laboratories. 

(c) Do a normal probability plot of residuals. 

13.59 Use Bartlett's test at the 0.01 level of signifi
cance to test for homogeneity of variances in Exercise 
13.9 on page 523. 

13.60 Use Cochran's test at the 0.01 level of signifi
cance to test for homogeneity of variances in Exercise 
13.6 on page 522. 

13.61 Use Bartlett's test at the 0.05 level of signifi
cance to test for homogeneity of variances in Exercise 
13.8 on page 523. 

13.62 An experiment was designed for personnel in 
the Department of Animal Science at Virginia Poly
technic Institute and State University with the pur
pose of studying urea and aqueous ammonia treatment 
of wheat straw. The purpose was to improve nutrition 
value for male sheep. The diet treatments are: control; 
urea at feeding: ammonia-treated straw; urea-treated 
straw. Twenty-four sheep were used in the experiment, 
and they were separated according to relative weight. 
There were six sheep in each homogeneous group. Each 
of the six was given each of the four diets in random 
order. For each of the 24 sheep the percent dry matter 
digested was measured. The data follow. 

Group by Weight (block) 

Diet 

Control 

Urea at 
feeding 

Ammonia 
treated 

Urea 
treated 

1 

32.68 

35.90 

49.43 

46.58 

2 

36.22 

38.73 

53.50 

42.82 

3 

36.36 

37.55 

52.86 

45.41 

4 

40.95 

34.64 

45.00 

45.08 

5 

34.99 

37.36 

47.20 

43.81 

6 

33.89 

34.35 

49.76 

47.40 

(a) Use Bartlett's test to show that the within-

(a) Use a randomized block type of analysis to test for 
differences between the diets. Use a = 0.05. 

(b) Use Dunnett's test to compare the three diets with 
the control. Use a = 0.05. 

(c) Do a normal probability plot of residuals. 

13.63 In a data set that was analyze*! for personnel 
in the Department of Biochemistry at Virginia Poly
technic Institute and State University, three diets were 
given to a group of rats in order to study the effect 
of each on dietary residual zinc in the bloodstream. 
Five pregnant rats were randomly assigned to each diet 
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group and each was given the diet on day 22 of preg
nancy. The amount of zinc in parts per million was 
measured. The data are as follows: 

Diet 
0.50 
0.42 
1.06 

0.42 
0.40 
0.82 

0.65 
0.73 
0.72 

0.47 
0.47 
0.72 

0.44 
0.69 
0.82 

Determine if there is a significant difference in resid
ual dietary zinc among the three diets. Use a- = 0.05. 
Perform a one-way ANOVA. 

13.64 A study is conducted to compare gas mileage 
for 3 competing brands of gasoline. Four different au
tomobile models of varying size are randomly selected. 
The data, in miles per gallon, follow. The order of 

testing is random for each model. 

Gasol ine b r a n d 
M o d e l 

A 32A3513 387 
B 28.8 28.6 29.9 
C 36.5 37.6 39.1 
D 34.4 36.2 37.9 

(a) Discuss the need for the use of more than a single 
model of car. 

(b) Consider the ANOVA from the SAS printout in 
Figure 13.16. Does brand of gasoline matter? 

(c) Which brand of gasoline would you select? Consult 
the result of Duncan's test. 

The GLM Procedure 
Dependent Variable: MPG 

Source 
Model 
Error 
Corrected 

R-Square 
0.953591 

Source 
Model 
Brand 

Sum of 
DF Squares 1 
5 153.2508333 
6 7.4583333 

Total 11 160.7091667 

Coeff Var Root MSE 
3.218448 1.114924 

DF Type III SS 
3 130.3491667 
2 22.9016667 

<ean Square F 
30.6501667 
1.2430556 

MPG Mean 
34.64167 

Mean Square F 
43.4497222 
11.4508333 

Value 
24.66 

Value 
34.95 
9.21 

Pr > F 
0.0006 

Pr > F 
0.0003 
0.0148 

Duncan's Mult iple Range Test for MPG 
NOTE: This t e s t cont ro ls the Type I comparisonwise e r ro r r a t e , not 
the experimentwise e r ro r r a t e . 

Alpha 0.05 
Error Degrees of Freedom 6 
Error Mean Square 1.243056 

Number of Means 2 3 
C r i t i c a l Range 1.929 1.999 

Means with the same l e t t e r are not s i g n i f i c a n t l y d i f f e r e n t . 
Duncan Grouping 

A 
Mean 

36.4000 

34.5000 

33.0250 

N 
4 

4 

4 

Brand 
C 

B 

A 

Figure 13.16: SAS pr intout for Review Exercise 13.64. 
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The GLM Procedure 

Dependent Variable: gasket 

Source 
Model 
Error 
Corrected 
R-Square 
0.969588 

Source 
material 
machine 

Total 

DF 
5 
12 
17 

Sum of 
Squares 

1.68122778 
0.05273333 
1.73396111 

Mean Square F 
0.33624556 
0.00439444 

Coeff Var Root MSE gasket Mean 
1. 

material*machine 
Level of 
material 
cork 
cork 
plastic 
plastic 
rubber 
rubber 

Level of 
material 
cork 
plastic 
rubber 

Level of 
machine 
A 
B 

734095 0.066291 3.822778 

DF 
2 
1 
2 

Type III SS 
0.81194444 
0.10125000 
0.76803333 

Level of 
machine 
A 
B 
A 
B 
A 
B 

N 
6 
6 
6 

N 
9 
9 

N 
3 
3 
3 
3 
3 
3 

Mean Square F 
0.40597222 
0.10125000 
0.38401667 

, 4 . 

Mean 
4.32666667 
3.91333333 
3.94666667 
3.47666667 
3.42000000 
3.85333333 

Mean 
4.12000000 
3.71166667 
3.63666667 

Std Dev 
0.23765521 
0.26255793 
0.24287171 

Mean 
3.89777778 
3.74777778 

Std Dev 
0.39798800 
0.21376259 

Value 
76.52 

Value 
92.38 
23.04 
87.39 

Std 

Pr > F 
<.0001 

Pr > F 
<.0001 
0.0004 
<.0001 

Dev 
0.06658328 
0.09291573 
0.06027714 
0.05507571 
0.06000000 
0.05507571 

Figure 13.17: SAS printout for Review Exercise 13.65. 

13.65 A company that stamps gaskets out of sheets 
of rubber, plastic, and cork wants to compare the mean 
number of gaskets produced per hour for three types of 
material. Two randomly selected stamping machines 
are chosen as blocks. The data represent the number of 
gaskets (in thousands) produced per hour. The print
out analysis is given in Figure 13.17. 

Machine 

B 

Cork 
4.31 4.27 4.40 
3.94 3.81 3.99 

Material 
Rubber 

3.36 3.42 3.48 
3.91 3.80 3.85 

Plastic 
4.01 3.94 3.89 
3.48 3.53 3.42 

(a) Why would the stamping machines be chosen as 
blocks? 

(b) Plot the six means for machine and material com
binations. 

(c) Is there a single material that is best? 
(d) Is there an interaction between treatments and 

blocks? If so, is the interaction causing any seri
ous difficulty in arriving at a proper conclusion? 
Explain. 

13.66 An experiment was conducted to compare 
three types of paint to determine if there is evidence 
of differences in their wearing qualities. They were ex
posed to abrasive action and the time in hours was ob
served until abrasion was noticed. Six specimens were 
used for each type of paint. The data are as follows. 
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Pa in t Type 
2 

158 97 282 
315 220 115 

515 
,ri5.r) 

264 
330 

544 
525 

317 
536 

662 
175 

213 
614 

(a) Do an analysis of variance to determine if the evi
dence suggests that, wearing quality differs for the 
3 paints. Use a P-value in your conclusion. 

(b) If significant differences are found, characterize 
what they are. Is there one paint that stands out? 
Discuss your findings. 

(c) Do whatever graphical analysis you need t.ei deter
mine if assumptions used in (a) arc valid. Discuss 
your findings. 

(d) Suppose it is determined that the data for each 
treatment follows an exponential distribution. 
Does this suggest an alternative analysis? If so, 
do the alternative analysis and give findings. 

13.67 Four different locations in the northeast are 
used for collecting ozone measurements in parts per 
million. Amounts of ozone were collected in 5 samples 
at each location. 

1 
0.09 
0.10 
0.08 
0.08 
0.1.1 

Location 
2 

0.15 
0.12 
0.17 
0.18 
0.14 

3 
0.10 
0.13 
0.08 
0.08 
0.09 

4 
0.10 
0.07 
0.05 
0.08 
0.09 

(a) Is then: sufficient information here to suggest that 
there are differences in the mean ozone levels across 
locations? Be guided by a P-value. 

(b) If significant tlifferences are found in (a), charac
terize the nature of the differences. Use whatever 
methods yon have learned. 

13.16 Potential Misconceptions and Hazards; 
Relationship to Material in Other Chapters 

As in either procedure's covered in previous chapters, the analysis of variance is 
reasonably robust, to the normality assumption but less robust to the homogeneous 
variance assumption. 

Bar t le t t ' s test for equal variance is extremely nonrobust to normality. 



Chapter 14 

Factorial Experiments (Two or 
More Factors) 

14.1 Introduction 

Consider a situation where it is of interest to study the effect of two factors, A 
and B, on some response. For example, in a chemical experiment we would like to 
vary simultaneously the reaction pressure and reaction time and study the effect 
of each on the yield. In a biological experiment, it is of interest to study the effect 
of drying time and temperature on the amount of solids (percent by weight) left in 
samples of feast. As in Chapter 13, the term factor is used in a general sense to 
denote any feature of the experiment such as temperature, time, or pressure that 
may be varied from trial to trial. We define the levels of a factor to be the actual 
values used in the experiment. 

For each of these cases it is important to determine not only if the two factors 
each has an influence on the response, but also if there is a significant interaction 
between the two factors. As far as terminology is concerned, the experiment de
scribed here is a two-factor experiment and the experimental design may be either 
a completely randomized design, in which the various treatment combinations are 
assigned randomly to all the experimental units, or a randomized complete block 
design, in which factor combinations are assigned randomly to blocks. In the case 
of the yeast example, the various treatment combinations of temperature and dry
ing time would be assigned randomly to the samples of yeast if we are using a 
completely randomized design. 

Many of the concepts studied in Chapter 13 are extended in this chapter to two 
and three factors. The main thrust of this material is the use of the completely 
randomized design with a factorial experiment. A factorial experiment in two 
factors involves experimental trials (or a single trial) at all factor combinations. 
For example, in the temperature-drying-time example with, say, three levels of 
each and n = 2 runs at each of the nine combinations, we have a two-factor 
factorial in a completely randomized design. Neither factor is a blocking factor; we 
are interested in how each influence percent solids in the samples and whether or 
not they interact. The: biologist would then have available 18 physical samples of 
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material which are: experimental units. These: would then be assigned randomly to 
the 18 combinations (nine treatment combinations, each duplicated). 

Before we launch into analytical details, sums of squares, and so on, it may
be of interest for the reader to observe the obvious connection between what we 
have described and flic situation with the one-factor problem. Consider the yeast 
experiment. Explanation of degrees of freedom aids the reader or the analyst in 
visualizing the extension. We should initially view the 9 treatment combinations 
as if they represent one factor with 0 levels (8 degrees of freedom). Thus an initial 
look at degrees of freedom gives 

Treatment combinations 8 
Error 0 
Total 1 • 

Main Effects and Interaction 

Actually, the experiment could be analyzed as dcscribcel in the above table. How
ever, the F-tcst for combinations would probably not give the analyst the informa
tion he or she desires, namely, that which considers the role of temperature and 
drying time. Three drying times have 2 associated degrees of freedom, three tem
peratures have 2 degrees of freedom. The main factors, temperature and drying 
time, are called main effects. The main effects represent 4 of the 8 degrees of free
dom for factor combinations. The additional 4 degrees of freeelom are associated 
with interaction between the two factors. As a result, the analysis involves 

Combinations 
Temperature 
Drying time 
Interaction 

Error 

2 
2 
4 

8 

9 
Total 17 

Recall from Chapter 13 that, factors in an analysis of variance may be viewed as 
fixed or random, depending on the type1 eif inference desired and how the levels were 
chosen. Here wc must consider fixeel effects, random effects, and even cases where 
e:ffccts are mixed. Most, attention will be drawn toward expected mean squares 
when we advance to these topics. In the following section we focus on the concept 
of interaction. 

14.2 Interaction in the Two-Factor Experiment 

In the randomized block model discussed previously it was assumed that one ob
servation on each treatment is taken in each block. If the model assumption is 
correct, that is, if blocks and treatments are the only real effects and interaction 
does not exist, the expected value of the mean square error is the experimental 
error variance a2. Suppose, however, that there is interaction occurring between 
treatments and blocks as indicated by the model 

IJij = fl+ O; + 0j + (np)ij + f.jj 



14.2 Interaction in the Two-Factor Experiment 575 

of Section 13.9. The expected value of the mean square error was then given as 

k b 
SSE 

(b-l)(k-l) *2 + (OT^E£(^-
^ ' ^ * i=i i = i 

The treatment and block effects do not appear in the expected mean square error, 
but the interaction effects do. Thus, if there is interaction in the model, the 
mean square error reflects variation due to experimental error plus an interaction 
contribution and, for this experimental plan, there is no way of separating them. 

Interaction and the Interpretation of Main Effects 

From an experimenter's point of view it should seem necessary to arrive at a 
significance test on the existence of interaction by separating true error variation 
from that due to interaction. The main effects, A and B, take on a different 
meaning in the presence of interaction. In the previous biological example the 
effect that drying time has on the amount of solids left in the yeast might very well 
depend on the temperature to which the samples are exposed. In general, there 
could be experimental situations in which factor A has a positive effect on the 
response at one level of factor B, while at a different level of factor B the effect of 
A is negative. We use the term positive effect here to indicate that the yield or 
response increases as the levels of a given factor increase according to some defined 
order. In the same sense a negative effect corresponds to a decrease in yield for 
increasing levels of the factor. 

Consider, for example, the following data on temperature (factor A at levels t\, 
t2, and t3 in increasing order) and drying time dx, d2, and d3 (also in increasing 
order). The response is percent solids. These data are completely hypothetical 
and given to illustrate a point. 

A 

h 
t2 

t3 

di 

4.4 
7.5 
9.7 

B 

d2 

8.8 
8.5 
7.9 

dz 
5.2 
2.4 
0.8 

Total 
18.4 
18.4 
18.4 

Total 21.6 25.2 8.4 55.2 

Clearly the effect of temperature is positive on percent solids at the low drying 
time di but negative for high drying time d3. This clear interaction between 
temperature and drying time is obviously of interest to the biologist but, based 
on the totals of the responses for temperature t\, t2, and t3, the temperature sum 
of squares, 55.4, will yield a value of zero. We say then that the presence of 
interaction is masking the effect of temperature. Thus if we consider the average 
effect of temperature, averaged over drying time, there is no effect. This then 
defines the main effect. But, of course, this is likely not what is pertinent to the 
biologist. 

Before drawing any final conclusions resulting from tests of significance on the 
main effects and interaction effects, the experimenter should first observe 
whether or not the test for interaction is significant. If interaction is 
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not significant, then the results of the tests on the main effects are meaningful. 
However, if interaction should be significant, then only those tests on the main 
effects that turn out to be significant are meaningful. Nonsignificant main effects 
in the presence of interaction might well be a result of masking and dictate the 
need to observe the influence of each factor at fixed levels of the other. 

A Graphical Look at Interaction 

The presence of interaction as well as its scientific impact can be interpreted nicely 
through the use of interaction plots. The plots clearly give a pictorial view of 
the tendency in the data to show the effect of changing one factor as one moves 
from one level to another of a second factor. Figure 14.1 illustrates the strong 
temperature by drying time interaction. The interaction is revealed in nonparallel 
lines. 

8 

a. 

Temperature 

Figure 14.1: Interaction plot for temperature-drying time data. 

The relatively strong temperature effect on percent solids at the lower dry
ing time is reflected in the steep slope at di. At the middle drying time d2 the 
temperature has very little effect while at the high drying time d3 the negative 
slope illustrates a negative effect of temperature. Interaction plots such as this set 
give the scientist a quick and meaningful interpretation of the interaction that is 
present. It should be apparent that parallelism in the plots signals an absence 
of interaction. 

Need for Multiple Observations 

Interaction and experimental error are separated in the two-factor experiment only 
if multiple observations are taken at the various treatment combinations. For max
imum efficiency, there should be the same number n of observations at each com
bination. These should be true replications, not just repeated measurements. For 
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example, in the yeast, illustration, if we take n = 2 observations at each combina
tion of temperature and drying time, there should be two separate samples and not 
merely repeated measurements on the same sample. This allows variability due to 
experimental units to appear in "error," so the variation is not merely measurement 
error. 

14.3 Two-Factor Analysis of Variance 

To present general formulas lor the analysis of variance of a two-factor experiment 
using repeated observations in a completely randomized design, we shall consider 
the case of n replications of the treatment combinations determined by o levels of 
factor A and b levels of factor B. The observations may be classified by means of a 
rectangular array where the rows represent the levels of factor A and the columns 
represent the levels of factor B. Each treatment combination defines a cell in our 
array. Thus we have ah cells, each cell containing n observations. Denoting the 
A:th observation taken at the ith level of factor A and the j th level of factor B by 
yijk, the abn observations are shown in Table 14.1. 

Tabic 14.1: Two-Factor Experiment with n Replications 
B 

1 2 ••• b Total M e a n 

zmi 
2/112 

.1/1 In 

y-211 

2/212 

J/121 

2/122 

J/12n 

1/221 

J/222 

Vxbi 

l/U-2 

Vlbn 

y-m 
V2b2 

Yi. 

Y2.. 

Vl.. 

2/2.. 

2/2 In l)22n V2bn 

Wall 

Ha 12 

Vail 
Va22 

Vabl 

v<ii<2 

Ya.. Va.. 

Total 
Mean 

Vain 
Y.i. 

P.l. 

2/u2n 

Y.2. 
V.2. 

Vabn 
YM. 

y.b. 

The observations in the (*j)th roll constitute a random sample of size n from a 
population that is assumed to be normally distributed with mean pij and variance 
er-. All ab populations are assumed to have the same variance a2. Let us define 
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squares as functions of the independent random variables ym, J/112, • • • -. 27a(m, it is 
not difficult to verify that 

E(S!) = E 

E(Sl) = E 

E(Sl) = E 

E(S2) = E 

SSA 

a - 1 

SSB 
b-l 

SS(AB) 

0 lib -C—v n 

."."it* = CT" + 

| > - 1 ) ( 6 - 1 ) 
S5£ 

j = l 

n 

(a-D(*-l)feft n E D ^ ' 
= ff , . a b ( n - l ) . 

from which we immediately observe that all four estimates of a2 are unbiased when 
HQ, HQ, and H0 are true. 

To test the hypothesis HQ, that the effects of factors A are all equal to zero, we 
compute the ratio 

F-Test for 
Factor A f - Sl 

s* 

which is a value of the random variable Fi having the F-distribution with a - 1 
and ab(n — 1) degrees of freedom when H0 is true. The null hypothesis is rejected 
at the a-level of significance when / ] > fa[a — l,ab(n — 1)]. Similarly, to test the 
hypothesis H0 that the effects of factor B are all equal to zero, we compute the 
ratio 

F-Test for 
Factor B h 

s 2 
s 2 

which is a value of the random variable F2 having the F-distribution with 5—1 and 
ab(n — 1) degrees of freedom when Hu is true. This hypothesis is rejected at the 
a-level of significance when f2 > fa[b- 1, ab(n— 1)]. Finally, to test the hypothesis 
HQ , that the interaction effects are all equal to zero, we compute the ratio 

F-Test for 
Interaction f — -2. 

2 ' 

which is a value of the random variable F3 having the F-distribution with (a. — 
l)(b — 1) and ab(n — 1) degrees of freedom when HQ is true. We conclude that 
interaction is present when f3 > /Q[(a — 1)(5 — l),a6(n — 1)]. 

As indicated in Section 14.2, it is advisable to interpret the test for interaction 
before attempting to draw inferences on the main effects. If interaction is not sig
nificant, there is certainly evidence that the tests eni main effects are interpretable. 
Rejection of hypothesis 1 on page 578 implies that the response means at the levels 
of factor A are significantly different while rejection of hypothesis 2 implies a simi
lar condition for the means at levels of factor B. However, a significant interaction 
could very well imply that the data should be analyzed in a somewhat, different 
manner-perhaps observing the effect of factor A at fixed levels of factor 
B. and so forth. 
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The computations in an analysis-of-variance problem, for a two-factor experi
ment with n replications, are usually summarized as in Table 14.2. 

Table 14.2: Analysis of Variance for the Two-Factor Experiment with n Replica
tions 

Example 14.1:1 

Source of 
Variation 
Main effect 

A 

B 

Two-factor 
interactions 

AB 

Error 

Total 

In an experiment 

Sum of 
Squares 

SSA 

SSB 

SS(AB) 

SSE 

SST 

Degrees of 
Freedom 

a - 1 

6 - 1 

( a - l ) ( 6 - l ) 

ab(n - 1) 

abn — 1 

conducted to determine w 

Mean 
Square 

„2 _ SSA Sl - a -1 
„2 _ SSB 
«2 - T=T 

2 _ SS(AB) 
S3 - (a- l ) (6- l ) 
„2 _ SSE 
b ~ ab(n-l) 

Computed 

/i = f* 
h-$ 

h-i 

hich of 3 different missile system; 
preferable, the propellant burning rate for 24 static firings was measured. Four dif
ferent propellant types were used. The experiment yielded duplicate observations 
of burning rates at each combination of the treatments. 

The data, after coding, are given in Table 14.3. Test the following hypotheses: 
(a) HQ-. there is no difference in the mean propellant burning rates when different 
missile systems are used, (b) H0: there is no difference in the mean propellant 
burning rates of the 4 propellant types, (c) HQ : there is no interaction between 
the different missile systems and the different propellant types. 

Table 14.3: Propellant Burning Rates 

Missile 
System 

ax 

a2 

a-A 

bx 
34.0 
32.7 
32.0 
33.2 
28.4 
29.3 

Propellant Type 

62 

30.1 
32.8 
30.2 
29.8 
27.3 
28.9 

63 64 

29.8 29.0 
26.7 28.9 
28.7 27.6 
28.1 27.8 
29.7 28.8 
27.3 29.1 

Solution: 1. (a) HQ-. ax = a2 = a3 = 0. 
(b) HQ: ,3X =02 = 03 = 04 = 0. 
(c) HQ': (a0)n = (a0)12 = ••• = (a0)34 = 0. 

2. (a) H^: At least one of the a^s is not equal to zero, 
(b) Hi : At least one of the 0j !s is not equal to zero. 
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(c) Hx : At least one of the (a/3)y's is not equal to zero. 

The sum-of-squares formula is used as described in Theorem 14.1. The analysis 
of variance is shown in Table 14.4, 

Table 14.4: Analysis of Variance for the Data of Table 14.3 

Source of Sum of Degrees of Mean Computed 
Variat ion Squares Freedom Square / 

Missile system 
Propellant type 
Interaction 
Error 

Total 

14.52 
40.08 
22.16 
14.91 

91.68 

2 
3 
6 

12 

23 

7.26 
13.36 
3.69 
1.24 

5.84 
10.75 
2.97 

The reader is directed to a SAS GLM Procedure (General Linea Models) for 
analysis of the burning rate data in Figure 14.2. Note how the "model" (11 degrees 
of freedom) is initially tested and the system, type, and system by type interaction 
are tested separately. The /-test on model (P = 0.0030) is testing the accumulation 
of the two main effects and the interaction. 

(a) Reject H0 and conclude that different missile systems result in different mean 
propellant burning rates. The P-value is approximately 0.017. 

(b) Reject H0 and conclude that the mean propellant burning rates are not the 
same for the four propellant types. The P-value is smaller than 0.0010. 

(c) Interaction is barely insignificant at the 0.05 level, but the P-value of approx
imately 0.0512 would indicate that interaction must be taken seriously. 

The GLM P r o c e d u r e 
Dependent V a r i a b l e : r a t e 

Source 
Model 
E r r o r 

DF 
11 
12 

C o r r e c t e d T o t a l 23 

R-Square 
0.837366 

Source 
sys tem 
t y p e 
sys tem*type 

Coeff Var 
3 .766854 

DF 
2 
3 
6 

Sum of 
Squa res 

76 .76833333 
14.91000000 
91 .67833333 

Root MSE 
1.114675 

Type I I I SS 
14.52333333 
40.08166667 
22.16333333 

Mean Square 
6 .97893939 
1.24250000 

r a t e Mean 
29 .59167 

Mean Square F 
7 .26166667 

13.36055556 
3.69388889 

F Value 
5 .62 

Value 
5 .84 

10 .75 
2 . 9 7 

Pr > F 
0 .0030 

Pr > F 
0 .0169 
0 .0010 
0 .0512 

Figure 14.2: SAS Printout of the analysis of the propellant rate data of Table 14.3. 

At this point we should draw some type of interpretation of the interaction. It 
should be emphasized that statistical significance of a main effect merely implies 
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that marginal means are significantly different. However, consider the two-way-
table of averages in Table: 14.5. 

Ol 

a2 

a3 

Averc 

Tabl 

Lge 

• 14.5: 

6i 
33.35 
32.60 
28.85 
31. GO 

Interpre 

b2 

31.45 
30.00 
28.10 
29.85 

station of Interne 

b3 

28.25 
28.40 
28.50 
28.38 

04 

28.95 
27.70 
28.95 
28.53 

tion 

Average 

30.50 
29.68 
28.60 

It is apparent that more important information exists in the body of the table-
trends that are inconsistent with the trend depicted by marginal averages. Table 
14.5 certainly suggests that the effect of propellant type depends on the system 
being used. For example, for system 3 the propellant-type effect does not appear 
to be important, although it does have a large effect if either system 1 or system 
2 is used. This explains the "significant" interaction between these two factors. 
More will be revealed subsequently concerning this interaction. J 

Example 14.2:1 Referring to Example 14.1, choose two orthogonal contrasts to partition the sum 
of squares for the missile systems into single-degree-of-freedom components to be 
used in comparing systems I and 2 with 3 and system 1 versus system 2. 

Solution: The contrast for comparing systems 1 and 2 with 3 is 

wj = px. + )i-2. - 2p.A.. 

A second contrast, orthogonal to u,'i, for comparing system 1 with system 2, is 
given by UJ-> = pi. — p2.. The single-degree-of-freedom sums of squares are 

[244.0 + 237.4 - (2)(228.8)]2 

ss^= (mir-- ay + (-m
 =1L80' 

and 

(244.0-237.4)2 

SStJ2 ~ (8)[(1)3+ (-!)*] - 2J2-

Notice that SSwx +SSw% = SSA, as expected. The computed /-values correspond
ing to u.'i and JJ2 are. respectively, 

f, = £ ? = 9-5 and f2 = £ £ = 2.2. 
•' 1.24 1.21 

Compared to the critical value /o.o5(li 12) = 4.75, we find /1 to be- significant. 
In fact, the P-value is less than 0.01. Thus the first contrast indicates that the 
hypothesis 

HQ: -(pi. + p-2.) =/ ' ;s . 

is rejected. Since f2 < 4.75, the mean binning rates of the first and second systems 

are not significantly different. J 
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Impact of Significant Interaction in Example 14.1 

If the hypothesis of no interaction in Example 14.1 is true, we could make the 
general comparisons of Example 14.2 regarding our missile systems rather than 
separate comparisons for each propellant. Similarly, we might make general com
parisons among the propellants rather than separate comparisons for each missile 
system. For example, we could compare propellants 1 and 2 with 3 and 4 and 
also propellant 1 versus propellant 2. The resulting /-ratios, each with 1 and 12 
degrees of freedom, turn out to be 24.86 and 7.41, respectively, and both are quite 
significant at the 0.05 level. 

From propellant averages there appears to be evidence that propellant 1 gives 
the highest mean burning rate. A prudent experimenter might be somewhat cau
tious in making overall conclusions in a problem such as this one, where the /-ratio 
for interaction is barely below the 0.05 critical value. For example, the overall 
evidence, 31.60 versus 29.85 on the average for the two propellants, certainly indi
cates that propellant 1 is superior, in terms of a higher burning rate, to propellant 
2. However, if we restrict ourselves to system 3, where we have an average of 
28.85 for propellant 1 as opposed to 28.10 for propellant 2, there appears to be 
little or no difference between these two propellants. In fact, there appears to 
be a stabilization of burning rates for the different propellants if we operate with 
system 3. There is certainly overall evidence which indicates that system 1 gives 
a higher burning rate than system 3. but if we restrict ourselves to propellant 4, 
this conclusion does not appear to hold. 

The analyst can conduct a simple t-test using average burning rates at system 
3 in order to display conclusive evidence that interaction is producing considerable 
difficulty in allowing broad conclusions on main effects. Consider a comparison of 
propellant 1 against propellant 2 only using system 3. Borrowing an estimate of 
a2 from the overall analysis, that is, using s2 = 1.24 with 12 degrees of freedom, 
we can use 

0.75 0.75 
f. = ; = - = = = 0.67. 

^/W/n y/iHi 
which is not even close to being significant. This illustration suggests that one must 
be cautious about strict interpretation of main effects in the presence of interaction. 

Graphical Analysis for the Two-Factor Problem of Example 14.1 

Many of the same types of graphical displays that were suggested in the one-factor 
problems certainly apply in the two-factor case. Two-dimensional plots of cell 
means or treatment combination means can provide an insight into the presence of 
interactions between the two factors. In addition, a plot of residuals against fitted 
values may well provide an indication of whether or not the homogeneous variance 
assumption holds. Often, of course, a violation of the homogeneous variance as
sumption involves an increase in the error variance as the response numbers get 
larger. As a result, this plot may point out the violation. 

Figure 14.3 shows the plot of cell means in the case of the missile system 
propellant illustration in Example 14.1. Notice how graphic (in this case) the lack 
of parallelism shows through. Note the flatness of the part of the figure showing 
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the propellant effect at system 3. This illustrates interaction among the1 factors. 
Figure 11.4 shows the plot for residuals against fitted values for the same data. 
There is no apparent sign of difficulty with the homogeneous variance assumption. 

Type 

Figure: 14.3: Plot of cell means for data of Example 14.1. Numbers represent missile 
systems. 
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Figure l-l. I: Residual plot of data of Example 14.1. 

Example 14.3:1 An electrical engineer investigates a plasma, etching process used in semiconductor 
manufacturing. It is of interest to study the effects of two factors, the C2F(i gas flow 
rate (A) and the power applied to the cathode (B). The response is the etch rate. 
Each factor is run at three levels and 2 experimental runs on etch rate were made 
at each of the nine combinations. The setup is that, of a completely randomized 
design. The: data are given in Table 14.6. The: etch rate- is in A°/min. 

The levels of the factors arc in ascending order with le:ve:l 1 being low level and 
level 3 being the highest. 
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Table 14.6: Data for Example 14.3 

C 2 F 6 Flow R a t e 

1 

2 

3 

Power Supplied 
1 

288 
360 
385 
411 
488 
462 

2 3 

488 670 
465 720 
482 692 
521 724 
595 761 
612 801 

(a) Show an analysis of variance table and draw conclusions, beginning with the 
test on interaction. 

(b) Do tests on main effects and draw conclusions. 

Solution: A SAS output is given in Figure 14.5. From the output the followings are what 
we learn. 

The GLM Procedure 

Dependent Variable: etchrate 

Source DF 

Model 8 

Error 9 

Corrected Total 17 

Sura of 

Squares 

379508.7778 

6999.5000 

386508.2778 

Mean Square 
47438.5972 

777.7222 

F Value Pr > F 
61.00 <.0001 

R-Square 
0.981890 

Coeff Var 
5.057714 

Root MSE 
27.88767 

e tch ra te Mean 
551.3889 

Source 
c2f6 
power 
c2f6*power 

DF Type I I I SS 
2 46343.1111 
2 330003.4444 
4 3162.2222 

Mean Square 
23171.5556 

165001.7222 
790.5556 

F Value Pr > F 
29.79 0.0001 

212.16 <.0001 
1.02 0.4485 

Figure 14.5: SA S printout for Example 14.3. 

(a) The P-value for the test of interaction is 0.4485. We can conclude that there 
is no significant interaction. 

(b) There is a significant difference in mean etch rate for the 3 levels of C2Fo flow 
rate. A Duncan's test shows that the mean etch rate for level 3 is significantly 
higher than that for level 2 and the rate for level 2 is significantly higher than 
that for level 1. See Figure 14.6(a). 

There is a significant difference in mean etch rate based on the level of power to 
the cathode. A Duncan's test revealed that the etch rate for level 3 is significantly 
higher than that for level 2 and the rate for level 2 is significantly higher than that 
for level 1. See Figure 14.6(b). J 
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Duncan Grouping 
A 
B 
C 

Mean N c2f6 
6 1 9 . 8 3 6 3 
535 .83 6 2 
498 .50 6 1 

(a) 

Duncan Grouping 
A 
B 
C 

Mean 
7 2 8 . 0 0 
527 .17 
399 .00 

N 
6 
6 
6 

power 
3 
2 
1 

(b) 

Figure 14.6: (a) SAS output , dealing with Example 14.3 (Duncan's teat on gas flow rate) : (b) SAS 
output , for Example 14.3 (Duncan's test on power), 

Exercises 

14.1 An experiment was conducted to study the ef
fect of temperature and type of oven on the life of a 
particular component being tested. Four types of ovens 
and 3 temperature levels were used in the experiment. 
Twenty-four pieces were assigned randomly, 2 to each 
combination of treatments, and the following results 
recorded. 

T e m p e r a t u r e Oven 
(Degrees) 

500 

550 

o, 
227 
221 
187 
208 

o2 
214 
259 
181 
179 

Oa 

225 
236 
232 
198 

o4 
200 
229 
246 
273 

600 

Using a 0.05 level 
that 

174 198 178 206 
202 194 213 219 

of significance, test the hypothesis 

(a) different temperatures have no effect on the life of 
the component: 

(b) different ovens have no effect, on the life of the com
ponent; 

(c) the type of oven and temperature elo not interact. 

14.2 To ascertain the stability of vitamin C in re
constituted frozen orange juice concentrate stored in a 
refrigerator for a period of up to one week, the study 
Vitamin C Retention, in Reconstituted Frozen Orange 
Juice was conducted by the Department of Human Nu
trition and Foods at the Virginia Polytechnic Institute 
and State University. Three types of frozen orange 
juice concentrate were tested using 3 different time pe
riods. The time periods refer to the number of days 
from when the orange juice was blended until it was 
tested. The results, in milligrams of ascorbic acid per 
liter, were recorded. Use a 0.05 level of significance to 
test the hypothesis that 
(a) there is no difference in ascorbic acid contents 

among the different brands of orange juice concen
trate: 

(b) there is no difference in ascorbic acid contents for 
the different time periods; 

(c) the brands of orange juice concentrate and the 
number of days from the time the juice was blended 
until it is testcel do not interact. 

T i m e (days) 
B r a n d 

Richfood 

Sealed-Sweet 

Minute Maid 

0 
52.6 
49.8 
56.0 
49.6 
52.5 
51.8 

54.2 
46.5 
48.0 
48.4 
52.0 
53.6 

3 
49.4 
42.8 
48.8 
44.0 
48.0 
48.2 

49.2 
53.2 
44.0 
42.4 
47.0 
49.6 

t 

42.7 
40.4 

49.2 
42.0 
48.5 
45.2 

7 

48.8 
47.6 
44.0 
43.2 
43.3 
47.6 

14.3 Three strains of rats were studied under 2 envi
ronmental conditions for their performance in a maze 
test. The error scores for the 48 rats were recorded as 
follows: 

S t ra in 
E n v i r o n m e n t Br igh t Mixed Dull 

Free 28 12 33 83 101 94~~ 
22 23 36 14 33 56 
25 10 41 76 122 83 
36 86 22 58 35 23 

Res t r i c t ed 72 32 60 89 136 120 
48 93 35 126 38 153 
25 31 83 110 64 128 
91 19 99 118 87 140 

Use a 0.01 level of significance to test the hypothesis 
that 
(a) there is no difference in error scores for different 

environments; 
(b) there is no difference in error scores for different 

strains; 
(c) the environments and strains of rats do not inter

act. 

14.4 Corrosion fatigue in metals has been defined as 
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the simultaneous action of cyclic stress and chemical 
attack on a metal structure. A widely used technique 
for minimizing corrosion-fatigue damage in aluminum 
involves the application of a protective coating. In 
a study conducted by the Department of Mechanical 
Engineering at the Virginia Polytechnic Institute and 
State University, different levels of humidity-

Low: 20-25% relative humidity 
Medium: 55-60% relative humidity 
High: 86-91% relative humidity 

and 3 types of surface coatings 
Uncoated: no coating 

Anodized: sulfuric acid anodic oxide coating 

Conversion: chromate chemical conversion coating 

were used. The corrosion-fatigue data, expressed in 
thousands of cycles to failure, were recorded as follows: 

Relative Humidity 
Coating Low Medium High 

Uncoated 

Anodized 

361 
466 
1069 

114 
1236 
533 

469 
937 
1357 

1032 
92 
211 

314 
244 
261 
322 
306 
68 

522 
739 
134 
471 
130 
398 

1344 
1027 
1011 

78 
387 
130 

1216 
1097 
1011 

466 
107 
327 

130 1482 252 874 586 524 
Conversion 841 529 105 755 402 751 

1595 754 847 573 846 529 

(a) Perform an analysis of variance with a = 0.05 to 
test for significant main and interaction effects. 

(b) Use Duncan's multiple-range test at the 0.05 level 
of significance to determine which humidity levels 
result in different corrosion-fatigue damage. 

14.5 To determine which muscles need to be sub
jected to a conditioning program in order to improve 
one's performance on the flat serve used in tennis, a 
study was conducted by the Department of Health, 
Physical Education and Recreation at the Virginia 
Polytechnic Institute and State University. Five dif
ferent muscles 

anterior deltoid 

pectorial major 

posterior deltoid 

4: middle deltoid 

triceps 

were tested on each of 3 subjects, and the experiment 
was carried out 3 times for each treatment combina
tion. The electromyographic data, recorded during the 
serve, are presented here. Use a 0.01 level of signifi
cance to test the hypothesis that 
(a) different subjects have equal electromyographic 

measurements: 

(b) different muscles have no effect on electromyograhic 
measurements; 

(c) subjects and types of muscle do not interact. 

Muscle 
Subject ~ 2 3 4~ 5~ 

1 

2 

32 
59 
38 
63 
60 
50 

5 
1.5 
2 
10 
9 
7 

58 
61 
66 
64 
78 
78 

10 
10 
14 
45 
61 
71 

19 
20 
23 
43 
61 
42 

3 43 41 26 63 61 
54 43 29 46 85 
47 42 23 55 95 

14.6 An experiment was conducted to increase the 
adhesiveness of rubber products. Sixteen products 
were made with the new additive and another 16 with
out the new additive. The observed adhesiveness is 
recorded below. 

Without Additives 

Temperature 

50 
2.3 
2.9 
3.1 
3.2 

60 
3.4 
3.7 
3.6 
3.2 

70 
3.8 
3.9 
4.1 
3.8 

(°C) 
80 
3.9 
3.2 
3.0 
2.7 

With Additives 
4.3 3.8 3.9 3.5 
3.9 3.8 4.0 3.6 
3.9 3.9 3.7 3.8 
4.2 3.5 3.6 3.9 

Perform an analysis of variance to test for significant 
main and interaction effects. 

14.7 The extraction rate of a certain polymer is 
known to depend on the reaction temperature and 
the amount of catalyst used. An experiment was con
ducted at four levels of temperature and five levels of 
the catalyst, and the extraction rate was recorded in 
the following table. 

50° C 

60° C 

70° C 

0.5% 
38 
41 

44 
43 
44 
47 

Amount of Catalyst 

0.6% 
45 
47 
56 
57 

56 
60 

0.7% 

57 
59 

70 
69 
70 
67 

0.8% 

59 
61 

73 
72 

73 
61 

0.9% 

57 
58 

61 
58 
61 
59 

80° C 49 
47 

62 
65 

70 
55 

62 
69 

53 
58 

Perform an analysis of variance, 
main and interaction effects. 

Test for significant 
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14.8 In Myers and Montgomery (2002) a scenario is 
discussed in which an auto bumper plating process is 
described. The response is the thickness of the ma
terial. Factors that may impact the thickness include 
amount of nickel (A) and pH (B). A t w o factor experi
ment is designed. The plan is a completely randomized 
design in which the individual bumpers are assigned 
randomly to the factor combinations. Three levels of 
pH and two levels of nickel content are involved in the 

Dose Position 

experiment, 
follows: 

The thickness in cm x 10 data are as 

Nickel Content PH 
(grams) 

18 
5 
250 
195 
188 

5.5 
211 
172 
165 

6 
221 
150 
170 

115 
165 
142 

88 
112 
108 

69 
101 
72 

10 

(a) Display the analysis of variance table with tests for 
both main effects and interaction. Show P-values. 

(b) Give engineering conclusions. What have you 
learned from the analysis of this data? 

(c) Show a plot that depicts either a presence or ab
sence of interaction. 

14.9 An engineer is interested in the effect of cut
ting speed and tool geometry on the life in hours of 
a machine tool. Two cutting speeds and two different 
geometries are used. Three experimental tests are ac
complished at each of the four combinations. The data 
are as follows. 

Tool 
Geometry 

Cutting Speed 
Low 

22 
18 

28 
15 

20 
16 

High 
34 
11 

37 
10 

29 
10 

(a) Show an analysis-of-variance table with tests on in
teraction and main effects. 

(b) Comment on the effect that interaction has on the 
test on cutting speed. 

(c) Do secondary tests that will allow the engineer to 
learn the true impact of cutting speed. 

(d) Show a plot that graphically displays the interac
tion effect. 

14.10 Two factors in a manufacturing process for an 
integrated circuit were studied in a two-factor experi
ment. The purpose of the experiment is to learn their 
effect on the resistivity of the wafer. The factors are 
implant dose (2 levels) and furnace position (3 levels). 
Experimentation is costly so only one experimental run 
is made at each combination. The data are as follows. 

1 15.5 14.8 21.3 
2 27.2 24.9 26.1 

It is to be assumed that no interaction exists between 
these two factors. 
(a) Write the model and explain terms. 
(b) Show the analysis of variance table. 
(c) Explain the 2 "error" degrees of freedom. 
(d) Use Tukey's test to do multiple-comparison tests on 

furnace position. Explain what the results show. 

14.11 A study was done to determine the impact of 
two factors, method of analysis and the laboratory do
ing the analysis, on the level of sulfur content in coal. 
Twenty-eight coal specimens were randomly assigned 
to 28 factor combinations, the structure of the experi
mental units represented by combinations of seven lab
oratories and two methods of analysis with two speci
mens per factor combination. The data are as follows: 
The response is percent of sulfur. 

Method 
Laboratory 

1 
2 
3 
4 
5 
6 
7 

0.109 
0.129 
0.115 
0.108 
0.097 
0.114 
0.155 

1 
0.105 
0.122 
0.112 
0.108 
0.096 
0.119 
0.145 

2 
0.105 
0.127 
0.109 
0.117 
0.110 
0.116 
0.164 

0.108 
0.124 
0.111 
0.118 
0.097 
0.122 
0.160 

The data are taken from Taguchi, G. "Signal to Noise 
Ratio and Its Applications to Testing Material," Re
ports of Statistical Application Research, Union of 
Japanese Scientists and Engineers, Vol. 18, No. 4, 
1971. 

(a) Do an analysis of variance and show results in an 
analysis-of-variance table. 

(b) Is interaction significant? If so, discuss what it 
means to the scientist. Use a P-value in your con
clusion. 

(c) Are the individual main effects, laboratory, and 
method of analysis statistically significant? Discuss 
what is learned and let your answer be couched in 
the context of any significant interaction. 

(d) Do an interaction plot that illustrates the effect of 
interaction. 

(e) Do a test comparing methods 1 and 2 at laboratory 
1 and do the same test at laboratory 7. Comment 
on what these results illustrate. 

14.12 In an experiment conducted in the civil engi
neering department at Virginia Tech, a growth of a 
certain type of algae in water was observed as a func
tion of time and the dosage of copper added to the 
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water. The data are as follows. Response is in units of 
algae. 

Time in Days 
Copper 5 12 18 

lows: 

T r e a t m e n t 

1 

2 

0.30 
0.34 
0.32 
0.24 
0.23 
0.22 

0.37 
0.36 
0.35 
0.30 
0.32 
0.31 

0.25 
0.23 
0.24 
0.27 
0.25 
0.25 

0.20 
0.28 
0.24 

0.30 
0.31 
0.30 

0.27 
0.29 
0.25 

(a) Do an analysis of variance and show the analysis of 
variance table. 

(b) Comment concerning whether the data are suffi
cient to show a time effect on algae concentration. 

(c) Do the same for copper content. Does the level of 
copper impact algae concentration? 

(d) Comment on the results of the test for interaction. 
How is the effect of copper content influenced by 
time? 

14.13 In Myers, Classical and Modern Regression 
with Applications, Duxbury Classic Series, 2nd edition 
1990, an experiment is described in which the Envi
ronmental Protection Agency seeks to determine the 
effect of two water treatment methods on magnesium 
uptake. Magnesium levels in grams per cubic centime
ter (cc) are measurexl and two different time levels are 
incorporated into the experiment. The data are as fol-

Time (hrs.) 
1 2.19 2.15 2.16 2.03 2.01 2.04 
2 2.01 2.03 2.04 1.88 1.86 1.91 

(a) Do an interaction plot. What is your impression? 
(b) Do an analysis of variance and show tests for the 

main effects and interaction. 

(c) Give scientific findings regarding how time and 
treatment influence magnesium uptake. 

(d) Fit the appropriate regression model with treat
ment as a categorical variable. Include interaction 
in the model. 

(e) Is interaction significant in the regression model? 

14.14 Consider the data set in Exercise 14.12 and an
swer the following questions. 
(a) Both factors of copper and time are quantitative in 

nature. As a result, a regression model may be of 
interest. Describe what might be an appropriate 
model using x \ = copper content and x2 = time. 
Fit the model to the data, showing regression coef
ficients and a i-test on each. 

(b) Fit the model 

Y = 0o + /?ixi + 32x2 + 3\2Xix2 

+ 3nX2i +022x1 + 6, 

and compare it to the one you chose in (a). Which 
is more appropriate? Use R2

dj as a criterion. 

14.4 Three-Factor Experiments 

In this section we consider an experiment with three factors, A, B, and C, at a, b, 
and c levels, respectively, in a completely randomized experimental design. Assume 
again tha t we have n observations for each of the abc t reatment combinations. We 
shall proceed to outline significance tests for the three main effects and interactions 
involved. It is hoped that the reader can then use the description given here to 
generalize the analysis to k > 3 factors. 

Model for the 
Three Factor 

Experiment 

The model for the three-factor experiment is 

Vijki = P + o-'i + 3j + 7fc + (c\3)ij + (a-y)ik + (0"f)jk + ic*0l)ijk + e y « , 

i — 1 ,2 . . . . ,0 ; j = 1,2, ...,b; k = 1,2, . . . , c ; and I = 1 ,2 , . . . ,n, 

where ai, pj, and jk are the main effects; (a0)ij, (07)^, , and (0~y)jk are the two-
factor interaction effects tha t have the same interpretation as in the two-factor 
experiment. The term (a/?7),jfc is called the three- factor interact ion effect, 
a term that represents a nonadditivity of the (a0)ij over the different levels of 
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Sum of Squares 
for a 

Three-Factor 
Experiment 

the factor C. As before, the sum of all main effects is zero and the sum over 
any subscript, of the two- and three-factor interaction effects is zero. In many 
experimental situations these higher-order interactions are insignificant and their 
mean squares reflect only random variation, but we shall outline the analysis in its 
most general detail. 

Again, in order that valid significance tests can be made, we must assume that 
the errors are values of independent and normally distributed random variables, 
each with zero mean and common variance a2. 

The general philosophy concerning the analysis is the same as that discussed for 
the one- and two-factor experiments. The sum of squares is partitioned into eight 
terms, each representing a source of variation from which we obtain independent 
estimates of a2 when all the main effects and interaction effects arc zero. If the 
effects of any given factor or interaction are not all zero, then the mean square 
will estimate the error variance plus a component due to the systematic effect in 
question. 

a 

SSA = ben J2iVi... - fj...f SS(AB) = cnJ2 £ ( f l y . . " Vi- - V-i- + V-f 
(=1 i j 

b 

SSB = acnJ2iV.j.. - V-f SS(AC) = fcn££(fc.fc. - ft... - y..k. + V...f 
j=l i k 
c 

SSC = aim Y,iV..k. - j/....)2 SS(BC) = an £ J > . j f c . - y.j.- " V-k- + V..-)2 

k=l j k 

SS(ABC) = n-Y^YlY^iyijk. ~ Vij.. - Vi.k. - V.jk. + Vi... + y.j.. + y..k. - y....f 
i j k 

SST = E E E E t o - y- ")2 SSE = E E E£<«* Vijk.)2 

Although we emphasize interpretation of annotated computer printout in this 
section rather than being concerned with laborious computation of sum of squares, 
we do offer the following as the sums of squares for the three main effects and 
interactions. Notice the obvious extension from the two- to three-factor problem. 

The averages in the formulas are defined as follows: 

y.... = average of all aben observations, 

Vi... = average of the observations for the ith level of factor A, 

y j = average of the observations for the j th level of factor B, 

y k = average of the observations for the fcth level of factor C, 

y^ = average of the observations for the ith level of A and the j t h level of B, 

Vi.k. = average of the observations for the ith level of A and the fcth level of C, 

y j k = average of the observations for the j t h level of B and the fcth level of C, 

fjijk = average of the observations for the (ijk)th treatment combination. 

The computations in an analysis-of-variance table for a three-factor problem 
with n replicated runs at each factor combination are summarized in Table 14.7. 
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Table 14.7: ANOVA for the Three-Factor Experiment, with n Replications 

Source of 
Variation 
Main effect: 

A 

B 

C 

Two-factor interaction: 
AB 

AC 

BC 

Three-factor interaction: 
ABC 

Error 
Total 

Sum of 
Squares 

SSA 

SSB 

SSC 

SS(AB) 

SS(AC) 

SS(BC) 

SS(ABC) 

SSE 
SST 

Degrees of 
Freedom 

a - 1 

b-1 

c - 1 

( a - l ) ( 6 - l ) 

( o - l ) ( c - l ) 

( 6 - l ) ( c - l ) 

(o- l ) (6- l ) (c -

abc(n — 1) 

abcn— 1 

Mean Square 
Square 

• si 

s-2 

R2 

s 3 

«2 
s4 

<i2 

•s5 

4 

- 1 ) s2 

S" 

Computed 
/ 

h-i 
A-s 

s2 

h = 3$ 

/4-i 

/ 5=f l 

/e = fl 

/7 = fl 

For the three-factor experiment with a single experimental run per combination 
we may use the analysis of Table 14.7 by setting n = 1 and using the ABC 
interaction sum of squares for SSE. In this case we are assuming that the (adf)ijk 
interaction effects are all equal to zero so that 

E 
SS(ABC) 

L(o- l ) (6- l ) (c - l ) 
a2 + RraR^(^"' »=i j = i f c = i 

That is, SS(ABC) represents variation due only to experimental error. Its mean 
square thereby provides an unbiased estimate of the error variance. With n = 1 
and SSE = SS(ABC), the error sum of squares is found by subtracting the sums 
of squares of the main effects and two-factor interactions from the total sum of 
squares. 

Example 14.4:1 In the production of a particular material three variables are of interest: A, the 
operator effect (three operators): B, the catalyst used in the experiment (three 
catalysts); and C, the washing time of the product following the cooling process 
(15 minutes and 20 minutes). Three runs were made at each combination of factors. 
It was felt that all interactions among the factors should be studied. The coded 
yields are in Table 14.8. Perform an analysis of variance to test for significant, 
effects. 

Solution: Table 14.9 shows an analysis of variance of the data given above. None of the 
interactions show a significant effect at the a = 0.05 level. However, the P-value 
for BC is 0.0610; thus it should not be ignored. The operator and catalyst effects 
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Table 14.8: Data for Example 14.4 

Washing Time, C 

A ( o p e r a t o r ) 

1 

2 

3 

1 5 M i n u t e s 

B( 
1 

10.7 
10.8 
11.3 
11.4 
11.8 

11.5 
13.C 
14.1 
14.5 

c a t a l y s t ) 

2 

10.3 
10.2 
10.5 
10.2 
10.9 

10.5 
12.0 
11.6 
11.5 

3 

11.2 
11.6 
12.0 
10.7 
10.5 
10.2 
11.1 
11.0 
11.5 

2 0 M i n u i 
B\ 

1 

10.9 
12.1 
11.5 
9.8 

11.3 
10.9 
10.7 
1 1.7 
12.7 

e-s 
c a t a l y s t ) 

2 

10.5 
11.1 
10.3 
12.G 
7.5 
9.9 

10.2 

11.5 
10.9 

3 

12.2 
1 1.7 
1 1.0 
10.8 
10.2 
11.5 
1.1.9 
11.6 
12.2 

are significant, while the effect of washing time is not significant. 

Table 14.9: ANOVA for a Three Factor Experiment in a Completely Randomized Design 

Source 

A 
B 
AB 

C 
AC 
BC 
ABC 
Error 

Total 

d f 

2 
2 
4 
1 
2 
2 
4 

36 

53 

S u m o f S q u a r e s 

13.98 
10.18 
4.77 
1.19 
2.91 
3.63 
4.91 

21.61 

63.19 

M e a n S q u a r e 

0.99 
5.09 
1.19 
1.19 
I.4C 
1.82 
1.23 
0.60 

F - V a l u e 

11.64 
8.48 
1.99 
1.97 
2.43 
3.03 
2.04 

P - V a l u e 

0.0001 
(1.0010 
0.1172 
0.1 G86 
0.1027 
O.0G10 
0.1089 

Impact of Interaction BC 

More should be discussed regarding Example 14.4, particularly in dealing with the 
effect that the interaction between catalyst and washing time is having on the 
test on the washing time main effect (factor C). Recall our discussion in Section 
14.2. Illustrations were given of how the presence of interaction could change the 
interpretation that we make regarding main effects. In Example 14.4 the BC 
interaction is significant at approximately the 0.06 level. Suppose, however, that 
we observe a two-way table: of means as in Table 14.10. 

It is clear why washing time was found not to be significant. A non-thorough 
analyst may get the impression that washing time can be eliminated from any 
future study in which yield is being measured. However, it is obvious how the 
effect of washing time changes from a negative effect for the first catalyst to what 
appears to be: a positive effect for the third catalyst. If wo merely focus on the 
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Table 14.10: Two-Way Table of Means for Example 14.4 

Catalyst, B 

1 
2 
3 

Washing 

15 min 

12.19 
10.86 
11.09 

Time, C 

20 min 

11.29 
10.50 
11.46 

Means 11.38 11.08 

data for catalyst 1, a simple comparison between the means at the two washing 
times will produce a simple ^-statistic: 

12.19-11.29 „ „ 
t = . =2 .5 , 

>/0.6(2/9) 
which is significant at a level less than 0.02. Thus an important negative effect of 
washing time for catalyst 1 might very well be ignored if the analyst makes the 
incorrect broad interpretation of the insignificant F-ratio on washing time. 

Pooling in Multifactor Models 

We have described the three-factor model and its analysis in the most general 
form by including all possible interactions in the model. Of course, there are 
many situations where it is known a priori that the model should not contain 
certain interactions. We can then take advantage of this knowledge by combining 
or pooling the sums of squares corresponding to negligible interactions with the 
error sum of squares to form a new estimator for a2 with a larger number of degrees 
of freedom. For example, in a metallurgy experiment designed to study the effect 
on film thickness of three important processing variables, suppose it is known 
that factor A, acid concentration, does not interact with factors B and C. The 
sums of squares SSA, SSB, SSC, and SS(BC) are computed using the methods 
described earlier in this section. The mean squares for the remaining effects will 
now all independently estimate the error variance a2. Therefore, we form our new 
mean square error by pooling SS(AB), SS(AC), SS(ABC), and SSE, along 
with the corresponding degrees of freedom. The resulting denominator for the 
significance tests is then the mean square error given by 

2 SS(AB) + SS(AC) + SS(ABC) + SSE 
~ (a - 1)(6 - 1) + (a - l)(c - 1) + (a - l)(b - l)(c - 1) + abc(n - 1)' 

Computationally, of course, one obtains the pooled sum of squares and the pooled 
degrees of freedom by subtraction once SST and the sums of squares for the existing 
effects are computed. The analysis-of-variance table would then take the form of 
Table 14.11. 

Factorial Experiments in Blocks 

In this chapter we have assumed that the experimental design used is a completely 
randomized design. By interpreting the levels of factor A in Table 14.11 as dif-
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Table 14.11: ANOVA with Factor .4 Noninteracting 

Source of 
Variation 

Main effect: 

A 

B 

C 

Two-factor interaction: 

BC 

Error 

Total 

Sum of 
Squares 

SSA 

SSB 

SSC 

SS(BC) 

SSE 

SST 

Degrees of 
Freedom 

a - 1 

b-l 

c- 1 

(b-l)(c-l) 

Subtraction 

abcn — 1 

Mean 
Square 

4 
4 
4 

4 
s2 

Computed 
/ 

/i = fl 
h = $ 
/3 = fl 

/4 = S 

ferent blocks, we then have the analysis-of-variance procedure for a two-factor 
experiment in a randomized block design. For example, if we interpret the op
erators in Example 14.4 as blocks and assume no interaction between blocks and 
the other two factors, the analysis of variance takes the form of Table 14.12 rather 
than that of Table 14.9. The reader can verify that the mean square error is also 

4.77 + 2.91 + 4.91 + 21.61 
4 + 2 + 4 + 36 

= 0.74. 

which demonstrates the pooling of the sums of squares for the nonexisting inter
action effects. Note that factor B, catalyst, has a significant effect on yield. 

Table 14.12: ANOVA for a Two-Factor Experiment in a Randomized Block Design 

Source of 
Variation 

Blocks 
Main effect: 

B 
C 

Two-factor interaction: 
BC 

Error 

Total 

Sum of 
Squares 

13.98 

10.18 
1.18 

3.64 
34.21 

63.19 

Degrees of 
Freedom 

2 

2 
1 

2 
46 

53 

Mean 
Square 

6.99 

5.09 
1.18 

1.82 
0.74 

Computed 
/ 

6.88 
1.59 

2.46 

P- Value 

0.0024 
0.2130 

0.0966 

Example 14.5:1 An experiment is conducted to determine the effect of temperature, pressure, 
and stirring rate on product filtration rate. This is done in a pilot plant. The 
experiment is run at two levels of each factor. In addition, it was decided that 
two batches of raw materials should be used, where batches are treated as blocks. 
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Table 14.13: Data for Example 14.5 

Batch 1 

Temp. 
L 
H 

Low Stirring Rate 

Pressure L Pressure H 
43 49 
64 68 

Temp. 
L 
H 

High Stirring Rate 

Pressure L Pressure H 
44 47 
97 102 

Batch 2 

Temp. 
L 
H 

Low Stirring Rate 

Pressure L Pressure H 
49 57 
70 76 

Temp. 
L 
H 

High Stirring Rate 

Pressure L Pressure H 
51 55 

103 106 

Eight experimental runs are made in random order for each batch of raw materials. 
It is felt that all two factor interactions may be of interest. No interactions with 
batches are assumed to exist. The data appear in Table 14.13. "L" and "H" imply 
low and high levels, respectively. The filtration rate is in gallons per hour. 

(a) Show the complete ANOVA table. Pool all "interactions" with blocks into 
error. 

(b) What interactions appear to be significant? 

(c) Create plots to reveal and interpret the significant interactions. Explain what 
the plot means to the engineer. 

Solution: (a) The SAS printout is given in Figure 14.7. 

(b) As seen in Figure 14.7, the temperature by stirring rate (strate) interaction 
appears to be highly significant. The pressure by stirring rate interaction 
also appears to be significant. Incidentally, if one were to do further pooling 
by combining the insignificant interactions with error, the conclusions remain 
the same and the P-value for the pressure by stirring rate interaction becomes 
stronger, namely 0.0517. 

(c) The main effects for both stirring rate and temperature are highly significant 
as shown in Figure 14.7. A look at the interaction plot of Figure 14.8(a) shows 
that the effect of stirring rate is dependent upon the level of temperature. At 
the low level of temperature the stirring rate effect is negligible, whereas at 
the high level of temperature stirring rate has a strong positive effect on 
mean filtration rate. For Figure 14.8(b) the interaction between pressure and 
stirring rate, though not as pronounced as that of Figure 14.8(a), still shows 
a slight inconsistency of the stirring rate effect across pressure. J 
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Source 

batch 

pressure 

temp 

pressure*!; emp 

strate 

pressure* strate 
temp*strate 

pressure*temp*strate 

Error 

Corrected Total 

DF 
1 
1 
1 
1 
1 
1 
1 
1 
7 
15 

Type III SS 

175.562500 
95.062500 

5292.562500 

0.562500 

1040.062500 

5.062500 

1072.562500 
1.562500 

6.937500 

7689.937500 

Mean Square 

175.562500 
95.062500 

5292.562500 

0.562500 

1040.062500 

5.062500 

1072.562500 
1.562500 

0.991071 

F Value 
177.14 
95.92 

5340.24 
0.57 

1049.43 
5.11 

1082.23 
1.58 

Pr > F 
<.0001 
<.0001 
•c.OOOl 
0.4758 
<.0001 
0.0583 
<.0001 
0.2495 
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Figure 14.7: ANOVA for Example 14.5, batch interaction pooled with error. 
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(b) Pressure versus stirring rate. 

Figure 14.8: Interaction plots for Example 14.5. 

Exercises 

14.15 The following data are taken in a study involv
ing measurements. An experiment was conducted us
ing 3 three: factors A, B, and C, all fixed effects: 

-4i 

Bi 

15.0 
18.5 
22.1 

Ci 

B-, 
14.8 
13.6 
12.2 

Bs 

15.9 
14.8 
13.6 

Bi 

16.8 
15.4 
1-1. :>, 

c2 
B2 

14.2 
12.9 
13.0 

Ih 

13.2 
11.6 
10.1 

Si 
15.8 
14.3 
13.0 

C:l 
B2 
15.5 
13.7 
12.6 

Bi 

19.2 
13.5 
11.1 

M 

(a) Perform tests of significance on all interactions at 
the a = 0.05 level. 

11.3 
14.6 
18.2 

17.2 
15.5 
14.2 

16.1 18.9 
14.7 17.3 
13.4 16.1 

15,1 
17.0 
18.6 

12.1 
13.6 
15.2 

12.7 
14.2 
15.9 

17.3 
15.8 
14.6 

7.8 
11.5 
12.2 

(b) Perforin tests of significance on the main effects at 
the Q as 0.05 level. 

(c) Give an explanation of how a significant interaction 
has masked the effect of factor C. 

14.16 Consider an experimental situation involving 
factors A, B, and C, where we assume a three-way 
fixed effects model of the form 

IJijkl a= ft. + OH + 0j + ft, + (0rt)jk + Uikl. 

All other interactions arc considered to be nonexistent 
or negligible:. The elata are presented here. 
(a) Perform a test of significance: e>n the BC interaction 

at, the a = 0.05 level. 
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(b) Perform tests of significance on the main effects A, 
B, and C using a pooled mean square error at the 
a = 0.05 level. 

B, Bo 

An 

A2: 

Ar. 

Ci 

4.0 
4.9 

3.6 
3.9 

4.8 
3.7 

c2 
3.4 
4.1 

2.8 
3.2 

3.3 
3.8 

C3 

3.9 
4.3 

3.1 
3.5 

3.6 
4.2 

Ci 

4.4 
3.4 

2.7 
3.0 

3.6 
3.8 

C2 

3.1 
3.5 

2.9 
3.2 

2.9 
3.3 

O, 

3.1 
3.7 

3.7 
4.2 

2.9 
3.5 

3.6 
3.9 

3.2 
2.8 

3.2 
3.4 

2.2 
3.5 

2.9 
3.2 

3.6 
4.3 

14.17 Corrosion fatigue in metals has been defined 
as the simultaneous action of cyclic stress and chemi
cal attack on a metal structure. In the study Effect of 
Humidity and Several Surface Coatings on the Fatigue 
Life of 2024-T351 Aluminum Alloy conducted by the 
Department of Mechanical Engineering at the Virginia 
Polytechnic Institute and State University, a technique 
involving the application of a protective chromate coat
ing was used to minimize corrosion fatigue damage in 
aluminum. Three factors were used in the investiga
tion with 5 replicates for each treatment combination: 
coating, at 2 levels, and humidity and shear stress, both 
with 3 ievels. The fatigue data, recordeel in thousands 
of cycles to failure, are presented here. 

(a) Perform an analysis of variance with a = 0.01 to 
test for significant main and interaction effects, 

(b) Make a recommendation for combinations of the 
three factors that would result in low fatigue dam
age. 

Coating 

Uncoated 

Humidity 

Low: 
(20-25% RH) 

Medium: 
(50-60% RH) 

High: 
(86-91% RH) 

Shear Stress 

13000 

4580 
10126 

1341 
6414 
3549 

2858 
8829 

10914 
4067 
2595 

6489 
5248 
6816 
5860 
5901 

17000 

5252 
897 

1465 
2694 
1017 

799 
3471 

685 
810 

3409 

1862 
2710 
2632 
2131 
2470 

(psi) 

20000 

361 
466 

1069 
469 
937 

314 
244 
261 
522 
739 

1344 
1027 
663 

1216 
1097 

Coating 

Chromated 

Humidity 

Low: 
(20-25% RH) 

Medium: 
(50-60% RH) 

High: 
(86-91% RH) 

Shear Stress 

13000 

5395 
2768 
1821 
3604 
4106 

4833 
7414 

10022 
7463 

21906 

3287 
5200 
5493 
4145 
3336 

17000 

4035 
2022 

914 
2036 
3524 

1847 
1684 
3042 
4482 

996 

1319 
929 

1263 
2236 
1392 

(psi) 

20000 

130 
841 

1595 
1482 
529 

252 
105 
847 
874 
755 

586 
402 
846 
524 
751 

14.18 The method of X-ray fluorescence is an impor
tant analytical tool for determining the concentration 
of material in solid missile propellants. In the paper 
An X-ray Fluorescence Method for Analyzing Polybu-
tadiene Acrylic Acid (PBAA) Propellants, Quarterly 
Report, RK-TR-62-1, Army Ordinance Missile Com
mand (1962), it is postulated that the propellant mix
ing process and analysis time have an influence on the 
homogeneity of the material and hence on the accuracy 
of X-ray intensity measurements. An experiment was 
conducted using 3 factors: A, the mixing conditions 
(4 levels); B, the analysis time (2 levels); and C, the 
method of loading propellant into sample holders (hot 
and room temperature). The following data, which 
represent the analysis in weight percent of ammonium 
perchlorate in a particular propellant, were recorded. 

Method of Loading, C 
Hot R o o m Temp. 

A 

1 

2 

3 

4 

B 
1 

38.62 
37.20 
38.02 
37.67 
37.57 
37.85 
37.51 
37.74 
37.58 
37.52 
37.15 
37.51 

2 

38.45 
38.64 
38.75 
37.81 
37.75 
37.91 
37.21 
37.42 
37.79 
37.60 
37.55 
37.91 

1 
39.82 
39.15 
39.78 
39.53 
39.76 
39.90 
39.34 
39.60 
39.62 
40.09 
39.63 
39.67 

B 
2 

39.82 
40.26 
39.72 
39.56 
39.25 
39.04 
39.74 
39.49 
39.45 
39.36 
39.38 
39.00 

(a) Perform an analysis of variance with a = 0.01 to 
test for significant main and interaction effects. 

(b) Discuss the influence of the three factors on the 
weight, percent of ammonium perchlorate. Let your 
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discussion involve the role of any significant inter
action. 

14.19 Electronic copiers make copies by gluing black 
ink on paper, using static electricity. Heating and glu
ing the ink on the paper comprise the final stage of the 
copying process. The gluing power during this final 
process determines the quality of the copy. It is pos
tulated that temperature, surface state of gluing the 
roller, and hardness of the press roller influence the 
gluing power of the copier. An experiment is run with 
treatments consisting of a combination of these three 
factors at each of three levels. The following data show 
the gluing power for each treatment combination. Per
form an analysis of variance with a = 0.05 to test for 
significant main and interaction effects. 

Surface 
S t a t e of 
Gluing 
Roller 

H a r d n e s s of t h e 
P r e s s Rol ler 

20 40 60 

Low 
T e m p . 

Soft: 0.52 
0.57 

0.44 
0.53 

M e d i u m : 0.64 
0.58 

HaTai UBT 
0.74 

0.59 
0.64 
0.77 
0.65 

M e d i u m Soft: 0.46 0.40 
T e m p . 0.58 0.37 

M e d i u m : 0.60 0.43 
0.62 0.61 

Hard : 0.53 
0.66 

0.65 
0.56 

High 
T e m p . 

Soft: 0.52 
0.57 

M e d i u m : 0.53 
0.66 

"0\4T 
0.47 

0.44 
0.53 
u\6o 
0.56 

HaTcTT 1TM 
0.44 

0.54 
0.65 

0.52 
0.56 

0.79 
0.79 

0.73 
0.78 

058 
0.57 0.59 

0.31 
0.48 

0.49 
0.66 

0.66 
0.72 

0.57 
0.56 

0.53 
0.59 

0.45 
0.47 

0.54 
0.65 

0.52 
0.56 

0.59 
7X4T 
0.47 

048 
0.43 

(131 
0.27 

0.60 
0.78 

0.55 
0.68 

0.49 
0.74 

0.48 
0.50 

0.55 
0.57 

~D\65 
0.58 

.56 

.49 
0.42 
0.49 

"054" 
0.56 

56 
71 

0.66 
0.67 

.65 

.65 
0.49 
0.52 

0.50 
55 
57 

0.65 
0.58 

14.20 For a study of the hardness of gold dental fill
ings, five randomly chosen dentists were assigned com
binations of three methods of condensation and two 
types of gold. The hardness was measured. [See 
Hoaglin, Mosteller, and Tukey (1991).] The data are 
presented here. Let the dentists play the role of blocks. 
(a) State the appropriate model with the assumptions. 
(b) Is there a significant interaction between method 

of condensation and type of gold filling material? 
(c) Is there one method of condensation that seems to 

be best? Explain. 

Block T y p e 
Den t i s t 

1 

2 

3 

4 

M e t h o d 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 

Gold Foil 
792 
772 
782 

803 
752 
715 
715 
792 
762 

673 
657 
690 

Golden t 
824 
772 
803 
803 
772 
707 
724 
715 
606 
946 
743 
245 

1 
2 
3 

634 
649 
724 

715 
724 
627 

14.21 Consider combinations of three factors in the 
removal of dirt from standard loads of laundry. The 
first factor is the brand of the detergent, X, Y, or Z. 
The second factor is the type of detergent, liquid or 
powder. The third factor is the temperature of the wa
ter, hot or warm. The experiment was replicated three 
times. Response is percent dirt removal. The data are 
as follows: 

B r a n d T y p e T e m p e r a t u r e 

X 

Y 

Powder 

Liquid 

Powder 

Liquid 

Hot 
Warm 
Hot 

Warm 
Hot 

Warm 
Hot 

Warm 

85 88 80 
82 83 85 
78 75 72 
75 75 73 
90 92 92 
88 86 88 
78 76 70 
76 77 76 

Powder 

Liquid 

Hot 
Warm 

Hot 
Warm 

85 
76 
60 
55 

87 
74 
70 
57 

88 
78 
68 
54 

(a) Are there significant interaction effects at the a = 
0.05 level? 

(b) Are there significant differences between the three 
brands of detergent? 

(c) Which combination of factors would you prefer to 
use? 

14.22 A scientist collects experimental data on the 
radius of a propellant grain, y, as a function of powder 
temperature, extrusion rate, and die temperature. The 
three factor experiment is as follows: 
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P o w d e r T e m p 

R a t e 
12 
24 

Die T e m p 
150 

220 250 
82 124 

114 157 

Die T e m p 
190 

220 250 
88 129 

121 164 

Resources were not, available to take repeated experi
mental trials at the eight combinations of factors. It is 
felt as if extrusion rate does not interact, with die tem
perature and that the three-factor interaction should 
be negligible. Thus, these two interactions may be 
pooled to produce a 2 d.f. "error" term. 

(a) Do an analysis of variance that includes the three 
main effects and two two-factor interactions. De
termine what effects influence radius of the propel
lant grain. 

(b) Construct interaction plots for the powder temper
ature by die temperature and powder temperature 
by extrusion rate interactions. 

(c) Comment on the consistency between the appear
ance of the interaction plots and the tests on the 
two interactions in the ANOVA. 

14.23 In the book Design of Experiments for Qual
ity Improvement, published by the Japanese Standards 
Association (1989), a study is reported on the extrac
tion of polyethylene by using a solvent and how the 

amount of gel (proportion) is influenced by three fac
tors, the type of solvent, extraction temperature, and 
extraction time. A factorial experiment was designed 
and the following data were collected 011 proportion of 
gel. 

T i m e 
Solvent. T e m p 

17*1 1 1 2 0 
Ethano l 

80 
™ . 120 l o l u e n e 

80 

4 
94.0, 94.0 
95.3, 95.1 
94.6, 94.5 
95.4, 95,1 

8 
93.8, 94.2 
94.9, 95.3 
93.6, 94.1 
95.6, 96.0 

16 
91.1, 90.5 
92.5, 92.4 
91.1. 91.0 
92.1, 92.1 

(a) Do an analysis of variance and determine what fac
tors and interactions influence the proportion of 
gel. 

(b) Construe:! an interaction plot, for any two factor in
teraction that is significant. In addition, explain 
what conclusion can be drawn from the presence of 
the interaction. 

(c) Do a normal probability plot of residuals and com
ment . 

14.24 Consider the data set in Exercise 14.19. 
(a) Construct an interaction plot for any two factor 

interaction that is significant. 

(b) Do a normal probability plot of residuals and com
ment . 

14.5 Model II and III Factorial Experiments 

In a two-factor experiment with random effects wc have model II: 

Yijk =ft + Ai + Bj + (AB)ij + eijk, 

for i — 1 ,2 , . . . , o.\ j = 1,2,..., b; and k = 1 .2 , . . . , n, where the Ai, Bj, (AB)ij, and 
eyfe are independent, random variables with zero moans and variances a~., a\, a2a, 
and a2, respectively. The sum of squares for model II experiments are computed in 
exactly the same way as for model I experiments. Wc are now interested in testing 
hypotheses of the form 

H0: 

H't: 

oi = o> 
<^o, 

ft 

ff0: 
H'[: 

a2 = 0, 

4*o, H, 
0 • 'a0 0. 

f^0, 

where the denominator in the /-ratio is not necessarily the mean square error. The 
appropriate denominator can be determined by examining the expected values of 
the various mean squares. These are shown in Table 14.14. 

From Table 14.14 we see that HQ and H0 are tested by using s | in the de
nominator of the /-ratio, whereas H0 is tested using s in the denominator. The 
unbiased estimates of the variance components are 

bn 
" 2 
a0 
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Table 14.14: Expected Mean Squares for a Model II Two-Factor Experiment 

Source of Degrees of Mean 
Variation Freedom Square 

Expected 
Mean Square 

A 
B 
AB 
Error 

Total 

a- 1 
b-l 
(a-l)(b-
ab(n - 1) 

abn — 1 

-1) 

4 
4 
4 
s2 

a2 + na2
a3 + bna2

a 

a2 + na2
a3 + ana2

3 

a2 + na2
a3 

a2 

Table 14.15: Expected Mean Squares for a Model II Three-Factor Experiment 

Source of 
Variation 

A 

B 

C 

AB 

AC 

BC 

ABC 

Error 

Total 

Degrees of 
Freedom 

a - 1 

b-l 

c-l 

(a-l)(b-l) 

( a - l ) ( c - l ) 
( 6 - l ) ( c - l ) 
(o.-l)(b-l)(c-l) 

abc(n — 1) 

abcn — 1 

Mean 
Square 

Q 2 

<i2 
h2 

i2 

s2 

s4 4 
4 
4 
s2 

Expected 
Mean Square 

a2 + na\ai + cna1^ + bna^. + bcna2
a 

a2 + na2
3,t + cna2

3 + ana2^ + acna3 

a2 + na2
a3l + bna2^ + ana^ + abna2 

^ + n°~U-y + cncr2^ 
f f 2 + n < 3 7 + i n f f « 7 

a2 + n°lfh- + anali 
a2 + na2

afh. 

a2 

The expected mean squares for the three-factor experiment with random effects 
in a completely randomized design are shown in Table 14.15. It is evident from the 
expected mean squares of Table 14.15 that one can form appropriate /-ratios for 
testing all two-factor and three-factor interaction variance components. However, 
to test a hypothesis of the form 

Ho'- aa = 0, 
Hi: a2

a^0, 

there appears to be no appropriate /-ratio unless we have found one or more of the 
two-factor interaction variance components not significant. Suppose, for example, 
that we have compared s2 (mean square AC) with s2 (mean square ABC) and 
found a2 to be negligible. We could then argue that the term cr2., should be 
dropped from all the expected mean squares of Table 14.15; then the ratio s2/s2 

provides a test for the significance of the variance component er2. Therefore, if 
we are to test hypotheses concerning the variance components of the main effects, 
it is necessary first to investigate the significance of the two-factor interaction 
components. An approximate test derived by Satterthwaite (see the Bibliography) 
may be used when certain two-factor interaction variance components are found 
to be significant and hence must remain a part of the expected mean square. 
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Example 14.6:1 In a study to determine which are the important sources of variation in an industrial 
process, 3 measurements are taken on yield for 3 operators chosen randomly and 
4 batches of raw materials chosen randomly. It was decided that a significance 
test should be made at the 0.05 level of significance to determine if the variance 
components due to batches, operators, and interaction are significant. In addition, 
estimates of variance components are to be computed. The data are given in Table 
14.16, with the response being percent by weight: 

Table 14.16: Data for Example 14.6 

Batch 
Operator 1 2 3 4 

66.9 68.3 69.0 69.3 
68.1 67.4 69.8 70.9 
67.2 67.7 67.5 71.4 
66.3 68.1 69.7 69.4 
65.4 66.9 68.8 69.6 
65.8 67.6 69.2 70.0 
65.6 66.0 67.1 67.9 
66.3 66.9 66.2 68.4 
65.2 67.3 67.4 68.7 

Solution: The sums of squares are found in the usual way, with the following results: 

SST (total) = 84.5564, SSE (error) = 10.6733, 

SSA (operators) = 18.2106, SSB (batches) = 50.1564, 

SS(AB) (interaction) = 5.5161. 

All other computations are carried out and exhibited in Table 14.17. Since 

/o.o5(2,6)=5.14, /o.05(3,6) = 4.76, and /o.os(6,24) = 2.51, 

we find the operator and batch variance components to be significant. Although 
the interaction variance is not significant at the a = 0.05 level, the P-value is 0.095. 
Estimates of the main effect variance components are 

„2 9.1053-0.9194 n „Q _2 16.7188-0.9144 
ai = - = 0.68, 0% = - = 1.76. J 

Model III Experiment (Mixed Model) 

There are situations where the experiment dictates the assumption of a mixed 
model (i.e., a mixture of random and fixed effects). For example, for the case of 
two factors we may have 

Yijk = p + Ai + Bj + (AB)ij + eiik. 
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Table 14.17: Analysis of Variance for Example 14.6 

Source of Sum of Degrees of Mean C o m p u t e d 
Variat ion Squares Freedom Square / 

Operators 18.2106 2 
Batches 50.1564 3 
Interaction 5.5161 6 
Error 10.6733 24 

9.1053 
16.7188 
0.9194 
0.4447 

9.90 
18.18 
2.07 

Total 84.5564 

for i = 1,2, u: j = l.'2,....b: k = 1,2, . . . , n . The A; may be independent 
random variables, independent of etjk and the Bj may be fixed effects. The mixed 
nature of the model requires that the interaction terms be random variables. As a 
result, the relevant hypotheses are of the form 

H'0: a2 = 0, H'0\ Bl=B2 = --- = B/, = 0 HQ": a2
a3 = 0, 

H[: ol ^ 0, tl": At least one' the Sj ' s is not zero H'i": a2
a3 ^ 0. 

Again, the computations of sum of squares are identical to that of fixed and model 
II situations, and the /-test is dictated by the expected mean squares. Table 14.18 
preivides the expected mean squares for the two-factor model III problem. 

Table 14.18: Expecteel Mean Squares for Model III Two-Factor Experiment 

Factor Expec ted M e a n Square 
A (random) cr2 -I- bna2 

B (fixed) ^+nal3 + M^Y.B2 

j 
AB (random) a2 + na2

3 

Error a2 

From the nature of the expected mean squares it becomes clear that the tes t on 
the r andom effect employs t he mean square error s2 as the denominator, 
whereas the tes t on t he fixed effect uses the interaction mean square. Suppose 
we now consider three factors. Here, of course we must take into account the 
situation where; one factor is fixed and the situation in which two factors are fixed. 
Table 14.19 covers both situations. 

Note that in the case of A random, all effects have proper/tests. But in the case 
of A and B random, the main effect C must be tested using a Satterthwaitte-type 
procedure similar to the model II experiment. 

14.6 Choice of Sample Size 

Our study of factorial experiments throughout this chapter has been restricted to 
the use of a completely randomized design with the exception of Section 14.4, where 
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Table 14.19: Expected Mean Squares for Model III Factorial Experiments in Three Factors 

A Random A Random, B Random 

'-' r-2 

> E & 
A . - = l 

A 

B 

C 

AB 
AC 

BC 

ABC 
Error 

er2 + bcna2 

b B„> 

a2 + cna2
a0 + acn J2 tT=T 

c , , 2 

a2 + bna2^ +abn-2~2 ^d\ 
k=\ 

a2 + cna2
k3 

a2 +bna2
y 

2 i 2 i ^ * - ' ( ^ 

j k 

V1 + 1K3y 
a2 

l ) ( c - l ) 

er2 + c-/ie72,v + bcna2 

a2 +cna2
3 + acna\ 

a2 + na2
3,. + a.na2^ 

or2 + cn.a2
ali 

a2 + na2
a3l + bna2^. 

°"2 + nalfi-, + ana3-f 

°2 + 'K^ 
a2 

we demonstrated the analysis of a two-factor experiment in a randomized block 
elesign. The completely randomized design is easy to lay out and the analysis is 
simple to perform; however, it should be usctl only when the number of treatment 
combinations is small and the experimental material is homogeneous. Although the 
randomized block design is ideal for dividing a large group of heterogeneous units 
into subgroups of homogeneous units, it is generally difficult to obtain uniform 
blocks with enough units to which a large number of treatment combinations may 
be assigned. This disadvantage may be overcome by choosing a design from the 
catalog of incomplete block designs. These designs allow one to investigate 
differences among t treatments arranged in b blocks, each containing k experimental 
units, where k < t. The reader may consult Box, Hunter, and Hunter for details. 

Once a completely randomizeel design is selected, we must decide if the number 
of replications is sufficient to yield tests in the analysis of variance with high power. 
If not, additional replications must be added, which in turn may necessitate a 
randomized complete block design. Had we started with a randomized block design, 
it would still be necessary to determine if the number of blocks is sufficient to yield 
powerful tests. Basically, then, we are back to the question of sample size. 

The power of a fixed effects test for a given sample size is found from Table 
A.16 by computing the noncentrality parameter A anel the function <t>2 discussed 
in Section 13.14. Expressions for A and e£2 for the two-factor and three-factor fixed 
effects experiments are given in Table 14.20. 

The results of Section 13.14 for the random effects model can be extended easily 
to the two- and three-factor models. Once again the general procedure is based on 
the values of the expected mean squares. For example, if we are testing a2 — 0 
in a two-factor experiment by computing the ratio s2/s3 (mean square A/mean 
square AB), then 

s2l(a2 + na2
a3 + bnal) 

J s2/(a2 + nal3) 

is a value of the random variable F having the F-distribution with a — I and 
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Table 14.20: Parameter A and 4>2 for Two- Factor and Three-Factor Models 

T w o - F a c t o r E x p e r i m e n t s T h r e e - F a c t o r E x p e r i m e n t s 

A B A B C 

A 

tf 

MrT a2 

(=1 
a 

- ^ E a i 
i=\ 

an V 1 fl2 
2 ^ 2^ Pj 

j=l 
b 

#E/$ }=l 

ben v> _,2 acn V"1 ol abn V^ „,2 
2^ L,ai 2^2 lu Pj 2 ? L Ifc t = l fc=l 

a b c 
fcen v-> ,,.2 acn V"* ,<l2 abn V ..2 
^ 2 - ai b^ 2^ Pj 75* L. Ik 

t=l j=l k=l 

(a — l)(b — 1) degrees of freedom, and the power of the test is 

1 - 0 = P { | i > falia - 1), (a - l)(fi - 1)] when e r 2 ^ 0 J 

= P{F> 
fa[(a-l),(a-l)(b-l)}(a2 + nal3) 

s2 + nalfi + bnal 

Exercises 

14.25 To estimate the various components of vari
ability in a filtration process, the percent of material 
lost in the mother liquor is measured for 12 experimen
tal conditions. 3 runs on each condition. Three filters 
and 4 operators are selected at random to use in the 
experiment, resulting in the following measurements: 

Operator 
Filter 

1 

2 

1 
16.2 
16.8 
17.1 
16.6 
16.9 
16.8 

2 
15.9 
15.1 
14.5 
16.0 
16.3 
16.5 

3 
15.6 
15.9 
16.1 
16.1 
16.0 
17.2 

4 
14.9 
15.2 
14.9 
15.4 
14.6 
15.9 

16.7 16.5 
16.9 16.9 
17.1 16.8 

16.4 
17.4 
16.9 

16.1 
15.4 
15.6 

(a) Test the hypothesis of no interaction variance com
ponent between filters and operators at the a = 
0.05 level of significance. 

(b) Test the hypotheses that the operators and the fil
ters have no effect on the variability of the filtration 
process at the a = 0.05 level of significance. 

(c) Estimate the components of variance due to filters, 
operators, and experimental error. 

14.26 Assuming a model II experiment for Exercise 
14.2 on page 587, estimate the variance components for 
brand of orange juice concentrate, for number of days 

from when orange juice was blended until it was tested, 
and for experimental error. 

14.27 Consider the following analysis of variance for 
a model II experiment: 

Source of 
Variation 

A 
B 
C 
AB 
AC 
BC 
ABC 
Error 
Total 

Degrees of 
Freedom 

3 
1 
2 
3 
6 
2 
6 

24 
47 

Mean 
Square 

140 
480 
325 

15 
24 
18 
2 
5 

Test for significant variance components among all 
main effects and interaction effects at the 0.01 level 
of significance 
(a) by using a pooled estimate of error when appropri

ate; 
(b) by not pooling sums of squares of insignificant ef

fects. 

14.28 Are 2 observations for each treatment combi
nation in Exercise 14.16 on page 597 sufficient if the 
power of our test for detecting differences among the 
levels of factor C at the 0.05 level of significance is 
to be at least 0.8. when 71 = —0.2, 72 = —0.4, and 



606 Chapter 14 Factorial Experiments (Two or More Factors) 

73 = —0.2? Use the same pooled estimate of a2 that 
was used in the analysis of variance. 

14.29 Using the estimates of the variance components 
in Exercise 14.25, evaluate the power when we test the 
variance component due to filters to be zero. 

14.30 A defense contractor is interested in studying 
an inspection process to detect failure or fatigue of 
transformer parts. Three levels of inspections are used 
by three randomly chosen inspectors, Five lots are used 
for each combination in the study. The factor levels are 
given in the data. The response is in failures per 1000 
pieces. 

Inspection Level 
Full Reduced 

Military Military 
Inspector Inspection Specification Commercial 

A 

B 

7.50 
5.85 
5.35 
7.58 
6.54 
5.12 

7.42 
5.89 

6.52 
5.64 

7.08 6.17 
5.65 5.30 
5.02 
7.68 5.86 
5.28 5.38 
4.87 

6.15 5.52 
5.48 5.48 
5.98 
6.17 6.20 
5.44 5.75 
5.68 

7.70 
6.42 
5.35 

6.82 
5.39 

7.19 
5.85 
5.01 

6.19 
5.35 

6.21 
5.36 
6.12 

5.66 
5.90 

c 

(a) Write an appropriate model, with assumptions. 
(b) Use analysis of variance to test the appropriate hy

pothesis for inspector, inspection level, and inter
action. 

14.31 A manufacturer of latex house paint (brand A) 
would like to show that their paint is more robust to the 
material being painted than their two closest competi
tors. The response is the time, in years, until chipping 
occurs. The study involves the three brands of paint 
and three randomly chosen materials. Two pieces of 
material are used for each combination. 

Ma te r i a l 
A 
B 
C 

Brand of Paint 
A 

5.50 5.15 
5.60 5.55 
5.40 5.48 

B 

4.75 4.60 
5.50 5.60 
5.05 4.95 

C 
5.10 5.20 
5.40 5.50 
4.50 4.55 

(a) What is this type of model called? 
(b) Analyze the data, using the appropriate model. 
(c) Did the manufacturer of brand A support its claim 

with the data? 

14.32 A plant manager would like to show that the 
yield of a woven fabric in his plant does not depend 
on machine operator or time of day and is consistently 
high. Four randomly selected operators and three ran
domly selected hours of the day are chosen for the 
study. The yield is measured in yards produced per 
minute. Samples are taken on 3 randomly chosen days. 
The data follow: 

Operator 
Time 

1 

2 

1 
9.5 
9.8 

10.0 
10.2 
9.9 
9.5 

2 
9.8 

10.1 
9.6 

10.1 
9.8 
9.7 

3 
9.8 

10.3 
9.7 

10.2 
9.8 
9.7 

4 
10.0 
9.7 

10.2 
10.3 
10.1 
9.9 

10.5 
10.2 
9.3 

10.4 
10.2 
9.8 

9.9 
10.3 
10.2 

10.0 
10.1 
9.7 

(a) Write the appropriate model. 
(b) Evaluate the variance components for operator and 

time. 
(c) Draw conclusions. 

14.33 A process engineer wants to determine if the 
power setting on the machines used to fill certain types 
of cereal boxes results in a significant effect on the ac
tual weight of the product. The study consists of 3 
randomly chosen types of cereal manufactured by the 
company and 3 fixed power settings. Weight is mea
sured for 4 different randomly selected boxes of cereal 
at each combination. The desired weight is 400 grams. 
The data are presented here. 

Power Cereal Type 
Sett ing 

Low 

Current 

1 
395 390 
401 400 
396 399 
400 402 

2 
392 392 
394 401 
390 392 
395 502 

3 
402 405 
399 399 
404 403 
400 399 

High 410 408 404 406 415 412 
408 407 401 400 413 415 

(a) Give the appropriate model, and list the assump
tion being made. 

(b) Is there a significant effect due to the power set
ting? 

(c) Is there a significant variance component due to 
cereal type? 
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Review Exercises 

14.34 The Statistics Consulting Center at Virginia 
Polytechnic Institute and State University was involved 
in analyzing a set of data taken by personnel in the Hu
man Nutrition and Foods Department in which it was 
of interest to study the effects of flour type and percent 
sweetener on certain physical attributes of a type of 
cake. All-purpose flour and cake flour were used and 
the percent sweetener was varied at four levels. The 
following data show information on specific gravity of 
cake samples. Three cakes were prepared at each of 
the eight factor combinations. 

Sweetener Flour 
Concentration 

0 
50 
75 

100 

All-Purpose 
0.90 0.87 0.90 
0.86 0.89 0.91 
0.93 0.88 0.87 
0.79 0.82 0.80 

Cake 
0.91 0.90 0.80 
0.88 0.82 0.83 
0.86 0.85 0.80 
0.86 0.85 0.85 

(a) Treat the analysis as a two-factor analysis of vari
ance. Test for differences between flour type. Test 
for differences between sweetener concentration. 

(b) Discuss the effect of interaction, if any. Give P-
values on all tests. 

14.35 An experiment was conducted in the Depart
ment of Food Science at Virginia Polytechnic Institute 
and State University. It was of interest to characterize 
the texture of certain types of fish in the herring fam
ily. The effect of sauce types used in preparing the fish 
was also studied. The response in the experiment was 
"texture value" measured with a machine that sliced 
the fish product. The following are data on texture 
values: 

Unbleached Bleached 
Sauce Type Menhaden Menhaden Herring 

27.6 
Sour Cream 47.8 

53.8 

57.4 
71.1 

64.0 66.9 
66.5 66.8 
53.8 

107.0 83.9 
110.4 93.4 
83.1 

49.8 
Wine Sauce 11.8 

16.1 

31.0 
35.1 

48.3 62.2 
54.6 43.6 
41.8 

88.0 95.2 
108.2 86.7 
105.2 

(a) Do an analysis of variance. Determine whether or 
not there is an interaction between sauce type and 
fish type. 

(b) Based on your results from part (a) and on F-tests 
on main effects, determine if there is a difference in 
texture due to sauce types, and determine whether 
there is a significant difference in fish types. 

14.36 A study was made to determine if humidity 
conditions have an effect on the force required to pull 
apart pieces of glued plastic. Three types of plastic are 

tested using 4 different levels of humidity. The results, 
in kilograms, are as follows: 

Humidity 
Plastic Type 

A 

B 

3 0 % 
39.0 
42.8 
36.9 
41.0 

50% 
33.1 
37.8 
27.2 
26.8 

70% 
33.8 
30.7 
29.7 
29.1 

90% 
33.0 
32.9 
28.5 
27.9 

27.4 
30.3 

29.2 
29.9 

26.7 
32.0 

30.9 
31.5 

(a) Assuming a model I experiment, perform an anal
ysis of variance and test the hypothesis of no in
teraction between humidity and plastic type at the 
0.05 level of significance. 

(b) Using only plastics A and B and the value of s2 

from part (a), once again test for the presence of 
interaction at the 0.05 level of significance. 

(c) Use a single-degree-of-freedom comparison and the 
value of s2 from part (a) to compare, at the 0.05 
level of significance, the force required at 30% hu
midity versus 50%, 70%, and 90% humidity. 

(d) Using only plastic C and the value of s2 from part 
(a), repeat part (c). 

14.37 Personnel in the Materials Engineering Depart
ment at Virginia Polytechnic Institute and State Uni
versity conducted an experiment to study the effects of 
environmental factors on the stability of a certain type 
of copper-nickel alloy, The basic response was the fa
tigue life of the material. The factors are level of stress 
and environment. The data are as follows: 

S t ress Level 
Environment Low Medium High 
D r y 
Hydrogen 

11.08 
10.98 
11.24 

13.12 
13.04 
13.37 

14.18 
14.90 
15.10 

10.75 
10.52 
10.43 

12.73 
12.87 
12.95 

14.15 
14.42 
14.25 

High 
Humidity 
(95%) 

(a) Do an analysis of variance to test for interaction 
between the factors. Use a = 0.05. 

(b) Based on part (a), do an analysis on the two main 
effects and draw conclusions. Use a P-value ap
proach in drawing conclusions. 

14.38 In the experiment of Review Exercise 14.34, 
cake volume was also used as a response. The units 
are cubic inches. Test for interaction between factors 
and discuss main effects. Assume that both factors are 
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fixed effects. 
Sweetener 

Concentration 
Flour 

Ail-Purpose Cake 
0 4.48 3.98 4.42 4.12 4.92 5.10 

50 3.68 5.04 3.72 5.00 4.26 4.34 
75 3.92 3.82 4.06 4.82 4.34 4.40 
100 3.26 3.80 3.40 4.32 4.18 4.30 

14.39 A control valve needs to be very sensitive to the 
input voltage, thus generating a good output voltage. 
An engineer turns the control bolts to change the input 
voltage. In the book SN-Ratio for the Quality Evalua
tion published by the Japanese Standards Association 
(1988), a study 011 how the:se three factors (relative 
position of control bolts, control range of bolts, and 
input voltage) affect the sensitivity of a control valve 
was conducted. The factors and their levels are shown 
below. The data show the sensitivity of a control valve. 
Factor A: Relative position of control bolts: 

center -0 .5 , center, and center +0.5 
Factor B: Control range of bolts: 

2, 4.5, and 7 (mm) 
Factor C: Input voltage: 

100, 120, and 150 (V) 

C, c2 
Ai 
A, 
A, 
A2 

A2 

A2 

A3 
A3 

A3 

Bi 
B2 

B3 

Bi 
B2 

B, 
Bi 
B2 

B3 

151 135 
178 171 
204 190 
156 148 
183 168 
210 204 
161 145 
189 182 
215 202 

151 135 
180 173 
205 190 
158 149 
183 170 
211 203 
162 148 
191 184 
216 203 

151 138 
181 174 
206 192 
158 150 
183 172 
213 204 
163 148 
192 183 
217 205 

Perform an analysis of variance with a = 0.05 to test 
for significant main and interaction effects. Draw con
clusions. 

14.40 Exercise 14.23 on page 600 describes an exper
iment involving the extraction of polyethylene through 
use of a solvent. 

Time 
Solvent Temp. 

i?4.u 1 ! 2 0 Ethanol 
80 

94.0, 94.0 
95.3, 95.1 

Toluene 

8 
93.8, 94.2 
94.9. 95.3 

16 
91.1, 90.5 
92.5, 92.4 

120 94.6, 94.5 93.6, 94.1 91.1, 91.0 
80 95.4, 95.4 95.6, 96.0 92.1, 92.1 

(a) Do a different sort of analysis on the data. Fit an 
appropriate regression model with a solvent cate> 
gorical variable, a temperature term, a time term, 
and a temperature by time interaction, a solvent 
by temperature interaction, and a solvent by time 

interaction. Do f-tests on all coefficients and report 
your findings. 

(b) Do your findings suggest that different models are 
appropriate for ethanol and toluene or are they 
equivalent apart from the intercepts? Explain. 

(c) Do you find any conclusions here that contra
dict conclusions drawn in your solution of Exercise 
14.23? Explain. 

14.41 In the book SN-Ratio for the Quality Evalua
tion published by the Japanese Standards Association 
(1988), a study on how tire air pressure affects the ma
neuverability of an automobile was conducted. Three 
different tire air pressures were compared on three dif
ferent driving surfaces. The three air pressures were 
both left- and right-side tires inflated to 6 kgf/cm2, 
left-side tires inflated to 6 kgf/cm2 and right-side tires 
inflated to 3 kgf/cm", and both left- and right-side tires 
inflated to 3 kgf/cm2. The three driving surfaces were: 
asphalt, dry asphalt, and dry cement. The turning ra
dius of a test vehicle was observed twice for each level 
of tire pressure on each of the three different driving 
surfaces. 

Tire Air Pressure 

Asphalt 
Dry Asphalt 

] 

44.0 
31.9 

1 
25.5 
33.7 

« 
34.2 
31.8 

i 
37.2 
27.6 

27.4 
43.7 

1 

42.8 
38.2 

Dry Cement 27.3 39.5 46.6 28.1 35.5 34.6 

Perform an analysis of variance of the above data. 
Comment on the interpretation of the main and in
teraction effects. 

14.42 The manufacturer of a certain brand of freeze-
dried coffee hopes to shorten the process time without 
jeopardizing the integrity of the product. He wants 
to use 3 temperatures for the drying chamber and 4 
drying times. The current drying time is 3 hours at a 
temperature of -15°C. The flavor response is an aver
age of scores of 4 professional judges. The score is on 
a scale from 1 to 10 with 10 being the best. The data 
arc as shown in the following table. 

Temperature 
T i m e -20° C - 1 5 ° C - 1 0 ° C 
1 hr 

1.5 hr 
2 hr 
3 hr 

9.60 
9.75 
9.82 
9.78 

9.63 
9.73 
9.93 
9.81 

9.55 
9.60 
9.81 
9.80 

9.50 
9.61 
9.78 
9.75 

9.40 
9.55 
9.50 
9.55 

9.43 
9.48 
9.52 
9.58 

(a) What type of model should be used? State assump
tions. 

(b) Analyze the data appropriately. 
(c) Write a brief report to the vice-president in charge 

and make a recommendation for future manufac
turing of this product. 
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14.43 To ascertain the number of tellers needed dur
ing peak hours of operation, data were collected by 
an urban bank. Four tellers were studied during three 
"busy" times, (1) weekdays between 10:00 anel 11:00 
A.M.. (2) weekday afternoons between 2:00 and 3:00 
P.M., and (3) Saturday mornings between 11:00 A.M. 
and 12:00 noon. An analyst chooses four randomly se
lected times within each of the three: time periods for 
each of the four teller positions over a period of months 
and the number of customers serviced were observed. 
The data are as follows: 

T i m e Pe r iod 

Teller 1 2 3 

1 18. 24, 17, 22 
2 16, 11. 19, 11 
3 12, 19. 11, 22 
4 11, 9. 13. 8 

25, 29. 23, 32 
23, 32. 25, 17 
27, 33, 27, 24 
10. 7, 19, 8 

29, 30, 21, 31 
27, 29, 18, 16 
25, 20, 29. 15 
11. 9, 17. 9 

It is assumed that the number of customers served is a 
Poisson random variable'. 

(a) Discuss the danger in doing a standard analysis of 
variance on the data above. What assumptions, if 
any, would be violated? 

(b) Construct, a standard ANOVA I able that includes 
F-testS on main effects and interactions. If interac
tions and main effects are found to be significant, 
give scientific conclusions. What have we learned? 
Be sure to interpret any significant interaction. Use 
your own judgment regarding P-values. 

(c) Do the entire analysis again using an appropriate 
transformation on the response. Dei you find any 
differences in your findings? Comment. 

14.7 Potential Misconceptions and Hazards; 
Relationship to Material in Other Chapters 

One of the most confusing issues in the analysis of factorial experiments lives in 
the interpretat ion of main effects in the presence of interaction. The presence of a 
relatively large P-value for a main effect when interactions are clearly present may 
tempt the analyst to conclude "no significant main effect." However, one must 
understand if a main effect is involved in a signifie'riiit. interaction, then the main 
effect is i n f l u e n c i n g t h e r e s p o n s e . The1 nature of the: effect is inconsistent across 
levels of other effects. The: nature of the role: of the main effect can bo deduced 
f r o m i n t e r a c t i o n p l o t s . 

In light of what is communicated in the preceding paragraph, there is danger 
of a substantial misuse of statistics when one employs a multiple comparison test 
on main effects in the clear presence of interaction among the factors. 

One must be cautious in the analysis of a factorial experiment when the assump
tion of a complete-randomized design is made when in fact complete randomization 
is not carried out. For example, it is common to encounter factors tha t are very 
difficult to c h a n g e . As a result, factor levels may need to be held without change 
for long periods of time: throughout the experiment. For installed, a t empera ture 
factor is a common example. Moving tempera ture up and down in a randomization 
scheme is a costly plan auel most experimenters will refuse to do it. Experimental 
elcsigns with restrictions in randomization are quite common and arc called sp l i t 
p lo t d e s i g n s . They are; beyond the scope of the book but presentations arc found 
in Montgomery, 2001. 



Chapter 15 

2k Factorial Experiments and 
Fractions 

15.1 Introduction 

We have already been exposed to certain experimental design concepts. The sam
pling plan for the simple i-test on the mean of a normal population and also the 
analysis of variance involve randomly allocating pre-chosen treatments to experi
mental units. The randomized block design, where treatments are assigned to units 
within relatively homogeneous blocks, involves restricted randomization. 

In this chapter we give special attention to experimental designs in which the 
experimental plan calls for the study of the effect on a response of k factors, each at 
two levels, These are commonly known as 2fe factorial experiments. We often 
denote the levels as "high" and "low" even though this notation may be arbitrary 
in the case of qualitative variables. The complete factorial design requires that 
each level of every factor occur with each level of every other factor, giving a total 
of 2k treatment combinations. 

Factor Screening and Sequential Experimentation 

Often when experimentation is conducted either on a research or development 
level, a well-planned experimental design is a stage of what is truly a sequential 
plan of experimentation. More often than not, the scientists and engineers at the 
outset of a study may not be aware of which factors are important nor what are 
appropriate ranges in the potential factors in which experimentation should be 
conducted. For example, in the text Response Surface Methodology by Myers and 
Montgomery (2002), one example is given of an investigation of a pilot plant exper
iment in which four factors-temperature, pressure, concentration of formaldehyde, 
and steering rate-are varied in order that their influence on the response, filtration 
rate of a certain chemical product, be established. Even at the pilot plant level 
the scientists are not certain if all four factors should be involved in the model. 
In addition, the eventual goal is to determine the proper settings of contributing 
factors that maximize the filtration rate. Thus there is a need to determine the 
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proper region of exper imentat ion. The: questions can be answered only if the 
total experimental plan is done .sequentially. Many experimental endeavors are 
plans that feature iterative learning, the type of learning that is consistent with 
the scientific method, with the word iterative implying stage-wise experimentation. 

Generally, the initial stage of the ideal sequential plan is variable or factor 
screening, a procedure that involves an inexpensive experimental design involving 
the candidate factors. This is particularly important when the plan involves a 
complex system like: a manufacturing process. The information received from the 
results of a screening design are used to design one eir more subsequent experiments 
in which adjustments in the important factors are made, the adjustments that 
provide improvements in the system or proe:ess. 

The 2fc factorial experiments and fractions of the 2k are powerful tools that 
are ideal screening designs. Thew are simple, practical and intuitively appealing. 
Many of the general concepts discussed in Chapter 14 continue to apply. However, 
there are graphical methods that provide useful intuition in the analysis of the two 
level designs. 

Screening Designs for Large Number of Factors 

When A: is small, say k = 2 or even A: = 3, the utility of the 2k factorial for 
factor screening is clear. Both analysis of variance and/or regression analysis as 
diseuissed and illustrated in Chapters 12, 13, and 14 remain useful as tools. In 
addition, graphical approaches will become apparent. 

If A* is large, say as large as 6. 7, or 8, the number of factor combinations and 
thus experimental runs will often become prohibitive. For example, suppose one is 
interested in carrying out a screening design involving A: = 8 factors. There may be 
interest in gaining information on all k = 8 main effects as well as the ".,"" = 28 
two-factor interactions. However, 28 = 25G runs would appear to be much too 
large and wasteful for studying 28 + 8 = 36 effects. But as we will illustrate in 
future sections, when A: is large we can gain considerable information in an efficient 
manner by using only a fraction of the complete 2 factorial experiment:. This 
class of designs is the class of fractional factorial designs. The goal is to retain 
high quality information on main effects and interesting interactions even though 
the size of the design is reduced considerably. 

15.2 T h e 2k Factorial: Calculation of Effects and Analysis of 
Variance 

Consider initially a 22 factorial with factors A and B and n experimental observa
tions per factor combination. It is useful to use the symbols (1), a, b, anel ab to 
signify the design points, where the presence of a lowercase letter implies that the 
factor (̂ 1 or B) is at the high level. Thus, absence of the lower case implies that the 
factor is at the low level. So ab is the design point (+, +) , a is (+, —), b is ( —, +) 
and (1) is ( —, —). There are situations in the foregoing in which the notation also 
stands for the response data at, the design point in question. As an introduction 
into the calculation of important effects that aid in the determination of the in-
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fluence of the factors and sums of squares that are incorporated into analysis of 
variance computations, we have Table 15.1. 

Table 15.1: A 22 Factorial Experiment 

A Mean 
ab 

a 

a+ab 
In 

b—at> 
2« 

(D-fa 
2r, 

In this table, (1), a, b, and ab signify totals of the ??. response values at the 
individual design points. The simplicity of the 22 factorial is defined by the fact 
that apart from experimental error, important information comes to the analyst 
in single degree-of-freedoni components, one each for the two main effects A and 
B, and one degree of freedom for interaction AB. The information retrieved on 
all these take the form of three contrasts. Let us define the following contrasts 
among the treatment totals: 

.4 contrast = a o + a - / i - ( l ) , 

B contrast = ab — a + b — (1), 

AB contrast = ab — a — b + (1). 

The three effects from the experiment involve these contrasts and appeal to com
mon sense and intuition. The two computed main effects are of the form 

effect = fin -y~L, 

where j/u and ?//, are average response at the high or "+ level" and average at the 
low or "— level," respectively. As a result, 

Calculation of ab + a-b-(l) A contrast 
Main Effects A= — 

and 

B = 

2n 2-n 

ab — a + b— (1) _ JB contrast 
2~rt. ~ 2n ' 

The quantity A is seen to be the difference between the mean response at the 
low and high levels of factor A. In fact, we call A the main effect of A. Similarly, 
B is the main effect, of factor B. Apparent interaction in the data is observed by 
inspecting the difference between ab — b and a — (1) or between ab — a and b — (1) 
in Table 15.1. If, for example, 

o f t - a « 6 - ( l ) or ab- a- b+ (1) « 0. 

a line connecting the responses for each level of factor A at the high level of factor 
B will be approximately parallel to a line connecting the response for each level of 
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factor A at the low level of factor B. The nonparallel lines of Figure 15.1 suggest 
the presence of interaction. To test whether this apparent interaction is significant, 
a third contrast in the treatment totals orthogonal to the main effect contrasts, 
called the interaction effect, is constructed by evaluating 

Interaction Effect 
AB = 

ab - a - b + (1) AB contrast 

2n 2n 

to 
(0 
c 
o 
a. 
co 
CD 

rr 

b* 
HigM-eveWtfJ 

. , ^ ^ 
\ ^ > ^ 

>ab 

^-""* a 

Low High 
Level of A 

Figure 15.1: Response suggesting apparent interaction. 

Example 15.1:1 Consider data in Tables 15.2 and 15.3 with n = 1 for a 22 factorial experiment. 

Table 15.2: 22 Factorial with No Interaction Table 15.3: 22 Factorial with Interaction 

A 
+ 
-

-
50 
80 

B 
+ 
70 
100 

A 

+ 
-

-
50 
80 

B 
+ 
70 
40 

The numbers in the cells in Tables 15.2 and 15.3 clearly illustrate how contrasts 
and the resulting calculation of the two main effects and resulting conclusions can 
be highly influenced by the presence of interaction. In Table 15.2 the effect of A 
is —30 at both the low and high levels of B and the effect of B is 20 at both the 
low and high levels of factor A. This "consistency of effect" (no interaction) can 
be very important information to the analyst. The main effects are 

^ = 70 + 50 _ 100 + 80 = 6 Q _ 9 Q = _ 3 0 > 

B = i g o + 7 0 _ 8 0 + w = 8 B _ 

while the interaction effect is 

^ = 1 0 C + 5 0 _ 8 0 + 70 = 7 5 _ 7 5 = a 
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On the other hand, in Table 15.3 the effect A is once again —30 at the low level 
of B but +30 at the high level of B. This "inconsistency of effect" (interaction) 
also is present for B across levels of ,4. In theses cases the main effects can be 
meaningless and in fact, highly misleading. For example, the effect of A is 

50 + 70 80 + 40 
0. 

sine:e there is a. complete: "masking" of the effect as one averages over levels of B. 
The strong interaction is illustrated by the calculated effect 

AB = 
70 + 80 50 + 40 

2 ~ . = 30. 

Here it is convenient to illustrate the scenarios of Tables 15.2 and 15.3 with inter
action plots. Note the parallelism in the plot of Figure 15.2 and the interaction 
that is apparent in Figure 15.3. J 

o _ 
CO 

o _ 

o 
CD 

8-

o _ 

• 

• 

e = +1 

< ^\B= - 1 

• 

-1 

Figure 15.2: Interaction plot for data of Ta
ble 15.2. 

Figure 15.3: Interaction plot for data of Ta
ble 15.3. 

Computat ion of Sums of Squares 

Wc take advantage of the fact that in the 22 factorial, or for that matter in the 
general 2k factorial experiment, each main effect and interactiem effect has an as-
soe:iateel single degree of freedom. Therefore, we can write 2k — 1 orthogonal 
single-degree-of-freedom contrasts in the treatment combinations, each acceiunting 
for variation clue to some main or interaction effect. Thus, under the usual in
dependence and normality assumptions in the experimental model, we can make 
tests to determine if the contrast reflects systematic variation or merely chance or 
random variation. The sums of squares for each contrast are found by following 
the procedures given in Section 13.5. Writing 

Vi., = b + (1). Y2.. = ob + a, C] = - 1 , and c2 = 1, 
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where Yx.. and Y2„ are the total of 2n observations, we have 

' '2 \ 2 

J S °iYi") _ [ab + g-b-(l)}2 _ (A contrast)2 

SSA = SSw A 
2 22n 22n 

2n £ cf 

with 1 degree of freedom. Similarly, we find that. 

c c [ab + b-a- (I)]2 _ (B contrast)2 

bbB ~ ¥7t. " ¥n : 

and 

[ab + (1) - a - b\2 (AB contrast)2 
SS(AB) 

22n 22n 

Each contrast has 1 degree of freedom, whereas the error sum of squares, with 
22(n — 1) degrees of freedom, is obtained by subtraction from the formula 

SSE = SST - SSA - SSB - SS(AB). 

In computing the sums of squares for the main effects A and B and the in
teraction effect AB, it is convenient to present the total yields of the treatment 
combinations along with the appropriate algebraic signs for each contrast, as in 
Table 15.4. The main effects are obtained as simple comparisons between the low 
and high levels. Therefore, we assign a positive sign to the treatment combination 
that is at the high level of a given factor and a negative sign to the treatment 
combination at the lower level. The positive and negative signs for the interaction 
effect are obtained by multiplying the corresponding signs of the contrasts of the 
interacting factors. 

Table 15.4: Signs for Contrasts in a 22 Factorial Experiment 

Treatment 
Combination 

(1) 
a 
b 

ab 

Factorial Effect 
A 
-
+ 
-
+ 

B 
-
-
+ 
+ 

AB 
+ 
-
-
+ 

The 23 Factorial 

Let us now consider an experiment using three factors, A, B, and C, each with 
levels —1 and + 1 . This is a 23 factorial experiment, giving the eight treatment, 
combinations (1), a, b, c, ab, ac, be, and abc. The treatment combinations and 
the appropriate algebraic signs for each contrast used in computing the sums of 
squares for the main effects and interaction effects are presented in Table 15.5. 
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Table 15.5: Signs for Contrasts in a 2'! Factorial Experiment 

Treatment Factorial Effect (symbolic) 

Combination 

(1) 
o. 
b 
c 

ab 
ac 
be 

abc 

A 
-
+ 
-
-
+ 
+ 
-
+ 

B 
-
-
+ 
-
+ 
-

+ 
+ 

C 
-
-
-
+ 
-

+ 
+ 
+ 

AB 
+ 
-
-

+ 
+ 
— 
-

+ 

AC 
+ 
-
+ 
-
-

+ 
-

+ 

BC 
+ 
+ 
-
-
-
-

+ 
+ 

ABC 
-

+ 
+ 
+ 
-
-
-

+ 

+ 1 
c 

B. 

'be 

+ 1 

ac 

a 

^s^abc 

ab^' 

-1 +1 

Figure 15.4: Geometric view of 23 

It is helpful to discuss and illustrate the geometry of the 23 factorial much as we 
illustrated for the 22 in Figure 15.1. For the 23 the eight design points represent 
the vertices of a cube as shown in Figure 15.4. 

The columns of Table 15.5 represent the signs that are used for the contrasts 
and thus computation of seven effects and corresponding sums of squares. These 
columns are analogous to those given in Table 15,4 for the case of the 22. Seven 
effects are available since there are eight, design points. For example, 

A = 

AB = 

a + ab + ac + abc — (1) — b — c — be 
4n 

(1) + c + ab + abc b — ac— be 

4« 
and so on. The sums of squares are merely given by 

(contrast)2 

^(effect) = 
23n 

An inspection of Table 15.5 reveals that for the 23 experiment all contrasts 
among the seven are mutually orthogonal and therefore the seven effects are as
sessed independently. 
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Effects and Sum of Squares for the 2k 

For a 2 factorial experiment the single-degree-of-freedom sums of squares for the 
main effects and interaction effects are obtained by squaring the appropriate con
trasts in the treatment totals and dividing by 2*n, where n is the number of 
replications of the treatment combinations. 

As before:, an effee:t is always calculated by subtracting the average response at 
the "low" level from the average' response at the "high" level. The high and low 
for main effects are: quite clear. The- symbolic high and low for interactions are 
evident from information as in Table 15.5. 

The orthogonality property has the same importance here as it eloes for the ma
terial on comparisons discussed in Chapter 13. Orthogonality of contrasts implies 
that the estimated effects and thus the sums of squares arc independent. This 
independence is readily illustrated in 23 factorial experiment if the yields, with 
factor A at its high level, are increased by an amount x in Table 15.5. Only the 
A contrast leads to a larger sum of squares, since the x effect cancels out in the 
formation of the six remaining contrasts as a result of the two positive and two 
negative signs associated with treatment combinations in which A is at the1 high 
level. 

There arc additional advantages produced by orthogonality. These are pointed 
out when we discuss the 2k factorial experiment in regression situations. 

15.3 Nonreplicated 2k Factorial Experiment 

The full 2 factorial may often involve considerable experimentation, particularly 
when k is large. As a. result, replication of each factor combination is often not 
allowed. If all effects, including all interactions, are included in the model of the 
experiment, no degrees eif freedom are allowed for error. Often, when k is large. 
the data analyst will pool sums of squares anel corresponding degrees of freedom for 
high-order interactions that arc known to be, or assumed to be, negligible. This 
will produce F-tests for main effects and lower-order interactions. 

Diagnostic Plot t ing with Nonreplicated 2k Factorial Experiments 

Normal probability plotting can be a very useful methodology for determining the 
relative importance e>f effects in a reasonably large two-level factored experiment 
when there is no replication. This type of diagnostic plot can be particularly 
useful when the data analyst is hesitant to pool high-order interactions for fear 
that some of the effects pooled in the "error" may truly be real effects and not 
merely random. The reader should bear in mind that all effects that, are not real 
(i.e., they are independent estimates of zero) follow a normal distribution with 
mean near zero and constant variance. For example, in a 2 factorial experiment, 
we are reminded that all effects (keep in mind n = 1) are of the form 

contrast 
AB = = yH - yL. 

o 

where yu is the average of 8 independent experimental runs at the high or "+" 
level and ///. is the average of eight independent runs at the low or "—" level. 
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Thus the variance of each contrast is Var(yH - yL) = a2/4. For any real e:ffects, 
E{ljH - VL) r 0. Thus normal probability plotting should reveal "significant" 
effects as those thai; fall off the straight line that depicts realizations of independent. 
identically distributed normal random variables. 

The probability plotting can take one of many forms. The reader is referred to 
Chapter 8, where these plots are first presented. The empirical normal quantile-
quantile plot may be used. The plotting procedure that makes use of normal 
probability paper may also be used. In addition, there are several other types of 
diagnostic normal probability plots. In summary, the diagnostic effect plots are as 
follows. 

Probability Effect 
Plots for 

Nonreplicated 24 

Factorial 
Experiments 

1. Calculate effects as 

effect = 
contrast 

ok-1 ' 

2. Construct a normal probability plot of all effects. 

3. Effects that fall off the straight line should be considered real effects. 

Further comments regarding normal probability plotting of effects are in order. 
First, the data analyst may feel frustrated if he or she uses these: plots with a small 
experiment. The plotting is likely to give satisfying results when there is effect 
sparsity -many effects that arc truly not real. This sparsity will be evident in large 
experiments where- high-order interactions are not likely to be real. 

15.4 Injection Molding Case Study 

Example 15.2:1 Many manufacturing companies in the United States and abroad use molded parts 
as components of a. process. Shrinkage is often a major problem, Often, a molded 
elie for a part is built larger than nominal to allow for part shrinkage. In the fol
lowing experimental situation a. new die is being produced, and ultimately it is 
important to find the proper process settings to minimize shrinkage. In the follow
ing experiment, the response values are deviations from nominal (i.e., shrinkage). 
The factors and levels are as follows: 

A. Injection velocity (ft /sec) 
B. Mold temperature (°C) 
C. Mold pressure (psi) 
D. Back pressure (psi) 

Coded Levels 
- 1 

1.0 
100 
500 

75 

+ 1 
2.0 
150 

1000 
120 

The purpose of the experiment was to determine what, effects (main effee:ts and 
interaction effects) influence shrinkage. The experiment was considered a prelim
inary screening experiment from which the factors for a more complete analysis 
may be determined. Also, it was hoped that some insight, into how the important 
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factors impact shrinkage might be determined. The data from a non-replicated 2"' 
factorial experiment are given in Table 15.6. 

Table 15.6: Data for Example 15.2 

Factor 
Combination 

(1) 
a. 
b 
ab 
e 
ac 
be 
abc 

Response 
(cm x 104) 

72.68 
71.74 
76.09 
93.19 
71.25 
70.59 
70.92 

104.96 

Factor 
Combination 

d 
ad 
bd 
abd 
cd 
acd 
bed 
abed 

Response 
(cm x 104) 

73.52 
75.97 
74.28 
92.87 
79.34 
75.12 
79.67 
97.80 

Initially, effects were calculated and placed on a normal probability plot. The 
calculated effects are as follows: 

A = 10.5613, BD = -2.2787, B = 12.4463, 
C = 2.4138, D = 2.1438, 4 5 = 11.4038, 

AC = 1.2613, AD = -1.8238, BC = 1.8163, 
CD = 1.4088, ABC = 2.8588, ABD = -1.7813, 

ACD = -3.0438, BCD = -0.4788, ABCD = -1.3063. 

The normal probability plot is shown in Figure 15.5. The plot seems to imply that 
effects A, B, and AB stand out as being important. The signs of the important 
effects indicate that the preliminary conclusions are as follows: 

1. An increase in injection velocity from 1.0 to 2.0 increases shrinkage. 

2. An increase in mold temperature from 100°C to 150°C increases shrinkage. 

3. There is an interaction between injection velocity and mold temperature; al
though both main effects are important, it is crucial that we understand the 
impact of the two-factor interaction. J 

Analysis with Pooled Mean Square Error: Annotated Computer Printout 

It may be of interest to observe an analysis of variance of the injection molding data 
with high-order interactions pooled to form an mean square error. Interactions of 
ordea- three and four are pooled. Figure 15.6 shows a 5/lS'PR.OC GLM printout. 
The analysis of variance reveals essentially the same conclusion as that of the 
normal probability plot. 

The tests and P-valties shown in Figure 15.6 require interpretation. A signif
icant P-value suggests that the effect differs significantly from zero. The tests on 
main effects (which in the presence of interactions may be regarded as the effects 
averaged over the levels of the other factors) indicate significance for effects A and 
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Figure 15.5: Normal quantile-quantile plot of effects for case study of Example 
15.2. 

B. The signs of the effects are also important. An increase in the levels from low 
to high of A, injection velocity, results in increased shrinkage. The same is true for 
B. However, because of the significant interaction AB, main effect interpretations 
may be viewed as trends across the levels of the other factors. The impact of the 
significant AB interaction is better understood by using a two-way table of means. 

Interpretation of Two-Factor Interaction 
As one would expect, a two-way table of means should provide ease in interpretation 
of the AB interaction. Consider the two-factor situation in Table 15.7. 

Table 15.7: Illustration of Two-Factor Interaction 

A (velocity) 
2 
1 

B (temperature) 
100 150 

73.355 97.205 
74.1975 75.240 

Notice that the large sample mean at high velocity and high temperature cre
ated the significant interaction. The shrinkage increases in a nonadditive 
manner. Mold temperature appears to have a positive effect despite the velocity 
level. But the effect is greatest at high velocity. The velocity effect is very slight 
at low temperature but clearly is positive at high mold temperature. To control 
shrinkage at a low level one should avoid using high injection velocity and high 
m.old temperature simultaneously. All of these results are illustrated graphically in 
Figure 15.7. 
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The GLM P r o c e d u r e 
Dependent Var iab le : y 

Source 
Model 
Error 
Corrected 
R-Square 
0.949320 
Source 
A 
B 
C 
D 
A*B 
A*C 
A*D 
B*C 
B*D 
O D 

Parameter 
Intercept 
A 
B 
C 
D 
A*B 
A*C 
A*D 
B*C 
B*D 
C*D 

DF 
10 1689 
5 90 

Total 15 1779 
Coeff Var 
5.308667 

DF Type III 

Sum of 
Squares Mean Square 
.237462 168.923746 
.180831 18.036166 
.418294 

F Value Pr > F 
9. 

Root MSE y Mean 
4.246901 79.99938 

SS Mean Square F Value 
1 446.1600062 446.1600062 24.74 
1 619.6365563 619.6365563 34.36 
1 23.3047563 23.3047563 
1 18.3826563 18.3826563 

1.29 
1.02 

1 520.1820562 520.1820562 28.84 
1 6.3630063 6.3630063 
1 13.3042562 13.3042562 
1 13.1950562 13.1950562 
1 20.7708062 20.7708062 
1 7.9383063 7.9383063 

Estimate 
79.99937500 
5.28062500 
6.22312500 
1.20687500 
1.07187500 
5.70187500 
0.63062500 
-0.91187500 
0.90812500 
-1.13937500 
0.70437500 

Standard 
Error t Value 

1.06172520 75.35 
1.06172520 4.97 
1.06172520 5.86 
1.06172520 1.14 
1.06172520 1.01 
1.06172520 5.37 
1.06172520 0.59 
1.06172520 -0.86 
1.06172520 0.86 
1.06172520 -1.07 
1.06172520 0.66 

0.35 
0.74 
0.73 
1.15 
0.44 

37 0.0117 

Pr > F 
0.0042 
0.0020 
0.3072 
0.3590 
0.0030 
0.5784 
0.4297 
0.4314 
0.3322 
0.5364 

Pr > |t| 
< 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0001 
0042 
0020 
3072 
3590 
0030 
5784 
4297 
4314 
3322 
5364 

Figure 15.6: SAS printout, for da ta of case s tudy of Example 15.2, 

Exercises 

15.1 The following data are obtained from a 23 fac
torial experiment replicated three times. Evaluate the 
sums of squares for all factorial effects by the contrast 
method. Draw conclusions. 

Treatment 
Combination Rep 1 Rep 2 Rep 3 

(1) 
a 

12 
15 
24 

19 
20 
16 

10 
l(i 
17 

Treatment 
Combination 

ab 
c 
ac 
be 
abc 

Rep 1 

23 
17 
10 
24 
28 

Rep 2 

17 
25 
19 
23 
25 

Rep 3 

27 
21 
19 
29 
20 

15.2 In an experiment conducted by the Mining Engi-
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Figure 15.7: Interaction plot for Example 15.2. 

neering Department at the Virginia Polytechnic Insti
tute and State University to study a particular filtering 
system for coal, a coagulant was added to a solution 
in a tank containing e:oal and sludge, which was then 
placed in a recirculation system in order that the coal 
could be washed. Three factors were varied in the ex
perimental process: 

Factor A: percent solids circulated initially 
in the overflow 

Factor B: flow rate of the polymer 
Factor C: pH of the tank 

The amount of solids in the underflow of the cleans
ing system determines how clean the coal has become. 
Two levels of each factor were used and two experimen
tal runs were made for each of the 23 = 8 combinations. 
The responses, percent solids by weight, in the under
flow of the circulation system are as specified in the 
following table: 

Response Treatment 
Combination Replication 1 Replication 2 

(1) 
a 
b 
ab 
c 
ac 
be 
abc 

4.65 
21.42 
12.66 
18.27 
7.93 

13.18 
6.51 

18.23 

5.81 
21.35 
12.56 
16.62 
7.88 

12.87 
6.26 

17.83 

Assuming that all interactions are potentially impor
tant, do a complete analysis of the data. Use P-values 
in your conclusion. 

15.3 In a metallurgy experiment it is desired to test 

the effect of four factors and their interactions on the 
concentration (percent by weight) of a particular phos
phorus compound in casting material. The variables 
arc .4, percent phosphorus in the refinement; B, per
cent remelted material; C, fluxing time; and D, holding 
time. The four factors arc varied in a 2 factorial exper
iment with two castings taken at each factor combina
tion. The 32 castings were made in random order. The 
following table shows the data and an ANOVA table is 
given in Figure 15.8 on page 626. Discuss the effects of 
the factors and their interactions on the concentration 
of the phosphorus compound. 

Weight 
Treatment % of Phosphorus Compound 

Combination 

(1) 
a. 
b 
ab 
c 
ac 
be 
abc 
d 
ad 
bd 
abd 
cd 
acd 
bed 
abed 

Rep 1 
30.3 
28.5 
24.5 
25.9 
24.8 
26.9 
24.8 
22.2 
31.7 
24.6 
27.6 
26.3 
29.9 
26.8 
26.4 
26.9 

Rep 2 
28.6 
31.4 
25.6 
27.2 
23.4 
23.8 
27.8 
24.9 
33.5 
26.2 
30.6 
27.8 
27.7 
24.2 
24.9 
29.3 

Tota l 
58.9 
59.9 
50.1 
53.1 
48.2 
50.7 
52.6 
47.1 
65.2 
50.8 
58.2 
54.1 
57.6 
51.0 
51.3 
56.2 

Total 428.1 436.9 865.0 

15.4 A preliminary experiment is conducted to study 
the effects of four factors and their interactions on the 
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output of a certain machining operation. Two runs are 
made at each of the treatment combinations in order to 
supply a measure of pure experimental error. Two lev
els of each factor are used, resulting in the data shown 
here. Make tests on all main effects and interactions 
at the 0.05 level of significance. Draw conclusions. 

Treatment 
Combination Replicate 1 Replicate 2 

(T) 7 3 9l5 
a 9.1 10.2 
b 8.6 5.8 
c 10.4 12.0 
d 7.1 8.3 
ab 11.1 12.3 
ac 16.4 15.5 
ad 7.1 8.7 
be 12.6 15.2 
bd 4.7 5.8 
cd 7.4 10.9 
abc 21.9 21.9 
abd 9.8 7.8 
acd 13.8 11.2 
bed 10.2 11.1 
abed 12.8 14.3 

15.5 In the study An X-Ray Fluorescence Method for 
Analyzing Polybutadiene-Acrylic Acid (PBAA) Propel
lants, Quarterly Reports, RK-TR-62-1, Army Ord
nance Missile Command, an experiment was conducted 
to determine whether or not there is a significant differ
ence in the amount of aluminum achieved in the anal
ysis between certain levels of certain processing vari
ables. The data given in the table were recorded. 

Phys . Mixing Blade Nitrogen 
Obs. State Time Speed Condition Aluminum 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

The 

.4: 

2 
2 
2 
2 
2 
2 
2 
2 

1 
2 
1 
2 
1 
2 
2 
1 
1 
2 
1 
2 
1 
2 
2 
1 

variables are given 

mixing time 
level 1 
level 2 

-2 hours 
-4 hours 

2 
2 
1 
1 
1 
I 
2 
2 
2 
2 
1 
1 
1 
1 
2 
2 

below. 

2 
2 
1 
2 
2 
1 
1 
1 
2 
2 
1 
2 
2 
1 
1 
1 

10.3 
16.0 
16.2 
16.1 
16.0 
16.0 
15.5 
15.9 
10.7 
16.1 
16.3 
15.8 
15.9 
15.9 
15.6 
15.8 

B: blade speed 
level 1-36 rpin 
level 2-78 rpin 

C: condition of nitrogen passed over propellant 
level 1-dry 
level 2-72% relative humidity 

D: physical state of propellant 
level 1-uncured 
level 2-cured 

Assuming all three- and four-factor interactions to be 
negligible, analyze the data. Use a 0.05 level of signif
icance. Write a brief report summarizing the findings. 

15.6 It is important to study the effect of concentra
tion of the reactant and the feed rate on the viscosity of 
the product from a chemical process. Let the reactant 
concentration be factor A at levels 15% and 25%. Let 
the feed rate be factor B with the levels being 20 lb/hr 
and 30 lb/hr. The experiment, involves 2 experimental 
runs at each of the four combinations (L = low and H 
= high). The viscosity readings are as follows. 

B 

H 

L 

132 
137 

145 
147 

L 

149 
152 

154 
150 

H 

(a) Assuming a model containing two main effects and 
an interaction, calculate the three effects. Do you 
have any interpretation at this point? 

(b) Do an analysis of variance and test for interaction. 
Give conclusions. 

(c) Test for main effects and give final conclusions re
garding the importance of all these effects. 

15.7 Consider Exercise 15.3. It is of interest to the 
researcher to learn not only that AD, BC, and pos
sibly AB arc important. But there is also interest in 
what they mean scientifically. Show two-dimensional 
interaction plots for all three and give interpretation. 

15.8 Consider Exercise 15.3 once again. Three-factor 
interactions are often not significant and, even if they 
are, they are difficult to interpret. The interaction 
ABD appears to be important. To gain some sense 
of interpretation, show two AD interaction plots, one 
for B = —1 and the other for B = +1. From the ap
pearance of these, give an interpretation of the ABD 
interaction. 
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15.9 Consider Exercise 15.6. Use a "-4-1" and "—1" 
scaling for '-high" and "low,'- respectively, and do a 
multiple linear regression with the model 

Y, = 3a + (lixu + ;hx2i +0i2Xux%i + ei, 

with xu = reactant. concentration (—1. +1) anil xa = 
feed rate ( -1 .+1) . 
(a) Compute regression coefficients. 
(b) How do the coefficients bi, b2, and 612 relate to the 

effects you found in Exercise 15.6(a)? 
(c) In your regression analysis do /-tests oil 61, l>s. and 

b\>- how do these test results relate to those in Ex
ercise 15.6(b) and (e:)? 

15.10 Consider Exercise 15.5. Compute all 15 effects 
and do normal probability plots of the effects. 
(a) Docs it appear as if your assumption of negligible 

three- and four-factor interactions has merit? 

(b) Are the results of the effect plots consistent with 
what you communicated about, the importance of 
main effects and two-factor interactions in your 
summary report? 

15.11 In Myers and Montgomery (2002), a data set. is 
discussed in which a 23 factorial is used by an engineer 
to study the effects of cutting speed (A), tool geometry 
(B). and cutting angle (C) on the life (in hours) of a 
machine tool. Two levels of each factor are chosen, and 
duplicates were run at, each design point with the: or
der of the runs being random. The data are presented 
here. 

(a) Calculate all seven effects. Which appear, based 
on their magnitude, to be important? 

(b) Do an analysis of variance and observe P-values. 

(c) Do your results in (a) and (b) agree? 
(d) The engineer felt confident, that cutting speed and 

cutting angle should interact. If this interaction is 

significant, draw an interaction plot and discuss the 
engineering meaning of the interaction. 

B Life 

(1) 
a 
b 

ab 
c 

ac 
he 

abc 

— 
+ 
-
+ 
-
+ 
-
-

— 
— 
i 
+ 
— 
— 
+ 
— 

— 
— 
— 
— 
+ 
-
+ 
+ 

22. 31 
32, 43 
35. 34 
35. 47 
44, 45 
40. 37 
60, 50 
39, 41 

15.12 Consider Exercise 15.11. Suppose there was 
some experimental difficulty in making the runs. In 
fact, the total experiment had to be halted after only 4 
runs. As a result, the abbreviated experiment is given 
by 

Life 

a 43 
I) 35 
c 44 

abc 39 

With only these runs we have the signs for contrasts 
given by 

A B C AB AC BC ABC 

+ + 
+ 
r + 

+ 

a 
b 

abc + + 

Comment. In your comments, determine whether or 
not the: contrasts are orthogonal. Which are and which 
are not? Are main effects orthogonal to each other? In 
this abbreviated experiment (entitled a fractional fac
torial,) can we study interactions independent of main 
effects? Is it a useful experiment if we are convinced 
that interactions are negligible? Explain. 

15.5 Factorial Experiments in a Regression Setting 

In much of Chapter 15 we: have thus far confmed our discussion of analysis of the 
data for a 2* factorial to the method of analysis of variance. The only reference to 
an alternative analysis resides in Exercise 15.9 on page; 624. Indeed, this exercise 
certainly introduces much of what motivates the present section. There are situ
ations in which model fitting is important a n d the: factors under s tudy c a n be 
c o n t r o l l e d . For example', a biologist may wish to s tudy the growth of a certain 
type of algae in the water and thus a model tha t relates units of algae as a function 
of the amount of a pollutant and, say, time, woulel be- very helpful. Thus the study 
involves a factorial experiment in a laboratory sett ing in which concentration of 
the pollutant and time arc the factors. As we shall discuss later in this section, 
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Source of 
Variation 

Sum of Degrees of Mean Compu ted 
Effects Squares Square Freedom / P-Value 

Main effect 
A 
B 
C 
D 

Two-factor 
AB 
AC 
AD 
BC 
BD 
CD 

interaction : 

Three-factor interaction : 
ABC 
ABD 
ACD 
BCD 

Four-factor 
ABCD 

Error 
Total 

interaction : 

-1.2000 
-1.2250 
-2.2250 

1.4875 

0.9875 
-0.6125 
-1.3250 

1.1875 
0.6250 
0.7000 

-0.5500 
1.7375 
1.4875 

-0.8625 

0.7000 

11.52 
12.01 
39.61 
17.70 

7.80 
3.00 

14.05 
11.28 
3.13 
3.92 

2.42 
24.15 
17.70 
5.95 

3.92 
39.36 
217.51 

16 
31 

11.52 
12.01 
39.61 
17.70 

7.80 
3.00 

14.05 
11.28 
3.13 
3.92 

2.42 
24.15 
17.70 
5.95 

3.92 
2.46 

4.68 
4.88 

16.10 
7.20 

3.17 
1.22 
5.71 
4.59 
1.27 
1.59 

0.98 
9.82 
7.20 
2.42 

1.59 

0.0459 
0.0421 
0.0010 
0.0163 

0.0939 
0.2857 
0.0295 
0.0480 
0.2763 
0.2249 

0.3360 
0.0064 
0.0163 
0.1394 

0.2249 

Figure 15.8: ANOVA table for Exercise 15.3. 

a more precise model can be fit if the factors are controlled in a factorial array, 
with the 2k factorial often being a useful choice. In many biological and chemical 
processes the levels of the regressor variables can and should be controlled. 

Recall that the regression model employed in Chapter 12 can be written in 
matrix notation as 

y = X/3 + e. 

The X matrix is referred to as the model matrix. Suppose, for example, that a 
23 factorial experiment is employed with the variables 

Temperature: 150°C 200°C 
Humidity: 15% 20% 
Pressure (psi): 1000 1500 

The familiar +1 , —1 levels can be generated through the following centering 
and scaling to design units: 

Xl = 
temperature — 175 

25 : x2 

humidity — 17.5 
2J5 ' 

x-.i 
pressure — 1250 

250 ' 
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As a result, the X matrix becomes 

1 
1 
1 
1 
1 
1 
1 
I 

Xi 

-I 
1 

- 1 
- 1 

1 
1 

- 1 
1 

X-2 

- 1 
- I 

1 
- 1 

1 
- 1 

1 
1 

X-i 

- 1 " 
- 1 
- 1 

1 
- 1 

1 
1 
1 

Design Identification 

(1) 
a 
b 
c 

ttb 
ac
he 

abc 

It is now seen that contrasts illustrated and discussed in Section 15.2 are directly 
related to regression coefficients. Notice that all the columns of the X matrix in our 
23 example are orthogonal. As a result, the computation of regression coefficients 
as described in Section 12.3 becomes 

b = = (X'X)-1X'y=Ql)x'y 

a + ab + ac + abc + (1) + b + c + bc 
a + ab + ac + abc — (1) — b — c — be 
b + ab + bc + abc — (I) — a — c — ac 
c + acJ-bc + abc — (1) — a — b — ab 

where a, ab, and so on, are response measures. 
One can now see that the notion of calculated main effects that have been 

emphasized throughout this chapter with 2k factorials is related to coefficients in a 
fitted regression model when factors are quantitative. In fact, for a 2fe with, say, n 
experimental runs per design point, the relationship between effects and regression 
coefficients are as follows: 

Effect = 

Regression coefficient; 

contrast 
2k~1(n) 
contrast 

2k(n) 

effect 

This relationship should make sense to the reader since a regression coefficient 
bj is an average rate of change in response per unit change in Xj. Of course, as 
one goes from —1 to +1 in Xj (low to high), the design variable has changed by 2 
units. 

Example 15.3:1 Consider an experiment where an engineer desires to fit a linear regression of yield y 
against holding time xi and flexing time x2 in a certain chemical system. All other 
factors are held fixed. The data in the natural units are given in 15.8. Estimate 
the multiple linear regression model. 

Solution: As a result, the fitted regression model is 

y = bo + bixi +b2x2. 
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Table 15.8: Data for Example 15.3 

Holding Time (hr) Flexing Time (hr) Yield (%) 

0.5 
0.8 
0.5 
0.8 

0.10 
0.10 
0.20 
0.20 

28 
39 
32 
46 

The design units are 

holding time - 0.65 
X l = 

and the X matrix is 

0.15 x2 = 
flexing time — 0.15 

oris 

1 
1 
1 
1 

Xl 

- 1 
1 

- 1 
1 

x2 
-I 
- 1 

1 
1 

with the regression coefficients 

= (X'X^X'y 

(l)+<i+b+ab' 
4 a+al>-(l)-b 
4 

b+ati-{l)-a 
4 

36.25 
6.25 
2.75 

Thus the least squares regression equation is 

y = 36.25 + 6.25*1 + 2.75.T2. 

This example provides an illustration of the use of the two-level factorial ex
periment in a regression setting. The four experimental runs in the 22 design 
were used to calculate a regression equation, with the obvious interpretation of the 
regression coefficients. The value bi — 6.25 represents the estimated increase in 
response (percent yield) per design unit change (0.15 hour) in holding time. The 
value b2 = 2.75 represents a similar rate of change for flexing time. J 

Interaction in the Regression Model 

The interaction contrasts discussed in Section 15.2 have definite interpretations in 
the regression context. In fact, interactions are accounted for in regression models 
by product terms. For example, in Example 15.3, the model with interaction is 

y = bn + bixi + b2x2 + bx2xix2 

with bo, bx, b2 as before and 

ab + (1) - a - b 46 + 2 8 - 3 9 - 3 2 
'12 = 0.75. 



15.5 Factorial Experiments in a Regression Setting 629 

Thus the regression equation expressing two linear main effects and interaction is 

y = 36.25 -I- 6.25x1, +2.75x2 + 0.75xix2. 

The regression context provides a framework in which the reader should better 
understand the advantage of orthogonality that is enjoyed by the 2k factorial. 
In Section 15.2 the merits of orthogonality are discussed from the point of view 
of analysis of variance of the data in a 2k factorial experiment. It was pointed 
out that orthogonality among effects leads to independence among the sums of 
squares. Of course, the presence of regression variables certainly does not rule out 
the use of analysis of variance. In fact, F-tests are conducted just as they are 
described in Section 15.2. Of course, a distinction must be made. In the case of 
ANOVA, the hypotheses evolve from population means while in the regression case 
the hypotheses involve regression coefficients. 

For instance, consider the experimental design in Exercise 15.2 on page 622. 
Each factor is continuous and suppose that the levels are 

A (xi): 20% 40% 
B (x2): 5 lb/sec 10 lb/sec 
C (x3): 5 5.5 

and we have, for design levels. 

solids - 30 flow rate - 7.5 pH - 5.25 
Xi = . Xo = . .?;•! = . 

10 2.5 3 0.25 

Suppose that it is of interest to fit a multiple regression model in which all linear 
coefficients and available interactions are to be considered. In addition, it is of 
interest for the engineer to give some insight into what levels of the factor will 
maximize cleansing (i.e., maximize the response). This problem will be the subject 
of a case study in Example 15.4. 

Example 15.4:1 Case Study: Coal Cleansing Experiment1 Figure 15.9 represents annotated 
computer printout for the regression analysis for the fitted model 

y = b0 + bixx + b2x2 + b:ix:i + bi2xix2 + bi3Xix3 + 623X2X3 + 6123X1X2X3, 

where x\, x2, and X3 are percent solids, flow rate, and pH of the system, respec
tively. The computer system used is SAS PROC REG. 

Note the parameter estimates, standard error, and P-values in the printout. 
The parameter estimates represent coefficients in the model. All model coefficients 
are significant except the x2X3 term (BC interaction). Note also that residuals, 
confidence intervals, and prediction intervals appear as discussed in the regression 
material in Chapters 11 and 12. 

The reader can use the values of the model coefficients and predicted values from 
the printout to ascertain what combination of the factors results in maximum 
cleansing efficiency. Factor A (percent solids circulated) has a large positive 
coefficient suggesting that a high value for percent solids is suggested. In addition, 
a low value for factor C (pH of the tank) is suggested. Though the B main effect 

'See Exercise 15.2. 
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Dependent Variable: Y 

Source 

Model 

Error 

Analys is of Variance 

Sum of Mean 

DF Squares Square F Value Pr > 

7 490. 

8 2. 

Corrected Total 15 492. 

Root MSE 
Dependent Mean 

Coeff Var 

Variable DF 

Intercept 1 

A 
B 
C 
AB 
AC 
BC 
ABC 

0.52465 

12.75188 

4.11429 

Paramet 

Parameter 

Estimate 

12.75188 

4.71938 

0.86563 

-1.41563 

-0.59938 

-0.52813 

0.00562 

2.23063 

Dependent Predicted 

Obs 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Variable 

4.6500 

21.4200 

12.6600 

18.2700 

7.9300 

13.1800 

6.5100 

18.2300 

5.8100 

21.3500 

12.5600 

16.6200 

7.8800 

12.8700 

6.2600 

17.8300 

23499 70.03357 254 

20205 0.27526 

43704 

R-Square 

Adj R-Sq 

er Estimates 

Standard 

Error 

0.13116 

0.13116 

0.13116 

0.13116 

0.13116 

0.13116 

0.13116 

0.13116 

Std Error 

Value Mean Predict 

5.2300 

21.3850 

12.6100 

17.4450 

7.9050 

13.0250 

6.3850 

18.0300 

5.2300 

21.3850 

12.6100 

17.4450 

7.9050 

13.0250 

6.3850 

18.0300 

0.3710 

0.3710 

0.3710 

0.3710 

0.3710 

0.3710 

0.3710 

0.3710 

0.3710 

0.3710 

0.3710 

0.3710 

0.3710 

0.3710 

0.3710 

0.3710 

F 
.43 <.0001 

0.9955 

0.9916 

t Value 

97.22 

35.98 

6.60 

-10.79 

-4.57 

-4.03 

0.04 

17.01 

Pr > |tl 
<.0001 

<.0001 

0.0002 

<.0001 

0.0018 

0.0038 

0.9668 

<.0001 

95'/. CL Mean 

4.3745 

20.5295 

11.7545 

16.5895 

7.0495 

12.1695 

5.5295 

17.1745 

4.3745 

20.5295 

11.7545 

16.5895 

7.0495 

12.1695 

5.5295 

17.1745 

6.0855 

22.2405 

13.4655 

18.3005 

8.7605 

13.8805 

7.2405 

18.8855 

6.0855 

22.2405 

13.4655 

18.3005 

8.7605 

13.8805 

7.2405 

18.8855 

957. CL 

3.7483 

19.9033 

11.1283 

15.9633 

6.4233 

11.5433 

4.9033 

16.5483 

3.7483 

19.9033 

11.1283 

15.9633 

6.4233 

11.5433 

4.9033 

16.5483 

Predict 

6.7117 

22.8667 

14.0917 

18.9267 

9.3867 

14.5067 

7.8667 

19.5117 

6.7117 

22.8667 

14.0917 

18.9267 

9.3867 

14.5067 

7.8667 

19.5117 

Residual 

-0.5800 

0.0350 

0.0500 

0.8250 

0.0250 

0.1550 

0.1250 

0.2000 

0.5800 

-0.0350 

-0.0500 

-0.8250 

-0.0250 

-0.1550 

-0.1250 

-0.2000 

Figure 15.9: SAS printout for data of Example 15.4. 

(flow rate of the polymer) coefficient, is positive, the rather large positive coefficient 
of £1X2X3 iABC) would suggest that flow rate should be at the low level to enhance 
efficiency. Indeed, the regression model generated in the SAS printout suggests 
that the combination of factors that may produce optimum results, or perhaps 
may suggest direction for further experimentation, are given by 

A: high level 
B: low level 
C: low level J 
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15.6 The Orthogonal Design 

In experimental situations where it is appropriate to fit models that are linear 
in the design variables and possibly should involve interactions or product terms, 
there are advantages gained from the two-level orthogonal design, or orthogonal 
array. By an orthogonal design we mean orthogonality among the columns of the 
X matrix. For example, consider the X matrix for the 22 factorial of Examine 
15.3. Notice that all three columns are mutually orthogonal. The X matrix for the 
23 factorial also contains orthogonal columns. The 2'? factorial with interactions 
would yield an X matrix of the type 

x = 

outline of cleg 

Source 
Regression 
Lack of fit 
Error (pure) 

Total 

" 1 
1 
1 
1 
1 
1 
1 
1 

rees e 

d.f. 
3 
4 
8 
15 

Xl 

- 1 
:i 

- l 
- l 

l 
l 

- l 
:i 

x2 
- 1 
- 1 

1 
- 1 

1 
- 1 

1 
1 

Df freedom is 

(x, X 2 ,X lX3 

x-i 
- 1 
- 1 
- 1 

1 
- 1 

1 
1 
1 

X2X3 

X[X 2 X1X3 

1 1 
- 1 - 1 
- 1 1 

1 - 1 
1 - 1 

- 1 1 
- 1 - 1 

1 1 

x1X2X3) 

X2X3 

1 
1 

- 1 
- 1 
- 1 
- 1 

1 
1 

X1X2 

- 1 
1 
1 
1 

- 1 
- 1 
- 1 

1 

The eight degrees of freedom for pure error are obtained from the duplicate runs at 
each design point. Lack-of-fit. degrees of freedom may be viewed as the difference 
between the number of distinct design points and the number of total model terms; 
in this case there are 8 points and 4 model terms. 

Standard Error of Coefficients and t-Tests 

In previous sections we show how the designer of an experiment may exploit the 
notion of orthogonality to design a regression experiment with coefficients that 
attain minimum variance 011 a per cost basis. We should be able to make use 
of our exposure to regression in Section 12.4 to compute estimates of variances 
of coefficients and hence their standard errors. It is also of interest to note the 
relationship between the f-statistic on a coefficient, and the F-statistic described 
and illustrated in previous chapters. 

Recall from Section 12.4 that the variances and covariances of coefficients ap
pear on A~l, or in terms of present, notation, the variance-covariance matrix of 
coefficients is 

^ i - ' ^ ' f X ' X ) " 1 . 

In the case of 2k factorial experiment, the columns of X are mutually orthogonal, 
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imposing a very special structure. In general, for the 2k we can write 

Xl 

X = fl ± 1 
x2 

± 1 
Xk XlX 2 

± 1 ± 1 

where each column contains 2fr entries or 2kn, where n is the number of replicate 
runs at each design point. Thus formation of X 'X yields 

X 'X = 2knlp, 

where I is the identity matrix of dimension p, the number of model parameters. 

Example 15.5:1 Consieler a 23 with duplicated runs fit to the model 

E(Y) = t% + 3ixi + Q2x2 + f%xz + Sx2xx%2 + SxiXxx-i + Q2zx2xz. 

Give expressions for the standard errors of the least squares estimates of bo, bi, b2, 
&3: b\2, bi3, and b23. 

Solution: 
1 
1 
1 
1 
1 
1 
1 
1 

Xi 

- 1 
1 

- 1 
- 1 

1 
1 

- 1 
1 

X'2 

- 1 
- 1 

1 
- 1 

1 
- 1 

1 
1 

x-.i 
- 1 
- 1 
- 1 

1 
- 1 

1 
1 
1 

XiX2 

1 
- 1 
- 1 

1 
1 

- 1 
- 1 

1 

X1X3 

1 
- 1 

1 
- 1 
- 1 

1 
- 1 

1 

£2X3 
1 " 
1 

- 1 
- 1 
- 1 
- 1 

1 
1 

x = 

with each unit viewed as being repeated (i.e., each observation is duplicated). As 
a result. 

X 'X = I6I7. 

Thus 

( X ' X ) - = - I 7 . 

From the foregoing it should be clear that the variances of all coefficients for a 
2k factorial with n runs at each design point are 

"«%> = £ . 
and, of course, all covariances are zero. As a result, standard errors of coefficients 
are calculated as 

Sbj = s 
1 

2kn 

where s is found from the square root of the mean square error (hopefully, obtained 
from adequate replication). Thus in our case with the 23, 

« * = • ( * ) • 
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Example 15.6:1 Consider the metallurgy experiment Exercise 15.3 on page1 623. Suppose that the 
fitted model is 

E(Y) =3o + 3i.ri + 32x2 + p\xz + Ai£-i + finxix2 - f\z,x\x^ 

+ 0X4XXX4 + /323X2X3 + 324X2X4 + 3MXJX4-

What are the standard errors of the least squares regression coefficients? 
Solution: Standard errors of all coefficients for the 2k factorial are equal and are 

n~ 

which in this illustration is 

sbi (16)(2) 

In this case the pure mean square error is given by s = 2.46 (16 degrees of 
freedom). Thus 

sbi = 0.28. 

The: standard errors of coefficients can be used to construct ^-statistics on all 
coefficients. These t-values arc related to the ^-statistics in the analysis of variance. 
We have already demonstrated that an F-statistic on a inefficient, using the 2k 

factorial, is 

(contrast)2 

(2k)(„.)s2 • 

This is the form of the F-statistics em page 620 for the metallurgy experiment. 
(Exercise 15.3). It is easy to verify that if we write 

bj contrast. 
t = —. where bj = —-; , 

shi ' '' 2kn 

then 

2 (contrast)2 

'" = s22kn ~ J 
As a result, the- usual relationship holds between ^-statistics on coefficients and 
the F-values. As we might expect, the only- difference in the use of the t or F 
in assessing significance lies in the fact that the /-statistic indicates the sign or 
direction of the effect of the coefficient. 

It would appear that the 2 '̂ factorial plan would handle: many practical situa
tions in which regression models are fit. It can accommodate linear and interac
tion terms, providing optimal estimates of all coefficients (from a variance point, 
of view). However, when /,: is large, the number of design points required is very 
large. Often, portions of the total design can lie used and still allow orthogonality 
with all its advantages. The'se designs are discussed in Section 15.8, which follows. 
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A More Thorough Look at the Orthogonality P roper ty in the 2h Factorial 

We have learned that for the case of the 2* factorial all the information that is 
delivered to the analyst about the main effects and interactions are in the form 
of contrasts. These "2 fc_1 pieces of information" carry a single degree of freedom 
apiece and they are independent of each other. In an analysis of variance they 
manifest themselves as effects, whereas if a regression model is being constructed, 
the effects turn out to be regression coefficients, apart from a factor of 2. With 
either form of analysis, significance tests can be made and the f-tests for a given 
effect is numerically the same as that for the corresponding regression coefficient. 
In the case of the ANOVA, variable screening and scientific interpretation of inter
actions are important, whereas in the case of a regression analysis, a model may 
be used to predict response and/or determine which factor level combinations are 
optimum (e.g. maximize yield or maximum cleaning efficiency as in the case of the 
case study in Example 15.4). 

It turns out that the orthogonality property is important whether the analysis 
is to be ANOVA or regression. The orthogonality among the columns of X, the 
model matrix in, say, Example 15.5 provides special conditions that have an im
portant impact on the variance of effects or regression coefficients. In fact, 
it has already become apparent that the orthogonal design results in equality of 
variance for all effects or coefficients. Thus, in this way, the precision, for purposes 
of estimation or testing, is the same for all coefficients, main effects, or interac
tions. In addition, if the regression model contains only linear terms and thus only-
main effects are of interest, the following conditions result in the minimization of 
variances of all effects (or, correspondingly, first order regression coefficients). 

Conditions for If the regression model contains terms no higher than first order, and if the 
Minimum ranges on the variables are given by Xj € [—1,-1-1] for j = 1,2, ...,k, then 

Variances of Var(bj)/a2, for j = 1,2,.. . . k is minimized if the design is orthogonal and all 
Coefficients Xj levels in the design are at ±1 for i = 1,2,. . . , k. 

Thus, in terms of coefficients of model terms or main effects, orthogonality in 
the 2k is a very desirable property. 

Another approach to a better understanding of the "balance" provided by the 
23 can be seen graphically. Each of the contrasts that are orthogonal and thus 
mutually independent are shown graphically in Figure 15.10. Graphs are given 
showing the planes of the squares whose vertices contain the responses that are 
labeled "+" and are compared to those labeled "—." Those given in (a) show 
contrasts for main effects and should be obvious to the reader. Those in (b) show 
the planes representing "+" vertices and "—" vertices for the three two factor 
interaction contrasts. In (c) we see the geometric representation of the contrasts 
for the three factor (ABC) interaction. 

Center Runs with 2fc Designs 

In the situation in which the 2k design is implemented with continuous design 
variables and one is seeking to fit a linear regression model, the use of replicated 
runs in the design center can be extremely useful. In fact, quite apart from 
the advantages that will be discussed in what follows, a majority of scientists and 
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0 
( ^ -

—-?*) 

© 

B 
(a) Main effects 
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/v 
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sc 

(b) Two-factor interaction 
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o = -runs 

ABC 
(c) Three-factor interaction 

Figure 15.10: Geometric presentation of contrasts for the 23 factorial design. 

engineers would consider center runs (i.e., the runs at x, = 0 for i = l,2,...,k) 
as not only a reasonable practice but something that is intuitively appealing. In 
many areas of application of the 2k design the scientist desires to determine if he 
or she might, benefit from moving to a different region of interest in the factors. 
In many cases the center (i.e., the point (0 ,0 . . . . ,0) in the coded factors) is often 
either the current operating conditions of the process or at least those conditions 
that arc considered "currently optimum." So it is often the case that the scientist 
will require data in the response at the center. 

Center Runs and Lack of Fit 

In addition to the intuitive' appeal of the augmentation of the 2''' with center runs, 
a second advantage is enjoyed that relates to the: kind of model that is fit to the 
data. Consider for example the e:ase with k = 2 as illustrated in Figure 15.11. 
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+ 1 * 

00 

-1 » 

• • • 
(0,0) 

-1 
A(X,: 

Figure 15.11: A 22 design with center runs. 

It is clear that without the center runs the model terms are. apart from the 
intercept. x\, x2, xix2 . These account for the four model degrees of freedom de
livered by the four design points, apart from any replication. Since each factor has 
response information available only at two locations {—1,-1-1}, no "pure" second-
order curvature terms can be accommodated in the model (i.e, x2 or x2). But the 
information at (0,0) produces an additional model degree of freedom. While this 
important degree of freedom docs not allow both x\ and x2, to be used in the model, 
it does allow for testing the significance of a linear combination of x2 and x2. For 
ii,. center runs, there are then nc — 1 degrees of freedom available for replication 
or "pure" error. This allows an estimate of rr2 for testing the model terms and 
significance of the 1 el.f. for quadrat ic lack of fit. The concept here is very much 
like that, discussed in the lack-of-fit material in Chapter 11. 

In order to gain a complete understanding of how the lack-of-fit test works, 
assume that for k = 2 the t rue model contains the full second order complement 
of terms, including x2 and x2. In other words, 

E(Y) = p\ + p\xx + >hx2 + Si%xxx2 + 3u.vf + p\2x\. 

Now, consider the contrast 

ill - f f t ) , 

where §f is the average response: at the factorial locations and yo is the average 
response at the center point. It can be shown easily (see Review Exercise 15.50) 
that 

E(yj -yo) = Ai +#22, 

and, in fact for the general case with k factors 

E(5f-yo) = Y^$n-
i=i 
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As a result the lack-of-fit test is a simple /-test (or F = t2) with 

Vf - yo _ y~f -yo 
tnc-l 

Tij-yu y/MSE{l/nf + l/nc)" 

where nc is the number of factorial points and MSE is simply the sample variance 
of the response values at (0 ,0 . . . . , 0). 

Example 15.7:1 An example is taken from Myers and Montgomery (2002). A chemical engineer is 
attempting to model the percent conversion in a process. There are two variables 
of interest, reaction time and reaction temperature. In an attempt to arrive at the 
appropriate model, a preliminary experiment is conducted in a 22 factorial using 
the current region of interest in reaction time and temperature. Single runs were 
made at each of the four factorial points and 5 runs were made at the design center 
in order that a lack-of-fit test for curvature could be conducted. Figure 15.12 shows 
the design region and the experimental runs on yield. 

The time and temperature readings at the center are, of course, 35 minutes 
and 145°C. The estimates of the main effects and single interaction coefficient are 
computed through contrasts just as before. The center runs play no role in 
t h e compu ta t i on of b\, b2, and 612. This should be intuitively reasonable to 
the reader. The intercept is merely y for the entire experiment. This value is 
y = 40.4444. The standard errors are found through the use of diagonal elements 
of ( X ' X ) - 1 as discussed earlier. For this case 

Xi x 2 Xi.X2 

1 - 1 - 1 1 
1 - 1 1 - 1 
1 1 - 1 - 1 
1 1 1 1 

X = 1 0 0 0 
1 0 0 0 
1 0 0 0 
1 0 0 0 
1 0 0 0 

After the computations we have 

b0 = 40.4444, 61 = 0.7750, b2 = 0.3250, h2 = -0.0250, 

Sbo = 0.06231, 86, = 0.09347, sb.2 = 0.09347, sbli = 0.09347, 

tbo = 649.07 tbl = 8.29 tb2 = 3.48 tbl2 = 0.018, (P = 0.800). 

The contrast yf - y0 = 40.425 - 40.46 = -0.035 and the t-statistic that tests for 
curvature is given by 

t= / a - * * - 4 0 . 4 6 
^0.0430(1/4 + 1/5) 

As a result, it appears as if the appropriate model should contain only first-order 
terms (apart from the intercept). J 



638 Chapter 15 2 Factorial Experiments and Fractions 
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160" 

130° 139.3 

40.0 41.5 

40.3, 40.5, 40.7, 40.2, 40.6 

40.9 

- 1 I I 
30 min 40 min 

Time 

Figure 15.12: 22 factorial with 5 center runs. 

An Intuitive Look at the Test on Curvature 

If one considers the simple case of a single design variable with runs at — 1 and +1 . 
it. should seem clear that the average response at —1 and +1 should be close to the 
response at 0, the center, if the model is first order in nature. Any deviation would 
certainly suggest curvature. This is simple: to extend to two variables. Consider 
Figure 15.13. 

Responses at (0, 0) 

B(x2) 

A(xi) 

Figure 15.13: The 22 Factorial with runs at (0,0). 
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The figure shows the plane on y that passes through the factorial points. This 
is the' plane that would represent the' perfect fit for the model containing xi , x2, 
and xix2 . If the model contains no quadratic curvature (i.e., 3n = 322 = 0), we 
would expect, the: response1 at (0. 0) to lie at or near the plane. If the response is far 
away from the plane, as in the case of Figure 15.13, then it can be seen graphically 
that quadratic curvature is present. 

15.7 Factorial Experiments in Incomplete Blocks 

The 2 factorial experiment lends itself to partitioning into incomplete blocks. For 
a fe-factor experiment, it is often useful to use a elesign in 2'' blocks (p < k) when 
the entire 2* treatment combinations cannot, be applied under homogeneous con
ditions. The disadvantage with this experimental setup is that certain effects are 
completely sacrificed as a result of the blocking, the amount of sacrifice depending 
on the: number of blocks required. For example, suppose that the eight treatment 
combinations in a 2 factorial experiment must be run in two blocks of size 4. 
Suppose, in addition, that one is willing tei sacrifice the ABC interaction. Note 
the "contrast signs" in Tabic 15.5 on page 617. A reasonable arrangement is 

Block 

(1) 
ab 
OC 
be 

Block 2 

a 
b 
c 

abc 

Concept of Confounding 

If wc assume the usual model with the' additive bloc:k effect, this effect cancels out 
in the1 formation of the contrasts on all effects except ABC. To illustrate, let x 
denote the contribution to the: yield due to the difference between blocks. Writing 
the yields in the' elesign as 

Block 1 Block 2 

(1) 
0.1) 

ac 
be 

a + x 
b + X 
c + X 

abc + x 

wc see that the ABC contrast and also the contrast comparing the 2 blocks are 
both given by 

ABC contrast = (abc + x) + (c + x) + (b + x) + (a + x) - (I) 

= abc + a + b + c — (1) — ab — ac — be + 4x. 

ab be 

Therefore, we: arc measuring the ABC effect plus t h e block effect and there 
is no way of assessing the ABC interaction effect independent of blocks. We say 
then that the ABC interaction is completely confounded wi th blocks. By 
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necessity, information on ABC has been sacrificed. On the other hand, the block 
effect cancels out in the formation of all other contrasts. For example, the A 
contrast is given by 

A contrast = (abc + x) + (a + x) + ab + ac - (b + x) — (c + x) -be- (1) 

= abc + a + ab + ac — b — c — be — (1), 

as in the case of a completely randomized design. We say that the effects A, B, C, 
AB, AC, and BC are orthogonal to blocks. Generally, for a 2k factorial experiment 
in 21' blocks*, the number of effects confounded with blocks is 2P — 1, which is 
equivalent to the degrees of freedom for blocks. 

2k Factorial in Two Blocks 

When two blocks are to be used with a 2k factorial, one effect, usually a high-order 
interaction, is chosen as the defining contrast. This effect is to be confounded 
with blocks. The additional 2k — 2 effects are orthogonal with the defining contrast 
and thus with blocks. 

Suppose that we represent the defining contrast as A^'1 B~<2 C73 • • • , where 7 
either 0 or 1. This generates the expression 

is 

L = 71 + 72 + 7ft, 

which in turn is evaluated for each of the 2k treatment combinations by setting 
7i equal to 0 or 1 according to whether the treatment combination contains the 
'ith factor at its high or low level. The L values are then reduced (modulo 2) to 
either 0 or 1 and thereby determine to which block the treatment combinations are 
assigned. In other words, the treatment combinations are divided into two blocks 
according to whether the L values leave a remainder of 0 or 1 when divided by 2. 

Example 15.8:1 Determine the values of L (modulo 2) for a 23 factorial experiment when the 
defining contrast is ABC. 

Solution: With ABC the defining contrast, we have 

L = 71 +72 +73 , 

which is applied to each treatment combination as follows: 

(1): 
a: 
b: 

ab: 
c: 

ac: 
be: 

abc: 

L = 0 + 0 + 0 = 0 = 0 
L=1+0+0=1=1 
£ = 0 + 1 + 0 = 1 = 1 
L=1+1+0=2=0 
L = 0 + 0 + l = 1 = 1 
L=1+0+1=2=0 
L = 0 + 1 + 1 = 2 = 0 
L=1+1+1=3=1 

(modulo 2) 
(modulo 2) 
(modulo 2) 
(modulo 2) 
(modulo 2) 
(modulo 2) 
(modulo 2) 
(modulo 2). 

The blocking arrangement, in which ABC is confounded, is as before, 



15.7 Factorial Experiments in Incomplete Blocks 641 

Block 1 

(1) 
ab 
ac 
be 

Block 2 

a 
b 
c 

abc 

The A, B, C, AB, AC, and BC effects and sums of squares are computed in the 
usual way, ignoring blocks. 

Notice that this arrangement is the same blocking scheme that would result 
from assigning the ' ;+" sign factor combinations for the ABC contrast to one 
block and the "—" sign factor combinations for the ABC contrast to the other 
block. 

The block containing the treatment combination (1) this example is called the 
principal block. This block forms an algebraic group with respect to multipli
cation when the exponents are reduced to the modulo 2 base. For example, the 
property of closure holds, since 

(ab)(bc) = ab2c = ac, (ab)(ab) = a2b2 = (1), 

and so forth. J 

2k Factorial in Four Blocks 

If the experimenter is required to allocate the treatment combinations to four 
blocks, two defining contrasts are chosen by the experimenter. A third effect, known 
as their generalized interaction, is automatically confounded with blocks, these 
three effects corresponding to the three degrees of freedom for blocks. The proce
dure for constructing the design is best explained through an example. Suppose it 
is decided that for a 24 factorial AB and CD are the defining contrasts. The third 
effect confounded, their generalized interaction, is formed by multiplying together 
the initial two modulo 2. Thus the effect 

(AB)(CD) = ABCD 

is also confounded with blocks. We construct the design by calculating the expres
sions 

Lx = 71 + 72 

E2 = 73 + 7i 

(AB), 

(CD) 

modulo 2 for each of the 16 treatment combinations to generate the following 
blocking scheme: 

Block 1 

(1) 
ab 
cd 

abed 

Block 2 

a 
b 

acd 
bed 

Block 3 

c 
abc 
d 

abd 

Block 4 

ac 
be 
ad 
bd 

Lx = 0 
L2 = 0 

Li = l 
L2 = 0 

Lx = 0 
L2 = l 

Li = l 
L2 = 1 
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A shortcut procedure can be used to construct the remaining blocks after the 
principal block has been generated. Wc begin by placing any treatment combina
tion not in the principal block in a second block and build the block by multiplying 
(modulo 2) by the treatment combinations in the principal block. In the preceding 
example the second, third, and fourth blocks are generated as follows: 

Block 2 

a(l) = a 
o.(ab) = b 

a(cd) = acd 
a(abcd) = bed 

Block 3 

c(l) = 
ciab) = 
c(cd) 

c(abcd) 

- c 
abc 

= d 
= abd 

Block 4 

ac(l) = 
ac(ab) = 
ac(cd) = 

ac(abcd) 

ac 
•-be 
ad 

= bd 

The analysis for the case of four blocks is quite simple. All effects that are 
orthogonal to blocks (those other than the defining contrasts) are computed in the 
usual fashion. 

2k Factorial in 2P Blocks 

The general scheme for the 2k factorial experiment in 2P blocks is not difficult. 
We select p defining contrasts such that none is the generalized interaction of any 
two in the group. Since there are 2P — 1 degrees of freedom for blocks, we have 
2P - 1 — p additional effects confounded with blocks. For example, in a 26 factorial 
experiment in eight blocks, we might choose ACF, BCDE, and ABDF as the 
defining contrasts. Then 

(ACF)(BCDE) = ABDEF, 

(ACF)(ABDF) = BCD, 

(BCDE)(ABDF) = ACEF, 

(ACF)(BCDE)(ABDF) = E 

are the additional four effects confounded with blocks. This is not a desirable 
blocking scheme, since one of the confounded effects is the main effect E. The 
design is constructed by evaluating 

Lx = 7i + 73 + 76, 

L2 = 72 + 73 + 74 + 75) 

£3 = 7i + 7a + 74 + 76 

and assigning treatment in combinations to blocks according to the following 
scheme: 

Block 1: Lx = 0, L2= 0, L3 = 0 

Block 2: L] = 0, L2= 0, L3 = 1 

Block 3: L i = 0 , L2= 1, L3 = 0 

Block 4: L i = 0 , L2= 1, L3 = 1 

Block 5: Lx = 1, L2= 0, L3 = 0 

Block 6: Lx = 1, L 2= 0, L3 = 1 
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Block 7: Lx = 1, L2= 1, Lj, = 0 

BlockS: £i = 1, L 2 = 1, L3 = 1. 

The shortcut procedure that was illustrated for the case of four blocks also applies 
here. Hence we can construct the remaining seven blocks from the principal block. 

Example 15.9:1 It is of interest to study the effect of five factors on some response with the assump
tion that interactions involving three, four, and five of the factors are negligible. 
We shall divide the 32 treatment combinations into four blocks using the defining 
contrasts BCDE and ABCD. Thus 

(BCDE)(ABCD) = AE 

is also confoundeel with blocks. The experimental design and the observations are 
given in Table 15.9. 

Table 15.9: Data for a 25 Experiment in Four Blocks 

Block 1 

(1) = 30.6 
tbc = 31.5 
bd = 32.4 
cd = 31.5 

abe = 32.8 
ace = 32.1 
ade = 32.4 

abcde = 31.8 

Block 2 

a = 32.4 
abc = 32.4 
abd = 32.1 
acd = 35.3 
be = 31.5 
ce = 32.7 
de = 33.4 

bcde = 32.9 

Block 3 

/; = 32.6 
c = 31.9 
d = 33.3 

bed = 33.0 
ae = 32.0 

abce = 33.1 
abde = 32.9 
acde = 35.0 

Block 4 

e = 30.7 
bee = 31.7 
bde = 32.2 
cde = 31.8 
ab = 32.0 
ac = 33.1 
ad = 32.2 

abed = 32.3 

The allocation of treatment combinations to experimental units within blocks 
is, of course, random. By pooling the unconfounded three-, four-, and five-factor 
interactions to form the error term, perform the analysis of variance for the data 
of Table 15.9. 

Solution: The sums of squares for each of the 31 contrasts are computed and the block sum 
of squares is found to be 

SS(blocks) = SS(ABCD) + SS(BCDE) + SS(AE) = 7.538. 

The analysis of variance is given in Table 15.10. None of the two-factor interactions 
are significant at the a = 0.05 level when compared to /o.05(1-14) = 4.60. The 
main effects A and D are significant and both give positive effects on the response 
as we go from the low to the high level. _l 

Partial Confounding 
It is possible to confound any effect with blocks by the methods described in Section 
15.7. Suppose that we consider a 23 factorial experiment in two blocks with three 
complete replications. If ABC is confounded with blocks in all three replicates, we 
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Table 15.10: Analysis of Variance for the Data of Table 15.9 

Source of 
Variation 
Main effect: 

A 
B 
C 
D 
E 

Two-factor interaction: 
AB 
AC 
AD 
BC 
BD 
BE 
CD 
CE 
DE 

Blocks (ABCD, 

Error 

BCDE,AE): 

Sum of 
Squares 

3.251 
0.320 
1.361 
4.061 
0.005 

1.531 
1.125 
0.320 
1.201 
1.711 
0.020 
0.045 
0.001 
0.001 
7.538 

7.208 

Degrees of 
Freedom 

1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
3 

14 

Mean 
Square 

3.251 
0.320 
1.361 
4.061 
0.005 

1.531 
1.125 
0.320 
1.201 
1.711 
0.020 
0.045 
0.001 
0.001 
2.513 

0.515 

Computed 
/ 

6,32 
0.62 
2.64 
7.89 
0.01 

2.97 
2.18 
0.62 
2.33 
3.32 
0.04 
0.09 
0.002 
0.002 

can proceed as before and determine single-degree-of-freedom sums of squares for 
all main effects and two-factor interaction effects. The sum of squares for blocks 
has 5 degrees of freedom, leaving 23 — 5 — 6 = 12 degrees of freedom for error. 

Now let us confound ABC in one replicate, AC in the second, and BC in the 
third. The plan for this type of experiment would be as follows: 

Block Block Block 
1 2 1 2 1 2 

abc 
a 
b 
c 

ab 
0.C 

be 

(1) 

abc 
ac 
b 

(1) 

ab 
be 
a 
c 

abc 
be 
a 

(1) 

ab 
ac 
b 
c 

Replicate 1 
ABC Confounded 

Replicate 2 
AC Confounded 

Replicate 3 
BC Confounded 

The effects ABC, AC, and BC are said to be partially confounded with 
blocks. These three effects can be estimated from two of the three replicates. The 
ratio 2/3 serves as a measure of the extent of the confounding. This ratio gives the 
amount of information available on the partially confounded effect relative to that 
available on an unconfounded effect. 

The analysis-of-variance layout is given in Table 15.11. The sums of squares 
for blocks and for the unconfounded effects A, B, C, and AB are found in the 
usual way. The sums of squares for AC, BC, and ABC are computed from the 
two replicates in which the particular effect is not confounded. Wc must be careful 
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to elivide by 16 instead of 24 when obtaining the sums of squares for the partially 
confounded effects, since we are only using 16 observations. In Table 15.11 the 
primes are inserted with the degrees of freedom as a reminder tha t these effects 
are partially confounded and require special calculations. 

Table 15.11: Analysis of Variance with Part ia l Confounding 

Source o f Var iat ion D e g r e e s o f F r e e d o m 

B l o c k s 

A 
B 

C 
AB 

AC 

BC 

ABC 
Error 

Total 

1 
1 
1 
1 
1' 
1' 
l' 
11 

23 

Exercises 

15.13 In a 2'1 factorial experiment with 3 replications, 
show the block arrangement and indicate by means of 
tin analysis-of-variance table the effects to be tested 
and their degrees of freedom, when the AB interaction 
is confounded with blocks. 

15.14 The following experiment was rnn to study 
main effects and all interactions. Four factors are used 
at two levels each. The experiment is replicated and 
two blocks are necessary in each replication. The data 
are presented here. 

(a) What effect is confounded with blocks in the first 
replication of the experiment? In the second repli
cation? 

(h) Conduct an appropriate analysis of variance show
ing tests on all main effects and interaction effects. 
Use a 0.05 level of significance. 

Replicate 1 Replicate 2 
Block 1 

(1) = 17.1 
d = 16.8 

ab = 16.4 
ac = 17.2 
6c = 16.8 

abd = 18.1 
acd= 19.1 
bed = 18.4 

Block 2 
a = 15.5 
b = 14.8 
c = 16.2 

ad = 17.2 
bd = 18.3 
cd = 17.3 

abc = 17.7 
abed =19.2 

Block 3 
(1) = 18.7 
ab = 18.6 
ac = 18.5 
ad = 18.7 
be = 18.9 
bd = 17.0 
cd = 18.7 

abed = 19.8 

Block 4 
a = 17.0 
b= 17.1 
c= 17.2 
d = 17.6 

abc = 17.5 
abd = 18.3 
acd= 18.4 
bcd= 18.3 

15.15 Divide the treatment combinations of a 24 fac
torial experiment into four blocks by confounding ABC 
and ABD. What additional effect is also confounded 
with blocks? 

15.16 An experiment is conducted to determine the 
breaking strength of a certain alloy containing five met
als, A, B, C, D, and E. Two different percentages 
of each metal are used in forming the 25 = 32 differ
ent alloys. Since only eight alloys can be tested on a 
given day, the experiment is conducted over a period 
of 4 days during which the ABDE and the AE effects 
were confounded with days. The experimental data are 
given here. 

(a) Set. up the blocking scheme for the 4 days. 
(b) What additional effect is confounded with days? 
(c) Obtain the sums of squares for all main effects. 

Treat. 
Comb. 

0) 
a 
h 
ab 
c. 
ac. 

Breaking 
Strength 

21.4 
32.5 
28.1 
25.7 
34.2 
34.0 

Treat. 
Comb. 

e 
ae 
be 
a.l>e 
ce 
ace 

Breaking 
Strength 

29.5 
31.3 
33.0 
23.7 
26.1 
25.9 
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Treat. 
Comb. 

be 
abc 
d 
ad 
bd 
abd 
cd 
acd 
bed 
abed 

Breaking 
Strength 

23.5 
24.7 
32,6 
29.0 
30.1 
27.3 
22.0 
35.8 
26.8 
36.4 

Treat. 
Comb. 
bee 
abce 
de 
ade 
bde 
abdc 
cde 
acde 
bede 
abede 

Break ing 
S t r eng th 

35.2 
30.4 
28.5 
36.2 
24.7 
29.0 
31.3 
34.7 
26.8 
23.7 

15.17 By confounding ABC in two replicates and 
AB in the third, show the block arrangement and the 
analysis-of-variance table for a 2'' factorial experiment 
with three replicates. What is the relative information 
on the confounded effects? 

15.18 The following coded data represent the 
strength of a certain type of bread-wrapper stock pro
duced under 16 different conditions, the latter repre
senting two levels of each of four process variables. An 
operator effect was introduced into the model, since 
it was necessary to obtain half the experimental runs 
under operator 1 and half under operator 2. It. was felt 
that operators do have an effect, on the quality of the 
product. 

(a) Assuming that all interactions are negligible, make 
significance tests for the factors A, B, C, and D. 
Use a 0.05 level of significance. 

(b) What interaction is confounded with operators? 

Operator 1 

(1) = 18.8 
ab = 16.5 
ac = 17.8 
be = 17.3 
d = 1 3 . 5 

abd= 17.6 
acd = 18.5 
bed = 17.6 

Operator 2 

a= 14.7 
6=15 .1 
c = 14.7 

afcc = 19.0 
ad = 16.9 
bd= 17.5 
cd = 18.2 

abed =20.1 

15.19 Consider a 25 experiment where the experi
mental runs are on 4 different machines. Use the ma
chines as blocks, and assume that all main effects and 
two-factor interactions may be important. 

(a) Which runs would be made on each of the 4 ma
chines? 

(b) Which effects are confounded with blocks? 

15.20 An experiment is revealed in Myers and Mont
gomery (2002) in which optimum conditions are sought 
storing bovine semen to obtain maximum survival. 
The variables are percent sodium citrate, percent glyc

erol, and equilibration time in hours. The response is 
percent survival of the motile spermatozoa. The natu
ral levels arc found in the above reference. Below are 
the data with coded levels for the factorial portion of 
the design and the center runs. 

xi, Percent x2 X3 
Sodium Percent Equilibration % 
Citrate Glycerol Time Survival 

-1 
1 

-1 
1 

-1 
1 

-1 
1 
0 
0 

- 1 
- 1 

1 
1 

- 1 
- 1 

1 
1 
0 
0 

0 / 
40 
19 
40 
54 
41 
21 
43 
63 
61 

(a) Fit a linear regression model to the data and deter
mine which linear and interaction terms are signif
icant. Assume that the :cti2a;3 interaction is neg
ligible. 

(b) Test for quadratic lack of fit and comment. 

15.21 Oil producers are interested in high strength-
nickel alloys that are strong and corrosion resistant. 
An experiment conducted in which yield strengths were 
compared for nickel alloy tensile specimens charged in 
sulfuric acid solution saturated with carbon disulfide. 
Two alloys were combined; a 75% nickel composition 
and a 30% nickel composition. The alloys were tested 
under two different charging times, 25 and 50 days. A 
23 factorial was conducted with the following factors 

% sulfuric acid 4%, 6%: (xi) 

charging time 25 days, 50 days: (#2) 

nickel composition 30%, 75%: (2:3) 

A specimen was prepared for each of the eight con
ditions. Since the engineers were not certain of the 
nature of the model (i.e., whether or not quadratic 
terms would be needed), a third level (middle level) 
was incorporated and four center runs were employed 
using four specimens at 5% sulfuric acid, 37.5 days, 
and 52.5% nickel composition. The following are the 
yield strengths in kilograms per square inch. 

Charging Time 
25 Days 50 Days 

Nickel Sulfuric Acid 
Comp. 

Sulfuric Acid 
4% 6% 4% 6% 

75% 
30% 

52.5 
50.2 

56.5 
50.8 

47.9 
47.4 

47.2 
41.7 

The center runs give the following strengths: 

51.6, 51.4, 52.4, 52.9 
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Figure 15.14: Graph for Exercise: 15.23. 

(a) Test to determine which main effects and interac
tions should be involved in the fitted model. 

(b) Test for quadratic curvature. 
(c) If quadratic curvature is significant, how many 

additional elesign points are needed to determine 
which quadratic terms should be included in the 
model? 

15.22 Suppose a second replicate of the experiment 
in Exercise 15.19 e:e>tild be performed. 
(a) Would a second replication of the blocking scheme 

of Exercise 15.19 be the best choice? 
(b) If the answer to part (a) is no, give the layout for 

a better choice for the second replicate. 
(c) What concept did you use in your ele'sign selection? 

15.23 Consider Figure 15.14, which represents a 2" 
factorial with 3 center runs. If quadratic curvature 
is significant what additional design points would you 
select that might allow the estimation of the terms 
a;?,arf? Explain. 

15.8 Fractional Factorial Experiments 

The 2k factorial experiment can become1 quite: demanding, in terms of the number 
of experimental units required, when k is large. One of the real advantages with 
this experimental plan is that it allows a degree of freedom for each interaction. 
However, in many experimental situations, it is known that certain interactions are 
negligible, and thus it would be a waste of experimental effort to use the complete 
factorial experiment. In fact, the experimenter may have an economic constraint 
that disallows taking observations at all of the 2 t reatment combinations. When fc 
is large, we can often make use of a f r a c t i o n a l f a c t o r i a l e x p e r i m e n t where per
haps one-half, one-fourth, or even one-eighth of the total factorial plan is actually 
carried out . 

Construction of \ Fraction 

The construction of the half-replicate design is identical to the allocation of the 
2k factorial experiment into two blocks. We' begin by selecting a defining contrast 
tha t is to be completely sacrificed. We then construct the two blocks accordingly 
and choose either of them as the experimental plan. 
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A 1 fraction of a 2* factorial is often referred to as a 2k~l design, the latter 
indicating the number of design points. The first illustration of a 2k~l is a ^ of 
23 or a 2 3 _ 1 design. In other words, the scientist or engineer cannot use the full 
complement (i.e.. the full 23 with 8 design points) and hence must settle for a 
elesign with only 4 elesign points. The question is, of the design points (1), a, b, ab, 
ac, c, be, and abc, which four design points would result in the most useful design? 
The answer, along with the important concepts involved, appears in the table of 
+ and — signs displaying contrasts for the full 23. Consider Table 15.12. 

Table 15.12: Contrasts for the Seven Available Effects for a 2:1 Factorial Experiment 

23-1 

2 3 - l 

Treatment 
Combination 

a 

b 
c 

abc 
ab 
ac 

be 

(1) 

J 

+ 
+ 

+ 
T 

+ 
+ 
+ 
+ 

A 

+ 
-
-
+ 
+ 
+ 
-
-

B 
-
+ 
-
+ 
+ 
-

+ 
-

C 
-
-
+ 
+ 
-
+ 
+ 
-

Effects 

AB 
-
-
+ 
+ 
+ 
-
-
+ 

AC 
-
+ 
-
+ 
-

+ 
-
+ 

BC 
+ 
-
-
+ 
-
-
+ 
+ 

ABC 
+ 
+ 
+ 
+ 
-
-
-
-

Aliases in the 2 

Note that the two \ fractions are {a,b, c, abc} and {ab, ac, be, (1)}. Note also 
from Table 15.12 that in both designs ABC has no contrast but all other effects 
do have contrasts. In one of the fractions we have ABC containing all + signs and 
in the other fraction the ABC effect contains all - signs. As a result, we say that 
the top design in the table is described by ABC = I and the bottom design by 
ABC =—I. The interaction ABC is called the design generator and ABC = I 
(or ABC = -I for the second design) is called the denning relation. 

3 - 1 

If we focus on the ABC = / design (the upper 23_1) it becomes apparent that 
six effects contain contrasts. This produces the initial appearance that all effects 
can be studied apart from ABC. However, the reader can certainly recall that 
with only four design points, even if points are replicated, the degrees of freedom 
available (apart from experimental error) are 

Regression model terms 3 
Intercept 1 

~4~ 

A closer look suggests that, the seven effects are not orthogonal and in fact, each 
contrast is represented in another effect. In fact, using = to signify identical 
contrasts we have 

A s BC; B = AC: C = AB. 
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As a result, within a pair an effect cannot be estimated independent of its alias 
"partner." In fact, the effects 

o + abc — b — c 
and BC = 

a + abc -b—c 

will produce the same numerical result and thus contain the same information. 
In fact, it is often said that they share a degree of freedom. In truth, the 
estimated effect actually estimates the sum, namely A + BC. We say that A and 
BC are aliases, B and AC are aliases, and C and AB are aliases. 

For the ABC = — I fraction we can observe that the aliases are the same as 
those for the ^4f?C = / fraction, apart from sign. Thus we have 

A = -BC; B = -AC; C = -AB. 

The two fractions appear on corners of the cube in Figure 15.15(a) and 15.15(b). 

c 

b 
a 

S^abc 

C 

^ b c 
ac 

ab/' 

(a) The ABC = I fraction (b) The ABC = -I fraction 

Figure 15.15: The \ fractions of the 23 factorial. 

How Aliases Are Determined in General 

In general, for a 2fc_1, each effect, apart from that defined by the generator, will 
have a single alias partner. The effect defined by the generator will not be aliased by 
another effect but rather is aliased with the mean since the least squares estimator 
will be the mean. To determine the alias for each effect, one merely begins with the 
defining relation, say ABC = / for the 2 3 _ 1 . Then to find, say, the alias for effect 
A, multiply .4 by both sides of the equation ABC = / and reduce any exponent 
by modulo 2. For example 

A • ABC = A, thus BC = A. 

In a similar fashion, 

B = B • ABC = AB2C = AC, 
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and. of course, 

C = C- ABC = ABC2 = AB. 

Now for the second fraction (i.e., defined by the relation ABC = —/), 

A = -BC; B = -AC; C = -AB. 

As a result, the numerical value of effect A is actually estimating A—BC. Similarly, 
the value of B estimates B — AC and the value for C estimates C — AB. 

Formal Construction of the 2 k-l 

A clear understanding of the concept of aliasing makes it very simple to understand 
the construction of the 2k_1. We begin with investigation of the 2 3 _ 1 . There are 
three factors and four design points required. The procedure begins with a full 
factorial in k - 1 = 2 factors A and B. Then a third factor is added according 
to the desired alias structures. For example, with ABC as the generator, clearly 
C = ± AB. Thus, C = AB or -AB is found to supplement the full factorial in A 
and B. Table 15.13 illustrates what is a very simple procedure. 

Table 15.13: Construction of the Two 2 3 _ 1 Designs 

Basic 22 

A B 

+ 
+ 

+ + 

2:i 

A 

+ 
-
+ 

-l. 

B 

— 

+ 
j . 

ABC 
C-

t I 
= AB 

+ 

-
+ 

2 3 - 1 ; . 
A B 

+ -
- + 
+ + 

ABC 
C = 

= - J . 
: -AB 

+ 
+ 
-

Note that we saw earlier that ABC = I gives the design points a, b, c, and abc 
while ABC = —I gives (1), ac, be, and ab. Earlier we were able to construct the 
same designs using the table of contrasts in Table 15.12. However, as the design 
becomes more complicated with higher fractions, these contrast tables become 
more difficult to deal with. 

Consider now a 2 4 - 1 (i.e., a ^ of a 24 factorial design) involving factors A, B, 
C, and D. As in the case of the 2 3 _ l , the highest-order interaction, in this case 
ABCD, is used as the generator. We must keep in mind that ABCD = / , the 
defining relation suggests that the information on ABCD is sacrificed. Here we 
begin with the full 23 in A, B, and C and form D = ± ABC to generate the two 
2 4 _ 1 designs. Table 15.14 illustrates the construction of both designs. 

Here, using the notations of a, b, c, and so on, we have the following designs: 

ABCD = I, (1), ad, bd, ab, cd, ac, be, abed 

ABCD = —/, d, a, b, abc, c, acd, bed, abc. 

The aliases in the case of the 2'1_1 are found as illustrated earlier for the 2 3 _ 1 . 
Each effect has a single alias partner and is found by multiplication via the use of 
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Table 15.14: Construction of the Two 2 4 _ 1 Designs 

Basic 23 

A B 

+ -
- + 
+ + 
- -

+ -
- + 
+ + 

C 

— 
-
-

+ 
+ 
+ 
+ 

A 

+ 
-
+ 
-
+ 
-

+ 

24-1. 

B 

— 

+ 
+ 
-
-

+ 
+ 

;ABCD 

C 

_ 
-
-

+ 
4-

+ 
+ 

D = 

= 1 

= ABC 

+ 
+ 
-

+ 
-
-

+ 

A 

+ 
-
+ 
-
+ 
-

+ 

2 4 - 1 ; 

B 

_ 

T 

+ 
-
-
+ 
+ 

ABCD = 

C 

— 
-
-
j _ 

+ 
+ 
+ 

D = 

: -I 

-ABC 

+ 

-
+ 
-
+ 
+ 
-

the defining relation. For example, the alias for .4 for the ABCD = / design is 
given by 

A = A • ABCD = A2 BCD = BCD. 

The alias for AB is given by 

AB = AB • ABCD = A2B2CD = CD. 

As we can observe easily, main effects are aliased with three factor interactions and 
two factor interactions are aliased with other two factor interactions. A complete 
listing is given by 

A = BCD AB = CD 

B = ACD AC = BD 

C = ABD AD = BC 

D = ABC. 

Construction of the \ Fraction 

In the case of the 4 fraction, two interactions are selected to be sacrificed rather 
than one, and the third results from finding the generalized interaction of the 
selected two. Note that this is very much like the construction of four blocks 
discussed in Section 15.7. The fraction used is simply one of the blocks. A simple 
example aids a great deal in seeing the connection to the construction of the 5 
fraction. Consider the construction of \ of a 25 factorial (i.e., a 25~2), with factors 
A, B, C, D, and E. One procedure that avoids the confounding of two main 
effects is the choice of ABD and ACE as the interactions that correspond to the 
two generators, giving ABD = / and ACE = / as the defining relations. The 
third interaction sacrificed would then be (ABD)(ACE) = A2BCDE = BCDE. 
For the construction of the design, we begin with a 2 5 - 2 = 23 factorial in A, B, 
and C. We use the interactions ABD and ACE to supply the generators, so the 
23 factorial in A, B, and C is supplemented by factor D = ± AB and E = ± AC. 
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Thus one of the fractions is given by 

A 
-

+ 
-

+ 
-
+ 
-

+ 

B 
-
-

+ 
+ 
-
-
+ 
+ 

C 
-
-
-
-

+ 
+ 
+ 
+ 

D = AB 
_i_ 

-
— 

+ 
+ 
-
-

+ 

E = AC 

+ 
-
+ 
-
-

+ 
-
+ 

de 
a 
be 
abd 
cd 
ace 
be 
abode 

The other three fractions are found by using the generator {D = —AB, E = AC}, 
{D = AB.E = -AC}, and {D = -AB,E = -AC}. Consider an analysis of the 
above 25~2 design. It contains 8 design points to study five factors. The aliases 
for main effects are given by 

A(ABD) = BD: A(ACE) = CE, A(BCDE) = ABCDE 

B = AD = ABCE = CDE 

C = ABCD =AE = BDE 

D = AB = ACDE = BCE 

E = ABDE =AC = BCD 

Aliases for other effects can be found in the same fashion. The breakdown of 
degrees of freedom is given by (apart from replication) 

Main effects 
Lack of fit 
Total 

5 
_2_ 
7 

(CD = BE, BC = DE) 

We list interactions only through degree two in the lack of fit. 

Consider now the case of a 2 6 - 2 , which allows 16 elesign points to study six 
factors. Once again two design generators are chosen. A pragmatic choice to 
supplement a 2G _ 2 = 24 full factorial in A, B, C, and D is to use E = ± ABC and 
F = ±BCD. The construction is given in Table 15.15. 

Obviously, with 8 more design points than the 2 5 - 2 , the aliases for main effects 
will not present as difficult a problem. In fact, note that with defining relations 
ABCE = ± I, BCDF = ±1, and (ABCE)(BCDF) = ADEF = ± I, main 
effects will be aliased with interactions that are no less complex than those of third 
order. The alias structure for main effects is written 

A= BCE = ABCDF = DEF, 

B= ACE = CDF = ABDEF, 

C= ABE = BDF = ACDEF. 

D = ABCDE = BCF = AEF, 

E = ABC = BCDEF = ADF, 

F = ABCEF = BCD = ADE. 
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Table 15.15: A 2l'~2 Design 

A 
— 
+ 
-
+ 
-
+ 
-
+ 
-
+ 
-
+ 
-
+ 
-
+ 

B 
— 
-
+ 
+ 
-
-
+ 
+ 
-
-
+ 
+ 
-
-
+ 
+ 

C 
— 
-
-
-
+ 
+ 
+ 
+ 
-
-
-
-
+ 
+ 
+ 
+ 

D 
— 
-
-
-
-
-
-
-
+ 
+ 
+ 
+ 
+ 
+ 
j -

+ 

E = ABC 
— 
+ 
+ 
-
+ 
-
-
— 
-
+ 
+ 
-
+ 
-
-
+ 

F = BCD 
— 
-
+ 
+ 
+ 
+ 
-
-
+ 
+ 
-
-
-
-
+ 
+ 

Treatment 
Combination 

(1) 
ae 
bef 
abf 
cef 
acf 
be 
abce 
df 
adef 
bde 
abd 
cde 
acd. 
bcdf 
abcdef 

each with a single degree of freedom. For the two-factor interactions, 

AB= CE - ACDF = BDEF, AF = BCEF = ABCD = DE, 

AC= BE s ABDF = CDEF, BD = ACDE = CF = ABEF, 

AD= BCDE = ABCF = EF, BF = ACEF = CD = ABDE, 

AE= BC = ABCDEF = DF. 

Here, of course, there is some aliasing among the two-factor interactions. The 
remaining 2 degrees of freedom are accounted for by the following groups: 

ABD = CDE = ACF = BEF, ACD = BDE = ABF = CEF. 

It becomes evident that we should always be aware of what the alias structure 
is for a fractional experiment before we finally recommend the experimental plan. 
Proper choice of defining contrasts is important, since it dictates the alias structure. 

15.9 Analysis of Fractional Factorial Experiments 

The difficulty of making formal significance tests using data from fractional factorial 
experiments lies in the determination of the proper error term. Unless there are 
data available from prior experiments, the error must come from a pooling of 
contrasts representing effects that are presumed to be negligible. 

Sums of squares for individual effects are found by using essentially the same 
procedures given for the complete factorial. We can form a contrast in the treat
ment combinations by constructing the table of positive and negative signs. For 
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example, for a half-replicate of a 23 factorial experiment with ABC the defining 
contrast, one possible set of treatment combinations, the appropriate algebraic sign 
for each contrast used in computing effects and the sums of squares for the various 
effects are presented in Table 15.16. 

Table 15.16: Signs for Contrasts in a Half-Replicate of a 23 Factorial Experiment 

Treatment 
Combination 

Factorial Effect 
B AB AC BC ABC 

a 
b 
c 
abc 

+ 

+ + 

+ 
+ 

+ 

+ 

+ 
+ 
+ 
+ 

Note that in Table 15.16 the A and BC contrasts are identical, illustrating the 
aliasing. Also, B — AC and C = AB. In this situation we have three orthogonal 
contrasts representing the 3 degrees of freedom available. If two observations are 
obtained for eae:h of the four treatment combinations, we would then have an 
estimate of the error variance with 4 degrees of freedom. Assuming the interaction 
effects to be negligible, we could test all the main effects for significance. 

An example effect and corresponding sum of squares is 

A = 
•b — c + abc 

SSA = 
(a — b — c + abc)2 

2n ' 22n 
In general, the single-degree-of-freedom sum of squares for any effect in a 2~v 

fraction of a 2k factorial experiment (p < A:) is obtained by squaring contrasts in 
the treatment totals selected and dividing by 2k~''n, where n is the number of 
replications of these treatment combinations. 

Example 15.10:1 Suppose that we wish to use a half-replicate to study the effects of five factors, each 
at two levels, on some response and it is known that whatever the effect of each 
factor, it will be constant for each level of the other factors. In other words, there 
are no interactions. Let. the defining contrast be ABCDE, causing main effects 
to be aliased with four factor interactions. The pooling of contrasts involving 
interactions provides 15 — 5 = 10 degrees of freedom for error. Perform an analysis 
of variance on the data in Table 15.17, testing all main effects for significance at 
the 0.05 level. 

Solution: The sums of squares and effects for the main effects arc 

SSA = 
(11.3 - 15.6 14.7 + 13.2)2 (-17.5)2 

25-1 16 
17.5 

SSB 

-2.19. 

(-11.3 + 15.6 14.7 + 13.2)2 (18.1)2 

0 5 - 1 16 
B = ± | ! = 2.26, 

SSC: 
(-11.3 - 15.6 + • • • + 14.7 4- 13.2)2 (10.3)2 

2 5 - l 16 

= 19.14, 

= 20.48, 

6.63, 
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Table 15.17: Data for Example 15.10 

Trea tmen t Response Trea tmen t Response 

a 
b 
c 
d 
e 
abc 
abd 
acd 

C7=3$a = 1.31, 

?<T ( " U ' 3 ~ 

D = =$Z = -0.96. 

5S(E) ( _ 1 L 3 

•5.5 -̂Cj — 

E = M = l .ll. 

15.6 

- 15. 

11.3 
15.6 
12.7 
10.1 
9.2 

11.0 
8.9 
9.6 

bed 
abc 
ace 
adc 
bee 
bde 
ale 
abode 

+ 14.7 + 13.2)2 

25-1 

6 
2 5 - l 

+ 14.r • + 13.2)2 

14.1 
14.2 
11.7 
9.4 

16.2 
13.9 
14.7 
13.2 

<-f=,n 

- • 7 — 

All other calculations and tests of significance are summarized in Table 15.18. 
The tests indicate that factor A has a significant, negative effect on the response, 
whereas factor B lias a significant, positive effect. Factors C, D, and E are not 
significant at the 0.05 level. J 

Table 15.18: Analysis of Variance for the Data of a Half-Replicate of a 25 Factorial 
Experiment 

Source of 
Variat ion 

Main effect 
A 
B 
C 
D 
E 

Error 
Total 

Sum of 
Squares 

19.14 
20.48 

6.63 
3.71 
4.95 

30.83 
85.74 

Degrees of 
Freedom 

1 
1 
1 
1 
1 

10 
15 

M e a n 
Square 

19.14 
20.48 

6.63 
3.71 
4.95 
3.0S 

C o m p u t e d 
/ 

6.21 
6.65 
2.15 
1.20 
1.61 
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Exercises 

Chapter 15 2k Factorial Experiments and Fractions 

15.24 List the aliases for the: various effects in a 
2 factorial experiment when the defining contrast is 
ACDE. 

15.25 (a) Obtain a i fraction of a 21 factorial design 
using BCD as the defining contrast. 

(b) Divide the \ fraction into 2 blocks of A units each 
by confounding ABC. 

(c) Show the analysis-of-variance tabic (sources of vari
ation and degrees of freedom) for testing all uncon
founded main effects, assuming that all interaction 
effects are negligible. 

15.26 Construct a \ fraction e>[ a 2° factorial elesign 
using ABCD and BDEF as the defining contrasts. 
Show what effects are: aliased with the six main effects. 

15.27 (a) Using the defining contrasts ABCE and 
ABDF, obtain a j fraction of a 2° elesign. 

(b) Show the analysis-of-variance! table (sources of vari
ation and degrees of freedom) for all appropriate 
tests assuming that E and F do not interact and 
all three-factor and higher interactions are negligi
ble. 

15.28 Seven factors are' varied at, two levels in an ex
periment involving only 16 trials. A ;j fraction of a 2 
factorial experiment is used with the defining contrasts 
being ACD, BEF, and CEG. The data are as follows: 

Treat. 
C o m b . 

(1 
Ml 
abce 
cdef 
acef 
bade 
abdf 
hi 

Response 

31.6 
28.7 
33.1 
33.6 
33.7 
34.2 
32.5 
27.8 

Trea t . 
C o m b . 

acg 
edg 
beg 
adefg 
efg 
abdeg 
bedfg 
abefg 

Response 
31.1 
32.0 
32.8 
35.3 
32.4 
35.3 
35.6 
35.1 

Perforin an analysis of variance em all seven main ef
fects, assuming that interactions are negligible. Use a 
0.05 level of significance. 

15.29 An experiment is conducted sei that, an en
gineer can gain insight into the influence of sealing 
temperature A, cooling bar temperature B, percent 
polyethylene additive C, and pressure D on the seal 
strength (in grams per inch) of a. bread-wrapper Stock. 
A I fraction of a 2' factorial experiment is uscel with 
the defining contrast being ABCD. The data are: pre
sented here. Perform an analysis of variance on main 

effects, and two-factor interactions, assuming that all 
three-factor and higher interactions are negligible. Use 
a = 0.05. 

A B C D Response 

— 1 

1 
- 1 

- 1 
1 

- I 
1 

- 1 

- I 
1 

- 1 
-1 
1 
1 

- 1 
1 
1 

- 1 
1 

- 1 
- 1 

1 

6.6 
6.9 
7.9 
(i.l 
9.2 
6.8 

10.4 
7.3 I 

15.30 In an experiment conducted at the Department 
of Mechanical Engineering and analyzed by the Statis
tics Consulting Center at the Virginia Polytechnic In
stitute and State University, a sensor detects an elec
trical charge each time a turbine blade makes one; ro
tation. The sensor then measures the amplitude of the 
electrical current. Six factors arc rprn A, temperature 
B, gap between blades C, gap between blade and cas
ing D, location of input E, and location of detection 
/•'. A j fraction of a 2° factorial experiment is used, 
with defining contrasts being ABCE and BCDF. The 
data are1 as follows: 

A B 
- 1 - 1 

1 - 1 
- 1 1 

1 1 
- 1 - 1 

1 - 1 
- 1 1 

1 1 
- 1 - 1 

1 - 1 
- 1 L 

1 1 
- 1 - 1 

1 - 1 
- 1 1 

I 1 

C D 
- 1 - 1 
- 1 - i 
- 1 - 1 
- 1 - 1 

1 - 1 
1 - 1 
1 - 1 
1 - 1 

- 1 1 
- 1 1 
- I 1 

1 1 
1 1 
1 1 
1 1 
1 1 

E 
- 1 

1 
1 

- 1 
1 

- 1 
- 1 

1 
- 1 

1 
1 

- 1 
1 

- I 
- 1 

1 

F 
- 1 
- 1 

1 
1 
1 
1 
1 

- 1 
1 
1 

- 1 
- 1 
- 1 
- 1 

1 
1 

Response 
3.89 

10.46 
25.98 
39.88 
61.88 
3.22 
8.94 

20.29 
32.07 
50.76 

2.80 
8.15 

16.80 
25.47 
44.44 

2.45 

Perform an analysis of variance on main effects, and 
two-factor interactions, assuming that all three-factor 
and higher interactions are negligible. Use a = 0.05. 

15.31 In a study Durability of Rubber to Steel Adhe
sively Bonded Joints conducted at. the Department, of 
Environmental Science and Mechanics and analyzed by 
the Statistics Consulting Center at the Virginia Poly
technic Institute: and Stale University, an experimenter 
measures the number of breakdowns in an adhesive 
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seal. It was postulated that concentration of seawafer 
A, temperature B, pH C, voltage D, and stress E in
fluence the breakdown of an adhesive seal. A ^ fraction 
of a 2" factorial experiment is used, with the defining 
contrast being ABCDE. The data are as follows: 

A 
- 1 

1 
- 1 

1 
- ] 

1 
- 1 

1 
- 1 

1 
- 1 

1 
- 1 

1 
-1 

1 

B 
-1 
- 1 

1 
1 

- 1 
1 
1 
1 

- 1 
- 1 

1 
1 

- 1 
- 1 

1 
1 

C 
- I 

1 
- 1 
- 1 

1 
1 
1 
I 

- 1 
- 1 
- 1 
- 1 

1 
1 
1 
1 

D 
1 

- 1 
- 1 
- 1 
- I 
- 1 
- 1 
- 1 

1 
1 
1 
1 
1 
1 
I 
1 

E 

I 
- 1 
- 1 

1 
- 1 

1 
1 

- 1 
- 1 

1 
1 

- 1 
1 

- 1 
- 1 

1 

Response 
462 
746 
714 

1070 
474 
832 
764 

1087 
522 
854 
773 

1068 
572 
831 
819 

1101 

Perform an analysis of variance on main effects, and 
two-factor interactions, assuming that all three-factor 
and higher interactions are negligible. Use ev = 0.05. 

15.32 Consider a 2r>_1 elesign with factors A, B, C, 
D, and E. Construct the design by beginning with a 
2'1 and use E = ABCD as the generator. Show all 
aliases. 

15.33 There arc six factors and only 8 elesign points 
can be used. Construct 
23 and use D = AB, E 

a 2 by beginning with a 

generators. 

15.34 Consider Exercise 15.33. Construct another 
2''~'! that is different from the design chosen in Ex
ercise 15.33. 

15.35 for Exercise 15.33, give all aliases for the six 
main effects. 

15.36 In Myers and Montgomery (2002), an applica
tion was discussed in which an engineer is concerned 
with the effects on the cracking of a fit antum alloy. The 
three factors are A, temperature, B, titanium content, 
and C, amount of grain refiner. The following gives 
a portion of the design and the response, crack length 
induced in the sample of the alloy. 

A B C Response 

I 

I 0.5269 
2.3380 
4.0060 
3.3640 

AC and F = BC the 

(a) What is the defining relation? 

(b) Give aliases for all three main effects assuming that 
two factor interactions may be real, 

(c) Assuming that interactions are' negligible, which 
main Factor is most important? 

(d) For the factor named in (c), at. what level would 
you suggest, the factor be for final production, high 
or low? 

(c) At what levels would you sugge:st the other factors 
be for final production? 

(f) What hazards lie in the recommendations you 
made' in (d) and (e)? Be thorough in your answer. 

15.10 Higher Fractions and Screening Designs 

Some industrial situations require the analyst to determine which of a large number 
of controllable factors have an impact on some impor tant response. The factors 
may be qualitative eir class variables, regression variables, or a mixture of both . 
The analytical procedure may involve analysis of variance, regression, or both. 
Often the regression model used involves only linear main effects, although a fewr 

interactions may be estimated. The situation calls for variable: screening and the 
resulting experimental designs are known as s c r e e n i n g d e s i g n s . Clearly, two-level 
orthogonal efosigns that are sa turated or nearly sa tura ted are viable candidates. 

Design Resolution 

Two-level orthogonal designs are often classified according to their r e s o l u t i o n , the 
latter determined through the following definition. 
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Definition 15.1: The resolution of a two-level orthogonal elesign is the length of the smallest 
(least complex) interaction among the set of defining contrasts. 

If the design is constructed as a full or fractional factorial [i.e., either a 2 
or 2k~p (p = 1,2,..., A: - 1) design], the notion of design resolution is an aid in 
categorizing the impact of the aliasing. For example, a resolution II design would 
have little use since there would be at least one instance of aliasing of one main 
effee-t with another. A resolution III elesign will have all main effects (linear effects) 
orthogonal to each other. However, there will be some aliasing among linear effects 
and two-factor interactions. Clearly, then, if the analyst, is interested in studying 
main effects (linear effects in the case of regression) and there are no two-factor 
interactions, them a, elesign of resolution at least III is required. 

15.11 Construction of Resolution III and IV Designs 
with 8, 16, and 32 Design Points 

Useful designs of resolutions III and IV can be constructed for 2 to 7 variables with 
8 design points. We merely begin with a 23 factorial that has been symbolically 
saturated with interactions. 

Xl 

- 1 
1 

-1 
-1 
1 
1 

-1 
1 

x2 
- 1 
-1 
1 

-1 
1 

-1 
1 
1 

X3 

-1 
-1 
-1 
1 

-1 
1 
1 
1 

xi-r2 

1 
-1 
-1 
1 
1 

-1 
-1 
1 

X1X3 
1 

-1 
1 

-1 
-1 
1 

-1 
1 

x2x3 

1 
1 

-1 
-1 
-1 
-1 
1 
1 

XiX2 

- 1 
1 
1 
1 

-1 
- 1 
-1 
1 

It is clear that a resolution III elesign can be constructed merely by replacing 
interaction columns by new main effects through 7 variables. For example, we may 
elefine 

x4 = Xix2 (defining contrast ABD) 

x-j = .('i.r.j (defining contrast ACE) 

x$ = x2x3 (defining contrast BCF) 

x- = 3:1X2X3 (defining contrast ABCG) 

and obtain a 2 a fraction of a 2' factorial. The preceding expressions identify 
the chosen defining contrasts. Eleven additional defining contrasts result and all 
defining contrasts t:ontain at least three letters. Thus the design is a resolution III 
design. Clearly, if we begin with a. subset of the augmented columns and conclude 
with a design involving fewer than seven elesign variables, the result is a resolution 
III design in fewer than 7 variables. 

A similar set of possible designs can be constructed for 16 elesign points by 
beginning with a 2'1 saturated with interactions. Definitions of variables that cor
respond to these interactions produce resolution III elesigns through 15 variables. 
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N u m b e r of 
Factors 

3 
4 
5 

6 

Table 15.19: Some Resolution III. IV, and V 2k~v Designs 

Design 
2 3 - l 
'•III 
2 , l - i 
2 5 - 2 
LIV 
2 n- i 
r,(i-2 
AVl 
0 6- : i 

Number of 
Points 

4 
8 
8 

32 
16 
8 

Generators 

C = ± AB 
D = ± ABC 
D = ± AB; E=± AC 

F = ±BCD 
E = ± ABC; F = ±BCD 
D = ±AB; F = ±BC; E = ±AC 

2 7 - l 

07-2 
LIV 
27-. 'l 

2 7 - l 

64 
32 

16 
8 

G = ± ABCDEF 
E = ± ABC; G=± ABDE 

E = ± ABC; F-± BCD; G = ± ACD 
D = ± AB; E = ±AC; F = ± BC; G = ± ABC 

2 | r 2 64 G=± ABCD; H = ± ABEF 
2°Z3 32 F = ± ABC; G = ± ABD; H = ± BCDE 
2%* 16 E = ± BCD; F = ± ACD; G = ± ABC; H = ± ABD 

In a similar fashion, designs containing 32 runs can be constructed by beginning 
with a 25. 

Table 15.19 provides the user with guidelines for constructing 8. 16, 32, and 64 
point designs that are resolution III, IV and even V. The table gives the number 
of factors, number of runs, and the generators that are used to produce the 2k~p 

designs. The generator given is used to augment the full factorial containing 
k — p factors. 

The Foldover Technique 

We can supplement the resolution III designs described previously, to produce a 
resolution IV design by using a foldover technique. Foldover involves doubling 
the size of the design by adding the negative of the design matrix constructed as 
described above. Table 15.20 shows a 16-run resolution IV design in 7 variables 
constructed by using the foldover technique. Obviously, we can construct resolution 
IV designs involving up to 15 variables by using the foldover technique on designs 
developed by the saturated 24 design. 

This design is constructed by "folding over" a 1 fraction of a 26. The last 
column is added as a seventh factor. In practice, the last column often plays 
the role of a blocking variable. The foldover technique is used often in sequential 
experimentation where the data from the initial resolution III design are analyzed. 
The experimenter may then feel, based on the analysis, that a resolution IV design 
is needed. As a result, a blocking variable may be needed because a separation in 
time occurs between the two portions of the experiment. Apart from the blocking 
variable, the final design is a 1 fraction of a 2e experiment. 
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Table 15.20: Resolution IV Two-Level Design, Using the Foldover Technique 

Xl 

-L 
1 

-1 
-1 
1 
1 

-1 
1 

x-> 
-1 
-1 
1 

-1 
1 

-1 
1 
1 

X;i 

-1 
-1 
-1 
1 

-1 
1 
1 
1 

X4 = Xi 

1 
-1 
-1 
1 
1 

-1 
-1 
1 

x2 Xs = X1X3 

1 
-1 
1 

-1 
-1 
1 

-1 
1 

X6 — X2X3 

1 
1 

-1 
-1 
-1 
-1 
1 
1 

•''7 

-I 
-1 
-1 
-1 
-1 
-1 
-1 
-1 

Foldover 

1 
-1 
1 
1 

-1 
-1 
1 

-1 

1 
1 

-1 
1 

-1 
1 

-1 
-1 

1 
1 
1 

-1 
1 

-1 
-1 
-1 

-1 
1 
1 

-1 
-1 
1 
1 

-1 

-1 
1 

-1 
1 
1 

-1 
1 

-1 

-1 
-1 
1 
1 
1 
1 

-1 
-1 

1 
1 
1 
1 
I 
1 
1 
1 

15.12 Other Two-Level Resolution III Designs; 
The Plackett-Burman Designs 

A family of designs developed by Plackctt and Burman (see the Bibliography) fills 
sample size voids that exist with the fractional factorials. The latter arc useful with 
sample sizes 2 r (i.e., they involve' sample sizes 4,8,16,32,64,. . . ) . The Plackett-
Burman designs involve 2r design points, and thus designs of size 12, 20, 24, 28, 
and so on are available. These two-level Plackett-Burman designs are resolution III 
designs and arc very simple to construct. "Basic lines*' arc given for each sample 
size. These lines of -I- and — signs are n — 1 in number. To construct the columns 
of the elesign matrix, we begin with the basic line and do a cyedic permutation on 
the columns until k (the elesired number of variables) columns are formed. Then, 
we fill in the last row with negative signs. The result will be a resolution III design 
with k variables (k = 1,2,..., A'). The basic lines are: as follows: 

N= 12 

N = 16 

N = 20 

N = 24 

+ 
+ 
+ 
+ 

+ - + 
+ + + 
T — — 

+ + + 

+ + - - - + 
- + - + + -
+ + + + - + 
+ - + - + + 

+ + + 
+ + + -

Example 15.11:1 Construct a two-level screening design with 6 variabilis containing 12 design points. 
Solution: Begin with the basic line in the initial column. The second column is formed by 

bringing the bottom entry of the first column to the top of the seconel column 
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and repeating the first column. The third column is formed in the same fashion, 
using entries in the second column. When there is a sufficient number of columns, 
simply fill in the last row with negative signs. The resulting design is as 
follows: 

Xl 

+ 
-
-

+ 
+ 
+ 
-
-
-
+ 

x2 
-
+ 
+ 
-
+ 
+ 
+ 
-
-
— 

xa 
+ 
-
+ 
+ 
-
+ 
+ 
+ 
-
-

XA 
-
+ 
-
+ 
+ 
-
+ 
l-

+ 
— 

x5 
-
-
+ 
-
+ 
+ 
-
+ 
+ 
+ 

X, 

-
— 
-
+ 
— 
+ 
+ 
-
+ 
+ 

1-

The Plackett-Burman designs arc popular in industry for screening situations. 
As resolution III designs, all linear effects are orthogonal. For any sample size, the 
user has available a design for k — 2 , 3 , . . . , Ar — 1 variables. 

The alias structure for the Plackett-Burman design is very complicated and 
thus the user cannot construct the design with complete control over the alias 
structure as in the case of 2k or 2k~p designs. However, in the case of regression 
models the Plackett-Burman design can accommodate interactions (although they 

will not be orthogonal) when sufficient, degrees of freedom are available. J 

15.13 Robust Parameter Design 

In this chapter we have emphasized the notion of using design of experiments 
(DOE) to learn about engineering and scientific processes. In the case where the 
process involves a product, DOE can be used to provide product improvement or 
quality improvement. As we: point out in Chapter 1, much importance has been 
attached to the use of statistical methods in product improvement. An important 
aspect of this quality improvement effort of the 1980s and 1990s is to design quality 
into processes and products at the research stage or the process design stage. 
One often requires DOE in the development of processes that have the following 
properties: 

1. Insensitive (robust) to environmental conditions 

2. Insensitive (robust) to factors difficult to control 

3. Proviele minimum variation in performance 

These methods are: often called robust parameter design (sec Taguchi, Taguchi and 
Wu, and Kackar in the Bibliography). The term design, in this context refers to the 
elesign of the process or system; parameter refers to the parameters in the system. 
These arc what we: have been calling factors or variables. 
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It is very clear that, goals 1. 2. and 3 above are quite noble. For example, 
a petroleum engineer may have a fine gasoline blend that performs quite well as 
long as conditions are ideal and stable. However, the performance may deteriorate 
because of changes in environmental conditions, sue'h as type of driver, weather 
conditions, type of engine, and so forth. A scientist at a food company may have 
a cake mix that is quite good unless the user does not exactly follow directions on 
the box directions that deal with oven temperature, baking time, and so forth. A 
product or process whose performance is consistent when exposed to these changing 
environmental conditions is called a robust product or robust process. [See 
Myers and Montgomery (2002) in the Bibliography.] 

Control and Noise Variables 

Taguchi emphasized the notion of using two types of design variables in a study. 
These factors are control factors and noise1 factors. 

Definition 15.2: Control factors are variables that can be controlled in both the experiment and 
in the process. Noise factors arc variables that may or may not be controlled 
in the experiment but cannot be controlled in the process (or not controlled well 
in the process). 

An important approach is to use control variables and noise variables in the 
same experiment as fixed effects. Orthogonal designs or orthogonal arrays are 
popular designs to use in this effort. 

Goal of Robust The goal of robust parameter efesign is to choose the levels of the control vari-
Paraineter Design ables (i.e., the design e>f the process) that are most, robust (insensitive) to change's 

in the noise variables. 

It should be noted that changes in the noise variables actually imply changes during 
the process, changes in the field, changes in the environment, changes in handling 
or usage by the consumer, and so forth. 

The Product Array-
One approach to the elesign of experiments involving both control anel noise vari
ables is the use of an experimental plan that calls for an orthogonal design for both 
the control and the noise variables separately. The: complete experiment, then, is 
merely the product or crossing of these two orthogonal designs. The following is a 
simple example of a product array with two control and two noise variables. 

Example 15.12:1 In the article ''The Taguchi Approach to Parameter Design'' by D. M. Byrne and 
S. Taguchi, in Quality Progress. December 1987, the authors discuss an interest
ing example in which a method is sought to assemble an ele:ctrometi'ic connector 
to a nylon tube that delivers the required pull-off performance to be suitable for 
an automotive engine application. The objective is to find controllable conditions 
that maximize pull-off force Among the controllable variables are A, connector 
wall thickness, and B, insertion elepth. During routine operation there are sev
eral variables that cannot be controlled, although they will be controlled during 
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Analysis 

the experiment. Among them are C, conditioning time, and D, conditioning tem
perature. Three levels are taken for each control variable and two for each noise 
variable'. As a result, the crossed array is as follows. The control array is a 3 x 3 
array and the noise array is a familiar 22 factorial with (1), c, d, and cd represent
ing the factor combinations. The purpose of the noise factor is to create the kind 
of variability in the response, pull-off force, that might be expected in day-to-day 
operation with the process. The design is shown in Table 15.21. J 

Table 15.21: Design for Example 15.12 

B (depth) 
Shallow Medium Deep 

Thin 

Medium 

(D 
c 

d 
cd 

(1) 
c 

d 
cd 

(1) 
c 

d 
cd 

(1) 
c 

d 
cd 

(1) 
c 

d 
cd 

(1) 
c 

d 
cd 

Thick 

(1) 
c 

d 
cd 

(1) (1) 
c c 

d d 
cd cd 

There are several procedures for analysis of the product array. The approach 
advocated by Taguchi and adopted by many companies in the United States dealing 
in manufacturing processes involves, initially, the formation of summary statistics 
at each combination in the control array. This summary statistic is called a signal-
to-noise ratio. Suppose that we call yi,y>, • • • ,y„ a typical set of experimental 
runs for the noise array at a fixed control array combination. Table 15.22 describes 
some of the typical SN ratios. 

Table 15.22: Typical SN Ratios under Different Objectives 

Objective SN Ratio 

Maximize response SNr, = —10 log ( ^ £ 

Achieve target SNT 

Minimize response SN„ 

10 log < ( * ) 

io fog £ £ w 
t = l 
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For each of the cases above we seek to find the combination of the control 
variables that maximizes SN. 

Example 15.13:1 Case Study In an experiment described in Understanding Industrial Designed 
Experiments by Schmidt and Launsby (see the Bibliography), solder process op
timization is accomplished by a printed circuit-board assembly plant. Parts are 
inserted either manually or automatically into a bare board with a circuit printed 
on it. After the parts are inserted the board is put through a wave solder machine, 
which is used to connect all the parts into the circuit. Boards are placed on a 
conveyor and taken through a series of steps. They are bathed in a flux mixture 
to remove oxide. To minimize warpage, they are preheated before the solder is 
applied. Soldering takes place as the boards move across the wave of solder. The 
object of the experiment is to minimize the number of solder defects per million 
joints. The control factor and levels are as given in Table 15.23. 

Table 15.23: Control Factors for Example 15.13 

Factor 
A, solder pot temperature (°F) 
B, conveyor speed (ft/min) 
C, flux density 
D, preheat temperature 
E, wave height (in.) 

( -1) 
480 
7.2 
0.9° 
150 
0.5 

(+1) 
510 
10 
1.0° 
200 
0.6 

These factors are easy to control at the experimental level but are more formidable 

at the plant or process level. J 

Noise Factors: Tolerances on Control Factors 
Often in processes such as this one the natural noise factors are tolerances in the 
control factors. For example, in the actual on-line process, solder pot temperature 
and conveyor speed are difficult to control. It is known that the control of temper
ature is within ±5°F and the control of conveyor belt speed is within ±0.2 ft/min. 
It is certainly conceivable that variability in the product response (soldering per
formance) is increased because of an inability to control these two factors at some 
nominal levels. The third noise factor is the type of assembly involved. In practice, 
one of two types of assemblies will be used. Thus we have the noise factors given 
in Table 15.24. 

Both the control array (inner array) and the noise array (outer array) were 
chosen to be fractional factorials, the former a | of a 25 and the latter a ^ of a 23, 
The crossed array and the response values are shown in Table 15.25. The first three 
columns of the inner array represent a 23. The columns are formed by D = —AC 
and E = —BC. Thus the defining interactions for the inner array are ACD, BCE, 
and ADE. The outer array is a standard resolution III fraction of a 23. Notice 
that each inner array point contains runs from the outer array. Thus four response 
values are observed at each combination of the control array. Figure 15.16 displays 
plots which reveal the effect of temperature and density on the mean response. 
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Table 15.24: Noise Factors for Example 15.13 

Factor ( -1) (+1) 
A*, solder pot temperature tolerance (°F) 

(deviation from nominal) 
B*, conveyor sliced tolerance (ft/min) 

(deviation from ideal) 
C*, assembly type 

-5° 

0.2 

1 

-5° 

+0.2 

2 

Table: 15.25: Cross Arrays and Response Values for Example 15.13 

Inner Array Ou te r Array 
A 
1 
1 
1 
J 

-1 
-1 
-1 
-1 

B 
1 
1 

-1 
-1 
1 
1 

-1 
-1 

C 
I 

-1 
1 

-I 
1 

-1 
1 

-1 

D 
-1 
I 

-1 
1 
1 

-1 
1 

-1 

E 
-1 
1 
1 

-1 
-1 
1 
1 

-1 

(1) 
194 
136 
185 
47 
295 
234 
328 
186 

a*b* 
197 
136 
261 
125 
216 
159 
326 
187 

a*c* 
193 
132 
264 
127 
204 
231 
247 
105 

b*c* 
275 
136 
264 
42 
293 
157 
322 
104 

SNS 

-46.75 

-42.61 
-47.81 

-39.51 

-48.15 

-45.97 

-45.76 

-43.59 

Temperature and flux density are the most important factors. They seem to 
influence both (SN)s and y. Fortunately, high temperature and low flux: density 
arc preferable for both (SN)s- anel the mean response. Thus the "optimum" 
conditions are 

solder temperature = 510°F, 11 ux density =0.9° . 

250 

> 

120 

Temperature 

Low 
(-D 

High 
(+D 

250 

I 185 

120 

Density 

Low 
(-1) 

High 
(+1) 

Figure 15.16: Plot showing the influence of factors on the: mean response. 
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Alternative Approaches to Robust Parameter Design 

One approach suggested by many is to model the sample mean anel sample vari
ance separately rather than combine the two separate concepts via a signal-to-
noise ratio. Separate modeling often helps the experimenter to obtain a better 
understanding of the process involved. In the following example, wc illustrate this 
approach with the solder process experiment. 

Example 15.14: Consider the data set of Example 15.13. An alternative analysis is to fit separate 
models for the mean y and the sample standard deviation. Suppose that we use the 
usual +1 and —1 coding for the control factors. Based on the apparent importance 
of solder pot temperature a?i and flux density x2, linear regression model on the 
response (number of errors per million joints) produces the model 

y = 197.125 - 27.5a:i + 57.875.i.-2. 

To find the most robust level of temperature and flux density it is important 
to procure a compromise between the mean response anel variability, which re
quires a modeling of the variability. An important tool in this regard is the log 
transformation (see Bartlett anel Kendall or Carroll and Ruppert): 

In S3 = 7o + 71 (xi) + J2ix2). 

This modeling process produces the following result: 

I n > 6.7692 - 0.8178.7:, 4- 0.6877x2. 

The analysis that is important, to the scientist or engineer is to make use of the 
two models simultaneously. A graphical approach can be very useful. Figure 15.17 
shows simple plots of the mean and standard deviation simultaneously. As one 
would expect, the: location in temperature and flux density that minimizes the 
mean number of errors is the same as that which minimizes variability, namely-
high temperature and low flux density. The graphical multiple response approach 
allows the: user to see tradeoffs between process mean and process variability. Feir 
this example, the engineer may be dissatisfied with the extreme conditions in solder 
temperature and flux density. The figure offers estimation of mean and variability 
conditions that indicate how much is lost as erne moves away from the optimum to 
any intermediate conditions. J 

Exercises 

15.37 Use: the coal cleansing data of Exercise 
page 622 to fit a model of the type 

E(Y) = 0Q + ftjpi -t- 02X7 + P3X3, 

where the levels arc 

:z'i: percent solids: 8; 12 
:ro: flow rate: 150: 250 gal/min 
:K3: pll: 5; 6 

Center and scale the variables to design units. Also 
conduct a test for lack of fit, and comment concerning 
the adequacy e>f the linear regression model. 
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in 

a> 
Q 

_3 

-0.5 

0.0 

X), Temperature 

1.0 

Figure 15.17: Mean and s tandard deviation for Example 15.14. 

15.38 A 2° factorial plan is used to build a regres
sion model containing first-order coefficients and model 
terms for all two-factor interactions. Duplicate runs are 
made for each factor. Outline the analysis-of-variance 
table showing degrees of freedom for regression, lack of 
fit, and pure error. 

Consider the -^ of the 27 factorial discussed in 15.39 
Section 15.11. List the additional 11 defining contrasts. 

15.40 Construct a Plackett-Burman design for 10 
variables containing 24 experimental runs. 

Review Exercises 

15.41 A Plackett-Burman design is used for the pur
pose of studying the rheological properties of high-
molecular-weight, copolymers. Two levels of each of 
six variables are fixed in the experiment. The viscosity 
of the polymer is the respemse. The data were ana
lyzed by the Statistics Consulting Center at Virginia 
Polytechnic Institute and State University for person
nel in the Chemical Engineering Department at the 
University. The variables are as follows: hard block 
chemistry xi, nitrogen flow rate X2, heat-up time x-z, 
percent compression x4, scans high and low £5, per
cent strain XQ. The data are presented here. Build a 
regression equation relating viscosity to the levels of 
the six variables. Conduct f-tests for all main effects. 
Recommend factors that should be retained for future 
studies and those that should not. Use the residual 
mean square (5 degrees of freedom) as a measure of 
experimental error. 

Obs. x% X2 Xa x4 Xs Xe 
1 1 - 1 1 
2 1 1 - ' 
3 - 1 1 ' 
4 1 - 1 : 
5 1 1 - : 
6 1 1 1 
7 - 1 1 1 
8 - 1 - 1 : 
9 - 1 - 1 -

10 1 - 1 -
1 1 - 1 1 -
12 - 1 - 1 -

1 - 1 - 1 - 1 
I 1 - 1 - 1 
I - 1 1 - 1 
1 1 - 1 1 
1 1 1 - 1 
1 - 1 1 1 
1 1 - 1 1 
I 1 1 - 1 
1 1 1 1 
I - 1 1 1 
1 - 1 - 1 1 
1 - 1 - 1 - 1 

194,700 
588,400 

7,533 
514,100 
277.300 
493,500 

8,969 
18,340 
6,793 

160,400 
7,008 
3,637 

15.42 A large petroleum company in the Southwest 
regularly conducts experiments to test additivess to 
drilling fluids. Plastic viscosity is a rheological measure 
reflecting the thickness of the fluid. Various polymers 
are added to the fluid to increase viscosity. The fol
lowing is a data set in which two polymers are used at 
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two levels each and the viscosity measured. The con
centration of the polymers is indicated as "low" and 
"high." Conduct an analysis of the 22 factorial ex
periment. Test for effects for the two polymers and 
interaction. 

Polymer 2 
Low 
High 

Polymer 1 
Low High 

3 3.5 
11.7 12.0 

11.3 12.0 
21.7 22.4 

15.43 A 22 factorial experiment is analyzed by the 
Statistics Consulting Center at Virginia Polytechnic 
Institute and State University. The client is a mem
ber of the Department of Housing, Interior Design, and 
Resource Management. The client is interested in com
paring cold start versus preheating ovens in terms of 
total energy being delivered to the product. In addi
tion, the conditions of convection are being compared 
to regular mode. Four experimental runs were made 
at each of the four factor combinations. Following are 
the data from the experiment: 

Convection 
Mode 
Regular 
Mode 

Preheat 
618 619.3 
629 611 
581 585.7 
581 595 

Cold 
575 573.7 
574 572 
558 562 
562 566 

Do an analysis of variance to study main effects and 
interaction. Draw conclusions. 

15.44 Construct a design involving 12 runs where 2 
factors are varied at 2 levels each. You are further re
stricted in that blocks of size 2 must be used, and you 
must be able to make significance tests on both main 
effects and the interaction effect. 

15.45 In the study The Use of Regression Analysis 
for Correcting Matrix Effects in the X-Ray Fluores
cence Analysis of Pyrotechnic Compositions, published 
in the Proceedings of the Tenth Conference on the De
sign of Experiments in Army Research Development 
and Testing, ARO-D Report 65-3 (1965), an experi
ment was conducted in which the concentrations of 4 
components of a propellant mixture and the weights of 
fine and coarse particles in the slurry were each allowed 
to vary. Factors .4, B, C, and D, each at two lev
els, represent the concentrations of the 4 components 
and factors E and F, also at two levels, represent the 
weights of the fine and coarse particles present in the 
slurry. The goal of the analysis was to determine if 
the X-ray intensity ratios associated with component 1 
of the propellant were significantly influenced by vary
ing the concentrations of the various components and 

the weights of the particle sizes in the mixture. A | 
fraction of a 26 factorial experiment was used with the 
defining contrasts being ADE, BCE, and ACF. The 
following data represent the total of a pair of intensity 
readings: 

Treatment Intensity 
Batch Combination Ratio Total 

1 
2 
3 
4 
5 
6 
7 
8 

abef 
cdef 
(1) 
ace 
bde 
abed 
adf 
bef 

2.2480 
1.8570 
2.2428 
2.3270 
1.8830 
1.8078 
2.1424 
1.9122 

The pooled mean square error with 8 degrees of free
dom is given by 0.02005. Analyze the data using a 
0.05 level of significance to determine if the concentra
tions of the components and the weights of the fine and 
coarse particles present in the slurry have a significant 
influence on the intensity ratios associated with com
ponent 1. Assume that no interaction exists among the 
6 factors. 

15.46 Show the blocking scheme for a 27 factorial ex
periment in eight blocks of size 16 each, using ABCD, 
CDEFG, and BDF as defining contrasts. Indicate 
which interactions are completely sacrificed in the ex
periment. 

15.47 Use Table 15.19 to construct a 16-run design 
with 8 factors that is resolution IV. 

15.48 In your design of Review Exercise 15.47, verify 
that the design is indeed resolution IV. 

15.49 Construct a design that contains nine design 
points, is orthogonal, contains 12 total runs, 3 degrees 
of freedom for replication error, and allows for a lack 
of fit test for pure quadratic curvature. 

15.50 Consider a design which is a 23
rj/ w4th 2 cen

ter runs. Consider y/ as the average response at the 
design parameter and j/o as the average response at the 
design center. Suppose the true regression model is 

E(y) = 00+ 0lXl + 02X2 + 03x3 

+ 0lix\ + 022X1+033X1. 

(a) Give (and verify) E(yj — y0). 
(b) Explain what you have learned from the result in 

(a). 
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15.14 Potential Misconceptions and Hazards; 
Relationship to Material in Other Chapters 

In the use of fractional factorial experiments one: eif the most, important consider
ations that the analyst must be aware of is the design, resolution. A design of low 
resolution is smaller (and hence cheaper) than one of higher resolution. However, 
a price is paid for the cheaper design. The: elesign of lower resolution has heavier 
aliasing than one' of higher resolution. For example, if the researcher has expecta
tion that two-factor interactions may be important, then resolution III should not 
be used. A resolution III elesign is strictly a main effects plan. 



Chapter 16 

Nonparametric Statistics 

16.1 Nonparametric Tests 

Most of the hypothesis-testing procedures discussed in previous chapters are based 
on the assumption that the random samples are selected from normal populations. 
Fortunately, most of these tests are still reliable when we expedience slight elepar-
tures from normality, particularly when the sample size is large. Traditionally, 
these testing procedures have been referred to as pa ramet r i c me thods . In this 
chapter we consider a number of alternative test procedures, called nonparamet 
ric or distr ibution-free methods , that often assume no knowledge whatsoever 
about the distributions of the underlying populatiems, except perhaps that they 
are continuous. 

Nonparametric or distribution-free procedures are used with increasing fre
quency by data, analysts. There: are many applications in science and engineering 
where the data are reported as values not on a continuum but rather on an ordinal 
scale such that it is quite natural to assign ranks to the data. In fact, the reader 
may notice quite early in this chapter that the distribution-free methods described 
here involve an analysis of ranks. Most analysts find the computations involved in 
nonparametric methods to be very appealing and intuitive. 

For an example where a. nonparametric test is applicable, two judges might 
rank five brands of premium beer by assigning a rank of 1 to the brand believed 
to have the best overall quality, a rank of 2 to the second best, and so forth. A 
nonparametric te:st could then be used to determine whether there is any agreement 
be-tween the two judges. 

We shoulel also point out that there are a number of disadvantages associ
ated with nonparametric tests. Primarily, they do not utilize all the information 
provided by the sample, anel thus a nonparametric test will be less efficient than 
the corresponeUng parametric procedure when both methods are applicable. Con
sequently, to achieve the same power, a nonparametric test will require a larger 
sample size than will the corrcsponeliiig parametric test. 

As we indicated earlier, slight departures from normality result in minor devi
ations from the ideal for the standard parametric tests. This is particularly true 
for the /-test and the F-test. In the case of the t-test and the F-test. the P-value 
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quoted may be slightly in error if there is a moderate violation of the normality 
assumption. 

In summary, if a parametric and a nonparametric test are both applicable to 
the same set of data, we should carry out the more efficient parametric technique. 
However, we should recognize that, the assumptions of normality often cannot be 
justified and that we do not always have quantitative measurements. It is fortu
nate that statisticians have provided us with a number of useful nonparametric 
procedures. Armed with nonparametric techniques, the data analyst has more 
ammunition to accommodate a wider variety of experimental situations. It should 
be pointed out that even under the standard normal theory assumptions, the ef
ficiencies of the nonparametric techniques are remarkably close to those of the 
corresponding parametric procedure. On the other hand, serious departures from 
normality will render the nonparametric method much more efficient than the 
parametric procedure. 

Sign Test 

The reader should recall that the procetiures discussed in Section 10.7 for testing 
the null hypothesis that p = po arc valid only if the population is approximately 
normal or if the sample is large. However, if n < 30 and the population is decidedly 
nonnormal, we must resort to a nonparametric test. 

The sign test is used to test hypotheses on a population median. In the case 
of many of the nonparametric procedures, the mean is replaced by the median as 
the pertinent location paramete r under test. Recall that the sample median is 
defined in Section 1.4. The population counterpart, denoted by p has an analogous 
definition. Given a random variable X, p. is defined such that P(X > p.) < 0.5 and 
P(X < p) < 0.5. In the continuous case, 

P(X > ft) = P(X < A) = 0.5. 

Of course, if the distribution is symmetric, the population mean and median are 
equal. In testing the null hypothesis H0 that p — po against an appropriate 
alternative, on the basis of a random sample of size n, we replace each sample 
value exceeding po with a plus sign and each sample value less than po with a 
minus sign. If the null hypothesis is true and the population is symmetric, the 
sum of the plus signs should be approximately equal to the sum of the minus signs. 
When one sign appears more frequently than it should, based on chance alone, we 
reject the hypothesis that the population median p is equal to p0. 

In theory the sign test is applicable only in situations where po cannot equal 
the value of any of the observations. Although there is a zero probability of obtain
ing a sample observation exactly equal to po when the population is continuous, 
nevertheless, in practice a sample value equal to po will often occur from a lack of 
precision in recording the data. When sample values equal to po are observed, they 
are excluded from the analysis and the sample size is correspondingly reduced. 

The appropriate test statistic for the sign test is the binomial random variable 
X, representing the number of plus signs in our random sample. If the null hypoth
esis that p = po is true, the probability that a sample value results in either a plus 
or a minus sign is equal to 1/2. Therefore, to test the null hypothesis that p = po. 
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we are actually testing the null hypothesis that the number of plus signs is a value 
of a random variable having the binomial distribution with the parameter;; = 1/2. 
P-values for both one-sided and two-sided alternatives can then be calculated using 
this binomial distribution. For example, in testing 

Ho- p = Po, 
Hi: ft. < po, 

we shall reject Ho in favor of Hi only if the proportion of plus signs is sufficiently 
less than 1/2, that is, when the value x of our random variable is small. Hence, if 
the computed P-value 

P = P(X < x when p = 1/2) 

is less than or equal to some preselected significance level a, we reject Ha in favor 
of H\. For example, when n = 15 and x = 3, we find from Table A.l that 

P = P(X < 3 when p = 1/2) = ^ S (x; 15, \ j = 0.0176, 

so that the null hypothesis fi = po can certainly be rejected at the 0.05 level of 
significance but not at the 0.01 level. 

To test the hypothesis 

HQ: p = po, 

Hi: p > po, 

we reject Ho in favor of Hi only if the proportion of plus signs is sufficiently greater 
than 1/2, that is, when x is large. Hence, if the computed P-value 

P = P(X > x when p = 1/2) 

is less than cv, we reject Ho in favor of Hi. Finally, to test the hypothesis 

Ho', p = Po, 

Hi: pjt po, 

we reject. Ho in favor of Hi when the proportion of plus signs is significantly less 
than or greater than 1/2. This, of course, is equivalent to x being sufficiently small 
or sufficiently large. Therefore, if x < n/2 and the computed P-value 

P = 2P(X < x when p = 1/2) 

is less than or equal to a, or if x > n/2 and the computed P-value 

P = 2P(X > x when p = 1/2) 

is less than or equal to a, we reject Ho in favor of Hi. 
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Whenever n > 10, binomial probabilities with p = 1/2 can be approximated 
from the normal curve, since np = nq > 5. Suppose, for example, that we wish to 
test the hypothesis 

Ho'- p = po, 

Hi: p < po, 

at the a = 0.05 level of significance for a random sample of size n = 20 that yields 
x = 6 plus signs. Using the normal-curve approximation with 

p = np= (20)(0.5) = 10 

and 

we find that 

Therefore. 

a = y/npq = v/(20)(0.5)(0.5) = 2.236, 

6.5 - 10 
^ 2 3 6 " - - 1 - 5 ' -

P = P(X < 6) « P(Z < -1.57) = 0.0582, 

which leads to the nonrejection of the null hypothesis. 

Example 16.1:1 The following data represent the number of hours that a rechargeable hedge trimmer 
operates before a recharge is required: 

1.5,2.2,0.9,1.3,2.0,1.6,1.8,1.5,2.0,1.2,1.7. 

Use the sign test to test the hypothesis at the 0.05 level of significance that this 
particular trimmer operates with a median of 1.8 hours before requiring a recharge. 

Solution: 1. Ho: p = 1.8. 

2. Hi: j i / 1 . 8 . 

3. a = 0.05. 

4. Test statistic: Binomial variable X with p = 5. 

5. Computations: Replacing each value by the symbol "+" if it exceeds 1.8, by 
the symbol "—': if it is less than 1.8, and discarding the one measurement that 
equals 1.8, we obtain the sequence 

- + - - + - - + 

for which n = 10, x = 3, and n /2 = 5. Therefore, from Table A.l the 
computed P-value is 

1 3 1 
P = 2P(X < 3 when p = -) = 2 ] T b(x; 10, -) = 0.3438 > 0.05. 

x=0 
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6. Decision: Do not reject the null hypothesis anel conclude that the median 
operating time is not significantly different from .1.8 hours. 

We can also use the sign test to test flic null hypothesis pi — fi2 = do for 
paired observations. Here we replace each difference, di, with a plus or minus 
sign depending on whether the adjustcel elifference, <7,- — e/n, is positive: or negative. 
Throughout this section we have assumed that the populations are symmetric. 
However, even if populations are skewed we can carry out the same test procedure, 
but the hypotheses refer to the population medians rather than the means. 

Example 16.2:1 A taxi company is trying to decide whether the use of radial tires instead of regular 
belted tires improves fuel economy. Sixte-en cars are equipped with radial tires and 
driven over a prescribed test course. Without changing drivers, the same cars are 
then equipped with the regular belted tires and elrive'ii once again over the test 
course The gasoline consumption, in kilometers per liter, is given in Table 16.1. 

Can wc conclude at the 0.05 level of significance that cars equipped with radial 

Table 16.1: Data for Example 16.2 

Car 
Radia l Tires 
Belted Tires 

Car 
Radial Tires 
Belted Tires 

1 
4.2 
1.1 

9 
7.4 
6.9 

2 
4.7 
4.9 

10 
4.9 
4.9 

3 
6.6 
6.2 

1 1 
G.J 
6.0 

4 
7.0 
6.9 

12 
5.2 
4.9 

5 
6.7 
6.8 

13 
5.7 
5.3 

6 
4.5 
4.4 

14 
6.9 
6.5 

7 
5.7 
5.7 

15 
6.8 
7.1 

8 
6.0 
5.8 

16 
4.9 
4.8 

tires obtain better fuel economy than those: equipped with regular belled tires? 
Solution: Let pi anel ft2 represent the median kilometers per liter for cars equipped with 

radial and belted tires, respectively. 

1. Ho: pi -fh = ()-

2. Hi: fn -fi2 > 0. 

3. a = 0.05. 

i. Test statistic: Binomial variable A' with p = 1/2. 

5. Computations: After replacing each positive difference by a ''—v symbol and 
each negative difference by a "—" symbol, and then discarding the two zero 
differences, we obtain the sequence 

+ - + + - + + + + + + + - + 

for which n = 14 and x = 11. Using the normal-curve approximation, we find 

1 0 - 8 - 7 , « 
z = = = 1.87. 

v/(14)(().5)(0.5) 

and then 

P = P(X > 11) sa P(Z > 1.87) = 0.0307. 
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6. Decision: Reject Ho and conclude that, on the average, radial tires do improve 
fuel economy. J 

Not. only is the sign test one of our simplest nonparametric procedures to ap
ply, it has the additional advantage of being applicable to dichotomous data that. 
cannot be recorded em a numerical scale but can be represented by positive and 
negative response's. For example, the sign test is applicable in experiments where 
a qualitative response such as "hit" or "miss" is recorded, and in sensory-type ex
periments where a plus or minus sign is recorded depending on whether the taste 
tester correctly or incorrectly identifies the desired ingredient. 

We shall attempt to make comparisons between many of the nonparametric 
procedures and the corresponding parametric tests. In the case of the sign test the 
competition is, of course, the t-test. If we arc sampling from a normal distribution, 
the use of the f-test will result in the larger power of the test. If the distribu-
tion is merely symmetric, though not normal, the fr-test is preferred in terms of 
power unless the distribution has extremely "heavy tails" compared to the: normal 
distribution. 

16.2 Signed-Rank Test 

The reader should note that the sign test, utilizes only the: plus and minus signs 
of the differences between the observations and /Io hi the one-sample case, or the 
plus and minus signs of the differences between the pairs of observations in the 
paired-sample case, but it does not take into consideration the magnitudes of these 
differences. A test utilizing both direction and magnitude, proposed in 1945 by 
Frank Wilcoxon, is now commonly referred to as the Wilcoxon signed-rank test . 

The analyst can extract more information from the data in a nonparametric 
fashion if it is reasonable to invoke an additional restriction on the distribution 
from which the data we're taken. The: Wilcoxon signed-rank test applies in the case 
of a symmet r i c continuous dis tr ibut ion. Under this condition we can test the 
null hypothesis fi. = /lo. We first subtract fio from each sample value, discarding all 
differences equal to zero. The remaining differences are then ranked without regard 
to sign. A rank of 1 is assigned to the: smallest absolute difference (i.e.. without 
sign), a rank of 2 to the next smallest, and so on. When the absolute value of 
two or more differences is the same, assign to each the average of the ranks that 
would have been assigned if the differences were: distinguishable. For example, if 
I he: fifth and sixth smallest differences arc equal in absolute value, each would be 
assigned a rank of 5.5. If the hypothesis p = po is true:, the total of the ranks 
corresponding to the positive differences should nearly equal the total of the1 ranks 
corresponding to the negative differences. Let us represent these totals by w+ and 
U/_, respectively. Wc designate the smaller of the M)+ and tfl_ by w. 

In selecting repeated samples, we: would expect w+ and u;_, and therefore w, 
to vary. Thus we may think of w+, «.'_, and w as values of the corresponding 
random variables W+, W-, and W. The null hypothesis fi. = po can be rejected 
in favor of the alternative p < po, only if u.'+ is small and u>_ is large. Likewise, 
the alternative fi > po can be accepted only if w^ is large and W- is small. For 
a two-sided alternative we may reject. HQ in favor of Hi if either *<;_ or «;_ anel 
hence w is sufficiently small. Therefore, no matter what the alternative hypothesis 
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may be, we reject the null hypothesis when the value of the appropriate statistic 
W+, W-, or W is sufficiently small. 

Two Samples with Paired Observations 

To test the null hypothesis that we are sampling two continuous symmetric pop
ulations with fix = p2 for the paired-sample case, we rank the differences of the 
paired observations without regard to sign and proceed as with the single-sample 
case. The various test, procedures for both the single- and paired- sample cases are 
summarized in Table 16.2. 

Table 16.2: Signed-Rank Test 

Ho 

/' = Po 

Pi =Pi 

Hx 

(p < Po 
I P > Po 
IA 9s Po 
[Ml < P-2 

I Pi > Pi 
U'i r^ih 

Compute 

w+ 
10-

w 
w+ 
W-

w 

It is not difficult to show that whenever n < 5 and the level of significance does 
not exceed 0.05 for a one-tailed test or 0.10 for a two-tailed test, all possible values 
of w+, «;_, or w will lead to the acceptance of the null hypothesis. However, when 
5 < n < 30, Table A.17 shows approximate critical values of W+ and W- for levels 
of significance equal to 0.01, 0.025. and 0.05 for a one-tailed test, and critical values 
of W for levels of significance equal to 0.02, 0.05, and 0.10 for a two-tailed test. 
The null hypothesis is rejected if the computed value w+, W-, or w is less than 
or equal to the appropriate tabled value. For example, when n — 12, Table A. 17 
shows that a value of w+ < 17 is required for the one-sided alternative p. < po to 
be significant at the 0.05 level. 

Example 16.3:1 Rework Example 16.1 by using the signed-rank test. 
Solution: i. H0: p•= 1.8. 

2. H,: p. ^ 1.8. 

3. a = 0.05. 

4. Critical region: Since n = 10, after discarding the one measurement that 
equals 1.8, Table A. 17 shows the critical region to be w < 8. 

5. Computations: Subtracting 1.8 from each measurement and then ranking the 
differences without regard to sign, we have 

d. 

Ranks 

-0 .3 0.4 

5.5 7 

-0 .9 

10 

-0 .5 0.2 

8 3 

-0 .2 

3 

-0 .3 0.2 

5.5 3 

-0 .6 

9 

-0 .1 

1 

Now iv-i- = 13 and w- = 42 so that w = 13, the smaller of w+ and iev_. 
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6. Decision: As before, do not reject Ho and conclude that the median operating 
time is not significantly different from 1.8 hours. J 

The signed-rank test can also be used to test, the null hypothesis that pi—p2 = 
do- In this case the populations need not be symmetric. As with the sign test we 
subtract do from each difference, rank the adjusted differences without regard to 
sign, and apply the same procedure as above. 

Example 16.4:1 It is claimed that a college senior can increase his score in the major field area of 
the graduate record examination by at least 50 points if he is provided with sample 
problems in advance. To test this claim, 20 college seniors are divided into 10 pairs 
such that each matched pair has almost the same overall quality point average for 
their first 3 years in college. Sample problems and answers are provided at random 
to one member of each pair 1 week prior to the examination. The examination 
scores are given in Table 16.3. 

Table 16.3: Data for Exampl 

With Sample Prob lems 
Without Sample Problems 

1 

531 
509 

2 

621 
540 

3 

663 
688 

4 

579 
502 

e 16.4 

Pair 
5 6 

451 660 
424 683 

7 

591 
568 

8 

719 
748 

9 

543 
530 

10 

575 
524 

Test the null hypothesis at the 0.05 level of significance that sample problems 
increase the scores by 50 points against the alternative hypothesis that the increase 
is less than 50 points. 

Solution: Let px and p2 represent the median score of all students taking the test in question 
with and without sample problems, respectively. 

1. H0: px - p2 = 50. 

2. Hi: pi - p2 < 50. 

3. a = 0.05. 

4. Critical region: since n = 10, Table A.17 shows the critical region to be 
w+ < 11. 

5. Computations: 

di 
di- - d0 

Ranks 

1 
22 

- 2 8 
5 

2 

81 
31 
6 

3 
-25 
- 7 5 

9 

4 

77 
27 
3.5 

Paii 
5 
27 -

- 2 3 -
2 

6 
-23 
-73 
8 

7 

23 
-27 
3.5 

8 
-29 
-79 
10 

9 
13 

-37 
7 

10 

51 
1 
1 

Now we find that w+ = 6 + 3.5 + 1 = 10.5. 

6. Decision: Reject Ho and conclude that sample problems do not, on the "av
erage," increase one's graduate record score by as much as 50 points. I 
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Normal Approximation for Large Samples 

When n > 15, the sampling distribution of W+ (or VF_) approaches the normal 
distribution with mean 

Pw+ 
n(n + 1) 

and variance a^, = 
2 n(n+ l ) (2n + l ) 

4 " v v + 24 

Therefore, when n exceeds the largest, value in Table A. 17, the statistic 

W+ - pw+ 
Z = 

(*w+ 

can be used to determine the critical region for our test. 

Exercises 

16.1 The following data represent the time, in min
utes, that a patient has to wait during 12 visits to a 
doctor's office before being seen by the doctor: 

17 15 20 20 32 28 
12 26 25 25 35 24 

Use the sign test at the 0.05 level of significance to test. 
the doctor's claim that the median waiting time for 
her patients is not more than 20 minutes before being 
admitted to the examination room. 

16.2 The following data represent, the number of 
hours of flight training received by 18 student pilots 
from a certain instructor prior to their first solo flight: 

9 12 18 14 12 14 12 10 16 
11 9 11 13 11 13 15 13 14 

Using binomial probabilities from Table A.l, perform 
a sign test at the 0.02 level of significance to test the 
instructor's claim that the median time required before 
his students' solo is 12 hours of flight training. 

16.3 A food inspector examines 16 jars of a certain 
brand of jam to determine the percent of foreign im
purities. The following data were recorded: 

2.4 2.3 3.1 2.2 2.3 1.2 1.0 2.4 
1.7 1.1 4.2 1.9 1.7 3.6 1.6 2.3 

Using the normal approximation to the binomial elis-
tribution, perform a sign test at the 0.05 level of signif
icance to test the null hypothesis that the median per
cent of impurities in this brand of jam is 2.5% against 
the alternative that the median percent of impurities 
is not 2.5%. 

16.4 A paint supplier claims that a new additive will 
reduce the drying time of its acrylic paint. To test this 
claim, 12 panels of wood are painted, one-half of each 
panel with paint containing the regular additive and 
the other half with paint containing the new additive. 

The drying times, in hours, were recorded as follows: 
Drying Time (hours) 

Panel 
1 
2 
3 
4 
5 
6 
7 
8 
9 

lO-
l l 
12 

N e w Addit ive 
6.4 
r>.8 
7.4 
5.5 
6.3 
7.8 
8.6 
8.2 
7.0 
4.9 
5.9 
6.5 

Regular Addit ive 
6.6 
5.8 
7.8 
5.7 
6.0 
8.4 
8.8 
8.4 
7.3 
5.8 
5.8 
6.5 

Use the sign test at the 0.05 level to test the null hy
pothesis that the new additive is no better than the 
regular additive in reducing the drying time of this 
kind of paint. 

16.5 It is claimed that a new diet will reduce a per
son's weight by 4.5 kilograms, on average, in a period of 
2 weeks. The weights of 10 women who followed this 
diet were recorded before and after a 2-week period 
yielding the following data: 

Woman Weight Before Weight After 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

58.5 
60.3 
61.7 
69.0 
64.0 
62.6 
56.7 
63.6 
68.2 
59.4 

60.0 
54.9 
58.1 
62,1 
58.5 
59.9 
54.4 
60.2 
62.3 
58.7 
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Use the sign test at the 0.05 level of significance to 
test the hypothesis that the diet reduces the median 
weight by 4.5 kilograms against the alternative hypoth
esis that the median difference in weight is less than 4.5 
kilograms. 

16.6 Two types of instruments for measuring the 
amount of sulfur monoxide in the atmosphere are bet
ing compared in an air-pollution experiment. The fol
lowing readings were recorded daily for a period of 2 
weeks: 

Sulfur Monox ide 
Day 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

Instrument A 
0.96 
0.82 
0.75 
0.61 
0.89 
0.64 
0.81 
0.68 
0.65 
0.84 
0.59 
0.94 
0.91 
0.77 

Instrument B 

0.87 
0.74 
0.63 
0.55 
0.76 
0.70 
0.69 
0.57 
0.53 
0.88 
0.51 
0.79 
0.84 
0.63 

Using the normal approximation to the binomial distri
bution, perform a sign test to determine whether the 
different instruments lead to different results. Use a 
0.05 level of significance. 

16.7 The following figures give the systolic blood 
pressure of 16 joggers before and after an 8-kilometer 
run: 

Jogger Before After 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

158 
149 
160 
155 
164 
138 
163 
159 
165 
145 
150 
161 
132 
155 
146 
159 

164 
158 
163 
160 
172 
147 
167 
169 
173 
147 
156 
164 
133 
161 
154 
170 

Use the sign test at the 0.05 level of significance to test 
the null hypothesis that jogging 8 kilometers increases 
the median systolic blood pressure by 8 points against 
the alternative that the increase in the median is less 
than 8 points. 

16.8 Analyze the data of Exercise 16.1 by using the 
signed-rank test. 

16.9 Analyze the data of Exercise 16.2 by using the 
signed-rank test. 

16.10 The weights of 5 people before they stopped 
smoking and 5 weeks after they stopped smoking, in 
kilograms, are as follows: 

Individual 

Before 66 80 69 52 75 
After 71 82 68 56 73 

Use the signed-rank test for paired observations to test 
the hypothesis, at the 0.05 level of significance, that 
giving up smoking has no effect on a person's weight 
against the alternative that one's weight increases if he 
or she quits smoking. 

16.11 Rework Exercise 16.5 by using the signed-rank 
test. 

16.12 The following are the numbers of prescriptions 
filled by two pharmacies over a 20-day period: 

Day Pharmacy A Pharmacy B 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

19 
21 
15 
17 
24 
12 
19 
14 
20 
18 
23 
21 
17 
12 
16 
15 
20 
18 
14 
22 

17 
15 
12 
12 
16 
15 
11 
13 
14 
21 
19 
15 
11 
10 
20 
12 
13 
17 
16 
18 

Use the signed-rank test at the 0.01 level of signifi
cance to determine whether the two pharmacies, "on 
average," fill the same number of prescriptions against 
the alternative that pharmacy A fills more prescrip
tions than pharmacy B. 

16.13 Rework Exercise 16.7 by using the signed-rank 
test, 

16.14 Rework Exercise 16,6 by using the signed-rank 
test, 
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16.3 Wilcoxon Rank-Sum Test 

As we indicated earlier, the nonparametric procedure is generally an appropriate 
alternative to the normal theory test when the normality assumption eloes not hold. 
When we are interested in testing equality of means of two continuous distributions 
that are obviously nonnoriiial, and samples are independent (i.e., there is no pairing 
of observations), the Wilcoxon rank-sum tes t or Wilcoxon two-sample test 
is an appropriate- alternative to the two-sample fr-test described in Chapter 10. 

Wc shall test the null hypothesis HQ that pi = p2 against some suitable alter
native. First we select a random sample from each of the populations. Let n-i be 
the number of observations in the smaller sample, and n2 the number of observa
tions in the larger sample'. When the- samples are- of equal size, y?i and -n2 may be 
randomly assigned. Arrange1 the nx + n2 observations of the combined samples in 
ascending order and substitute a rank of 1,2,. . . , n4 + n2 for each observation. In 
the case of ties (identical observations), we replace the observations by the mean 
of the ranks that the observations would have if they were distinguishable. For 
example', if the seventh anel eighth observations are identical, we would assign a 
rank of 7.5 to each of the two observations. 

The sum of the ranks corresponding to the n i observations in the smaller sample 
is denoted by wi- Similarly, the value w2 represents the sum of the ?)•_> ranks 
corresponding to the larger sample. The- total til] +w2 depends only on the number 
of observations in the two samples anel is in no way affected by the results of the 
experiment. Hence, if rai = 3 and n2 = 4, then W\ + w2 = 1 + 2 + • • • + 7 = 28, 
regardless of the numerical values of the' observations. In general, 

(m + n2){hi + n2 - 1) 
Wx + w-> = . 

the- arithmetic sum of the integers 1,2 n-i + n2. Once we have determined Wi, 
it may be easier to find w2 by the- formula 

(ll\ + Uo)(lli + u2 — 1) 
w2 = — tl.'i. 

In choosing repeated samples of size' n-i and n2, we would expect -w\. and 
therefore w2. to vary. Thus we may think of wj and w2 as values of the random 
variables W\ and W2, respectively. The- null hypothesis ft\ = p2 will be rejected 
in favor of the alternative p\ < ft-2 only if Wi is small and w2 is large. Likewise, 
the alternative px > ft2 can be accepted only if u>x is large anel w2 is small. For a 
two-tailed test, wc may reject Hi in favor of Hi if «i is small and u:2 is large or 
if wj is large and w2 is small. In other words, the alternative' px < ft2 is accepted 
if ie:i is sufficiently small: the alternative //| > ft2 is accepted if w2 is sufficiently 
small; and the alternative: p.\ -£ ft2 is accepted if the minimum of «;i and w2 is 
sufficiently small. In actual practice we' usually base our decision em the value 

n\(ii\ + 1) n2(n2 + 1) 
ux = ii'\ or u2 = w2 

of the related statistic L,r] or U2 or on the value u of the statistic U, the minimum 
of I'i and U2- These statistics simplify the construction of table's of critical values, 



682 Chapter 16 Nonparametric Statistics 

since both U\ and U2 have symmetric sampling distributions and assume values in 
the interval from 0 to nin2, such that u-i +u2 = nin2. 

From the formulas for m and u2 we see that ui will be small when K,'I is small 
and u2 will be small when w2 is small. Consequently, the null hypothesis will 
be rejected whenever the appropriate statistic U\, U2, or U assumes a value less 
than or equal to the desired critical value given in Table A. 18. The various test 
procedures are summarized in Table 16.4. 

Table 16.4: Rank-Sum Test 

Ho 

Pi = P-2 

Hi 

(h <P2 
< Mi > M-2 

U<i ¥= fa 

Compute 

Ml 

U2 

U 

Table A. 18 gives critical values of Ui and U2 for levels of significance equal to 
0.001, 0.002, 0.01, 0.02, 0.025, and 0.05 for a one-tailed test, and critical values of 
U for levels of significance equal to 0.002, 0.02, 0.05, and 0.10 for a two-tailed test. 
If the observed value of t*j, u2, or u is less than or equal to the tabled critical 
value, the null hypothesis is rejected at the level of significance indicated by the 
table. Suppose, for example, that we wish to test the null hypothesis that px = p2 

against the one-sideel alternative that pi < p2 at the 0.05 level of significance for 
random samples of size n\ = 3 and n2 = 5 that yield the value wx = 8. It follows 
that 

U l = 8 - » = 2 . 

Our one-tailed test is based on the statistic Ux- Using Table A.18, we reject the 
null hypothesis of equal means when ux < 1. Since ui = 2 does not fall in the 
rejection region, the null hypothesis cannot, be rejected. 

Example 16.5:1 The nicotine content, of two brands of cigarettes, measured in milligrams, was found 
to be as follows: 

Brand A 

Brand B 

2.1 4.0 6.3 5.4 4.8 3.7 6.1 3.3 

4.1 0.6 3.1 2.5 4.0 6.2 1.6 2.2 1.9 5.4 

Test the hypothesis, at the 0.05 level of significance, that the median nicotine 
contents of the two brands are equal against the alternative that they are unequal. 

Solution: 1. H0: px = p2. 

2. Hy. pi ^ p2. 

3. a = 0.05. 

4. Critical region: u < 17 (from Table A.18). 

5. Computations: The observations are arranged in ascending order and ranks 
from 1 to 18 assigned. 
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Original Da ta 

0.6 
1.6 
1.9 
2.1 
2.2 
2.5 
3.1 
3.3 
3.7 

Ranks 

1 
2 
3 
4* 
5 
ii 

7 
8* 
9* 

Original Data 

4.0 
4.0 
4.1 
4.8 
5.4 
5.4 
6.1 
6.2 
6.3 

Ranks 

10.5* 
10.5 
12 
13* 
14.5* 
14.5 
16* 
17 
18* 

Now 

anel 

*The ranks marked with an asterisk belong to sample A. 

Wx = 4 + 8 + 9 + 10.5 -J-13 + 14.5 + 16 + 18 = 93, 

?i,'2 = 9 3 = lb. 

Therefore, 

(8)(9) (10)(11) 
u, = 93 - *-£-+ = 57, u2 = 78 - i—^—1 = 23. 

2 2 

6. Decision; Do not reject the null hypothesis Ho and conclude that there is 
no significant difference in the median nicotine' contents of the two brands of 
cigarettes. 

Normal Theory Approximation for Two Samples 

When both »i and n2 exceed 8, the sampling distribution of Ux (or U2) approaches 
the normal distribution with mean 

mn2 . 2 vi-i ?!•>(«! + no + 1) 
ur. = and variance err, = . 

2 12 

Consequently, when n2 is greater than 20, the maximum value in Table A.18. and 
ni is at least 9, we could use the statistic 

Z=U1^JH1± 

for our test, with the critical region falling in either or both tails of the standard 
normal distribution, depending on the form of Hi . 

The use of the Wilcoxon rank-sum test is not restricted to nonnormal popula
tions. It can be used in place of the two-sample /-test when the populations are 
normal, although the power will be smaller. The Wilcoxon rank-sum test is always 
superior to the /-test for decidedly nonnormal populations. 
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16.4 Kruskal-Wallis Test 

In Chapters 13, II. anel 15, the technique of analysis of variance is prominent as 
an analytical technique for testing equality of k > 2 population means. Again, 
however, the reader should recall that normality must be assumed in order that 
the F-test be theoretically correct. In this section we investigate a nonparametric 
alternative to analysis of variance. 

The Kruskal-Wallis test, also called the Kruskal-Wallis H test , is a gen
eralization of the: rank-sum test to the' case of k > 2 samples. It is used to test, 
the null hypothesis HQ that k independent samples are from identical populations. 
Introduced in 1952 by VV. H. Kruskal and W. A. Wallis, the test is a nonpara
metric procedure for testing the equality of means in the one-factor analysis of 
variance when the experimenter wishes to avoid the assumption that the samples 
were selected from normal populations. 

Let. iii (i = l,2,....k) be the number of observations in the ith sample. First, 
we combine all fe samples anel arrange' the n = iii + n-2 + • • • + lit,- observations in 
ascending order, substituting the appropriate rank from 1,2,... ,n for each obser
vation. In the case of ties (identical observations), we follow the usual procedure of 
replacing the observations by the means of the ranks that the observations would 
have: if they were distinguishable'. The' sum of the ranks corresponding to the n* 
observations in the ith sample is denoted by the random variable: R.j. Now let us 
consider the statistic 

^rini;--3^1). 
n(n+ 1) £j m 

which is approximated very well by a chi-squared distribution with k — 1 degrees 
of freedom when Ho is true anel if each sample consists of at least 5 observations. 
The fact that h. the assumed value of H, is large when the independent samples 
come: from populations that are not identical allows us to establish the following 
decision criterion for testing Ho: 

Kruskal-Wallis To test the null hypothesis Hi that k independent samples are from ielentical 
Test populations, compute 

fc= 12 £ * £ ( } 

n(n +1) f-f m • ' 
i=i 

where r,- is the assumed value of /?,-, for i = 1,2 k. If It falls in the critical 
region II > y- with v = k — 1 degrees of freedom, reject Hu at the a-level of 
significance; otherwise, fail to reject HQ. 

Example 16.6:1 In an experiment to determine which of three different missile systems is preferable, 
the propellant burning rate is measured. The data, after coding, are given in Table 
16.5. Use the Kruskal-Wallis test anel a significance level of a = 0.05 to test the 
hypothesis that the propellant burning rates are the same for the three missile 
systems. 
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Table 16.5: Propellant Burning Rates 

Missile System 
2 

24.0 
19.8 

16.7 
18.9 

22.8 23.2 
17.6 

19.8 
20.2 

18.1 
17.8 

18.4 
17.3 
18.8 

19.1 
19.7 
19.3 

17.3 
18.9 

Solution: 1. Ho: pi = p2 = p3-

2. Hi: The three means are not all equal. 

3. a = 0.05. 

4. Critical region: h > X0.05 = 5-991, for v = 2 degrees of freedom. 

5. Computations: In Table 16.6 we convert the 19 observations to ranks and 
sum the ranks for each missile system. 

Table 16.6: Ranks for Propellant Burning Rates 

Missile System 
1 

19 
1 

17 
14.5 
9.5 

n =61.0 

r2 

2 

18 
14.5 

6 
4 

16 
5 

= 63.5 

rs 

3 

7 
11 

2.5 
2.5 
13 

9.5 

8 
12 

= 65.5 

Now, substituting m = 5, n2 = 6, n3 = 8, and n = 61.0, r2 = 63.5, and 
r3 = 65.5, our test statistic H assumes the value 

h = 
12 

(19)(20) 

61.02 63.52 65.5* \ 
+ — r - + —^ 1 - (3)(20) = 1.66. 

6. Decision: Since h = 1.66 does not fall in the critical region h > 5.991, we 
have insufficient evidence to reject the hypothesis that the propellant burning 
rates are the same for the three missile systems. J 
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Exercises 

Chapter 16 Nonparametric Statistics 

16.15 A cigarette manufacturer claims that the tar 
content of brand B cigarettes is lower than that of 
brand A. To test this claim, the following determi
nations of tar content, in milligrams, were recorded: 

Brand A 1 12 9 13 11 M 
Brand B 10 

Use the rank-sum test with a 
the claim is valid. 

0.05 to test whether 

16.16 To find out whether a new serum will arrest 
leukemia, 9 patients, who have all reached an advanced 
stage of the disease, are selected. Five patients receive 
the treatment and four do not. The survival times, in 
years, from the time the experiment; commenced are 

Treatment 2.1 5.3 1,1 4.6 0.9 
No treatment | 1.9 (To ±8 3.1 

Use the rank-sum lest, at the 0.05 level o( significance, 
to determine if the: serum is effective. 

16.17 The following data represent the number of 
hours that two different types of scientific pocket cal
culators operate before a recharge: is required. 

Calculator A I 5.5 5.6 6.3 4.6 5.3 5.0 6.2 5.8 5.1 
Calculator B \ 3.8 4.8 4.3 4.2 4.0 4.9 4.5 5.2 4.5 

Use the rank-sum test with a = 0.01 to determine if 
calculator A operates longer than calculator B on a full 
battery charge. 

16.18 A fishing line is being manufactured by two 
processes. To determine if there is a difference in 
the mean breaking strength of the lines. 10 pieces by 
each process are selected and then tested for breaking 
strength. The results are as follows: 

Process 1 

Process 2 

10.4 
9.6 
8.7 
<).r> 

9.8 
10.9 
11.2 
11.0 

11.5 
11.8 
9.8 
9.8 

10.0 
9.3 

10.1 
10.5 

9.9 
10.7 
10.8 
9.9 

Use the rank-sum test with a = 0.1 to determine 
if there is a difference between the mean breaking 
strengths of the lines manufactured by the two pro
cesses. 

16.19 From a mathematics class of 12 equally capa
ble students using programmed materials, 5 are se
lected at random and given additional instruction by 

the teacher. The results on the final examination were 
as follows: 

Additional 
Instruction 
No Additional 
Instruction 

87 

75 

69 

88 

G r a d e 

78 91 80 

01 82 93 79 67 

Use the rank-sum test with a = 0.05 to determine if 
the additional instruction affects the average grade. 

16.20 The following data represent the weights, in 
kilograms, of personal luggage carried on various flights 
by a member of a baseball team and a member of a 
basketball team. 

Luggage Weight (ki lograms) 
Basebal l P layer 
16.3 20.0 
18.1 15.0 
15.9 18.6 
14.1 14.5 
17.7 19.1 
16.3 13.6 
13.2 17.2 

18.6 
15.4 
15.6 
18.3 
17.4 
14.8 
16.5 

Basketbal l P l aye r 
15.4 
17.7 
18.6 
12.7 
15.0 
15.9 

16.3 
18.1 
16.8 
14.1 
13.6 
16.3 

Use the rank-sum test with a = 0.05 to test the null hy
pothesis that the two athletes carry the same amount, 
of luggage on the average against the alternative hy
pothesis that the average weights of luggage for the two 
athletes are different. 

16.21 The following data represent the operating 
time's in hours for three type's of scientific pocket cal
culators before a recharge is required: 

Calculator 

4.9 
4.6 

6.1 
5.2 

4.3 5.5 5.4 
5.8 5.5 

4.8 

6.2 
5.2 

6.4 
6.5 

6.8 
6.3 

5.6 
6.6 

Use the Kruskal-Wallis test, at. the 0.01 level of signif
icance, to test the hypothesis that the operating times 
for all three calculators are equal. 

16.22 In Exercise 13.8 on page 523, use the Kruskal-
Wallis test, at the 0.05 level e>f significance to determine 
if the organic chemical solvents differ significantly in 
sorption rate. 
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16.5 Runs Test 

Definition 16.1: 

Applying the many statistical concepts discussed throughout this book, it was 
always assumed that our sample data had been collected by some randomization 
procedure. The runs test, based on the order in wdiich the sample observations 
are obtained, is a useful technique for testing the null hypothesis Ho that the 
observations have indeed been drawn at random. 

To illustrate the runs test, let us suppose that 12 people are polled to find out if 
they use a certain product. We would seriously question the assumed randomness 
of the sample if all 12 people were of the same sex. We shall designate a male and 
female by the symbols M and F, respectively, and record the outcomes according 
to their sex in the order in which they occur. A typical sequence for the experiment 
might be 

M A/ F F F M F F M MM M, 

where we have grouped subsequences of similar symbols. Such groupings are called 
runs. 

A run is a subsequence of one or more identical symbols representing a common 
property of the data. 

Regardless of whether our sample measurements represent qualitative or quan
titative data, the runs test divides the data into two mutually exclusive categories: 
male or female; defective or nondefective; heads or tails: above or below the me
dian: and so forth. Consequently, a sequence will always be limited to two distinct 
symbols. Let nx be the number of symbols associated with the category that oc
curs the least and n2 be the number of symbols that belong to the other category. 
Then the sample size n = ni + n2. 

For the n = 12 symbols in our poll we have five runs, with the first containing 
two Ms, the second containing three Fs, and so on. If the number of runs is larger 
or smaller than what we would expect by chance, the hypothesis that the sample 
was drawn at random should be rejected. Certainly, a sample resulting in only two 
runs, 

M M M M M M M F F F F F, 

or the reverse, is most unlikely to occur from a random selection process. Such 
a result indicates that the first 7 people interviewed were all males followed by 5 
females. Likewise, if the sample resulted in the maximum number of 12 runs, as 
in the alternating sequence 

M F M F M F M F M F M F, 

we would again be suspicious of the order in which the individuals were selected 
for the poll. 

The runs test for randomness is based on the random variable V, the total 
number of runs that occur in the complete sequence of our experiment. In Table 
A.19, values of P(V < v * when Ho is true) are given for v* = 2 , 3 , . . . , 20 runs, 
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and values of m and n2 less than or equal to 10. The P-values for both one-tailed 
and two-tailed tests can be obtained using these tabled values. 

In the poll taken previously we exhibit a total of 5 Fs and 7 Ms. Hence, with 
m = 5, n2 = 7, and v = 5, we note from Table A.19 for a two-tailed test that the 
P-value is 

P = 2P(V < 5 when H0 is true) = 0.394 > 0.05. 

That is, the value v = 5 is reasonable at the 0.05 level of significance when H0 

is true, and therefore we have insufficient evidence to reject the hypothesis of 
randomness in our sample. 

When the number of runs is large (for example if v = 11, while ni = 5 and 
n2 = 7), the P-value in a two-tailed test is 

P = 2P(V > 11 when H0 is true) = 2[1 - P(V < 10 when H0 is true)] 

2(1 - 0.992) = 0.016 < 0.05, 

which leads us to reject the hypothesis that the sample values occurred at random. 
The runs test can also be used to detect departures in randomness of a sequence 

of quantitative measurements over time, caused by trends or periodicities. Replac
ing each measurement in the order in wdiich they are collected by a plus symbol 
if it falls above the median, by a minus symbol if it falls below the median, and 
omitting all measurements that are exactly equal to the median, we generate a 
sequence of plus and minus symbols that are tested for randomness as illustrated 
in the following example. 

Example 16.7:1 A machine is adjusted to dispense acrylic paint thinner into a container. Would 
you say that the amount of paint thinner being dispensed by this machine varies 
randomly if the contents of the next 15 containers are measured and found to be 
3.6, 3.9, 4.1, 3.6, 3.8, 3.7, 3.4, 4.0, 3.8, 4.1, 3.9, 4.0. 3.8, 4.2, and 4.1 liters? Use a 
0.1 level of significance. 

Solution: 1. HQ: Sequence is random. 

2. H]: Sequence is not random. 

3. a = 0.1. 

4. Test statistic: V, the total number of runs. 

5. Computations: For the given sample we find x = 3.9. Replacing each mea
surement by the symbol "+" if it falls above 3.9, by the symbol " - " if it falls 
below 3.9, and omitting the two measurements that equal 3.9, we obtain the 
sequence 

- + - - - - + - + + - + + 
for which nx = 6, n2 = 7, and v = 8. Therefore, from Table A.19. the 
computed P-value is 

P = 2P(V > 8 when H0 is true) = 2(0.5) = 1. 

6. Decision: Do not reject the hypothesis that the sequence of measurements 
varies randomly. -1 
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The runs test, although less powerful, can also be used as an alternative to 
the Wilcoxon two-sample test to test the claim that two random samples come 
from populations having the same distributions and therefore equal means. If the 
populations are symmetric, rejection of the claim of equal distributions is equivalent 
to accepting the alternative hypothesis that the means are not equal. In performing 
the test, we first combine the observations from both samples and arrange them 
in ascending order. Now assign the letter A to each observation taken from one of 
the populations and the letter B to each observation from the second population, 
thereby generating a sequence consisting of the symbols A and B. If observations 
from one population are tied with observations from the other population, the 
sequence of A and B symbols generated will not be unique and consequently the 
number of runs is unlikely to be unique. Procedures for breaking ties usually result 
in additional tedious computations, and for this reason we might prefer to apply 
the Wilcoxon rank-sum test whenever these situations occur. 

To illustrate the use of runs in testing for equal means, consider the survival 
times of the leukemia patients of Exercise 16.16 on page 686 for which we have 

0.5 
B 

0.9 
A 

1.4 
A 

1.9 
B 

2.1 
A 

2.8 
B 

3.1 
B 

4.6 
A 

5.3 
A 

resulting in v = 6 runs. If the two symmetric populations have equal means, the 
observations from the two samples will be intermingled, resulting in many runs. 
However, if the population means are significantly different, we would expect most 
of the observations for one of the two samples to be smaller than those for the 
other sample. In the extreme case where the populations do not overlap, we would 
obtain a sequence of the form 

AAAAABBBB or BBBBAAAAA 

and in either case there are only two runs. Consequently, the hypothesis of equal 
population means will be rejected at the a-level of significance only when v is small 
enough so that 

P = P(V < v when H0 is true) < a, 

implying a one-tailed test. 
Returning to the data of Exercise 16.16 on page 686 for which nx = 4, n2 = 5, 

and v = 6, we find from Table A.19 that 

P = P(V < 6 when H0 is true) = 0.786 > 0.05 

and therefore fail to reject, the null hypothesis of equal means. Hence we conclude 
that the new serum does not prolong life by arresting leukemia. 

WThen m and n2 increase in size, the sampling distribution of V approaches the 
normal distribution with mean 

2nin2 , , , 2 2nin2(2nin2 - ni - n2) 
pv = 1-1 and variance ov = -. rx-, rr-

nx + n2 (nx + n2)
2(nx + n2 - 1) 

Consequently, when nx and n2 are both greater than 10, we could use the statistic 

Z=V-^L 

to establish the critical region for the runs test. 
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16.6 Tolerance Limits 

Tolerance limits for a normal distribution of measurements are discussed in Chapter 
9. In this section we consider a method for constructing tolerance intervals that 
are independent of the shape of the underlying distribution. As wc might suspect, 
for a reasonable degree of c:onfielence they will be substantially longer than those 
constructed assuming normality, and the sample size required is generally very 
large. Nonparametric tolerance limits are- stated in terms of the smallest and 
largest, observations in our sample. 

Two-Sided Feir any distribution of measurements, two-sided tolerance limits arc indicated by-
Tolerance Limits the smallest, and largest observations in a sample of size n, where n is determined 

so that one e:an assert with 100( 1 —7)% confidence that at least the proportion 
1 — 0. of the distribution is included between the sample extremes. 

Table A.20 gives required sample sizes for selected values of 7 and 1 - a. For 
example, when 7 = 0.01 and 1 — a = 0.95, we must choose a random sample of 
size n = 130 in order to be 99% confident that at least 95% of the distribution of 
measurements is included between the sample extremes. 

Instead of determining the sample size n such that a specified proportion of 
measurements are contained between the sample extremes, it is desirable in many 
industrial processes to determine the sample size such that a fixed proportion of 
the population falls below the largest (or above the smallest) observation in the 
sample. Such limits are called one-sided tolerance limits. 

One-Sided For any distribution of measurements, a one-sided tolerance limit is determined 
Tolerance Limits by the smallest (largest) observation in a sample of size n. where n is determined 

so that one can assert with 100(1 —7)% confidence that at least the proportion 
1 - a of the distribution will exceed the smallest (be less than the largest) 
observation in the sample. 

Table A.21 shows required sample sizes corresponding to selected values of 7 
and 1 — Q. Hence, when 7 = 0.05 and l — ce = 0.70, wc must choose a sample of size 
n = 9 in order to be 95% confident that 70% of our distribution of measurements 
will exceed the smallest observation in the' sample. 

16.7 Rank Correlation Coefficient 

In Chapter 11 we use the sample correlation coefficient r to measure the linear 
relationship between two continuous variables X and Y. If ranks 1,2, . . . ,n are 
assigned to the x observations in order of magnitude and similarly to the y ob
servations, and if these ranks are then substituted for the actual numerical values 
into the formula for the correlation coefficient in Chapter 11, we obtain the non
parametric counterpart of the conventional correlation coefficient. A correlation 
coefficient, calculated in this manner is known as the Spearman rank correla
tion coefficient and is denoted by rs. When there are no ties among either set of 
measurements, the formula for ra reduces to a much simpler expression involving 
the differences e7; between the ranks assigned to the n pairs of ,-r's and y's, which 
we now state. 
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Rank Correlation 
Coefficient 

A nonparametric measure of association between two variables X and Y is given 
by the rank correlation coefficient 

6 
»\, = n(n2 -1) ^ ' 

where di is the difference between the ranks assigned to x, and iji, and n is the 
number of pairs of data. 

In practice the preceding formula is also used when there are ties among either 
the rr or y observations. The ranks for tied observations are assigned as in the signed 
rank test by averaging the ranks that would have been assigned if the observations 
were distinguishable. 

The value of re will usually be close to the value obtained by finding r based 
on numerical measurements and is interpreted in much the same way. As before, 
the value of ra will range from -1 to -1-1. A value of +1 or -1 indicates perfect 
association between X and Y, the plus sign occurring for identical rankings and 
the minus sign occurring for reverse rankings. When r s is close to zero, we would 
conclude that the variables are uncorrelated. 

Example 16.8:1 The figures listed in Tabic 16.7, released by the Federal Trade Commission, show 
the milligrams of tar and nicotine found in 10 brands of cigarettes. Calculate the 
rank correlation coefficient to measure the degree of relationship between tar and 
nicotine content in cigarettes, 

Table 16.7: Tar and Nicotine Contents 

Cigarette Brand Tar Content Nicotine Content 
Viceroy 
Marlboro 
Chesterfield 
Kool 
Kent 
Raleigh 
Old Gold 
Philip Morris 
Oasis 
Plavers 

14 
17 
28 
17 
16 
13 
24 
25 
18 
31 

0.9 
1.1 
1.6 
1.3 
1.0 
0.8 
1.5 
1.4 
1.2 
2.0 

Solution: Let X and Y represent the tar and nicotine contents, respectively. First we assign 
ranks to each set of measurements, with the rank of 1 assigned to the lowest 
number in each set, the rank of 2 to the second lowest number in each set. and 
so forth, until the rank of 10 is assigned to the largest number. Table 16.8 shows 
the individual rankings of the measurements and the differences in ranks for the 
10 pairs of observations. 
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Table 16.8: Rankings for Tar and Nicotine content 

Cigarette Brand 

Viceroy 
Marlboro 
Chesterfield 
Kool 
Kent 
Raleigh 
Old Gold 
Philip Morris 
Oasis 
Players 

Xi 

2 
4.5 

9 
4.5 

3 
1 
7 
8 
6 

10 

Vi 
2 
4 
9 
6 
3 
1 
8 
7 
5 

10 

dt 

0 
0.5 

0 
-1 .5 

0 
0 

- 1 
1 
1 
0 

Substituting into the formula for r3, we find that 

(6X5.50) 
u~1 (io)(ioo-r) Jb7' 

indicating a high positive correlation between the amount of tar and nicotine found 
in cigarettes. J 

Some advantages in using rs rather than r do exist. For instance, we no longer 
assume the underlying relationship between X and Y to be linear and therefore, 
when the data possess a distinct curvilinear relationship, the rank correlation co
efficient, will likely be more reliable than the conventional measure. A second ad
vantage in using the rank correlation coefficient is the fact that no assumptions of 
normality are made concerning the distributions of X and Y. Perhaps the greatest 
advantage occurs when we are unable to make meaningful numerical measurements 
but nevertheless can establish rankings. Such is the case, for example, when dif
ferent judges rank a group of individuals according to some attribute. The rank 
correlation coefficient can be used in this situation as a measure of the consistency 
of the two judges. 

To test the hypothesis that p = 0 by using a rank correlation coefficient, one 
needs to consider the sampling distribution of the revalues under the assumption 
of no correlation. Critical values for a = 0.05,0.025,0.01, and 0.005 have been 
calculated and appear in Table A.22. The setup of this table is similar to the table 
of critical values for the t-distribution except for the left column, which now gives 
the number of pairs of observations rather than the degrees of freedom. Since the 
distribution of the revalues is symmetric about zero when p = 0, the revalue that 
leaves an area of a to the left is equal to the negative of the ?"s-value that leaves an 
area of a to the right. For a two-sided alternative hypothesis, the critical region 
of size a falls equally in the two tails of the distribution. For a test in which the 
alternative hypothesis is negative, the critical region is entirely in the left tail of 
the distribution, and when the alternative is positive, the critical region is placed 
entirely in the right tail. 
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E x a m p l e 16.9:1 Refer to Example 16.8 and test the hypothesis that the correlation between the 
amount of ta r and nicotine found in cigarettes is zero against the alternative tha t 
it is greater than zero, Use a 0.01 love:] of significance. 

Solution: 1. Ho: p = 0. 

2. H , : p>0. 

3. o = 0 . 0 1 . 

4. Critical region: r s > 0.745 from Table A.22. 

5. Computat ions: From Example 16.8, ra = 0.967. 

6. Decision: Reject Ho and conclude tha t there is a significant correlation be
tween the amount of tar and nicotine found in cigarettes. 

Under the assumption of no correlation, it can be shown tha t the distr ibution 
of the r eva lue s approaches a normal distribution with a mean of 0 anel a s tandard 
deviation of l/\fn—1 as n increases. Consequently, when n exceeds the values 
given in Table A.22, one could test for a significant correlation by computing 

r s - 0 , 
= ravn - 1 l/y/n - 1 

and comparing with critical values of the s t andard normal distribution shown in 
Table A.3. 

Exercises 

16.23 A random sample of 15 adults living in a small 
town are selected to estimate the proportion of voters 
favoring a certain candidate for mayor. Each individual 
was also asked if he or she was a college graduate. By-
letting Y and N designate the responses of "yes" and 
"no" to the education question, the following sequence 
was obtained: 

A" N N N Y Y N Y Y N Y A" N N N 

Use the runs test at the 0.1 level of significance to de
termine if the sequence supports the contention that 
the sample was selected at random. 

16.24 A silver-plating process is being used to coat 
a certain type of serving tray. When the process is 
in control, the: thickness of the silver on the trays will 
vary randomly following a normal distribution with a 
mean of 0.02 millimeter and a standard deviation of 
0.005 millimete'i'. Suppose that the next 12 trays ex
amined show the following thicknesses of silver: 0.019, 
0.021, 0.020, 0.019, 0.020, 0.018, 0.023, 0.021, 0.024, 
0.022, 0.023, 0.022. Use the runs test to determine if 
the fluctuations in thickness from one tray to another 
are random. Let a = 0.05. 

16.25 Use the runs test to test whether there is a 
difference in the average operating time for the two 
calculators of Exercise 16.17 on page 686. 

16.26 In an industrial production line, items are in
spected periodically for defectives. The following is a 
sequence of defective items, D, and nondefective items. 
N, produced by this production line: 

D D N N N D N N D D N N N N 

NDDDNNDNNNNDND 

Use the large-sample theory for the runs test, with a 
significance level of 0.05, to determine whether the de
fectives are occurring at, random. 

16.27 Assuming that the measurements of Exercise 
1.14 on page 28 were recorded in successive rows from 
left, to right, as they were collected, use the runs test, 
with n = 0.05, to test the hypothesis that the data 
represent a random sequence. 

16.28 How largo a sample is required to be 95% con
fident that, at least 85%. of the distribution of measure
ments is included between the sample extremes? 
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16.29 What is the probability that the range of a 
random sample of size 24 includes at least 90% of the 
population? 

16.30 How large a sample is required to be 99% con
fident that at least 80% of the population will be less 
than the largest observation in the sample? 

16.31 What is the probability that at least 95% of a 
population will exceed the smallest, value in a random 
sample of size n = 135? 

16.32 The following table gives the recorded grades 
for 10 students on a midterm test and the final exam
ination in a calculus course: 

Student 
L.S.A. 
W.P .B . 
R.W.K. 
J.R.L. 
J.K.L. 
D.L.P. 
B.L.P. 
D . W . M . 
M.N.M. 
R.H.S. 

Midterm 
Test 

84 
98 
91 
72 
86 
93 
80 

0 
92 
87 

Final 
E x a m i n a t i o n 

73 
63 
87 
66 
78 
78 
91 

0 
88 
77 

(a) Calculate the rank correlation coefficient. 
(b) Test the null hypothesis that p = 0 against the 

alternative that p > 0. Use a = 0.025. 

16.33 With reference to the data of Exercise 11.1 on 
page 397, 
(a) calculate the rank correlation coefficient; 
(b) test the null hypothesis at the 0.05 level of signifi

cance that p = 0 against the alternative that p ^ 0. 
Compare your results with those obtained in Exer
cise 11.53 on page 438. 

16.34 Calculate the rank correlation coefficient for 
the daily rainfall and amount of particulate removed 
in Exercise 11.9 on page 399. 

16.35 With reference to the weights and chest sizes 
of infants in Exercise 11.52 on page 438. 
(a) calculate the rank correlation coefficient; 

(b) test the hypothesis at the 0.025 level of significance 
that p = 0 against the alternative that p > 0. 

16.36 A consumer panel tests 9 brands of microwave 
ovens for overall quality. The ranks assigned by the 
panel and the suggested retail prices are as follows: 

Panel Suggested 
Manufacturer Rating Price 

A 
B 
C 
D 
E 
F 
G 
H 
I 

6 
9 
2 
8 
5 
1 
7 
4 
3 

S480 
395 
575 
550 
510 
545 
400 
465 
420 

Is there a significant relationship between the quality 
and the price of a microwave oven? Use a 0.05 level of 
significance. 

16.37 Two judges at a college homecoming parade 
rank 8 floats in the following order: 

Float 
6 8 

Judge A 5 8 4 3 6 2 7 1 
Judge B 7 5 4 2 8 1 6 3 

(a) Calculate the rank correlation. 

(b) Test the null hypothesis that p = 0 against the 
alternative that p > 0. Use a = 0.05. 

16.38 In the article called "Risky Assumptions" by 
Paul Slovic, Baruch Fischoff, and Sarah Lichtenstein, 
published in Psychology Today (June 1980), the risk of 
dying in the United States from 30 activities and tech
nologies is ranked by members of the League of Women 
Voters and also by experts who are professionally in
volved in assessing risks. The rankings are as shown in 
Table 16.9. 
(a) Calculate the rank correlation coefficient. 
(b) Test the null hypothesis of zero correlation between 

the rankings of the League of Women Voters and 
the experts against the alternative that the corre
lation is not zero. Use a 0.05 level of significance. 
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Table 16.9: The Ranking Da ta for Exercise 16.38 

Activity or 
Technology Risk 

Nuclear power 
Handguns 
Motorcycles 
Private aviation 
Pesticides 
Fire fighting 
Hunting 
Mountain climing 
Commercial aviation 
Swimming 
Skiing 
Football 
Food preservative 
Power mowers 
Home appliances 

Voters 

1 
3 
5 
7 
9 

11 
13 
15 
17 
19 
21 
23 
25 
27 
29 

Experts 

20 
4 
6 

12 
8 

18 
23 
29 
16 
10 
30 
27 
14 
28 
22 

Activity or 
Technology Risk 

Motor vehicles 
Smoking 
Alcoholic beverages 
Police work 
Surgery 
Large construction 
Spray cans 
Bicycles 
Electric power 
Contraceptives 
X-rays 
Railroads 
Food coloring 
Antibiotics 
Vaccinations 

Voters 

2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 

Experts 

1 
2 
3 

17 
5 

13 
26 
15 
9 

11 
7 

19 
21 
24 
25 

Review Exercises 

16.39 A study by a chemical company compared the 
drainage properties of two different polymers. Ten dif
ferent sludges were used and both polymers were al
lowed to drain in each sludge. The free drainage was 
measured in ml/min. 

(a) Use the sign test at the 0.05 level to test the null 
hypothesis that polymer A has the same median 
drainage as polymer B. 

(b) Use the signed-rank test to test the hypotheses of 
part (a). 

Sludge type Polymer A Polymer B 
1 
2 
3 
4 

12.7 
14.6 
18.6 
17.5 

12.0 
15.0 
19.2 
17.3 

Sludge type 
5 
6 
7 
8 
9 

10 

Polymer A 
11.8 
16.9 
19.9 
17.6 
15.6 
16.0 

Polymer B 
12.2 
16.6 
20.1 
17.6 
16.0 
16.1 

16.40 In Review Exercise 13.58 on page 568, use the 
Kruskal-Wallis test, at the 0.05 level of significance, to 
determine if the chemical analyses performed by the 
four laboratories give, on average, the same results. 

16.41 Use the data from Exercise 13.12 on page 533 
to see if the median amount of nitrogen lost in perspi
ration is different for the three levels of dietary protein. 



Chapter 17 

Statistical Quality Control 

17.1 Introduction 
The notion of using sampling and statistical analysis techniques in a production 
setting had its beginning in the 1920s. The objective of this highly successful 
concept is the systematic reduction of variability and the accompanying isolation 
of sources of difficulties during production. In 1924, Walter A. Shewhart of the Bell 
Telephone Laboratories developed the concept of a control chart. However, it was 
not until World War II that the use of control charts became widespread. This was 
due to the importance of maintaining quality in production processes during that 
period. In the 1950s and 1960s, the development of quality control and the general 
area of quality assurance grew rapidly, particularly with the emergence of the space 
program in the United States. There has been widespread and successful use of 
quality control in Japan thanks to the efforts of W. Edwards Deming, who served 
as a consultant in Japan following World War II. Quality control has been, and is, 
an important ingredient, in the development of Japan's industry and economy. 

Quality control is receiving increasing attention as a management tool in which 
important characteristics of a product are observed, assessed, and compared with 
some type of standard. The various procedures in quality control involve consider
able use of sampling procedures and statistical principles that have been presented 
in previous chapters. The primary users of quality control are, of course, indus
trial corporations. It has become clear that an effective quality control program 
enhances the quality of the product being produced and increases profits. This is 
particularly true today since products are produced in such high volume. Before 
the movement toward quality control methods, quality often suffered because of 
lack of efficiency, which, of course, increases cost. 

The Control Chart 

The purpose of a control chart is to determine if the performance of a process 
is maintaining an acceptable level of quality. It is expected, of course, that any 
process will experience natural variability, that is, variability due to essentially 
unimportant and uncontrollable sources of variation. On the other hand, a process 
may experience more serious types of variability in key performance measures. 
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These sources of variability may arise from one of several types of nonrandom 
"assignable causes," such as operator errors or improperly adjusted dials on a 
machine. A process operating in this state is called out of control. A process 
experiencing only chance variation is said to be in statist ical control. Of course, a 
successful production process may operate in an in-control state for a long period. 
It is presumed that during this period, the process is producing an acceptable 
product. However, there may be either a gradual or sudden "shift" that requires 
detection. 

A control chart is intended as a device to detect the nonrandom or out-of-
control state of a process. Typically, the control chart takes the form indicated in 
Figure 17.1. It is important that the shift be detected quickly so that the problem 
can be corrected. Obviously, if detection is slow, many defective or nonconforming 
items are produced, resulting in considerable waste and increased cost. 

Figure 17.1: Typical control chart. 

Some type of quality characteristic must be under consideration and units of 
the process are being sampled over time. Say, for example, the characteristic may 
be the circumference of an engine bearing. The centerline represents the average 
value of the characteristic when the process is in control. The points depicted in 
the figure may represent results of, say, sample averages of this characteristic, with 
the samples taken over time. The upper control limit and the lower control limit 
are chosen in such a way that one would expect all sample points to be covered by 
these boundaries if the process is in control. As a result, the general complexion of 
the plotted points over time determines whether or not the process is concluded to 
be in control. The "in control" evidence is produced by a random pattern of points, 
with all plotted values being inside the control limits. When a point falls outside 
the control limits, this is taken to be evidence of a process that is out of control, 
and a search for the assignable cause is suggested. In addition, a nonrandom 
pattern of points may be considered suspicious and certainly an indication that an 
investigation for the appropriate corrective action is needed. 
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17.2 Nature of the Control Limits 

The fundamental ideas on which control charts are based are similar in structure 
to hypothesis testing. Control limits are established to control the probability of 
making the error of concluding that the process is out. of control when in fact it 
is not. This corresponds to the probability of making a type I error if we were 
testing the null hypothesis that the process is in control. On the other hand, we 
must be attentive to the error of the second kind, namely, not. finding the process 
out of control when in fact it is (type II error). Thus the choice of control limits is 
similar to the choice of a critical region. 

As in the case of hypothesis testing, the sample size at each point is important. 
The consideration of sample size depends to a large extent on the sensitivity or 
power of detection of the out-of-control state. In this application, the notion of 
power is very similar to that of the hypothesis-testing situation. Clearly, the larger 
the sample at each time period, the quicker the detection of an out-of-control pro
cess. In a sense, the control limits actually define what the user considers as being 
in control. In other words, the latitude given by the control limits obviously must 
depend in some sense on the process variability. As a result, the computation of the 
control limits will naturally depend on data taken from the process results. Thus 
any quality control must have its beginning with computation from a preliminary 
sample or set of samples which will establish both the centerline and the quality 
control limits. 

17.3 Purposes of the Control Chart 

One obvious purpose of the: control chart is mere surveillance of the process, that 
is, to determine if changes need to be made. In addition, the constant systematic 
gathering of data often allows management to assess process capability. Clearly, if 
a single performance characteristic is important, continual sampling anel estimation 
of the mean anel standard deviation of the performance characteristic offer updating 
of what the process can elo in terms of mean performance and random variation. 
This is valuable' even if the process stays in control for long periods. The systematic 
anel formal structure of the control chart can often prevent overreaction to changes 
that represent only random fluctuations. Obviously, in many situations, changes 
brought about by overreaction can create serious problems that are difficult to 
solve. 

Quality characteristics of control charts fall generally into two categories, vari
ables and a t t r ibu tes . As a result, types of control charts often take the same 
classifications. In the case of the variables type of chart, the characteristic is usu
ally a measurement on a continuum, such as diameter, weight, and so on. For the 
attribute chart, the characteristic reflects whether the individual product conforms 
(defective or not). Applications for these two distinct situations are obvious. 

In the case of the variables chart, control must be exerted on both central ten
dency and variability. A quality control analyst must be concerned about whether 
there has been a shift in values of performance characteristic on average. In ad
dition, there will always be a concern about whether some change in process con
ditions results in a decrease: in precision (i.e., an increase in variability). Separate 
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control charts are essential for dealing with these two concepts. Central tendency 
is controlled by the X-chart, where means of relatively small samples are plotted 
on the control chart. Variability around the mean is controlled by the range in the 
sample, or the sample standard deviation. In the case of attribute sampling, the 
pro-portion defective from a sample is often the quantity plotted on the chart. In 
the following se;ction we discuss the development of control charts for the variables 
type of performance characteristic. 

17.4 Control Charts for Variables 

Provieling an example is a relatively easy way to understand the rudiments of the 
X-chart for variables. Suppose that quality control charts are to be' used on a 
process for manufacturing a certain engine part. Suppose the process mean is 
p = 50 mm and the standard deviation is er = 0.01 nun. Suppose that groups of 
5 are sampled every hour and the values of the sample mean X are recorded and 
plotted as in Figure 17.2. The limits for the X-charts are based on the standard 
deviation of the- random variable X. We know from material in Chapter 8 that for 
the average of independent observations in a sample of size n, 

50.02 

UCL 

' * 50.00 

LCL 

49.98 

0 1 7 8 9 10 

Figure 17.2: The 3e7 control limits for the engine part example. 

where a is the standard deviation of an individual observation. The control limits 
are designed lei result in a small probability that a given value of X is outside 
the limits given that, indeed, the process is in control (i.e., p. = 50). If we invoke 
the central limit theorem, we have that under the condition that the process is in 
control, 

X ~ Ar 50, 0.01 

As a result, 100(1 — a)% of the X-values fall inside: the limits when the process is 
in control if we use the limits 
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LCL = p - za/2-^= = 50 - za/2(0.0045), UCL = p. + za/2-^= = 50 + 2 Q / 2 ( 0 . 0 0 4 5 ) . 
\/n >/n 

Here LCL and UCL stand for lower control limit and upper control limit, respec
tively. Often the X-charts are based on limits that are referred to as "three-sigma" 
limits, referring, of course, to za/2 = 3 and limits that become 

y/n 

In our illustration the upper and lower limits become 

LCL = 50 - 3(0.0045) = 49.9865, UCL = 50 + 3(0.0045) = 50.0135. 

Thus, if we view the structure of the 3tr limits from the point of view of hypothesis 
testing, for a given sample point, the probability is 0.0026 that the X-value falls 
outside control limits, given that the process is in control. This is the probability 
of the analyst erroneously determining that the process is out of control (see Table 
A.3). 

The example above not only illustrates the X-chart for variables, but also 
should provide the reader with an insight into the nature of control charts in gen
eral. The centerline generally reflects the ideal value of an important parameter. 
Control limits are established from knowledge of the sampling properties of the 
statistic that estimates the parameter in question. They very often involve a mul
tiple of the standard deviation of the statistic. It has become general practice to 
use 3(7 limits. In the case of the X-chart provided here, the central limit theorem 
provides the user with a good approximation of the probability of falsely ruling 
that the process is out of control. In general, though, the user may not be able 
to rely on the normality of the statistic on the centerline. As a result, the exact 
probability of "type I error" may not be known. Despite this, it has become fairly 
standard to use the ka limits. While use of the 3<r limits is widespread, at times 
the user may wish to deviate from this approach. A smaller multiple of a may 
be appropriate when it is important to quickly detect an out-of-control situation. 
Because of economic considerations, it may prove costly to allow a process to con
tinue to run out of control for even short periods, while the cost of the search 
and correction of assignable causes may be relatively small. Clearly, in this case, 
control limits that are tighter than 3o limits are appropriate. 

Rational Subgroups 

The sample values to be used in a quality control effort are divided into subgroups 
with a sample representing a subgroup. As we indicated earlier, time order of 
production is certainly a natural basis for selection of the subgroups. We may 
view the quality control effort very simply as (1) sampling, (2) detection of an 
out-of-control state, and (3) a search for assignable causes that may be occurring 
over time. The selection of the basis for these sample groups would appear to be 
straightforward. The choice of these subgroups of sampling information can have an 
important effect on the success of the quality control program. These subgroups 
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are often called rational subgroups. Generally, if the analyst is interested in 
detecting a shift in location, it is felt that the subgroups should be chosen so 
that within-subgroup variability is small and that assignable causes, if they are 
present, can have the greatest chance of being detected. Thus we want to choose 
the subgroups in such a way as to maximize the between-subgroup variability. 
Choosing units in a subgroup that are produced close together in time, for example, 
is a reasonable approach. On the other hand, control charts are often used to 
control variability, in which case the performance statistic is variability within the 
sample. Thus it is more important to choose the rational subgroups to maximize 
the within-sample variability. In this case, the observations in the subgroups should 
behave more like a random sample and this variability within samples needs to be 
a depiction of the variability of the process. 

It is important to note that control charts on variability should be established 
before the development of charts on center of location (say, X-charts). Any control 
chart on center of location will certainly depend on variability. For example, we 
have seen an illustration of the central tendency chart and it depends on a. In the 
sections that follow, an estimate of a from the data will be discussed. 

X-Chart with Estimated Parameters 

In the foregoing we have illustrated notions of the X-chart. that make use of the 
central limit theorem and employ known values of the process mean and standard 
deviation. As we indicated earlier, the control limits 

LCL = p-za/2-=:, UCL = p + za/2 —= 
\jn \Jn 

are used and an X-value falling outside these limits is viewed as evidence that the 
mean p has changed and thus the process may be out of control. 

In many practical situations, it is unreasonable to assume that we know p and 
ex. As a result, estimates must be supplied from data taken when the process 
is in control. Typically, the estimates are determined during a period in which 
background information or start-up information is gathered. A basis for rational 
subgroups is chosen and data are gathered with samples of size n in each subgroup. 
The sample sizes are usually small, say, 4, 5, or 6, and k samples are taken, with 
k being at least 20. During this period in which it is assumed that the process is 
in control, the user establishes estimates of p and a, on which the control chart is 
based. The important information gathered during this period includes the sample 
means in the subgroup, the overall mean, and the sample range in each subgroup. 
In the following paragraphs we outline how this information is used to develop the 
control chart. 

A portion of the sample information from these A: samples takes the form 
X j , X 2 , . . . , Xfc, where the random variable X{ is the average of the values in the 
zth sample. Obviously, the overall average is the random variable 

This is the appropriate estimator of the process mean and, as a result, is the cen
terline in the X control chart. In quality control applications it is often convenient 
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to estimate a from the information related to the ranges in the samples rather than 
sample standard deviations. Let us define for the ith sample 

H-i — ^ m n x , ! -™.| mm,? 

as the range for the data in the ith sample. Here XmaX!, and Xm\a,i are the largest 
and smallest observation, respectively, in the sample. The appropriate estimate of 
er is a function of the average range 

R=\±lk. 
h «=i 

An estimate of o, say er, is obtained by 

R 
d2 

where d2 is a constant depending on the sample size. Values of d2 are shown in 
Table A.23. 

Use of the range in producing an estimate of o has roots in quality-control-
type applications, particularly since the range was so easy to compute in the era 
prior to the period in which time of computation is considered no difficulty. The 
assumption of normality of the individual observations is implicit in the X-chart. 
Of course, the existence of the central limit theorem is certainly helpful in this 
regard. Under the assumption of normality, we make use of a random variable 
called the relative range, given by 

W=*. 
a 

It turns out that the moments of W are simple functions of the sample size n (see 
the reference to Montgomery, 2000, in the Bibliography). The expected value of 
W is often referred to as d2. Thus by taking the expected value of W above, 

a 

As a result, the rationale for the estimate a = R/d2 is readily understood. It is 
well known that the range method produces an efficient estimator of a in relatively 
small samples. This makes the estimator particularly attractive in quality control 
applications since the sample sizes in the subgroups are generally small. Using 
the range method for estimation of a results in control charts with the following 
parameters: 

UCL = X + - ^ = . centerline = X, LCL = X - 3 

d2y/n.'' d2\/n 

Defining the quantity 

A2 = -r—=, 
d2y/n 
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we have that 

UCL = X + A2R, LCL = X - A2R. 

To simplify the structure, the user of X-charts often finds values of A2 tabulated. 
Tabulations of values of A2 are given for various sample sizes in Table A.23. 

fl-Charts to Control Variation 

Up to this point all illustrations and details have dealt with the quality control 
analysts' attempt at detection of out-of-control conditions produced by a shift in 
the mean. The control limits are based on the distribution of the random variable 
X and depend on the assumption of normality on the individual observations. It 
is important for control to be applied to variability as well as center of location. In 
fact, many experts feel as if control of variability of the performance characteristic 
is more important and should be established before center of location should be 
considered. Process variability can be controlled through the use of plots of the 
sample range. A plot over time of the sample ranges is called an il-chart. The 
same general structure can be used as in the case of the X-chart, with R being 
the centerline and the control limits depending on an estimate of the standard 
deviation of the random variable R. Thus, as in the case of the X-chart, 3a- limits 
are established where "3cr" implies 3a R. The quantity an must be estimated from 
the data just as ox is estimated. 

The estimate of on., the standard deviation, is also based on the distribution 
of the relative range 

w.Z. 
a 

The standard deviation of W is a known function of the sample size and is generally 
denoted by d3. As a result, 

OR =crd3. 

We can now replace a by a = R/d2, and thus the estimator of OR is 

Rd3 

Thus the quantities that define the i?-chart are 

UCL = RD4, centerline = R, LCL = RD3, 

where the constants D4 and D3 (depending only on n) are 

D4 = l + 3 ^ , £>3 = l - 3 ^ . 
d2 d2 

The constants D4 and D3 are tabulated in Table A.23. 
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X- and R- Charts for Variables 

A process manufacturing missile component parts is being controlled, with the 
performance characteristic being the tensile strength in pounds per square inch. 
Samples of size 5 each are taken every hour and 25 samples are reported. The data 
are shown in Table 17.1. 

Table 17.1: Sample Information on Tensile Strength Data 

Sample Number Observations Xi Ri 

1 1515 1518 1512 1498 1511 
2 1504 1511 1507 1499 1502 
3 1517 1513 1504 1521 1520 
4 1497 1503 1510 1508 1502 
5 1507 1502 1497 1509 1512 
6 1519 1522 1523 1517 1511 
7 1498 1497 1507 1511 1508 
8 1511 1518 1507 1503 1509 
9 1506 1503 1498 1508 1506 
10 1503 1506 1511 1501 1500 
11 1499 1503 1507 1503 1501 
12 1507 1503 1502 1500 1501 
13 1500 1506 1501 1498 1507 
14 1501 1509 1503 1508 1503 
15 1507 1508 1502 1509 1501 
16 1511 1509 1503 1510 1507 
17 1508 1511 1513 1509 1506 
18 1508 1509 1512 1515 1519 
19 1520 1517 1519 1522 1516 
20 1506 1511 1517 1516 1508 
21 1500 1498 1503 1504 1508 
22 1511 1514 1509 1508 1506 
23 1505 1508 1500 1509 1503 
24 1501 1498 1505 1502 1505 
25 1509 1511 1507 1500 1499 

As we indicated earlier, it is important initially to establish "in control" condi
tions on variability. The calculated centerline for the i?-chart is 

1 25 

* = 25 £ ft = 10-72. 
i=l 

Wc find from Table A.23 that for n = 5, D3 = 0 and D4 = 2.114. As a result, the 
control limits for the ill-chart are 

LCL = RD3 = (10.72)(0) = 0, 

UCL = RD4 = (10.72)(2.114) = 22.6621. 

1510.8 
1504.6 
1515.0 
1504.0 
1505.4 
1518.4 
1504.2 
1509.6 
1504.2 
1504.2 
1502.6 
1502.6 
1502.4 
1504.8 
1505.4 
1508.0 
1509.4 
1512.6 
1518.8 
1511.6 
1502.6 
1509.6 
1505.0 
1502.2 
1505.2 

20 
12 
17 
13 
15 
12 
14 
15 
10 
11 
8 
7 
9 
8 
8 
8 
7 
11 
6 
11 
10 
8 
9 
7 
12 
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The iZ-chart is shown in Figure 17.3. None of the plotted ranges fall outside the 
control limits. As a result, there is no indication of an out-of-control situation. 

eu 
c 
to tr 

25 
UCL 

20 

15 

10 

5 

LCL = 0 

V^A/W 
10 20 

Sample 
30 

Figure 17.3: it-chart for the tensile strength example. 

The X-chart can now be constructed for the tensile strength readings. The 
centerline is 

25 

X = ^ J T X = 1507.328. 

For samples of size 5, we find A2 = 0.577 from Table A.23. Thus the control limits 
are 

UCL = X + A2R = 1507.328+ (0.577)(10.72) = 1513.5134, 

LCL = X - A2R = 1507.328 - (0.577)(10.72) = 1501.1426. 

The X-chart is shown in Figure 17.4. As the reader can observe, three values fall 
outside control limits. As a result, the control limits for X should not be used for 
line quality control. 

Further Comments about the Control Charts for Variables 
A process may appear to be in control and, in fact, may stay in control for a 
long period. Does this necessarily mean that the process is operating successfully? 
A process that is operating in control is merely one in which the process mean 
and variability are stable. Apparently, no serious changes have occurred. "In 
control" implies that the process remains consistent with natural variability. The 
quality control charts may be viewed as a method in which the inherent natural 
variability governs the width of the control limits. There is no implication, however, 
to what extent an in-control process satisfies predetermined specifications required 
of the process. Specifications are limits that are established by the consumer, If 
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1520 

1515 

I* 1510 

1505 

1500 
10 20 

Sample 

Figure 17.4: X-chart for the tensile strength example. 

the current natural variability of the process is larger than that dictated by the 
specification, the process will not produce items that meet specifications with high 
frequency, even though the process is stable and in control. 

We have alluded to the normality assumption on the individual observations 
in a variables control chart. For the X-chart, if the individual observations are 
normal, the statistic X is normal. As a result, the quality control analyst has 
control over the probability of type I error in this case. If the individual Xs are 
not normal, X is approximately normal and thus there is approximate control 
over the probability of type I error for the case in wdiich a is known. However, 
the use of the range method for estimating the standard deviation also depends 
on the normality assumption. Studies regarding the robustness of the X-chart to 
departures from normality indicate that for samples of size k > 4 the X chart 
results in an a-risk close to that advertised (see the work by Montgomery, 2000 
and Schilling and Nelson, 1976 in the Bibliography). We indicated earlier that the 
± kaR approach to the i?-chart is a matter of convenience and tradition. Even 
if the distribution of individual observations is normal, the distribution of R is 
not normal. In fact, the distribution of R is not even symmetric. The symmetric 
control limits of ± koR only give an approximation to the a-risk, and in some cases 
the approximation is not particularly good. 

Choice of Sample Size (Operating Characteristic Function) 
in the Case of the X-Chart 

Scientists and engineers dealing in quality control often refer to factors that affect 
the design of the control chart. Components that determine the design of the chart 
include the sample size taken in each subgroup, the width of the control limits, and 
the frequency of sampling. All of these factors depend to a large extent on economic 
and practical considerations. Frequency of sampling obviously depends on the cost 
of sampling and the cost incurred if the process continues out of control for a long 
period. These same factors affect the width of the "in-control" region. The cost 
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that is associated with investigation and search for assignable causes has an impact 
on the width of the region and on frequency of sampling. A considerable amount 
of attention has been devoted to optimal design of control charts and extensive 
details will not be given here. The reader should refer to the work by Montgomery 
(2000) cited in the Bibliography for an excellent historical account of much of this 
research. 

Choice of sample size and frequency of sampling involve balancing available 
resources to these two efforts. In many cases, the analyst may need to make 
changes in the strategy until the proper balance is achieved. The analyst should 
always be aware that if the cost of producing nonconforming items is great, a high 
sampling frequency with relatively small sample size is a proper strategy. 

Many factors must be taken into consideration in the choice of a sample size. In 
the illustration and discussion we have emphasized the use of n = 4. 5, or 6. These 
values are considered relatively small for general problems in statistical inference 
but perhaps proper sample sizes for quality control. One justification, of course, 
is that the quality control is a continuing process and the results produced by 
one sample or set of units will be followed by results from many more. Thus the 
"effective" sample size of the entire quality control effort is many times larger than 
that used in a subgroup. It is generally considered to be more effective to sample 
frequently with a small sample size, 

The analyst can make use of the notion of the power of a test to gain some 
insight into the effectiveness of the sample size chosen. This is particularly impor
tant since small sample sizes are usually used in each subgroup, Refer to Chapters 
10 and 13 for a discussion of the power of formal tests on means and the analysis 
of variance. Although formal tests of hypotheses are not actually being conducted 
in quality control, one can treat the sampling information as if the strategy at each 
subgroup is to test a hypothesis, either on the population mean p or the standard 
deviation a. Of interest is the probability of detection of an out-of-control condi
tion for a given sample, and perhaps more important, the expected number of runs 
required for detection. The probability of detection of a specified out-of-control 
condition corresponds to the power of a test. It is not our intention to show de
velopment of the power for all of the types of control charts presented here, but 
rather, to show the development for the X-chart and present power results for the 
i?-chart. 

Consider the X-chart for a known. Suppose that the in-control state has p = 
Po- A study of the role of the subgroup sample size is tantamount to investigating 
the /3-risk, that is, the probability that an X-value remains inside the control limits, 
given that, indeed, a shift in the mean has occurred. Suppose that the form the 
shift takes is 

p = po + ra. 

Again, making use of the normality of X, we have 

3 = P{LCL < X < UCL \p = po + ra}. 

For the case of ka limits, 

LCL = /io = , and UCL = po H—•=. 
s/n V n 



17.4 Control Charts for Variables 709 

As a result, if we denote by Z the standard normal random variable. 

a = p\z< 

-A 
pq + ka/y/n-p 

Z < 

o/^fn 

Po + ka/sfn— (p + ra) 

afy/n 

= P(Z <k- rs/n~) - P(Z < -k - r\/h~). 

H po - kajy/n - p 

Z < 

a/s/n 

po -ko/sfn- (p + ra) 
o/s/n 

Notice the role of n, r, and k in the expression for the /3-risk. The probability of 
not detecting a specific shift clearly increases with an increase in k, as expected. 
3 decreases with an increase in r, the magnitude of the shift, and decreases with 
an increase in the sample size n. 

It should be emphasized that the expression above results in the /3-risk (prob
ability of type II error) for the case of a single sample. For example, suppose that 
in the case of a sample of size 4, a shift of a occurs in the mean. The probability 
of detecting the shift (power) in the first sample following the shift is (assume 3er 
limits) 

1 - 5 = 1 - \P(Z < 1) - P(Z < -5)] = 0.1587. 

On the other hand, the probability of detecting a shift of 2er is 

1 - / 3 = 1 — [P(Z < - 1 ) - P(Z < -7)] = 0.8413. 

The results above illustrate a fairly modest probability of detecting a shift of mag
nitude a and a fairly high probability of detecting a shift of magnitude 2a. The 
complete picture of how, say, 3<r control limits perform for the X-chart described 
here is depicted in Figure 17.5. Rather than plot power, a plot is given of 8 against 
r, where the shift in the mean is of magnitude rcr. Of course, the sample sizes of 
n = 4,5,6 result in a small probability of detecting a shift of l.Ocr or even 1.5<r on 
the first sample after the shift-

But if sampling is done frequently, the probability may not be as important 
as the average or expected number of runs required before detection of the shift. 
Quick detection is important and is certainly possible even though the probability 
of detection on the first sample is not high. It turns out that X-charts with these 
small samples will result in relatively rapid detection. If 3 is the probability of 
not detecting a shift on the first sample following the shift, then the probability 
of detecting the shift on the sth sample after the shift is (assuming independent 
samples) 

Ps = (l-S)l3*-\ 

The reader should recognize this as an application of the geometric distribution. 
The average or expected value of the number of samples required for detection is 

.1=1 
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Figure 17.5: Operating characteristic curves for the X-chart with 3u limits. Here 
3 is the type II probability error on the first sample after a shift in the mean of 
ra. 

Thus the expected number of samples required to detect the shift in the mean is 
the reciprocal of the power (i.e., the probability of detection on the first sample 
following the shift). 

Example 17.1:1 In a certain quality c:ontrol effort it is important for the quality control analyst 
to quickly detect shifts in the mean of ± a while using a 3(7 control chart with a 
sample size: n = 4. The expected number of samples that are required following the 
shift for the detection of the out-of-control state can be an aid in the assessment 
of the quality control procedure. 

From Figure 17.5, for n = 4 and r = 1, it can be seen that 8 ~ 0.84. If wc 
allow 8 to denote: the number of samples required to detect, the shift, the mean of 
s is 

E(s) = -
1 1 

dTfi = 6.25. 

Thus, on the average, seven subgroups are required before detection of a shift of 
± a. J 

Choice of Sample Size for the i?-Chart 

The OC curve for the it-chart is shown in Figure 17.6. Since the R-chart is used 
for control of the process standard deviation, the /3-risk is plotted as a function of 
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the in-control standard deviation, cry. and the standard deviation after the process 
goes out of control. The latter standard deviation will be denoted ax. Let 

A-2 . . 
oa 

For various sample sizes, 3 is plotter! against A. 

oa 

Figure 17.6: Operating characteristic curve for the jR-charts with 3c limits. 

X- a n d S - C h a r t s for V a r i a b l e s 

It is natural for the student, of statistics to anticipate use of the sample variance 
in the X-chart and in a chart to control variability. The range is efficient as an 
estimator for a, but this efficiency decreases as the sample size gets larger. For n 
as large as 10, the familiar statistic 

JirhB*-*'2 

should be used in the control chart for both the mean anel variability. The reader 
should recall from Chapter 9 that S2 is an unbiased estimator for o2 but. that 5 is 
not unbiased for n. It has become customary to correct S for bias in control chart, 
applications. Wc know, in general, that 

E(S) f- a. 

In the case in which the X, are independent, normally distributed with mean p 
and variance er2, 

\ 1 / 2 

E(S) = c4a, where c4 
n - 1 

T(n/2) 

r[(n - l)/2 
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and T(-) refers to the gamma function (see Chapter 6). For example, for n = 50, 
c4 = 3/8\/27r. In addition, the variance of the estimator S is 

Var(S) = o-2(l-c2). 

We have established the properties of S that will allow us to write control limits 
for both X and S. To build a proper structure, we begin by assuming that a is 
known. Later we discuss estimating a from a preliminary set of samples. 

If the statistic S is plotted, the obvious control chart parameters are 

UCL = c4a + 3a JI — c2, centerline = c4cr, LCL = c4o~ — 3o J1 — c2. 

As usual, the control limits are defined more succinctly through use of tabulated 
constants. Let 

B-, = c4 - 3 ^ 1 - e2, Bo = c4 + 3^/l-c2, 

and thus we have 

UCL = BQO, centerline = c4a, LCL = B$o. 

The values of B& and Bo for variems sample sizes are tabulated in Table A.23. 
Now, of course, the control limits above serve as a basis for the development of 

the quality control parameters for the situation that is most often seen in practice, 
namely, that in which a is unknown. We must once again assume that a set of base 
samples or preliminary samples is taken to produce an estimate of er during what is 
assumed to be an "in-control" period. Sample standard deviations Si, S2,..., Sm 

are obtained from samples that are each of size n. An unbiased estimator of the 
type 

is often used for a. Here, of course, S, the average value of the sample standard 
deviation in the preliminary sample, is the logical centerline in the control chart 
to control variability. The upper and lower control limits are unbiased estimators 
of the control limits that arc appropriate for the case where a is known. Since 

c4J 

the statistic S is an appropriate centerline (as an unbiased estimator of c4a) and 
the quantities 

S-3—Jl-c2 and S + 3— 
c4 V c.| 

are the appropriate lower and upper 3<r control limits, respectively. As a result, 
the centerline and limits for the 5-chart to control variability arc 

LCL = B3S, centerline = S, UCL = B4S, 
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where 

B3 = \--Jl-c2, B4 = l + -Jl-c2. 
c4 V c4 V 

The constants B3 and B4 appear in Table A.23. 
We can now write the parameters of the corresponding X-chart involving the 

use of the sample standard deviation. Let us assume that S and X are available 
from the base preliminary sample. The centerline remains X and the 3a limits are 
merely of the form X ± 3&/\/v., where a is an unbiased estimator. We simply 
supply S/c4 as an estimator for a, and thus we have 

LCL = X - A3S. centerline = X, UCL = X + A3S, 

where 

civ/n 

The constant A3 appears for various sample sizes in Table A.23. 

Example 17.2:1 Containers are produced by a process where the volume of the containers is subject 
to a quality control. Twenty-five samples of size 5 each were used to establish the 
quality control parameters. Information from these samples is documented in Table 
17.2. 

From Table A.23, B3 = 0, B4 = 2,089, A3 = 1.427. As a result, the control 
limits for X are given by 

X + A3S = 62.3771, X - A3S = 62.2740, 

and the control limits for the 5-chart are 

LCL = B3S = 0, UCL = B4S = 0.0754, 

Figures 17.7 and 17.8 show the X and S control charts, respectively, for this 
example. Sample information for all 25 samples in the preliminary data set is 
plotted on the charts. Control seems to have been established after the first few 
samples. J 

17.5 Control Charts for Attributes 

As we indicated earlier in this chapter, many industrial applications of quality 
control require that the quality characteristic indicate no more than the statement 
that the item "conforms." In other words, there is no continuous measurement 
that is crucial to the performance of the item. An obvious illustration of this type 
of sampling, called sampling for attributes, is the performance of a light bulb-
which either performs satisfactorily or does not. The item is either defective or 
not defective. Manufactured metal pieces may contain deformities. Containers 
from a production line may leak. In both of these cases a defective item negates 
usage by the customer. The standard control chart for this situation is the p-chart, 
or chart for fraction defective. As we might expect, the probability distribution 
involved is the binomial distribution. The reader is referred to Chapter 5 for 
background on the binomial distribution. 
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Table 17.2: Vol tune of Samples of Containers for 25 Samples in a Preliminary 
Sample (in cubic centimeters) 

62.36 

62.36 

62.34 

IX 62.32 

62.30 

62.28 

62.26 

Sample 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

UCL 

/ LCL 

0 10 2( 

Sample Number 

62.255 
62.187 
62.421 
62.301 
62.400 
62.372 
62.297 
62.325 
62.327 
62.297 
62.315 
62.297 
62.375 
62.317 
62.299 
62.308 
62.319 
62.333 
62.313 
62.375 
62.399 
62.309 
62.293 
62.388 
62.328 

i 

Observations 

62.301 
62.225 
62.377 
62.315 
62.375 
62.275 
62.303 
62.362 
62.297 
62.325 
62.366 
62.322 
62.287 
62.321 
62.307 
62.319 
62.357 
62.362 
62.387 
62.321 
62.308 
62.403 
62.293 
62.308 
62.318 

30 

62.289 
62.337 
62.257 
62.293 
62.295 
62.315 
62.337 
62.351 
62.318 
62.303 
62.308 
62.344 
62.362 
62.297 
62.383 
62.344 
62.277 
62.292 
62.315 
62.354 
62.292 
62.318 
62.342 
62.315 
62.317 

0.09 

0.07 

ICO 0 0 5 

0.03 

0.01 

( 

62.289 
62.297 
62.295 
62.317 
62.272 
62.372 
62.392 
62.371 
62.342 
62.307 
62.318 
62.342 
62.319 
62.372 
62.341 
62.319 
62.315 
62.327 
62.318 
62.342 
62.372 
62.295 
62.315 
62.392 
62.295 

h UCL 

LCL 
1 

62.311 
62.307 
62.222 
62.409 
62.372 
62.302 
62.344 
62.397 
62.318 
62.333 
62.319 
62.313 
62.382 
62.319 
62.394 
62.378 
62.295 
62.314 
62.341 
62.375 
62.299 
62.317 
62.349 
62.303 
62.319 

10 

Xt 
62.269 
62.271 
62.314 
62.327 
02.343 
62.327 
62.335 
62.361 
62.320 
62.313 
62.325 
02.324 
62.345 
62.325 
62.345 
62.334 
62.313 
62.326 
62.335 
62.353 
62.334 
62.328 
62.318 
62.341 
62.314 

Si 

0.0495 
0.0622 
0.0829 
0.0469 
0.0558 
0.0434 
0.0381 
0.0264 
0.0163 
0.0153 
0.0232 
0.0198 
0.0406 
0.0279 
0.0431 
0.0281 
0.0300 
0.0257 
0.0313 
0.0230 
0.0483 
0.0427 
0.0264 
0.0448 
0.0111 

X = 62.3256 
S = 0.0361 

20 

Sample Number 
30 

Figure 17.7: The X-chart with control limits es- Figure 17.8: The 5-chart with control limits estab-
tablished by the data of Example 17.2. lished by the data, of Example 17.2. 
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The p-Chart for Fraction Defective 

Any manufactured item may have several characteristics that are important and 
should be examined by an inspector. However, the entire development here focuses 
on a single characteristic. Suppose that for all items the probability of a defective 
item is p, and that all items are being produced independently. Then, in a random 
sample of n items produced, allowing X to be the number of defective items, we 
have 

P(X = x) = Q px (1 - p)n-x, x = 0,l,2,...,n. 

As one might suspect, the mean and variance of the binomial random variable will 
play an important role in the development of the control chart. The reader should 
recall that 

E(X) = np and Var(X) = np(l - p). 

An unbiased estimator of p is the fraction defective or the proportion defec
tive, p, where 

number of defectives in the sample of size n 
P = • 

n 
As in the case of the variables control charts, the distributional properties of p 

are important in the development of the control chart. We know that 

E(p) = p, Var(p)='^—^. 
n 

Here we apply the same 3er principles that we use for the variables charts. Let us 
assume initially that p is known. The structure, then, of the control charts involves 
the use of 3cr limits with 

^ Jp(l-p) 

Thus the limits are 

LCL = p - 3 y ^ 4 UCL = P + 3t/^=4 

with the process considered in control when the p-values from the sample lie inside 
the control limits. 

Generally, of course, the value of p is not known and must be estimated from 
a base set of samples very much like the case of p and a in the variables charts. 
Assume that there are rn preliminary samples of size n. For a given sample, each of 
the n observations is reported as either "defective" or "not defective." The obvious 
unbiased estimator for p to use in the control chart is 

1 '" 
P= — >JPt, 

m 
7 = 1 
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where p, is the proportion defective in the ith sample. As a result, the control 
limits are 

LCL = p-3\P^ p\ centerline =p, UCL = p + 3 i ' ^ ! p] 

Example 17.3:1 Consider the data shown in Table 17.3 on the number of defective electronic 
components in samples of size 50. Twenty samples were taken in order to establish 
preliminary control chart values. The control charts determined by this preliminary 
period will have centerline p = 0.088 and control limits 

I .CI. p :*V ( 1
5 0 ^ = -0.0322, UCL = p + 3 J 2 i L _ £ l = 0.2082. 

Table 17.3: Data for Example 17.3 to Establish Control Limits for p-Charts, Sam
ples of Size 50 

Number of Fraction Defective 
Sample Defective Components pi 

I 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

8 
6 
5 
7 
2 
5 
3 
8 
4 
4 
3 
1 
5 
4 
4 
2 
3 
5 
6 
3 

0.16 
0.12 
0.10 
0.14 
0.04 
0.10 
0.06 
0.16 
0.08 
0.08 
0.06 
0.02 
0.10 
0.08 
0.08 
0.04 
0.06 
0.10 
0.12 
0.06 

p = 0.088 

Obviously, with a computed value that is negative, the LCL will be set to zero. 
It is apparent from the values of the control limits that the process is in control 
during this preliminary period. _l 
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Choice of Sample Size for the p-Chart 

The choice of sample size for the p-chart for attributes involves the same general 
types of considerations as that of the chart for variables. A sample size is required 
that is sufficiently large to have a high probability of detection of an out-of-control 
condition when, in fact, a specified change in p has occurred. There is no best, 
method for choice of sample size. However, one reasonable approach, suggested 
by Duncan (sec the Bibliography), is to choose n so that there is probability 0.5 
that we detect a shift in p of a particular amount. The resulting solution for n is 
quite simple. Suppose that the normal approximation to the binomial distribution 
applies. We wish, under the condition that p has shifted to, say, p t > po, that 

P(p > UCL) = P 

Since P(Z > 0) = 0.5, we set 

z> UCL-pi 

v / P i ( i - P i ) / r a 
0.5. 

UCL - Pi =Q 

VVJi(l -pi)/n 

Substituting 

we have 

P+JPJLZA = VCL, 

(P-PO + S / ^ - O . 

We can now solve for n, the size of each sample: 

9 , 
» = £ a P ( 1 - P ) . 

where, of course, A is the "shift" in the value of p, and p is the probability of a 
defective on which the control limits arc based. However, if the control charts are 
based on ko limits, then 

u=-£2pil ~P)-

Example 17.4:1 Suppose that an attribute quality control chart is being designed with a value of 
p = 0.01 for the in-control probability of a defective. What is the sample size per 
subgroup producing a probability of 0.5 that a process shift to p = pi = 0.05 will 
be detected? The resulting p-chart will involve 3er limits. 

Solution: Here we have A = 0.04. The appropriate sample size is 

5(0.01)(0.99) = 55.68 « 56. I 
(0.04) 
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Control Charts for Defects (Use of the Poisson Model) 
In the preceding development we assumed that the item under consideration is one 
that is either defective (i.e., nonfunctional) or not defective. In the latter case it is 
functional and thus acceptable to the consumer. In many situations this "defective 
or not" approach is too simplistic. Units may contain defects or nonconformities 
but still function quite well for the consumer. Indeed, in this case, it may be 
important, to exert control on the number of defects or number of nonconformities. 
This type of quality control effort finds application when the units are either not 
simplistic or perhaps large. For example, the number of defects may be quite 
useful as the object of control when the single item or unit is, say, a personal 
computer. Another example is a unit defined by 50 feet of manufactured pipeline, 
where the number of defective welds is the object of quality control, the number 
of defects in 50 feet of manufactured carpeting, or the number of "bubbles" in a 
large manufactured sheet of glass. 

It is clear from what we describe here that the binomial distribution is not 
appropriate. The total number of nonconformities in a unit or the average number 
per unit can be used as the measure for the control chart. Often it is assumed that 
the number of nonconformities in a sample of items follows the Poisson distributioa. 
This type of chart is often called the C-chart. 

Suppose that the number of defects X in one unit of product follows the Poisson 
distribution with parameter A. (Here t = 1 for the Poisson model.) Recall that for 
the Poisson distribution, 

e-AA* 
P(X = x) = p - , x = 0,1,2 

Here, the random variable X is the number of nonconformities. In Chapter 5 we 
learned that the mean and variance of the Poisson random variable are both A. 
Thus if the quality control chart were to be structured according to the usual 3u 
limits, wc could have, for A known, 

UCL = A + 3\/A, centerline = A, LCL = A - 3\/A. 

As usual, A often must come from an estimator from the data. An unbiased 
estimate of A is the average number of nonconformities per sample. Denote this 
estimate by A. Thus the control chart has the limits 

UCL = A + 3 V l , centerline = A, LCL = A - 3 VX. 

Example 17.5:1 Table 17.4 represents the number of defects in 20 successive samples of sheet metal 
rolls each 100 feet long. A control chart is to be developed from these preliminary-
data for the purpose of controlling the number of defects in such samples. The 
estimate of the Poisson parameter A is given by A = 5.95. As a result, the control 
limits suggested by these preliminary data are 

UCL = A + 3 \ / A ~ = 13.2678 and LCL = A - 3VA = -1.3678, 

with LCL being set to zero. 
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Table 17.4: Data for Example 17.5; Control Involves Number of Defects in Sheet Metal Rolls 

Sample N u m b e r 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Number of Defects 
8 
7 
5 
4 
4 
7 
6 
4 
5 
6 

Sample N u m b e r 
11 
12 
13 
14 
15 
J6 
17 
18 
19 
20 

Numbei • of Defects 
3 
7 
5 
9 
7 
7 
8 
1! 

7 
4 

Ave. 5.95 

Figure 17.9 shows a plot of the preliminary data with the control limits revealed. 
Table 17.5 shows additional data taken from the production process. For each 

sample, the unit on which the chart was based, namely 100 feet of the metal, was 
inspected. The information on 20 samples is revealed. Figure 17.10 shows a plot 
of the additional production data. It is clear that the process is in control, at least 
through the period for which the data were taken. J 

Table: 17.5: Additional Data from the Pnxluction Process of Example 17.5 

Sample N u m b e r 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

N u m b e i of Defects 
3 
5 
8 
5 
8 
4 
3 
6 
5 
2 

Sample N u m b e r 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Numbe i • of Defects 
7 
5 
9 
4 
6 
5 
3 
2 
1 
6 

In Example 17.5, we have made very clear what the sampling or inspection unit 
is, namely, 100 feet of metal. In many cases where the item is a specific one (e.g., a 
personal computer or a specific type of electronic device), the inspection unit may 
be a set of items. For example, the analyst may decide to use 10 computers in each 
subgroup and thus observe a count of the total number of defects found. Thus the 
preliminary sample for construction of the control chart would involve the use of 
several samples, each containing 10 computers. The choice of the sample size may 
depend on many factors. Often, we may want a sample size that will ensure an 
LCL that is positive. 

The analyst may wish to use the average number of defects per sampling unit 
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Figure 17.9: Preliminary data plotted on the con- Figure 17.10: Additional production data for Ex-
trol chart, for Example 17.5. ample 17.5. 

as the basic measure in the control chart. For example, for the case of the personal 
computer, let the random variable total number of defects 

U 
total number ile:fects 

be measured for each sample of, say, n = 10. We can use the method of moment-
generating functions to show that U is a, Poisson random variable (see Review 
Exercise 17.1) if we assume that the number t>f defects per sampling unit is Poisson 
with parameter A. Thus the control chart for this situation is characterized by the 
following: 

<U 
UCL = U + 3\J —, centerline = U, LCL = U-3\!-. 

Here, of course, U is the average of the [/-values in the preliminary or base data 
set. The term U/n is derived from the result that 

E(U) = A. Vu.r(U) = -, 
n 

and thus U is an unbiased estimate of E(U) = A and U/n is an unbiased estimate 
of Vo.r(U) = X/n. This type of control chart is often called a [/-chart. 

In the entire development in this se:ction we based our development of control 
charts on the Poisson probability model. This model has been used in combination 
with the 3er concept. As we have implied earlier in this chapter, the notion of 3er 
limits has its roots in the normal approximation, although many users feel that the 
concept works well as a pragmatic tool even if normality is not even approximately 
correct. The difficulty, of course, is that in the absence of normality, we cannot 
control the probability of incorrect specification of an out-of-control state. In the 
case of the Poisson model, when A is small the distribution is cjuite asymmetric, a 
condition that may produce undesirable results if we hold to the 3er approach. 
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17.6 Cusum Control Charts 

The disadvantage with Shewhart-type control charts, developed and illustrated in 
the preceding sections, lies in their inability to detect small changes in the mean. A 
quality control mechanism that has received considerable attention in the statistics 
literature and usage in industry is the cumulative sum (cusum) chart. The 
method for the cusum chart is simple and its appeal is intuitive. It should become 
obvious to the reader why it is more responsive to small changes in the mean. 
Consider a control chart for the mean with a reference level established at value 
W. Consider particular observations Xi , X2,..., Xr. The first r cusums are 

Si = Xx~ W 

52 = S! + (X2 - W) 

53 = S2 + (X3 - W) 

Sr = Sr-i+(X.,.-W). 

It becomes clear that the cusum is merely the accumulation of differences from the 
reference level. That is, 

Sk = £ ) ( X i - W), A: = 1,2,. 

The cusum chart is, then, a plot of Sk against time. 
Suppose that we consider the reference level w to be an acceptable value of the 

mean p.. Clearly, if there is no shift in p, the cusum chart should be approximately 
horizontal, with some minor fluctuations balanced around zero. Now, if there is 
only a moderate change in the mean, a relatively large change in the slope of the 
cusum chart should result, since each new observation has a chance of contributing 
a shift and the measure being plotted is accumulating these shifts. Of course, 
the signal that the mean has shifted lies in the nature of the slope of the cusum 
chart. The purpose of the chart is to detect changes that are moving away from 
the reference level. A nonzero slope (in either direction) represents a change away 
from the reference level. A positive slope indicates an increase in the mean above 
the reference level, while a negative slope signals a decrease. 

Cusum charts are often devised with a defined acceptable quality level (AQL) 
and a rejectable quality level (RQL) preestablished by the user. Both represent 
values of the mean. These may be viewed as playing roles somewhat similar to 
those of the null and alternative mean of hypothesis testing. Consider a situation 
wdiere the analyst hopes to detect an increase in the value of the process mean. We 
shall use the notation po for AQL and pi for RQL and let pi > po. The reference 
level is now set at 

2 

The values of Sr (r = 1,2, ) will have a negative slope if the process mean is at 
Po and a positive slope if the process mean is at p i . 
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Decision Rule for Cusum Char t s 

As indicated earlier, the slope of the cusum chart provides the signal of action by 
the quality control analyst. The decision rule calls for action if, at the rth sampling 
period, 

dr > h, 

where h is a prespecified value called the length of the decision interval and 

rf = Sr — min Si. 
1 <!<!-1 

In other words, action is taken if the data reveal that the current cusum value 
exceeds by a specified amount the previous smallest cusum value. 

A modification in the mechanics described above allows for ease in employing 
the method. We have described a procedure that plots the cusums and computes 
differences. A simple modification involves plotting the differences directly and 
allows for checking against the decision interval. The general expression for dr is 
quite simple. For the cusum procedure wdrere we are detecting increases in the 
mean, 

dr = max[0,eir_i + (Xr - W)\. 

The choice of the value of h is, of course, very important. We do not choose 
in this book to provide the many details in the literature dealing with this choice. 
The reader is referred to Ewan and Kemp, 1960, and Montgomery, 2000, (see 
the Bibliography) for a thorough discussion. One important consideration is the 
expected run length. Ideally, the expected run length is quite large under p — po 
and quite small when p = p4. 

Review Exercises 

17.1 Consider X\, X2,. •., Xn independent Poisson Sample X R_ 
random variables with parameters pi,p2, • • • ,/J-n- Use 
the properties of moment-generating functions to show 

n 

that the random variable ]T) Xi is a Poisson random 
i = l 

n n 
variable with mean Y Pi and variance Y P> • 

i=i i = i 

17.2 Consider the following data taken on subgroups 
of size 5. The data contain 20 averages and ranges on 
the diameter (in millimeters) of an important compo
nent part of an engine. Display X- and i?.-charts. Does 
the process appear to be in control? 

Sample X R 
1 2.3972 0.0052 
2 2.4191 0.0117 
3 2.4215 0.0062 

4 
5 
e 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

2.3917 
2.4151 
2.4027 
2.3921 
2.4171 
2.3951 
2.4215 
2.3887 
2.4107 
2.4009 
2.3992 
2.3889 
2.4107 
2.4109 
2.3944 
2.3951 
2.4015 

0.0089 
0.0095 
0.0101 
0.0091 
0.0059 
0.0068 
0.0048 
0.0082 
0.0032 
0.0077 
0.0107 
0.0025 
0.0138 
0.0037 
0.0052 
0.0038 
0.0017 
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17.3 Suppose for Review Exercise 17.2 that the buyer 
has set specifications for the part. The specifications 
require that the diameter fall in the range covered by 
2.40000 ± 0.0100 mm. What proportion of units pro
duced by this process will not conform to specifica
tions? 

17.4 For the situation of Review Exercise 17.2, give 
numerical estimates of the mean and standard devia
tion of the diameter for the part being manufactured 
in the process. 

17.5 Consider the data of Table 17.1. Suppose that 
additional samples of size 5 are taken and tensile 
strength recorded. The sampling produces the follow
ing results (in pounds per square inch). 

Sample X R 

Sample Si 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1511 
1508 
1522 
1488 
1519 
1524 
1519 
1504 
1500 
1519 

22 
14 
11 
18 
6 

11 
8 
7 
8 

14 

(a) Plot the data, using the X- and /{-charts for the 
preliminary data of Table 17.1. 

(b) Docs the process appear to be in control? If not, 
explain why. 

17.6 Consider an in-control process with mean p = 25 
and er = 1.0. Suppose that subgroups of size 5 are used 
with control limits, g+ 3o/\/n, and centerline at p. 
Suppose that a shift occurs in the mean, and thus the 
new mean is p = 26.5. 

(a) What is the average number of samples required 
(following the shift) to detect the out-of-control sit
uation? 

(b) What is the standard deviation of the number of 
runs required? 

17.7 Consider the situation of Example 17.2. The 
following data are taken on additional^samples of size 
5. Plot the X- and S-values on the X- and S-charts 
that are produced by the data in the preliminary sam
ple. Does the process appear to be in control? Explain 
why or why not. 

Sample S i 

1 
2 
3 
4 

62.280 
62.319 
62.297 
62.318 

0.062 
0.049 
0.077 
0.042 

5 
6 
7 
8 
9 

10 

62.315 
62.389 
62.401 
62.315 
62.298 
62.337 

0.038 
0.052 
0.059 
0.042 
0.036 
0.068 

17.8 Samples of size 50 are taken every hour from a 
process producing a certain type of item that is either 
considered defective or not defective. Twenty samples 
are taken. 

Sample 
1 
2 
3 
4 
5 
0 
7 
8 
9 

10 

Number of 
Defective 

I tems 
4 
3 
5 
3 
2 
2 
2 
1 
4 
3 

Sample 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Number of 
Defective 

I tems 
2 
4 
1 
2 
3 
1 
1 
2 
3 
1 

(a) Construct a control chart for control of proportion 
defective. 

(b) Does the process appear to be in control? Explain. 

17.9 For the situation of Review Exercise 17.8, sup
pose that additional data are collected as follows: 

Sample N u m b e r of Defective I tems 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

3 
4 
2 
2 
3 
1 
3 
5 
7 
7 

Does the process appear to be in control? Explain. 

17.10 A quality control effort is being attempted for 
a process where large steel plates are being manufac
tured and surface defects are of concern. The goal is to 
set up a quality control chart for the number of defects 
per plate. The data are given next page. Set up the ap
propriate control chart, using this sample information. 
Does the process appear to be in control? 
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Number of Number of 
Sample Defective Sample Defective 

Plot Items Plot Items 

Number of Number of 
Sample Defective Sample Defective 

Plot Items Plot Items 
1 
2 
3 
4 
5 

4 
2 
1 
3 
0 

11 
12 
13 
14 
15 

1 
2 
2 
3 
1 

6 
7 
8 
9 
10 

4 
5 
3 
2 
2 

16 
17 
18 
19 
20 

4 
3 
2 
1 
3 
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Bayesian Statistics (Optional) 

18.1 Bayesian Concepts 

The classical methods of estimation that we have studied so far are based solely on 
information provided by the random sample. These methods essentially interpret 
probabilities as relative frequencies. For example, in arriving at a 95% "confidence 
interval for p, we interpret the statement 

P(-1 .96 < Z < 1.96) = 0.95 

to mean that 95% of the time in repeated experiments Z will fall between -1.96 
and 1.96. Since 

o/s/n. 

for a normal sample with known variance, the probability statement here means 
that 95% of the random intervals (X - 1.96a/\/n, X + l.96o/yrn) contain the true 
mean p. Another approach to statistical methods of estimation is called Bayesian 
methodology. The main idea of the method comes from the Bayes' rule described 
in Section 2.8. The key difference between the Bayesian approach and classical 
approach (i.e., the one we have discussed in this text thus far), is that in Bayesian 
concepts, the parameters are viewed as random variables. 

Subjective Probability 
Subjective probability is the foundation of Bayesian concepts. In Chapter 2, we 
discussed two possible approaches of probability, namely, relative frequency and 
indifference approaches. The first one decides a probability as a consequence of 
repeated experiments. For instance, to decide the free-throw percentage of a bas
ketball player, we can record the number of shots made and the total number of 
attempts this player has had so far. The probability of hitting a free-throw by this 
player can be calculated as the ratio of these two numbers. On the other hand, 
if we have no knowledge of any bias of a die, the probability that a 3 will appear 
in the next throw will be 1/6. Such an approach in probability interpretation is 
based on the indifference rule. 
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However, in many situations, the preceding probability interpretations cannot 
be applied. For instance, consider the questions "What is the probability that 
it will rain tomorrow?" "How likely is it that this stock will go up by the end 
of the month?" and "What is the likelihood that two companies will be merged 
together?" They can hardly be interpreted by the aforementioned approaches, 
and the answers to these questions may be different to different people. Yet these 
questions are constantly asked in daily life, and the approach used to explain those 
probabilities is called subjective probability, which reflects one's subjective opinion. 

Conditional Perspective 

Recall that in Chapters 9 through 17, all statistical inferences are based on the fact 
that the parameters are unknown but fixed quantities, apart from that in Section 
9.14, in which the parameters are treated as variables and the maximum likelihood 
estimates are calculated by conditioning on the data. In Bayesian statistics, the 
parameters are treated as random and unknown to the researcher. 

Because the observed data are the only experimental results to the practitioner, 
statistical inference is based on the actual observed data from a given experiment. 
Such a view is called conditional perspective. Furthermore, in Bayesian concepts, 
since the parameter is treated as random, a probability distribution can be spec
ified, by generally using the subjective probability for the parameter. Such a dis
tribution is called a prior distribution and it usually reflects the experimenter's 
prior belief about the parameter. In Bayesian perspective, once an experiment is 
conducted and data are observed, all knowledge about a parameter is contained in 
the actual observed data as well as in the prior information. 

Bayesian Applications 

Although Bayes' rule is credited to Thomas Bayes, Bayesian applications were first 
introduced by French Scientist Pierre Simon Laplace, who published a paper on 
using Bayesian inference on the unknown binomial parameters. However, due to its 
sometimes complicated modeling approach and the objections from many others 
against the use of the subjective prior distribution, Bayesian applications were not 
widely accepted by researchers and scientists until early 1990s, when breakthroughs 
in Bayesian computational methods were achieved. Since then, Bayesian methods 
have been applied successfully to many fields such as engineering, agricultural, 
biomedical science, environmental science, and so on. 

18.2 Bayesian Inferences 

Consider the problem of finding a point estimate of the parameter 6 for the pop
ulation with distribution /(:r| 9), given 8. Denote by n(0) the prior distribution 
about 0. Suppose that a random sample of size n, denoted by x = (xx,x2,..., xn), 
is observed. 
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Definition 18.1: The e 
given 

when 

listril 
by 

<iix) 

ut ion of 0, 

is the niai 

give 

•gina 

n data x, 

n(0\x) = 

distribu 

which is 

f(X\0)7T 

ion eif x. 

called the 

ie) 

post erior disl ributioii. is 

The marginal distribution of x in the above definition can be calculated using 
the following formula: 

(J2 f(x\0)n(0), 0 is discrete. 
g(x) = { o 

I (f° fix\0)rt(0) d.0, 0 is continuous. 

Example 18.1:1 Assume that, the prior distribution for the proportion of defectives produced by a 
machine is 

0.1 0.2 
TT(P) 0.6 0.4 

Denote by x the number of defectives among a random sample of size 2. Finel the 
posterior probability distribution of p, given that :/: is observed. 

Solution: The random variable X follows a binomial distribution 

f(x\p) = b(.r,2,p) = (2)p*q2-*, x = 0. 1.2. 

The marginal distribution of X can be: calculated as 

g(x) =f(x\ O.I)TT(O.I) + f(x\ ().2)7r(0.2) 

2 |[(0.lHQ.9)2-s(0.6) + (0.2):n(0.8)2-''(0.4)]. 

Hence, the posterior probability of p = 0.1, given x, is 

f(x\ O.l)Tr(O.l) ( O . l f t O J ) 2 - 3 5 ^ ) 
?r(0.1| X) = 

9ix) (0.1)"'(0.9)2^(0.6) + (0.2)*(0.8)2-'''-(0.4)' 

anel TT(0.2| X) = 1 - TT(().1| X). 

Suppose that x = 0 is observcel. 

7r(0.1|0) = 
(0.1)°(0.9)2-°(0.6) 

(0.1)°(0.9)2-°(0.6) + (0.2)(l(0.8)2-(l(0.4) 
= 0.6550. 

and ~(0.2|0) = 0.3450. If a; = 1 is observed, TT(0.1|1) = 0.4576, anel jr(0.2jl) = 

0.5424. Finally, ?r(0.112) = 0.2727, anel -(0.2|2) = 0.7273. J 
The prior distribution of Example 18.1 is discrete, although the natural range of 

p is from 0 to 1. Consider the following example where we have a prior distribution 
covering the whole space for p. 
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Example 18.2:1 Suppose that the prior distribution of p is uniform (i.e.. 7t(p) = 1, for 0 < p < 
I). Use the same random variable X as in Example 18.1 to find the posterior 
distribution of p. 

Solution: As in Example 18.1, we have 

fix\p) = b(x;2,p)= Q P V ~ * , as = 0,1,2. 

The marginal distribution of x can be calculated as 

g(x) = j f(x\p)rt(p) dp= Q J Pxi\-P)2-X dp. 

The integral above can be evaluated at each x directly as g(0) = 1/3, #(1) = 1/3 
and g(2) = 1/3. Therefore, the posterior distribution of p, given x, is 

nip\x)={*)pX{]~P)2~* = 3 f 2 W - P ) 8 " . 0<p<l. , 
1/3 \x; 

Using the posterior distribution, we can estimate the parameter(s) in a popu
lation straightforwardly. 

Estimation Using the Posterior Distribution 
Once the posterior distribution is derived, we can easily use the summary of the pos
terior distribution to make inference on the population parameters. For instance, 
the posterior mean, median, or mode can all be used to estimate the parameter. 

Example 18.3:1 Suppose that x = 1 is observed for Example 18.2. Find the posterior mean and 
the posterior mode. 

Solution: When x — 1. the posterior distribution of p can be expressed as 

7r(p|l) = 6 p ( l - p ) , for 0 < p < l . 

To calculate the mean of this distribution, we need to find 

1 V(i-p)*>e(i-i)-l. 

To find the posterior mode, we need to obtain the value of p such that the posterior 
distribution is maximized. Taking derivative of Tt(p) with respect to p, we obtain 
6 - 12p. Solving for p in 0 = 6 - 12p, wc obtain p = 1/2. The second derivative is 
— 12, which implies that the posterior mode achieves at p = 1/2. J 

Bayesian methods of estimation concerning the mean p of a normal population 
are based on the following example. 

Example 18.4:1 If x is the mean of a random sample of size n from a normal population with 
known variance a2, and the prior distribution of the population mean is a normal 
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distribution with known mean p0 and known variance IT2,, then the posterior dis
tribution of the population mean is also a normal distribution with mean p* and 
the standard deviation cr*. where 

P = 4 
°~o + °~2/n ao + a2/n 

Solution: Multiplying the density of our sample 

1 

a2 jn , , 
x + ~^y~,—T~rl'<> a n c l a — 

2^-2 
<7ntT 

no-Q + a2 

f(xx,x2,...,x»\p) = 
(2TV)1'/'2O7> exp 

1 n 

- £ 
j = i 

Xi - p 

for — oo < Xi < co and i = 1.2,..,, n by our prior 

2" 

7r(/i) = 
v/27ri 7T(7o 

exp 
1 (P-Po 

'2 \ ao oo < p < oo, 

we obtain the joint density of the random sample and the mean of the population 
from which the sample is selected. That is. 

f(xi,x2,...,xn,p) = 
1 

(27r)("+1)/2ej"CT0 

{-i[t(^)2+(^y x exp 

In Section 8.6 we establisheel the identity 

J2ixi-p)2 = irix,-x)2+n(x-p)2, 
i=l i=l 

which enables us to write 

f(xi,x2,...,xn,p) = 
( 2 ^ ) ( « + l ) / 2 0 - n ( 7 o 

exp 
1 -££ 

x exp •B 
i= l 

V2 (,, _ ,,„\2-\ n(x-p)2 (p-po) 
+ 

Completing the squares in the second exponent, we can write the joint density of 
the random sample and the population mean in the form 

fix i, x2 x„, p) = K exp 1 (ti-li* 
2 I er* 

where 

P = 
nxa2, + poa2 

na2. + a2 a = no2, + a2 
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and K is a function of the sample values and the known parameters. The marginal 
distribution of the sample is then 

/

OO | 

• oo V27TCT' 

= K\Fhto*, 

and the posterior distribution is 
f(xi,x2,...,xn,u) 

exp 
1 (p-p-2 

dp 

it(p\xi,x2,...,xn) = 
g(x,i,x2,...,xn) 

1 

v/27r< TtO* 
exp 2\ a* J — oo < p < oo, 

which is identified as a normal distribution with mean p* and standard deviation 

a*, where p* and a* are defined above. J 
The central limit theorem allows us to use Example 18.4 also when we select 

random samples (n > 30 for many engineering experimental cases) from nonnormal 
populations (the distribution is not very far from symmetric), and when the prior 
distribution of the mean is approximately normal. 

Several comments need to be made about Example 18.4. The posterior mean 
p* can also be written as 

* _ °o - o-2jn 
I1 ~ ~2~~i 2~T~X "" 2~,—TT~U0: 

which is the weighted average of the sample mean x and the prior mean p0- Since 
both coefficients are between 0 and 1 and sum to 1, the posterior mean p* is always 
between x and po- This means that the posterior estimation of the location of p 
is influenced by both x and po- Furthermore, the weight of x depends on the 
prior variance as well as the variance of the sample mean. For a large sample 
problem (n —> co), the posterior mean p* —> x. This means that the prior mean 
does not play any role in estimating the population mean p using the posterior 
distribution. This is very reasonable since it indicates that when the amount 
of data is substantial, information from the data will dominate the information 
of p provided by the prior. On the other hand, when the prior variance is large 
(er2 —• cc), the posterior mean p" also goes to x. Note that for a normal distribution 
the larger the variance, the flatter the density function. The flatness of the normal 
distribution in this case means that there is almost no subjective prior information 
available to the parameter p. Thus, it is reasonable that the posterior estimation 
p* only depends on the data value x. 

Now consider the posterior standard deviation a*. This value can also be 
written as 

a2a2/n 

It is obvious that the value a* is smaller than both ao and a/^/n, the prior stan
dard deviation and the standard deviation of x, respectively. This suggests that 
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the posterior estimation is more accurate than both the prior and the sample data. 
Hence, incorporating both the data and prior information results in better pos
terior information than using any of the data or prior alone. This is a common 
phenomenon in Bayesian inference. Furthermore, to compute p* and o* by the for
mulas in Example 18.4, we have assumed that er2 is known. Since this is generally 
not the case, we shall replace er2 by the sample variance s2 whenever n > 30. 

Bayesian Interval Estimation 

Similar to classical confidence interval, in Bayesian analysis, we can calculate a 
100(1 - o)% Bayesian interval using the posterior distribution. 

Definition 18.2: The interval a < 6 < b will be called a 100(1 — a)% Bayes interval for 9 if 

/

a /.oo 

TT(6\X) d.0= rr(9\x) d9 = ^ . 
-oo Jb 2 Recall that under the frequentist approach, probability of a confidence interval, 

say 95%, is interpreted as a coverage probability, which means that if an experiment 
is repeated again and again (with considerable unobserved data), the probability 
that the calculated intervals according to the rule will cover the true parameter 
is 95%. However, in Bayesian interval interpretation, say for a 95% interval, we 
can simply phrase that the probability of the unknown parameter falling into the 
calculated interval (only depends on the observed data) is 95%. 

Example 18.5:1 Suppose that X ~ b(x;n,p) with known n = 2, and the prior distribution of p is 
uniform ir(p) = 1, for 0 < p < 1, find a 95% Bayes interval for p. 

Solution: As in Example 18.2, when x = 0, the posterior distribution is 7r(p|0) — 3(1 —p)2, 
for 0 < p < 1. Thus we need to solve for a and b using Definition 18.2, which yields 
the following: 

0.025 ,-r 
./o 

3 ( l - p ) 2 d p = l - ( l - a ) 3 

and 

0.025 /V-P)2 
Jb 

dp=(l- bf 

The solutions to the above equations result in a = 0.0084 and b = 0.7076. There
fore, the probability that p falls into (0.0084,0.7076) is 95%. J 

For the normal (population) and normal (prior) case described in Example 
18.4, the posterior mean p* is the Bayes estimate of the population mean p, and 
a 100(1 - Q ) % Bayesian interval for p can be constructed by computing the 
interval 

P* ~ zn/2a* <p< p* + za/2a*, 

which is centered at the posterior mean and contains 100(1 — a)% of the posterior 
probability. 
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Example 18.6:1 An electrical firm manufactures light, bulbs that have a length of life that is ap
proximately normally distributed with a standard deviation eif 100 hours. Prior 
experience leads us to believe that p is a value of a normal random variable with a 
mean po = 800 hours and a standard deviation o~o — 10 hours. If a random sample 
of 25 bulbs has an average life of 780 hours, find a 95%. Bayesian interval for p. 

Solution: Accortling to Example 18.4, the posterior distribution of the: mean is also a normal 
distribution with mean 

_ (25)(780)(10)2+(800)(100)2 _ 
' ' (25)(10)2 + (100)2 

and standard eleviation 

(10)2(100)5 

80. 
y (25)(10)2+(100)2 

The 95% Bayesian interval for p is then given by 

796 - 1.96V§0 < p < 796 + 1.96\/80, 

or 

778.5 < p. < 813.5. 

Hence, we arc 95% sure that p. will be between 778.5 and 813.5. 
On the other hand, ignoring the prior information about p, we could proceed 

as in Section 9.4 and construct the classical 95% confidence: interval 

780 - (1.96) (^=V\ < p < 780 + (1.96) ' 
25 

or 740.8 < p < 819.2, which is seen to be wider than the corresponding Bayesian 

interval. J 

18.3 Bayes Estimates Using Decision Theory Framework 

Using Bayesian methodology, the posterior distribution of the parameter can be 
obtained. Bayes estimates can also be derived using the posterior distribution when 
a loss function is incurred. For instance, the most popular Bayes estimate used 
is under the squared-error loss function, which is similar to the least squares 
estimates were presented in Chapter 11 in our discussion of regression analysis. 

Definition 18.3: The mean of the posterior distribution TT(9\X), denote by 0*, is called the Bayes 
estimate of 0, under the squared-error loss function. 

Example 18.7:1 Find the Bayes estimates of p, for all the values of 3S3 for Example 18.1. 
Solution: When x = 0, p* = (0.1)(0.6550) + (0.2)(03450) = 0.1345. 

When x - I, p* = (0.1)(0.4576) + (0.2)(0.5424) = 0.1542. 
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When x = 2, p* = (0.1)(0.2727) + (0.2)(0.7273) = 0.1727. 
Note that the classical estimate of p is p = x/n = 0, 1/2, and 1, respectively, 

for the x values at 0, 1, anel 2. The'sc classical estimates are very different from 
the corresponding Bayes estimates. J 

Example 18.8:1 Repeat Example 18.7 in the' situation of Example 18.2. 
Solution: Since the posterior distribution of p can be expressed as 

. W - Q g a ^ - a Q p - d - a - , »<„<i, 

the Bayes estimate of p is 

• i 

p* = E(P\.r.) = 3 Q j p' + >(l - p)2--': dp. 

which yields p* = 1/4 for x = 0, p' = 1/2 for x = 1, and p* = 3/4 for x = 2, 
respectively. Notice that when x = 1 is observed, the Bayes estimate and the 
classical estimate p arc equivalent. J 

For the normal situation as described in Example 18.4, the Bayes estimate of 
p under the squared-error loss will be' the posterior mean p*. 

Example 18.9:1 Suppose that the sampling distribution of a random variable, X, is Poisson with 
parameter A. Assume that the prior distribution of A follows a gamma distribution 
with parameters (ov,/?). Finel the Bayes estimate of A under the squared-error loss 
function. 

Solution: The density function of A" is 

f(x\X) = e " A ^ - . for a; = 0,1 
x\ ' 

anel the prior distribution of A is 

^ = ^ r \ x ' x ~ X ( ~ X ! a ' for A>0-

Hence the posterior distribution of A can be expressed by 

A ' * e, \x+e*-le-(l+l//9)A 
n(X\x) = 

r-x y e -AA«- ' e -v- \ / A ~ /•a c 'Ax+o-l r-(l + l/,3)A dx 
'll x\0«r(a) "A JO * T O ) 

1 

(1 +i/0)-(*+a)r(x+ay 

which follows another gamma distribution with parameters (x + a, (1 + l/3)~l). 
Using Theorem 6.3, we obtain the posterior mean 

I + 1/0 
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Since the posterior mean is the Bayes estimate under the squared-error loss, A is 

our Bayes estimate. J 

Exercises 

18.1 Estimate the proportion of defectives being pro
duced by the machine! in Example 18.1 if the random 
sample of size 2 yields 2 defectives. 

18.2 Let us assume that the prior distribution for the 
proportion y of drinks from a vending machine that 
overflow is 

p 
w(p) 

0.05 
0.3 

0.10 
0.5 

0.15 
0.2 

If 2 of the next 9 drinks from this machine overflow, 
find 
(a) the posterior distribution for the proportion p; 
(b) the Bayc:s estimate of p. 

18.3 Repeat Exercise 18.2 when 1 of the: next 4 drinks 
overflows anel the uniform prior distribution is 

jr(p) = 10, 0.05 < / > < 0.15. 

18.4 The developer of a new condominium complex 
claims that 3 out of 5 buyers will prefer a two bed
room unit, while his banker claims that it. would be 
more correct to say that 7 out. of 10 buyers will pre
fer a two-bedroom unit. In previous predictions of this 
type, the banker has been twice as reliable as the de
veloper. If 12 of the next 15 condominiums solel in this 
complex are: two-bedroom units, Bad 

(a) the posterior probabilities associated with the 
claims of the developer anel banker: 

(b) a point estimate: of the proportion of buyers who 
prefer a two-bedroom unit. 

18.5 The burn time for the first stage of a rocket is 
a normal random variable with a standard deviation 
of 0.8 minute. Assume a normal prior distribution for 
p with a mean of 8 minutes and a standard deviation 
of 0.2 minute. If 10 of those rockets arc fired anel the 
first stage has an average burn time of 9 minutes, find 
a 95% Bayesian interval for p. 

18.0 The daily profit, from a juice vending machine 
placed in an office building is a value of a normal ran
dom variable with unknown mean p and variance er". 
Of course, the mean will vary somewhat from building 
to building, and the distributor feels that these average 

daily profits can be'st be described by a normal distri
bution with mean po = $30.00 and standard deviation 
rrn = SI.75. If one of these juice machines, placed in 
a certain building, showed an average daily profit o( 
X = $24.90 during the first 30 days with a standard 
deviation of s = $2.10, find 

(a) a Bayes estimate of the true average daily profit for 
this building; 

(b) a 95% Bayesian interval of p for this buileling; 
(c) the probability that the average daily preifit from 

the machine in this buileling is between $24.00 anel 
$26.00. 

18.7 The mathematics department, of a large univer
sity is designing a placement test, to be given to the 
incoming freshman classes. Members of the: depart
ment feel that the average grade for this test will vary 
from one freshman class to another. This variation of 
the average class grade is expressed subjectively by a 
normal distribution with mean po = 72 and variance: 
exo = 5.7G. 

(a) What, prior probability eloes the department assign 
to the actual average grade being somewhere be
tween 71.8 and 73.4 for next year's freshman class? 

(b) If the test is tried on a random sample of 100 
freshman students from the next, incoming fresh
man class resulting in an average grade of 70 with 
a variance of 64, construct a 95% Bayesian interval 
for /(. 

(c) What posterior probability should the department 
assign to the event of part (a)'.' 

18.8 Suppose that In Example 18.6 the electrical firm 
eloes not. have enough prior information regarding the 
population mean length of life to be able to assume a 
normal distribution for p. The firm believes, however, 
that p. is surely between 770 and 830 hours and it is 
fell that a more realistic Bayesian approach would be 
to assume the prior distribution 

-( / ' ) = gg, 770 < p < 8;io. 

If a random sample: of 25 bulbs gives an average life of 
7K0 hours, follow the steps of the proof for Example 
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18.4 to find the posterior distribution 

n(p\xi,X2,...,X2T,). 

18.9 Suppose that the time to failure T of a certain 
hinge is an exponential random variable with probabil
ity density 

f(t) = 0c.-et, t > 0. 

From prior experience we are led to believe that. 0 is 
a value of an exponential random variable with proba
bility density 

T!(ff) = 2e"2 0 , 0 > 0. 

If we have a sample of n observations on T, show that 
the posterior distribution of © is a gamma distribution 
with parameters 

a = n + 1, and ,3 = [Y^ti + 2 

18.10 Suppose that a sample consisting of 5, 6, 6, 7, 
5, 6, 4, 9, 3, 6 and comes from a Poisson population 
with mean A. Assume that the parameter A follows a 
gamma distribution with parameters (3,2). Under the 
squared-error loss, find the Bayes estimate of A. 

18.11 A random variable X follows a negative bino
mial distribution with parameters k = 5 and p (i.e., 
b*(x;5,p)). Furthermore, we know that p follows a 
uniform distribution in the interval (0,1). Find out 
the Bayes estimate of p under the squared-error loss. 
[Hint: You may find the density function in Exercise 
6.50 useful. Also, the mean of the Beta distribution 
with parameters (a, 3) is a/(a + /?).] 
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r 
Table A . l Binomial Probability Sums YI b(x;n,p) 

x=0 

n r 
1 0 

1 

2 0 
1 
2 

3 0 
1 
2 
3 

4 0 
1 
2 
3 
4 

5 0 
1 
2 
3 
4 
5 

6 0 
1 
2 
3 
4 
5 
6 

7 0 
1 
2 
3 
4 
5 
6 
7 

0.10 

0.9000 
1.0000 

0.8100 
0.9900 
1.0000 

0.7290 
0.9720 
0.9990 
1.0000 

0.6561 
0.9477 
0.9963 
0.9999 
1.0000 

0.5905 
0.9185 
0.9914 
0.9995 
1.0000 
1.0000 

0.5314 
0.8857 
0.9842 
0.9987 
0.9999 
1.0000 
1.0000 

0.4783 
0.8503 
0.9743 
0.9973 
0.9998 
1.0000 

0.20 

0.8000 
1.0000 

0.6400 
0.9600 
1.0000 

0.5120 
0.8960 
0.9920 
1.0000 

0.4096 
0.8192 
0.9728 
0.9984 
1.0000 

0.3277 
0.7373 
0.9421 
0.9933 
0.9997 
1.0000 

0.2621 
0.6554 
0.9011 
0.9830 
0.9984 
0.9999 
1.0000 

0.2097 
0.5767 
0.8520 
0.9667 
0.9953 
0.9996 
1.0000 

0.25 

0.7500 
1.0000 

0.5625 
0.9375 
1.0000 

0.4219 
0.8438 
0.9844 
1.0000 

0.3164 
0.7383 
0.9492 
0.9961 
1.0000 

0.2373 
0.6328 
0.8965 
0.9844 
0.9990 
1.0000 

0.1780 
0.5339 
0.8306 
0.9624 
0.9954 
0.9998 
1.0000 

0.1335 
0.4449 
0.7564 
0.9294 
0.9871 
0.9987 
0.9999 
1.0000 

0.30 

0.7000 
1.0000 

0.4900 
0.9100 
1.0000 

0.3430 
0.7840 
0.9730 
1.0000 

0.2401 
0.6517 
0.9163 
0.9919 
1.0000 

0.1681 
0.5282 
0.8369 
0.9692 
0.9976 
1.0000 

0.1176 
0.4202 
0.7443 
0.9295 
0.9891 
0.9993 
1.0000 

0.0824 
0.3294 
0.6471 
0.8740 
0.9712 
0.9962 
0.9998 
1.0000 

I 
0.40 

0.6000 
1.0000 

0.3600 
0.8400 
1.0000 

0.2160 
0.6480 
0.9360 
1.0000 

0.1296 
0.4752 
0.8208 
0.9744 
1.0000 

0.0778 
0.3370 
0.6826 
0.9130 
0.9898 
1.0000 

0.0467 
0.2333 
0.5443 
0.8208 
0.9590 
0.9959 
1.0000 

0.0280 
0.1586 
0.4199 
0.7102 
0.9037 
0.9812 
0.9984 
1.0000 

» 
0.50 

0.5000 
1.0000 

0.2500 
0.7500 
1.0000 

0.1250 
0.5000 
0.8750 
1.0000 

0.0625 
0.3125 
0.6875 
0.9375 
1.0000 

0.0313 
0.1875 
0.5000 
0.8125 
0.9688 
1.0000 

0.0156 
0.1094 
0.3438 
0.6563 
0.8906 
0.9844 
1.0000 

0.0078 
0.0625 
0.2266 
0.5000 
0.7734 
0.9375 
0.9922 
1.0000 

0.60 

0.4000 
1.0000 

0.1600 
0.6400 
1.0000 

0.0640 
0.3520 
0.7840 
1.0000 

0.0256 
0.1792 
0.5248 
0.8704 
1.0000 

0.0102 
0.0870 
0.3174 
0.6630 
0.9222 
1.0000 

0.0041 
0.0410 
0.1792 
0.4557 
0.7667 
0.9533 
1.0000 

0.0016 
0.0188 
0.0963 
0.2898 
0.5801 
0.8414 
0.9720 
1.0000 

0.70 

0.3000 
1.0000 

0.0900 
0.5100 
1.0000 

0.0270 
0.2160 
0.6570 
1.0000 

0.0081 
0.0837 
0.3483 
0.7599 
1.0000 

0.0024 
0.0308 
0.1631 
0.4718 
0.8319 
1.0000 

0.0007 
0.0109 
0.0705 
0.2557 
0.5798 
0.8824 
1.0000 

0.0002 
0.0038 
0.0288 
0.1260 
0.3529 
0.6706 
0.9176 
1.0000 

0.80 

0.2000 
1.0000 

0.0400 
0.3600 
1.0000 

0.0080 
0.1040 
0.4880 
1.0000 

0.0016 
0.0272 
0.1808 
0.5904 
1.0000 

0.0003 
0.0067 
0.0579 
0.2627 
0.6723 
1.0000 

0.0001 
0.0016 
0.0170 
0.0989 
0.3446 
0.7379 
1.0000 

0.0000 
0.0004 
0.0047 
0.0333 
0.1480 
0.4233 
0.7903 
1.0000 

0.90 

0.1000 
1.0000 

0.0100 
0.1900 
1.0000 

0.0010 
0.0280 
0.2710 
1.0000 

0.0001 
0.0037 
0.0523 
0.3439 
1.0000 

0.0000 
0.0005 
0.0086 
0.0815 
0.4095 
1.0000 

0.0000 
0.0001 
0.0013 
0.0159 
0.1143 
0.4686 
1.0000 

0.0000 
0.0002 
0.0027 
0.0257 
0.1497 
0.5217 
1.0000 
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r 
Table A . l (continued) Binomial Probability Sums J2 °ix'ini'P) 

x=0 

n r 
8 0 

1 
2 
3 
4 
5 
6 
7 
8 

9 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

11 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

0.10 

0.4305 

0.8131 
0.9619 

0.9950 

0.9996 
1.0000 

0.3874 

0.7748 

0.9470 

0.9917 

0.9991 
0.9999 

1.0000 

0.3487 

0.7361 

0.9298 
0.9872 

0.9984 

0.9999 
1.0000 

0.3138 

0.6974 
0.9104 
0.9815 

0.9972 

0.9997 

1.0000 

0.20 

0.1678 

0.5033 

0.7969 
0.9437 

0.9896 
0.9988 

0.9999 

1.0000 

0.1342 

0.4362 

0.7382 

0.9144 
0.9804 

0.9969 
0.9997 

1.0000 

0.1074 

0.3758 

0.6778 

0.8791 
0.9672 

0.9936 

0.9991 
0.9999 

1.0000 

0.0859 

0.3221 
0.6174 

0.8389 
0.9496 
0.9883 

0.9980 

0.9998 
1.0000 

0.25 

0.1001 

0.3671 
0.6785 

0.8862 

0.9727 

0.9958 

0.9996 

1.0000 

0.0751 

0.3003 

0.6007 

0.8343 

0.9511 
0.9900 

0.9987 

0.9999 

1.0000 

0.0563 

0.2440 
0.5256 

0.7759 

0.9219 

0.9803 

0.9965 

0.9996 

1.0000 

0.0422 

0.1971 
0.4552 
0.7133 

0.8854 

0.9657 
0.9924 

0.9988 
0.9999 

1.0000 

0.30 

0.0576 

0.2553 

0.5518 

0.8059 

0.9420 

0.9887 
0.9987 

0.9999 

1.0000 

0.0404 

0.1960 

0.4628 
0.7297 

0.9012 

0.9747 

0.9957 

0.9996 

1.0000 

0.0282 

0.1493 

0.3828 

0.6496 

0.8497 

0.9527 

0.9894 

0.9984 

0.9999 
1.0000 

0.0198 

0.1130 
0.3127 
0.5696 

0.7897 

0.9218 

0.9784 

0.9957 
0.9994 

1.0000 

P 
0.40 

0.0168 

0.1064 

0.3154 

0.5941 

0.8263 
0.9502 

0.9915 

0.9993 

1.0000 

0.0101 

0.0705 

0.2318 

0.4826 

0.7334 

0.9006 

0.9750 

0.9962 

0.9997 

1.0000 

0.0060 

0.0464 

0.1673 

0.3823 

0.6331 

0.8338 
0.9452 

0.9877 

0.9983 
0.9999 

1.0000 

0.0036 

0.0302 
0.1189" 
0.2963 

0.5328 

0.7535 

0.9006 

0.9707 
0.9941 

0.9993 

1.0000 

0.50 

0.0039 

0.0352 

0.1445 
0.3633 

0.6367 

0.8555 

0.9648 
0.9961 

1.0000 

0.0020 

0.0195 
0.0898 

0.2539 
0.5000 

0.7461 

0.9102 

0.9805 

0.9980 

1.0000 

0.0010 

0.0107 

0.0547 

0.1719 
0.3770 

0.6230 

0.8281 

0.9453 

0.9893 

0.9990 
1.0000 

0.0005 
0.0059 
0.0327 • 

0.1133 
0.2744 

0.5000 

0.7256 
0.8867 
0.9673 

0.9941 

0.9995 

1.0000 

0.60 

0.0007 

0.0085 

0.0498 

0.1737 
0.4059 

0.6846 

0.8936 
0.9832 

1.0000 

0.0003 

0.0038 

0.0250 
0.0994 

0.2666 

0.5174 

0.7682 

0.9295 

0.9899 

1.0000 

0.0001 

0.0017 

0.0123 

0.0548 
0.1662 

0.3669 

0.6177 
0.8327 

0.9536 

0.9940 
1.0000 

0.0000 
0.0007 

0.0059 
0.0293 
0.0994 

0.2465 
0.4672 

0.7037 
0.8811 

0.9698 
0.9964 

1.0000 

0.70 

0.0001 

0.0013 

0.0113 
0.0580 
0.1941 

0.4482 

0.7447 
0.9424 

1.0000 

0.0000 

0.0004 

0.0043 
0.0253 

0.0988 

0.2703 
0.5372 

0.8040 

0.9596 

1.0000 

0.0000 

0.0001 
0.0016 

0.0106 
0.0473 

0.1503 

0.3504 

0.6172 

0.8507 

0.9718 

1.0000 

0.0000 

0.0006 
0.0043 

0.0216 

0.0782 

0.2103 
0.4304 
0.6873 

0.8870 
0.9802 
1.0000 

0.80 

0.0000 

0.0001 
0.0012 

0.0104 

0.0563 
0.2031 

0.4967 
0.8322 

1.0000 

0.0000 

0.0003 
0.0031 

0.0196 

0.0856 

0.2618 

0.5638 

0.8658 

1.0000 

0.0000 
0.0001 

0.0009 
0.0064 

0.0328 

0.1209 

0.3222 

0.6242 

0.8926 
1.0000 

0.0000 
0.0002 

0.0020 

0.0117 
0.0504 

0.1611 
0.3826 

0.6779 
0.9141 

1.0000 

0.90 

0.0000 

0.0004 

0.0050 
0.0381 

0.1869 

0.5695 

1.0000 

0.0000 
0.0001 

0.0009 

0.0083 

0.0530 

0.2252 

0.6126 

1.0000 

0.0000 
0.0001 

0.0016 

0.0128 
0.0702 

0.2639 

0.6513 
1.0000 

--. 

0.0000 

0.0003 
0.0028 
0.0185 

0.0896 
0.3026 
0.6862 

1.0000 
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Table A . l (continued) Binomial Probability Sums YI 0ix:.n-.P) 
x=0 

n r 
12 0 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

13 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

14 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

0.10 
0.2824 
0.6590 
0.8891 
0.9744 
0.9957 
0.9995 
0.9999 
1.0000 

0.2542 
0.6213 
0.8661 
0.9658 
0.9935 
0.9991 
0.9999 
1.0000 

0.2288 
0.5846 
0.8416 
0.9559 
0.9908 
0.9985 
0.9998 
1.0000 

0.20 
0.0687 
0.2749 
0.5583 
0.7946 
0.9274 
0.9806 
0.9961 
0.9994 
0.9999 
1.0000 

0.0550 
0.2336 
0.5017 
0.7473 
0.9009 
0.9700 
0.9930 
0.9988 
0.9998 
1.0000 

0.0440 
0.1979 
0.4481 
0.6982 
0.8702 
0.9561 
0.9884 
0.9976 
0.9996 
1.0000 

0.25 

0.0317 
0.1584 
0.3907 
0.6488 
0.8424 
0.9456 
0.9857 
0.9972 
0.9996 
1.0000 

0.0238 
0.1267 
0.3326 
0.5843 
0.7940 
0.9198 
0.9757 
0.9944 
0.9990 
0.9999 
1.0000 

0.0178 
0.1010 
0.281 T 
0.5213 
0.7415 
0.8883 
0.9617 
0.9897 
0.9978 
0.9997 
1.0000 

0.30 

0.0138 
0.0850 
0.2528 
0.4925 
0.7237 
0.8822 
0.9614 
0.9905 
0.9983 
0.9998 
1.0000 

0.0097 
0.0637 
0.2025 
0.4206 
0.6543 
0.8346 
0.9376 
0.9818 
0.9960 
0.9993 
0.9999 
1.0000 

0.0068 
0.0475 
0.1608 
0.3552 
0.5842 
0.7805 
0.9067 
0.9685 
0.9917 
0.9983 
0.9998 
1.0000 

V 
0.40 

0.0022 
0.0196 
0.0834 
0.2253 
0.4382 
0.6652 
0.8418 
0.9427 
0.9847 
0.9972 
0.9997 
1.0000 

0.0013 
0.0126 
0.0579 
0.1686 
0.3530 
0.5744 
0.7712 
0.9023 
0.9679 
0.9922 
0.9987 
0.9999 
1.0000 

0.0008 
0.0081 
0.0398 
0.1243 
0.2793 
0.1859 
0.6925 
0.8499 
0.9417 
0.9825 
0.9961 
0.9994 
0.9999 
1.0000 

0.50 

0.0002 
0.0032 
0.0193 
0.0730 
0.1938 
0.3872 
0.6128 
0.8062 
0.9270 
0.9807 
0.9968 
0.9998 
1.0000 

0.0001 
0.0017 
0.0112 
0.0461 
0.1334 
0.2905 
0.5000 
0.7095 
0.8666 
0.9539 
0.9888 
0.9983 
0.9999 
1.0000 

0.0001 
0.0009 
0.0065 
0.0287 
0.0898 
0.2120 
0.3953 
0.6047 
0.7880 
0.9102 
0.9713 
0.9935 
0.9991 
0.9999 
1.0000 

0.60 

0.0000 
0.0003 
0.0028 
0.0153 
0.0573 
0.1582 
0.3348 
0.5618 
0.7747 
0.9166 
0.9804 
0.9978 
1.0000 

0.0000 
0.0001 
0.0013 
0.0078 
0.0321 
0.0977 
0.2288 
0.4256 
0.6470 
0.8314 
0.9421 
0.9874 
0.9987 
1.0000 

0.0000 
0.0001 
0.0006 
0.0039 
0.0175 
0.0583 
0.1501 
0.3075 
0.5141 
0.7207 
0.8757 
0.9602 
0.9919 
0.9992 
1.0000 

0.70 

0.0000 
0.0002 
0.0017 
0.0095 
0.0386 
0.1178 
0.2763 
0.5075 
0.7472 
0.9150 
0.9862 
1.0000 

0.0000 
0.0001 
0.0007 
0.0040 
0.0182 
0.0624 
0.1654 
0.3457 
0.5794 
0.7975 
0.9363 
0.9903 
1.0000 

0.0000 
0.0002 
0.0017 
0.0083 
0.0315 
0.0933 
0.2195 
0.4158 
0.6448 
0.8392 
0.9525 
0.9932 
1.0000 

0.80 

0.0000 
0.0001 
0.0006 
0.0039 
0.0194 
0.0726 
0.2054 
0.4417 
0.7251 
0.9313 
1.0000 

0.0000 
0.0002 
0.0012 
0.0070 
0.0300 
0.0991 
0.2527 
0.4983 
0.7664 
0.9450 
1.0000 

0.0000 
0.0004 
0.0024 
0.0116 
0.0439 
0.1298 
u.3018 
0.5519 
0.8021 
0.9560 
1.0000 

0.90 

0.0000 
0.0001 
0.0005 
0.0043 
0.0256 
0.1109 
0.3410 
0.7176 
1.0000 

0.0000 
0.0001 
0.0009 
0.0065 
0.0342 
0.1339 
0.3787 
0.7458 
1.0000 

0.0000 
0.0002 
0.0015 
0.0092 
0.0441 
0.1584 
0.4154 
0.7712 
1.0000 
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r 
Table A . l (continued) Binomial Probability Sums Y2 Kxin>P) 

x=a 

n r 
15 0 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

16 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

0.10 

0.2059 
0.5490 
0.8159 
0.9444 
0.9873 
0.9978 
0.9997 
1.0000 

0.1853 
0.5147 
0.7892 
0.9316 
0.9830 
0.9967 
0.9995 
0.9999 
1.0000 

0.20 

0.0352 
0.1671 
0.3980 
0.6482 
0.8358 
0.9389 
0.9819 
0.9958 
0.9992 
0.9999 
1.0000 

0.0281 
0.1407 
0.3518 
0.5981 
0.7982 
0.9183 
0.9733 
0.9930 
0.9985 
0.9998 
1.0000 

0.25 

0.0134 
0.0802 
0.2361 
0.4613 
0.6865 
0.8516 
0.9434 
0.9827 
0.9958 
0.9992 
0.9999 
1.0000 

0.0100 
0.0635 
0.1971 
0.4050 
0.6302 
0.8103 
0.9204 
0.9729 
0.9925 
0.9984 
0.9997 
1.0000 

0.30 

0.0047 
0.0353 
0.1268 
0.2969 
0.5155 
0.7216 
0.8089 
0.9500 
0.9848 
0.9963 
0.9993 
0.9999 
1.0000 

0.0033 
0.0261 
0.0994 
0.2459 
0.4499 
0.6598 
0.8247 
0.9256 
0.9743 
0.9929 
0.9984 
0.9997 
1.0000 

P 
0.40 

0.0005 
0.0052 
0.0271 
0.0905 
0.2173 
0.4032 
0.6098 
0.7869 
0.9050 
0.9662 
0.9907 
0.9981 
0.9997 
1.0000 

0.0003 
0.0033 
0.0183 
0.0651 
0.1666 
0.3288 
0.5272 
0.7161 
0.8577 
0.9417 
0.9809 
0.9951 
0.9991 
0.9999 
1.0000 

0.50 

0.0000 
0.0005 
0.0037 
0.0176 
0.0592 
0.1509 
0.3036 
0.5000 
0.6964 
0.8491 
0.9408 
0.9824 
0.9963 
0.9995 
1.0000 

0.0000 
0.0003 
0.0021 
0.0106 
0.0384 
0.1051 
0.2272 
0.4018 
0.5982 
0.7728 
0.8949 
0.9616 
0.9894 
0.9979 
0.9997 
1.0000 

0.60 

0.0000 
0.0003 
0.0019 
0.0093 
0.0338 
0.0950 
0.2131 
0.3902 
0.5968 
0.7827 
0.9095 
0.9729 
0.9948 
0.9995 
1.0000 

0.0000 
0.0001 
0.0009 
0.0049 
0.0191 
0.0583 
0.1423 
0.2839 
0.4728 
0.6712 
0.8334 
0.9349 
0.9817 
0.9967 
0.9997 
1.0000 

0.70 

0.0000 
0.0001 
0.0007 
0.0037 
0.0152 
0.0500 
0.1311 
0.2784 
0.4845 
0.7031 
0.8732 
0.9647 
0.9953 
1.0000 

0.0000 
0.0003 
0.0016 
0.0071 
0.0257 
0.0744 
0.1753 
0.3402 
0.5501 
0.7541 
0.9006 
0.9739 
0.9967 
1.0000 

0.80 

0.0000 
0.0001 
0.0008 
0.0042 
0.0181 
0.0611 
0.1642 
0.3518 
0.6020 
0.8329 
0.9648 
1.0000 

0.0000 
0.0002 
0.0015 
0.0070 
0.0267 
0.0817 
0.2018 
0.4019 
0.6482 
0.8593 
0.9719 
1.0000 

0.90 

0.0000 
0.0003 
0.0022 
0.0127 
0.0556 
0.1841 
0.4510 
0.7941 
1.0000 

0.0000 
0.0001 
0.0005 
0.0033 
0.0170 
0.0684 
0.2108 
0.4853 
0.8147 
1.0000 
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Table A.l (continued) Binomial Probability Sums YL °ix-n^p) 
x=Q 

n r 
17 0 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

18 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

0.10 

0.1668 
0.4818 
0.7618 
0.9174 
0.9779 
0.9953 
0.9992 
0.9999 
1.0000 

0.1501 
0.4503 
0.7338 
0.9018 
0.9718 
0.9936 
0.9988 
0.9998 
1.0000 

0.20 

0.0225 
0.1182 
0.3096 
0.5489 
0.7582 
0.8943 
0.9623 
0.9891 
0.9974 
0.9995 
0.9999 
1.0000 

0.0180 
0.0991 
0.2713 
0.5010 
0.7164 
0.8671 
0.9487 
0.9837 
0.9957 
0.9991 
0.9998 
1.0000 

0.25 

0.0075 
0.0501 
0.1637 
0.3530 
0.5739 
0.7653 
0.8929 
0.9598 
0.9876 
0.9969 
0.9994 
0.9999 
1.0000 

0.0056 
0.0395 
0.1353 
0.3057 
0.5187 
0.7175 
0.8610 
0.9431 
0.9807 
0.9946 
0.9988 
0.9998 
1.0000 

0.30 

0.0023 
0.0193 
0.0774 
0.2019 
0.3887 
0.5968 
0.7752 
0.8954 
0.9597 
0.9873 
0.9968 
0.9993 
0.9999 
1.0000 

0.0016 
0.0142 
0.0600 
0.1646 
0.3327 
0.5344 
0.7217 
0.8593 
0.9404 
0.9790 
0.9939 
0.9986 
0.9997 
1.0000 

I 
0.40 

0.0002 
0.0021 
0.0123 
0.0464 
0.1260 
0.2639 
0.4478 
0.6405 
0.8011 
0.9081 
0.9652 
0.9894 
0.9975 
0.9995 
0.9999 
1.0000 

0.0001 
0.0013 
0.0082 
0.0328 
0.0942 
0.2088 
0.3743 
0.5634 
0.7368 
0.8653 
0.9424 
0.9797 
0.9942 
0.9987 
0.9998 
1.0000 

i 

0.50 

0.0000 
0.0001 
0.0012 
0.0064 
0.0245 
0.0717 
0.1662 
0.3145 
0.5000 
0.6855 
0.8338 
0.9283 
0.9755 
0.9936 
0.9988 
0.9999 
1.0000 

0.0000 
0.0001 
0.0007 
0.0038 
0.0154 
0.0481 
0.1189 
0.2403 
0.4073 
0.5927 
0.7597 
0.8811 
0.9519 
0.9846 
0.9962 
0.9993 
0.9999 
1.0000 

0.60 

0.0000 
0.0001 
0.0005 
0.0025 
0.0106 
0.0348 
0.0919 
0.1989 
0.3595 
0.5522 
0.7361 
0.8740 
0.9536 
0.9877 
0.9979 
0.9998 
1.0000 

0.0000 
0.0002 
0.0013 
0.0058 
0.0203 
0.0576 
0.1347 
0.2632 
0.4366 
0.6257 
0.7912 
0.9058 
0.9672 
0.9918 
0.9987 
0.9999 
1.0000 

0.70 

0.0000 
0.0001 
0.0007 
0.0032 
0.0127 
0.0403 
0.1046 
0.2248 
0.4032 
0.6113 
0.7981 
0.9226 
0.9807 
0.9977 
1.0000 

0.0000 
0.0003 
0.0014 
0.0061 
0.0210 
0.0596 
0.1407 
0.2783 
0.4656 
0.6673 
0.8354 
0.9400 
0.9858 
0.9984 
1.0000 

0.80 

0.0000 
0.0001 
0.0005 
0.0026 
0.0109 
0.0377 
0.1057 
0.2418 
0.4511 
0.6904 
0.8818 
0.9775 
1.0000 

0.0000 
0.0002 
0.0009 
0.0043 
0.0163 
0.0513 
0.1329 
0.2836 
0.4990 
0.7287 
0.9009 
0.9820 
1.0000 

0.90 

0.0000 
0.0001 
0.0008 
0.0047 
0.0221 
0.0826 
0.2382 
0.5182 
0.8332 
1.0000 

0.0000 
0.0002 
0.0012 
0.0064 
0.0282 
0.0982 
0.2662 
0.5497 
0.8499 
1.0000 
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r 

Table A . l (continued) Binomial Probability Sums YI b(x;n,p) 
x=a 

n r 
19 0 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

20 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

0.10 

0.1351 
0.4203 
0.7054 
0.8850 
0.9648 
0.9914 
0.9983 
0.9997 
1.0000 

0.1216 
0.3917 
0.6769 
0.8670 
0.9568 
0.9887 
0.9976 
0.9996 
0.9999 
1.0000 

0.20 

0.0144 
0.0829 
0.2369 
0.4551 
0.6733 
0.8369 
0.9324 
0.9767 
0.9933 
0.9984 
0.9997 
1.0000 

0.0115 
0.0692 
0.2061 
0.4114 
0.6296 
0.8042 
0.9133 
0.9679 
0.9900 
0.9974 
0.9994 
0.9999 
1.0000 

0.25 

0.0042 
0.0310 
0.1113 
0.2631 
0.4654 
0.6678 
0.8251 
0.9225 
0.9713 
0.9911 
0.9977 
0.9995 
0.9999 
1.0000 

0.0032 
0.0243 
0.0913 
0.2252 
0.4148 
0.6172 
0.7858 
0.8982 
0.9591 
0.9861 
0.9961 
0.9991 
0.9998 
1.0000 

0.30 

0.0011 
0.0104 
0.0462 
0.1332 
0.2822 
0.4739 
0.6655 
0.8180 
0.9161 
0.9674 
0.9895 
0.9972 
0.9994 
0.9999 
1.0000 

0.0008 
0.0076 
0.0355 
0.1071 
0.2375 
0.4164 
0.6080 
0.7723 
0.8867 
0.9520 
0.9829 
0.9949 
0.9987 
0.9997 
1.0000 

P 
0.40 

0.0001 
0.0008 
0.0055 
0.0230 
0.0696 
0.1629 
0.3081 
0.4878 
0.6675 
0.8139 
0.9115 
0.9648 
0.9884 
0.9969 
0.9994 
0.9999 
1.0000 

0.0000 
0.0005 
0.0036 
0.0160 
0.0510 
0.1256 
0.2500 
0.4159 
0.5956 
0.7553 
0.8725 
0.9435 
0.9790 
0.9935 
0.9984 
0.9997 
1.0000 

0.50 

0.0000 
0.0004 
0.0022 
0.0096 
0.0318 
0.0835 
0.1796 
0.3238 
0.5000 
0.6762 
0.8204 
0.9165 
0.9682 
0.9904 
0.9978 
0.9996 
1.0000 

0.0000 
0.0002 
0.0013 
0.0059 
0.0207 
0.0577 
0.1316 
0.2517 
0.4119 
0.5881 
0.7483 
0.8684 
0.9423 
0.9793 
0.9941 
0.9987 
0.9998 
1.0000 

0.60 

0.0000 
0.0001 
0.0006 
0.0031 
0.0116 
0.0352 
0.0885 
0.1861 
0.3325 
0.5122 
0.6919 
0.8371 
0.9304 
0.9770 
0.9945 
0.9992 
0.9999 
1.0000 

0.0000 
0.0003 
0.0016 
0.0065 
0.0210 
0.0565 
0.1275 
0.2447 
0.4044 
0.5841 
0.7500 
0.8744 
0.9490 
0.9840 
0.9964 
0.9995 
1.0000 

0.70 

0.0000 
0.0001 
0.0006 
0.0028 
0.0105 
0.0326 
0.0839 
0.1820 
0.3345 
0.5261 
0.7178 
0.8668 
0.9538 
0.9896 
0.9989 
1.0000 

0.0000 
0.0003 
0.0013 
0.0051 
0.0171 
0.0480 
0.1133 
0.2277 
0.3920 
0.5836 
0.7625 
0.8929 
0.9645 
0.9924 
0.9992 
1.0000 

0.80 

0.0000 
0.0003 
0.0016 
0.0067 
0.0233 
0.0676 
0.1631 
0.3267 
0.5449 
0.7631 
0.9171 
0.9856 
1.0000 

0.0000 
0.0001 
0.0006 
0.0026 
0.0100 
0.0321 
0.0867 
0.1958 
0.3704 
0.5886 
0.7939 
0.9308 
0.9885 
1.0000 

0.90 

0.0000 
0.0003 
0.0017 
0.0086 
0.0352 
0.1150 
0.2946 
0.5797 
0.8649 
1.0000 

0.0000 
0.0001 
0.0004 
0.0024 
0.0113 
0.0432 
0.1330 
0.3231 
0,6083 
0.8784 
1.0000 
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Table A.2 Poisson Probability Sums YI Pix\ M) 
x=0 

r 
0 
1 
2 
3 
4 
5 
6 

0.1 

0.9048 
0.9953 
0.9998 
1.0000 

0.2 

0.8187 
0.9825 
0.9989 
0.9999 
1.0000 

0.3 

0.7408 
0.9631 
0.9964 
0.9997 
1.0000 

0.4 

0.6703 
0.9384 
0.9921 
0.9992 
0.9999 
1.0000 

P 
0.5 

0.6065 
0.9098 
0.9856 
0.9982 
0.9998 
1.0000 

0.6 

0.5488 
0.8781 
0.9769 
0.9966 
0.9996 
1.0000 

0.7 

0.4966 
0.8442 
0.9659 
0.9942 
0.9992 
0.9999 
1.0000 

0.8 

0.4493 
0.8088 
0.9526 
0.9909 
0.9986 
0.9998 
1.0000 

0.9 

0.4066 
0.7725 
0.9371 
0.9865 
0.9977 
0.9997 
1.0000 

r 
0 
1 
2 
3 
4 
5 

6 
7 
8 
9 
10 

11 
12 
13 
14 
15 
16 

1.0 
0.3679 
0.7358 
0.9197 
0.9810 
0.9963 
0.9994 

0.9999 
1.0000 

1.5 
0.2231 
0.5578 
0.8088 
0.9344 
0.9814 
0.9955 

0.9991 
0.9998 
1.0000 

2.0 
0.1353 
0.4060 
0.6767 
0.8571 
0.9473 
0.9834 

0.9955 
0.9989 
0.9998 
1.0000 

2.5 
0.0821 
0.2873 
0.5438 
0.7576 
0.8912 
0.9580 

0.9858 
0.9958 
0.9989 
0.9997 
0.9999 

1.0000 

M 
3.0 

0.0498 
0.1991 
0.4232 
0.6472 
0.8153 
0.9161 

0.9665 
0.9881 
0.9962 
0.9989 
0.9997 

0.9999 
1.0000 

3.5 
0.0302 
0.1359 
0.3208 
0.5366 
0.7254 
0.8576 

0.9347 
0.9733 
0.9901 
0.9967 
0.9990 

0.9997 
0.9999 
1.0000 

4.0 

0.0183 
0.0916 
0.2381 
0.4335 
0.6288 
0.7851 

0.8893 
0.9489 
0.9786 
0.9919 
0.9972 

0.9991 
0.9997 
0.9999 
1.0000 

4.5 

0.0111 
0.0611 
0.1736 
0.3423 
0.5321 
0.7029 

0.8311 
0.9134 
0.9597 
0.9829 
0.9933 

0.9976 
0.9992 
0.9997 
0.9999 
1.0000 

5.0 
0.0067 
0.0404 
0.1247 
0.2650 
0.4405 
0.6160 

0.7622 
0.8666 
0.9319 
0.9682 
0.9863 

0.9945 
0.9980 
0.9993 
0.9998 
0.9999 
1.0000 
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Table A.2 (continued) Poisson Probability Sums YL Pix'-> u) 
x=0 

r 

0 
1 
2 
3 
4 
5 

6 
7 
8 
9 
10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 

5.5 
0.0041 
0.0266 
0.0884 
0.2017 
0.3575 
0.5289 

0.6860 
0.8095 
0.8944 
0.9462 
0.9747 

0.9890 
0.9955 
0.9983 
0.9994 
0.9998 

0.9999 
1.0000 

6.0 
0.0025 
0.0174 
0.0620 
0.1512 
0.2851 
0.4457 

0.6063 
0.7440 
0.8472 
0.9161 
0.9574 

0.9799 
0.9912 
0.9964 
0.9986 
0.9995 

0.9998 
0.9999 
1.0000 

6.5 
0.0015 
0.0113 
0.0430 
0.1118 
0.2237 
0.3690 

0.5265 
0.6728 
0.7916 
0.8774 
0.9332 

0.9661 
0.9840 
0.9929 
0.9970 
0.9988 

0.9996 
0.9998 
0.9999 
1.0000 

7.0 
0.0009 
0.0073 
0.0296 
0.0818 
0.1730 
0.3007 

0.4497 
0.5987 
0.7291 
0.8305 
0.9015 

0.9467 
0.9730 
0.9872 
0.9943 
0.9976 

0.9990 
0.9996 
0.9999 
1.0000 

/* 
7.5 

0.0006 
0.0047 
0.0203 
0.0591 
0.1321 
0.2414 

0.3782 
0.5246 
0.6620 
0.7764 
0.8622 

0.9208 
0.9573 
0.9784 
0.9897 
0.9954 

0.9980 
0.9992 
0.9997 
0.9999 

8.0 

0.0003 
0.0030 
0.0138 
0.0424 
0.0996 
0.1912 

0.3134 
0.4530 
0.5925 
0.7166 
0.8159 

0.8881 
0.9362 
0.9658 
0.9827 
0.9918 

0.9963 
0.9984 
0.9993 
0.9997 
0.9999 

1.0000 

8.5 
0.0002 
0.0019 
0.0093 
0.0301 
0.0744 
0.1496 

0.2562 
0.3856 
0.5231 
0.6530 
0.7634 

0.8487 
0.9091 
0.9486 
0.9726 
0.9862 

0.9934 
0.9970 
0.9987 
0.9995 
0.9998 

0.9999 
1.0000 

9.0 

0.0001 
0.0012 
0.0062 
0.0212 
0.0550 
0.1157 

0.2068 
0.3239 
0.4557 
0.5874 
0.7060 

0.8030 
0.8758 
0.9261 
0.9585 
0.9780 

0.9889 
0.9947 
0.9976 
0.9989 
0.9996 

0.9998 
0.9999 
1.0000 

9.5 

0.0001 
0.0008 
0.0042 
0.0149 
0.0403 
0.0885 

0.1649 
0.2687 
0.3918 
0.5218 
0.6453 

0.7520 
0.8364 
0.8981 
0.9400 
0.9665 

0.9823 
0.9911 
0.9957 
0.9980 
0.9991 

0.9996 
0.9999 
0.9999 
1.0000 
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Table A.2 (continued) Poisson Probability Sums YI Pixi ll) 
x=0 

r 

0 
1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

31 
32 
33 
34 
35 

36 
37 

10.0 

0.0000 
0.0005 
0.0028 
0.0103 
0.0293 
0.0671 

0.1301 
0.2202 
0.3328 
0.4579 
0.5830 

0.6968 
0.7916 
0.8645 
0.9165 
0.9513 

0.9730 
0.9857 
0.9928 
0.9965 
0.9984 

0.9993 
0.9997 
0.9999 
1.0000 

11.0 
0.0000 
0.0002 
0.0012 
0.0049 
0.0151 
0.0375 

0.0786 
0.1432 
0.2320 
0.3405 
0.4599 

0.5793 
0.6887 
0.7813 
0.8540 
0.9074 

0.9441 
0.9678 
0.9823 
0.9907 
0.9953 

0.9977 
0.9990 
0.9995 
0.9998 
0.9999 

1.0000 

12.0 

0.0000 
0.0001 
0.0005 
0.0023 
0.0076 
0.0203 

0.0458 
0.0895 
0.1550 
0.2424 
0.3472 

0.4616 
0.5760 
0.6815 
0.7720 
0.8444 

0.8987 
0.9370 
0.9626 
0.9787 
0.9884 

0.9939 
0.9970 
0.9985 
0.9993 
0.9997 

0.9999 
0.9999 
1.0000 

13.0 

0.0000 
0.0002 
0.0011 
0.0037 
0.0107 

0.0259 
0.0540 
0.0998 
0.1658 
0.2517 

0.3532 
0.4631 
0.5730 
0.6751 
0.7636 

0.8355 
0.8905 
0.9302 
0.9573 
0.9750 

0.9859 
0.9924 
0.9960 
0.9980 
0.9990 

0.9995 
0.9998 
0.9999 
1.0000 

P 
14.0 

0.0000 
0.0001 
0.0005 
0.0018 
0.0055 

0.0142 
0.0316 
0.0621 
0.1094 
0.1757 

0.2600 
0.3585 
0.4644 
0.5704 
0.6694 

0.7559 
0.8272 
0.8826 
0.9235 
0.9521 

0.9712 
0.9833 
0.9907 
0.9950 
0.9974 

0.9987 
0.9994 
0.9997 
0.9999 
0.9999 

1.0000 

15.0 

0.0000 
0.0002 
0.0009 
0.0028 

0.0076 
0.0180 
0.0374 
0.0699 
0.1185 

0.1848 
0.2676 
0.3632 
0.4657 
0.5681 

0.6641 
0.7489 
0.8195 
0.8752 
0.9170 

0.9469 
0.9673 
0.9805 
0.9888 
0.9938 

0.9967 
0.9983 
0.9991 
0.9996 
0.9998 

0.9999 
1.0000 

16.0 

0.0000 
0.0001 
0.0004 
0.0014 

0.0040 
0.0100 
0.0220 
0.0433 
0.0774 

0.1270 
0.1931 
0.2745 
0.3675 
0.4667 

0.5660 
0.6593 
0.7423 
0.8122 
0.8682 

0.9108 
0.9418 
0.9633 
0.9777 
0.9869 

0.9925 
0.9959 
0.9978 
0.9989 
0.9994 

0.9997 
0.9999 
0.9999 
1.0000 

17.0 

0.0000 
0.0002 
0.0007 

0.0021 
0.0054 
0.0126 
0.0261 
0.0491 

0.0847 
0.1350 
0.2009 
0.2808 
0.3715 

0.4677 
0.5640 
0.6550 
0.7363 
0.8055 

0.8615 
0.9047 
0.9367 
0.9594 
0.9748 

0.9848 
0.9912 
0.9950 
0.9973 
0.9986 

0.9993 
0.9996 
0.9998 
0.9999 
1.0000 

18.8 

0.0000 
0.0001 
0.0003 

0.0010 
0.0029 
0.0071 
0.0154 
0.0304 

0.0549 
0.0917 
0.1426 
0.2081 
0.2867 

0.3751 
0.4686 
0.5622 
0.6509 
0.7307 

0.7991 
0.8551 
0.8989 
0.9317 
0.9554 

0.9718 
0.9827 
0.9897 
0.9941 
0.9967 

0.9982 
0.9990 
0.9995 
0.9998 
0.9999 

0.9999 
1.0000 
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Table A.3 Areas under the Normal Curve 

.00 .01 .02 .03 .04 .05 .06 .07 .08 .09 
3.4 
3.3 
3.2 
3.1 
3.0 

2.9 
2.8 
2.7 
2.6 
2.5 

2.4 
2.3 
2.2 
2.1 
2.0 

1.9 
1.8 
1.7 
1.6 
1.5 

1.4 
1.3 
1.2 
1.1 
1.0 

0.9 
0.8 
0.7 
0.6 
0.5 

0.4 
0.3 
0.2 
0.1 
0.0 

0.0003 

0.0005 

0.0007 

0.0010 

0.0013 

0.0019 

0.0026 

0.0035 

0.0047 
0.0062 

0.0082 

0.0107 
0.0139 

0.0179 

0.0228 

0.0287 

0.03.59 

0.0446 
0.0548 

0.0668 

0.0808 
0.0968 

0.1151 

0.1357 
0.1587 

0.1841 
0.2119 

0.2420 

0.2743 
0.3085 

0.3446 

0.3821 

0.4207 

0.4602 
0.5000 

0.0003 

0.0005 

0.0007 

0.0009 

0.0013 

0.0018 

0.0025 
0.0034 

0.0045 

0.0060 

0.0080 
0.0104 

0.0136 
0.0171 

0.0222 

0.0281 

0.0351 

0.0436 
0.0537 

0.0655 

0.0793 

0.0951 

0.1131 

0.1335 

0.1562 

0.1814 

0.2090 

0.2389 

0.2709 
0.3050 

0.3409 

0.3783 

0.4168 
0.4562 

0.4960 

0.0003 

0.0005 

0.0006 

0.0009 

0.0013 

0.0018 

0.0024 

0.0033 
0.0044 

0.0059 

0.0078 

0.0102 
0.0132 

0.0170 

0.0217 

0.0274 

0.0344 

0.0427 
0.0526 
0.0643 

0.077S 

0.0934 

0.1112 

0.1314 
0.1539 

0.1788 
0.2061 

0.2358 

0.2676 
0.3015 

0.3372 

0.3745 
0.4 L29 

0.4522 
0.4920 

0.0003 

0.0004 

0.0006 

0.0009 
0.0012 

0.0017 

0.0023 

0.0032 

0.0043 

0.0057 

0.0075 
0.0099 

0.0129 

0.0166 
0.0212 

0.0208 

0.0336 

0.0418 

0.0516 
0.0630 

0.0764 

0.0918 

0.1093 
0.1292 

0.1515 

0.1762 

0.2033 

0.2327 

0.2643 

0.2981 

0.3336 

0.3707 

0.4090 

0.4483 
0.4880 

0.0003 

0.0004 

0.0006 

0.0008 
0.0012 

0.00 IG 

0.0023 

0.(1031 
0.0041 

0.0055 

0.0073 

0.0096 
0.0125 

0.0162 

0.0207 

0.0262 

0.0329 

0.0409 

0.0505 

0.0018 

0.0749 

0.0901 

0.1075 

0.1271 

0.1192 

0.1736 

0.2005 

0.2296 

0.2611 
0.2946 

0.3300 

0.3669 

0.4052 

0.4443 
0.4840 

0.0003 
0.0004 

0.0006 
0.0008 

0.0011 

0.0016 

0.0022 

0.0030 
0.0040 

0.0054 

0.0071 
0.0094 

0.0122 

0.0158 
0.0202 

0.0256 
0.0322 

0.0401 

0.0495 
0.0606 

0.0735 

0.0885 

0.1056 
0.1251 

0.1469 

0.1711 

0.1977 

0.2206 

0.2578 
0.2912 

0.3264 

0.3632 

0.4013 
0.4404 

0.4801 

0.0003 

0.0004 

0.0006 
0.0008 

0.0011 

0.0015 

0.0021 
0.0029 

0.0039 

0.0052 

0.0069 

0.0091 

0.0119 

0.0154 

0.0197 

0.0250 

0.0314 

0.0392 

0.0485 

0.0591 

0.0721 

0.0869 

0.1038 

11.1230 

0.1446 

0.1685 

0.1949 

0.2236 

0.2546 
0.2877 

0.3228 

0.3594 

0.3974 

0.4364 

0.4761 

0.0003 

0.0004 

0.0005 

0.0008 

0.0011 

0.0015 

0.0021 

0.0028 
0.0038 

0.0051 

0.0068 

0.0089 

0.0110 

0.0150 
0.0192 

0.0244 

0.0307 

0.0384 

0.0475 

0.0582 

0.0708 
0.0853 

0.1020 

0.1210 

0.1423 

0.1660 
0.1922 

0.2206 

0.2514 

0.2843 

0.3192 

0.3557 
0.3936 

0.4325 
0.4721 

0.0003 

0.0004 

0.0005 

0.0007 

0.0010 

0.0(114 

0.0020 

0.0027 

0.0037 

0.0049 

0.0066 

0.0087 

0.0113 

0.0146 

0.0188 

0.0239 
0.0301 

0.0375 

0.0465 
0.0571 

0.0694 

0.0838 

0.1003 
0.1190 

0.1401 

0.1635 
0.1894 

0.2177 

0.2483 
0.2810 

0.3156 

0.3520 

0.3897 

0.4286 

0.4681 

0.0002 

0.0003 

0.0005 

0.0007 

0.0010 

0.001 1 

0.0019 

0.0026 
0.0036 

0.0048 

0.0064 
0.0084 

0.0110 

0.0143 

0.0183 

0.0233 

0.0294 

0.0367 

0.0455 

0.0559 

0.0681 
0.0823 

0.0985 

0.1170 

0.1379 

0.1611 

0.1807 

0.2148 

0.2451 
0.2776 

0.3121 
0.3483 

0.3859 

0.4247 
0.4641 
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Table A.3 (continued) Areas under the Normal Curve: 

z 
0.0 
0.1 
0.2 
0.3 
0.4 

0.5 
0.6 
0.7 
0.8 
0.9 

1.0 
1.1 
1.2 
1.3 
1.4 

1.5 
1.6 
1.7 
1.8 
1.9 

2.0 
2.1 
2.2 
2.3 
2.4 

2.5 
2.6 
2.7 
2.8 
2.9 

3.0 
3.1 
3.2 
3.3 
3.4 

.00 

0.5000 

0.5398 

0.5793 

0.6179 
0.6554 

0.6915 

0.7257 
0.7580 

0.7881 

0.8159 

0.8413 

0.8643 
0.8849 

0.9032 

0.9192 

0.9332 

0.9452 
0.9554 

0.9641 

0.9713 

0.9772 

0.9821 

0.9861 

0.9893 

0.9918 

0.9938 
0.9953 

0.9965 

0.9974 

0.9981 

0.9987 
0.9990 
0.9993 

0.9995 

0.9997 

.01 

0.5040 

0.5138 
0.5832 

0.6217 
0.6591 

0.6950 
0.7291 

0.7611 

0.7910 

0.8186 

0.8438 

0.8665 

0.8869 

0.9049 

0.9207 

0.9345 

0.9463 
0.9564 

0.9649 

0.9719 

0.9778 

0.9826 
0.9864 

0.9896 

0.9920 

0.9940 

0.9955 

0.9966 

0.9975 
0.9982 

0.9987 
0.9991 
0.9993 

0.9995 
0.9997 

.02 

0.5080 

0.5478 

0.5871 

0.6255 
0.6628 

0.6985 
0.7324 

0.7642 

0.7939 
0.8212 

0.8461 
0.8686 

0.8888 

0.9066 
0.9222 

0.9357 

0.9474 

0.9573 

0.9656 

0.9726 

0.9783 

0.9830 

0.9868 

0.9898 

0.9922 

0.9941 

0.9956 

0.9967 

0.9976 

0.9982 

0.9987 
0.9991 
0.9994 

0.9995 

0.9997 

.03 

0.5120 

0.5517 

0.5910 

0.6293 
0.6664 

0.7019 

0.7357 

0.7673 

0.7967 
0.8238 

0.8485 

0.8708 

0.8907 
0.9082 

0.1)236 

0.9370 

0.9484 

0.9582 

0.9664 

0.9732 

0.9788 

0.9834 

0.9871 

0.9901 

0.9925 

0.9943 

0.9957 
0.9968 

0.9977 

0.9983 

0.9988 
0.9991 
0.0994 

0.9996 

0.9097 

.04 

0.5160 

0.5557 

0.5948 

0.6331 

0.6700 

0.7054 

0.7389 
0.7701 

0.7995 

0.8264 

0.8508 

0.8729 
0.8925 

0.9099 

0.9251 

0.9382 

0.9495 

0.9591 

0.9671 
0.9738 

0.9793 

0.9838 

0.9875 
0.9904 

0.9927 

0.9945 
0.9959 

0.9969 

0.9977 

0.9984 

0.9988 
0.9992 

0.9994 

0.9996 

0.9997 

.05 

0.5199 

0.5596 

0.5987 

0.6368 

0.6736 

0.7088 
0.7422 

0.7734 

0.8023 

0.8289 

0.8531 

0.8749 
0.8944 

0.9115 

0.9265 

0.9394 

0.9505 
0.9599 

0.9G78 

0.9744 

0.9798 

0.9842 

0.9878 

0.9906 

0.9929 

0.9946 

0.9960 

0.9970 

0.9978 
0.9984 

0.9989 
0.9992 
0.9994 

0.9996 

0.9997 

.06 

0.5239 

0.5636 

0.6026 

0.6406 

0.6772 

0.7123 
0.7454 

0.7764 

0.8051 

0.8315 

0.8554 

0.8770 

0.8962 

0.9131 
0.9279 

0.9406 

0.9515 

0.9608 

0.9686 

0.9750 

0.9803 
0.9846 

0.9881 

0.9909 

0.9931 

0.9948 

0.9961 

0.9971 
0.9979 

0.9985 

0.9989 
0.9992 
0.9994 

0.9996 

0.9997 

.07 

0.5279 

0.5675 
0.6064 

0.6443 

0.6808 

0.7157 
0.7486 

0.7794 

0.8078 

0.8340 

0.8577 
0.8790 

0.8980 

0.9147 
0.9292 

0.9418 

0.9525 

0.9616 

0.9693 

0.9756 

0.9808 
0.9850 

0.9884 

0.9911 

0.9932 

0.9949 

0.9962 

0.9972 

0.9979 

0.9985 

0.9989 
0.9992 

0.9995 

0.9996 

0.9997 

.08 

0.5319 

0.5714 

0.6103 

0.6480 
0.6844 

0.7190 

0.7517 

0.7823 

0.8106 

0.8365 

0.8599 

0.8810 

0.8997 
0.9162 

0.9306 

0.9429 

0.9535 

0.9625 

0.9699 

0.9761 

0.9812 

0.9854 

0.9887 

0.9913 

0.9934 

0.9951 
0.9963 

0.9973 

0.9980 

0.9986 

0.9990 
0.9993 
0.9995 

0.9996 

0.9997 

.09 

0.5359 

0.5753 
0.6141 

0.6517 
0.6879 

0.7224 

0.7549 

0.7852 

0.8133 

0.8389 

0.8621 

0.8830 

0.9015 

0.9177 

0.9319 

0.9441 

0.9545 

0.9633 

0.9706 

0.9767 

0.9817 

0.9857 

0.9890 
0.9916 

0.9936 

0.9952 

0.9964 

0.9974 

0.9981 

0.9986 

0.9990 
0.9993 
0.9995 

0.9997 

0.9998 
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T a b l e A . 4 Critical Values 

v 

1 
2 
3 
1 

5 

6 
7 
8 

i) 
10 

11 
12 
13 
11 
15 

16 
17 
IS 
1!) 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

40 
60 

120 
CO 

0.40 

0.325 
0.289 
0.277 
0.271 
0.267 

0.265 
0.263 
0.262 
0.261 
0.260 

0.260 
0.259 
0.259 
0.258 
0.258 

0.258 
0.257 
0.257 
0.257 
0.257 

0.257 
0.256 
0.256 
0.256 
0.256 

0.256 
0.256 
0.256 
0.256 
0.256 

0.255 
0.254 
0.254 
0.253 

0.30 

0.727 
0.617 
0.584 
0.569 
0.559 

0.553 
0.549 
0.546 
0.543 
0.542 

0.540 
0.539 
0.538 
0.537 
0.536 

0.535 
0.534 
0.534 
0.533 
0.533 

0.532 
0.532 
0.532 
0.531 

0.531 

0.531 

0.531 
0.530 
0.530 
0.530 

0.529 
0.527 
0.526 
0.524 

of the f-Dist; 

0.20 

1.376 
1.061 
0.978 
0.941 
0.920 

0.906 
0.896 
0.889 
0.883 
0.879 

0.876 
0.873 
0.870 
0.868 
0.866 

0.865 
0.863 
0.862 
0.861 
0.860 

0.859 
0.858 
0.858 
0.857 
0.856 

0.850 
0.855 
0.855 
0.854 
0.854 

0.851 
0.848 
0.845 
0.842 

dilution 

Q 

0.15 

1.963 
1.386 
1.250 
1.190 
1.156 

1.134 
1.119 
1.108 
1.100 
1.093 

1.088 
1.083 
1.079 
1.076 
1.074 

1.071 
1.069 
1.067 
1.1)66 
1.064 

1.063 
1.061 
1.060 
1.059 
1.058 

1.058 
1.057 
1.056 
1.055 
1.055 

1.050 
1.015 
1.041 
1.036 

0.10 

3.078 
1.886 
1.638 
1.533 
1.476 

1.440 
1.415 
1.397 
1.383 
1.372 

1.363 
1.356 
1.350 
1.345 
1.341 

1.337 
1.333 
1.330 
1.328 
1.325 

1.323 
1.321 
1.319 
1.318 
1.316 

1.315 
1.314 

1.313 
1.311 
1.310 

1.303 
1.296 
1.289 
1.282 

0 

0.05 

6.314 
2.920 
2.353 
2.132 
2.015 

1.943 
1.895 
1.860 
1.833 
1.812 

1.796 
1.782 
1.771 
1.761 
1,753 

1.746 
1.740 
1.734 
1.729 
1.725 

1.721 
1.717 
1.714 
1.711 
1.70S 

1.706 
1.703 
1.701 
1.699 
1.697 

1.684 
1.671 
1.658 
1.645 

;, 

0 .025 

12.706 
4.303 
3.182 
2.770 
2.571 

2.447 
2.365 
2.306 
2.262 
2.228 

2.201 
2.179 
2.1 GO 
2.145 
2.131 

2.120 
2.110 
2.101 
2.093 
2.086 

2.080 
2.074 
2.069 
2.064 
2.060 

2.056 
2.052 
2.048 
2.045 
2.042 

2.021 
2.000 
1.980 
1.960 
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Table A.4 (continued) Critical Values of the f-Distribution 

V 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

40 
60 

120 
CO 

0.02 
15.894 
4.849 
3.482 
2.999 
2.757 

2.612 
2.517 
2.449 
2.398 
2.359 

2.328 
2.303 
2.282 
2.264 
2.249 

2.235 
2.224 
2.214 
2.205 
2.197 

2.189 
2.183 
2.177 
2.172 
2.167 

2.162 
2.158 
2.154 
2.150 
2.147 

2.123 
2.099 
2.076 
2.054 

0.015 

21.205 
5.643 
3.896 
3.298 
3.003 

2.829 
2.715 
2.634 
2.574 
2.527 

2.491 
2.461 
2.436 
2.415 
2.397 

2.382 
2.368 
2.356 
2.346 
2.336 

2.328 
2.320 
2.313 
2.307 
2.301 

2.296 
2.291 
2.286 
2.282 
2.278 

2.250 
2.223 
2.196 
2.170 

0.01 
31.821 
6.965 
4.541 
3.747 
3.365 

3.143 
2.998 
2.896 
2.821 
2.764 

2.718 
2.681 
2.650 
2.624 
2.602 

2.583 
2.567 
2.552 
2.539 
2.528 

2.518 
2.508 
2.500 
2.492 
2.485 

2.479 
2.473 
2.467 
2.462 
2.457 

2.423 
2.390 
2.358 
2.326 

a 
0.0075 

42.433 
8.073 
5.047 
4.088 
3.634 

3.372 
3.203 
3.085 
2.998 
2.932 

2.879 
2.836 
2.801 
2.771 
2.746 

2.724 
2.706 
2.689 
2.674 
2.661 

2.649 
2.639 
2.629 
2.620 
2.612 

2.605 
2.598 
2.592 
2.586 
2.581 

2.542 
2.504 
2.468 
2.432 

0.005 
63.656 
9.925 
5.841 
4.604 
4.032 

3.707 
3.499 
3.355 
3.250 
3.169 

3.106 
3.055 
3.012 
2.977 
2.947 

2.921 
2.898 
2.878 
2.861 
2.845 

2.831 
2.819 
2.807 
2.797 
2.787 

2.779 
2.771 
2.763 
2.756 
2.750 

2.704 
2.660 
2.617 
2.576 

0.0025 
127.321 

14.089 
7.453 
5.598 
4.773 

4.317 
4.029 
3.833 
3.690 
3.581 

3.497 
3.428 
3.372 
3.326 
3.286 

3.252 
3.222 
3.197 
3.174 
3.153 

3.135 
3.119 
3.104 
3.091 
3.078 

3.067 
3.057 
3.047 
3.038 
3.030 

2.971 
2.915 
2.860 
2.807 

0.0005 

636.578 
31.600 
12.924 
8.610 
6.869 

5.959 
5.408 
5.041 
4.781 
4.587 

4.437 
4.318 
4.221 
4.140 
4.073 

4.015 
3.965 
3.922 
3.883 
3.850 

3.819 
3.792 
3.768 
3.745 
3.725 

3.707 
3.689 
3.674 
3.660 
3.646 

3.551 
3.460 
3.373 
3.290 
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T a b l e A . 5 Critical Values of the Chi-Squared Distribution 0 A 

a 

v 0 .995 0.99 0 .98 0 .975 0 .95 0 .90 0 .80 0 .75 0 .70 0 .50 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

20 
27 
28 
29 
30 

40 
50 
60 

0.04393 
0.0100 
0.0717 
0.207 
0.412 

0.676 
0.989 
1.344 
1.735 
2.1.56 

2.603 
3.074 
3.565 
4.075 
4.601 

5.142 
5.697 
6.265 
6.844 
7.434 

8.034 
8.643 
9.260 
9.886 

10.520 

11.160 
11.808 
12.461 
13.121 
13.787 

20.707 
27.991 
35.534 

().()3157 
0.0201 

0.115 
0.297 
0.554 

0.872 
1.239 
1.647 
2.088 
2.558 

3.053 
3.571 
4.107 
4.660 
5.229 

5.812 
6.408 
7.015 
7.633 
8.260 

8.897 
9.542 

10.196 
10.856 
11.524 

12.198 
12.878 
13.565 
11.256 
14.953 

22.164 
29.707 
37.485 

0.03628 
0.0404 
0.185 
0.429 
0.752 

1.134 
1.561 
2.032 
2.532 
3.059 

3.609 
4.178 
4.765 
5.368 
5.985 

6.614 
7.255 
7.906 
8.567 
9.237 

9.915 
10.600 
11.293 
11.992 
12.697 

13.409 
14.125 
14.847 
15.574 
16.306 

23.838 
31.664 
39.699 

0.03982 
0.0506 
0.216 
0.484 
0.831 

1.237 
1.690 
2.1.80 
2.700 
3.247 

3.816 
4.404 
5.009 
5.629 
6.262 

6.908 
7.564 
8.231 
8.907 
9.591 

10.283 
10.982 
11.689 
12.401 
13.120 

13.844 
14.573 
15.308 
16.047 
16.791 

24.433 
32.357 
40,182 

0.00393 
0.103 
0.352 
11.71 1 
1.145 

1.635 
2.167 
2.733 
3.325 
3.940 

4.575 

5.226 
5.892 
6.571 
7.261 

7.962 
8.672 
9.390 

10.117 
10.851 

11.591 
12.338 
13.091 
13.848 
14.611 

15.379 
16.151 
16.928 
17.708 
18.493 

26.509 
34.764 
43.188 

0.0158 
0.211 
0.584 
1.064 
1.610 

2.204 
2.833 
3.490 
4.168 
4.865 

5.578 
6.304 
7.041 
7.790 
8.547 

9.312 
10.085 
10.865 
11.651 
12.443 

13.240 
14.041 
14.848 
15.659 
16.473 

17.292 
"1.8.114 
18.939 
19.768 
20.599 

29.051 
37.689 
46.459 

0.0642 
0.446 
1.005 
1.649 
2.343 

3.070 
3.822 
4.594 
5.380 
6.179 

6.989 

7.807 
8.634 
9.467 

10.307 

11.152 
12.002 
12.857 
13.716 
14.578 

15.445 
16.311 
17.187 
18.062 
18.940 

19.820 
20.703 
21.588 
22.475 
23.364 

32.345 
41.449 
50.641 

0.102 
0.575 
1.213 
1.923 
2.675 

3.455 
4.255 
5.071 
5.899 
6.737 

7.584 
8.438 
9.299 

10.165 
11.037 

11.912 
12.792 
13.675 
14.562 
15.452 

16.344 
17.240 
18.137 
19.037 
19.939 

20.843 
21.749 
22.657 
23.567 
24.478 

33.66 
42.942 
52.294 

0.148 
0.713 
1.424 
2.195 
3.000 

3.828 
4.671 
5.527 
6.393 
7.267 

8.148 
9.031 
9.926 

10.821 
11.721 

12.624 
13.531 
14.440 
15.352 
16.266 

17.182 
18.101 
19.021 
19.943 
20.867 

21.792 
22.719 
23.647 
24.577 
25.508 

34.872 
44.313 
53.809 

0.455 
1.386 
2.366 
3.357 
4.351 

5.348 
6.346 
7.344 
8.343 
9.342 

10.341 
11.340 
12.340 
13.339 
14.339 

15.338 
16.338 
17.338 
18.338 
19.337 

20.337 
21.337 
22.337 
23.337 
24.337 

25.336 
26.336 
27.336 
28.336 
29.336 

39.335 
49.335 
59.335 
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Table A.5 (continued) Critical Values of the Chi-Squared Distribution 

V 

1 
2 
3 
4 
5 

6 
7 
8 
9 
10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

40 
50 
60 

0.30 

1.074 

2.408 

3.665 

4.878 
6.064 

7.231 

8.383 

9.524 

10.656 

11.781 

12.899 
14.011 

15.119 

16.222 

17.322 

18.418 

19.511 

20.601 

21.689 

22.775 

23.858 

24.939 

26.018 
27.096 

28.172 

29.246 

30.319 

31.391 
32.461 

33.530 

44.165 

54.723 

65.226 

0.25 

1.323 

2.773 

4.108 
5.385 

6.626 

7.841 

9.037 

10.219 

11.389 

12.549 

13.701 

14.845 
15.984 

17.117 

18.245 

19.369 

20.489 

21.605 

22.718 

23-828 

24.935 

26.039 
27.141 

28.241 

29.339 

30.435 

31.528 

32.620 
33.711 

34.800 

45.616 
56.334 

66.981 

0.20 

1.642 

3.219 
4.642 

5.989 

7.289 

8.558 

9.803 

11.030 
12.242 

13.442 

14.631 

15.812 

16.985 

18.151 

19.311 

20.465 

21.615 

22.760 

23.900 

25.038 

26.171 

27.301 

28.429 
29.553 

30.675 

31.795 
32.912 

34.027 

35.139 

36.250 

47.269 
58.164 

68.972 

0.10 

2.706 

4.605 
6.251 

7.779 

9.236 

10.645 

12.017 

13.362 

14.684 

15.987 

17.275 
18.549 

19.812 

21.064 

22.307 

23.542 

24.769 

25.989 
27.204 

28.412 

29.615 

30.813 

32.007 

33.196 
34.382 

35.563 

36.741 

37.916 
39.087 

40.256 

51.805 

63.167 

74.397 

0.05 

3.841 

5.991 

7.815 

9.488 

11.070 

12.592 

14.067 

15.507 

16.919 
18.307 

19.675 

21.026 

22.362 

23.685 

24.996 

26.296 

27.587 

28.869 
30.144 

31.410 

32.671 

33.924 

35.172 

36.415 
37.652 

38.885 

40.113 

41.337 
42.557 

43.773 

55.758 

67.505 
79.082 

a 
0.025 

5.024 

7.378 

9.348 

11.143 

12.832 

14.449 

16.013 

17.535 

19.023 

20.483 

21.920 

23.337 

24.736 

26.119 

27.488 

28.845 

30.191 

31.526 
32.852 

34.170 

35.479 

36.781 

38.076 
39.364 

40.646 

41.923 

43.195 
44.461 

45.722 

46.979 

59.342 

71.420 
83.298 

0.02 

5.412 

7.824 

9.837 

11.668 

13.388 

15.033 

16.622 

18.168 

19.679 

21.161 

22.618 

24.054 

25.471 

26.873 

28.259 

29.633 

30.995 

32.346 
33.687 

35.020 

36.343 

37.659 

38.968 

40.270 
41.566 

42.856 

44.140 

45.419 
46.693 

47.962 

60.436 

72.613 
84.58 

0.01 

6.635 

9.210 

11.345 

13.277 

15.086 

16.812 

18.475 

20.090 
21.666 

23.209 

24.725 

26.217 

27.688 
29.141 

30.578 

32.000 

33.409 

34.805 

36.191 

37.566 

38.932 

40.289 

41.638 

42.980 
44.314 

45.642 

46.963 
48.278 

49.588 

50.892 

63.691 

76.154 

88.379 

0.005 

7.879 

10.597 

12.838 
14.860 

16.750 

18.548 

20.278 

21.955 
23.589 

25.188 

26.757 

28.300 

29.819 

31.319 

32.801 

34.267 

35.718 
37.156 

38.582 

39.997 

41.401 

42.796 

44.181 

45.558 

46.928 

48.290 

49.645 

50.994 

52.335 
53.672 

66.766 

79.490 
91.952 

0.001 

10.827 

13.815 

16.266 
18.466 

20.515 

22.457 

24.321 

26.124 

27.877 

29.588 

31.264 

32.909 

34.527 

36.124 

37.698 

39.252 

40.791 
42.312 

43.819 

45.314 

46.796 

48.268 

49.728 

51.179 

52.619 

54.051 

55.475 

56.892 
58.301 

59.702 

73.403 

86.660 
99.608 
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Table A.6* Critical Values of the F-Distribution 

757 

fo.or,ici,i>2) 
Vi 

1 161.45 199.50 
2 18.51 19.00 
3 10.13 9.55 
4 7.71 6.94 
5 6.61 5.79 

6 5.99 5.14 
7 5.59 4.74 
8 5.32 4.46 
9 5.12 4.26 

10 4.96 4.10 

11 4.84 3.98 
12 4.75 3.89 
13 4.67 3.81 
14 4.60 3.74 
15 4.54 3.68 

16 4.49 3.63 
17 4.45 3.59 
18 1.41 3.55 
19 4.38 3.52 
20 4.35 3.49 

21 4.32 3.47 
22 4.30 3.44 
23 4.28 3.42 
24 4.26 3.40 
25 4.21 3.39 

26 4.23 3.37 
27 4.21 3.35 
28 4.20 3.34 
29 4.18 3.33 
30 4.17 3.32 

40 4.08 3.23 
60 4.00 3.15 

120 3.92 3.07 
oc. 3.84 3.00 

* Reproduced from Table 

215.71 
19.16 
9.28 
6.59 
5,11 

4.76 
4.35 
4.07 
3.86 
3.71 

3.59 
3.49 
3.41 
3.34 
3.29 

3.24 
3.20 
3.16 
3.13 
3.10 

3.07 
3.05 
3.03 
3.01 
2.99 

2.98 
2.96 
2.95 
2.93 
2.92 

2.84 
2.76 
2.68 
2.60 

18 of Biomt 
Pearson and the Biometrika Trustees. 

224.58 
19.25 
9.12 
6.39 
5.19 

4.53 
4.12 
3.84 
3.63 
3.48 

3.36 
3.26 
3.18 
3.11 
3.06 

3.01 
2.96 
2.93 
2.90 
2.87 

2.84 
2.82 
2.80 
2.78 
2.76 

2.74 
2.73 
2.71 
2.70 
2.69 

2.61 
2.53 
2.45 
2.37 

trika Table 

230.16 233.99 
19.30 19.33 
9.0J 8.94 
6.26 6.16 
5.05 4.95 

4.39 4.28 
3.97 3.87 
3.69 3.58 
3.48 3.37 
3.33 3.22 

3.20 3.09 
3.11 3.00 
3.03 2.92 
2.96 2.85 
2.90 2.79 

2.85 2.74 
2.81 2.70 
2.77 2.66 
2.74 2.63 
2.71 2.60 

2.68 2,57 
2.66 2,55 
2.64 2,53 
2.62 2,51 
2.GO 2.49 

2,59 2.47 
2,57 2.46 
2.56 2.45 
2.55 2.43 
2,53 2.42 

2.45 2.34 
2.37 2.25 
2.29 2.18 
2.21 2.10 

> for Statisticians, Vo 

236.77 
19.35 
8.89 
6.09 
4.88 

4.21 
3.79 
3.50 
3.29 
3.14 

3.01 
2.91 
2.83 
2.76 
2.71 

2.66 
2,61 
2.58 
2.5-1 
2.51 

2.49 
2.46 
2.44 
2.42 
2.40 

2.39 
2.37 
2.36 
2.35 
2.33 

2.25 
2.17 
2.09 
2.01 

. I. by 

238.88 
19.37 
8.85 
6.04 
4.82 

4.15 
3.73 
3.44 
3.23 
3.07 

2.95 
2.85 
2.77 
2.70 
2.64 

2,59 
2,55 
2,51 
2.48 
2.45 

2.42 
2.40 
2.37 
2.36 
2.34 

2.32 
2,31 
2.29 
2.28 
2.27 

2. J 8 
2.10 
2.02 
1.94 

permission 

240.54 
19.38 
8.81 
6.00 
4.77 

4.10 
3.68 
3.39 
3.18 
3.02 

2.90 
2.80 
2.71 
2.65 
2,59 

2,54 
2.49 
2.46 
2,12 
2.39 

2.37 
2.34 
2.32 
2.30 
2.28 

2.27 
2.25 
2.24 
2.22 
2.21 

2.12 
2.04 
1.96 
1.88 

of E S . 
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Table A.6 (continued) Critical Values of the F-Distribution 

v2 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

40 
60 

120 
CO 

10 

241.88 
19.40 
8.79 
5.96 
4.74 

4.06 
3.64 
3.35 
3.14 
2.98 

2.85 
2.75 
2.67 
2.60 
2.54 

2.49 
2.45 
2.41 
2.38 
2.35 

2.32 
2.30 
2.27 
2.25 
2.24 

2.22 
2.20 
2.19 
2.18 
2.16 

2.08 
1.99 
1.91 
1.83 

12 

243.91 
19.41 
8.74 
5.91 
4.68 

4.00 
3.57 
3.28 
3.07 
2.91 

2.79 
2.69 
2.60 
2.53 
2.48 

2.42 
2.38 
2.34 
2.31 
2.28 

2.25 
2.23 
2.20 
2.18 
2.16 

2.15 
2.13 
2.12 
2.10 
2.09 

2.00 
1.92 
1.83 
1.75 

15 

245.95 
19.43 
8.70 
5.86 
4.62 

3.94 
3.51 
3.22 
3.01 
2.85 

2.72 
2.62 
2.53 
2.46 
2.40 

2.35 
2.31 
2.27 
2.23 
2.20 

2.18 
2.15 
2.13 
2.11 
2.09 

2.07 
2.06 
2.04 
2.03 
2.01 

1.92 
1.84 
1.75 
1.67 

20 

248.01 
19.45 
8.66 
5.80 
4.56 

3.87 
3.44 
3.15 
2.94 
2.77 

2.65 
2.54 
2.46 
2.39 
2.33 

2.28 
2.23 
2.19 
2.16 
2.12 

2.10 
2.07 
2.05 
2,03 
2.01 

1.99 
1.97 
1.96 
1.94 
1.93 

1.84 
1.75 
1.66 
1.57 

/ o . 0 5 ( ^ 1 

24 

249.05 1 
19.45 
8.64 
5.77 
4.53 

3.84 
3.41 
3.12 
2.90 
2.74 

2.61 
2.51 
2.42 
2.35 
2.29 

2.24 
2.19 
2.15 
2.11 
2.08 

2.05 
2.03 
2.01 
1.98 
1.96 

1.95 
1.93 
1.91 
1.90 
1.89 

1.79 
1.70 
1.61 
1.52 

, « 2 ) 

30 

250.10 
19.46 
8.62 
5.75 
4.50 

3.81 
3.38 
3.08 
2.86 
2.70 

2.57 
2.47 
2.38 
2.31 
2.25 

2.19 
2.15 
2.11 
2.07 
2.04 

2.01 
1.98 
1.96 
1.94 
1.92 

1.90 
1.88 
1.87 
1.85 
1.84 

1.74 
1.65 
1.55 
1.46 

40 

251.14 
19.47 
8.59 
5.72 
4.46 

3.77 
3.34 
3.04 
2.83 
2.66 

2.53 
2.43 
2.34 
2.27 
2.20 

2.15 
2.10 
2.06 
2.03 
1.99 

1.96 
1.94 
1.91 
1.89 
1.87 

1.85 
1.84 
1.82 
1.81 
1.79 

1.69 
1.59 
1.50 
1.39 

60 

252.20 
19.48 
8.57 
5.69 
4.43 

3.74 
3.30 
3.01 
2.79 
2.62 

2.49 
2.38 
2.30 
2.22 
2.16 

2.11 
2.06 
2.02 
1.98 
1.95 

1.92 
1.89 
1.86 
1.84 
1.82 

1.80 
1.79 
1.77 
1.75 
1.74 

1.64 
1.53 
1.43 
1.32 

120 
253.25 

19.49 
8.55 
5.66 
4.40 

3.70 
3.27 
2.97 
2.75 
2.58 

2.45 
2.34 
2.25 
2.18 
2.11 

2.06 
2.01 
1.97 
1.93 
1.90 

1.87 
1.84 
1.81 
1.79 
1.77 

1.75 
1.73 
1.71 
1.70 
1.68 

1.58 
1.47 
1.35 
1.22 

CO 

254.31 
19.50 
8.53 
5.63 
4.36 

3.67 
3.23 
2.93 
2.71 
2.54 

2.40 
2.30 
2.21 
2.13 
2.07 

2.01 
1.96 
1.92 
1.88 
1.84 

1.81 
1.78 
1.76 
1.73 
1.71 

1.69 
1.67 
1.65 
1.64 
1.62 

1.51 
1.39 
1.25 
1.00 
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Table A.6 (continued) Critical Values of the F-Distribution 

v2 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

40 
60 

120 
CO 

1 

4052.18 
98.50 
34.12 
21.20 
16.26 

13.75 
12.25 
11.26 
10.56 
10.04 

9.65 
9.33 
9.07 
8.86 
8.68 

8.53 
8.40 
8.29 
8.18 
8.10 

8.02 
7.95 
7.88 
7.82 
7.77 

7.72 
7.68 
7.64 
7.60 
7.56 

7.31 
7.08 
6.85 
6.63 

2 

4999.50 
99.00 
30.82 
18.00 
13.27 

10.92 
9.55 
8.65 
8.02 
7.56 

7.21 
6.93 
6.70 
6.51 
6.36 

6.23 
6.11 
6.01 
5.93 
5.85 

5.78 
5.72 
5.66 
5.61 
5.57 

5.53 
5.49 
5.45 
5.42 
5.39 

5.18 
4.98 
4.79 
4.61 

3 

5403.35 
99.17 
29.46 
16.69 
12.06 

9.78 
8.45 
7.59 
6.99 
6.55 

6.22 
5.95 
5.74 
5.56 
5.42 

5.29 
5.18 
5.09 
5.01 
4.94 

4.87 
4.82 
4.76 
4.72 
4.68 

4.64 
4.60 
4.57 
4.54 
4.51 

4.31 
4.13 
3.95 
3.78 

fo.oiivi,v2) 
4 

5624.58 
99.25 
28.71 
15.98 
11.39 

9.15 
7.85 
7.01 
6.42 
5.99 

5.67 
5.41 
5.21 
5.04 
4.89 

4.77 
4.67 
4.58 
4.50 
4.43 

4.37 
4.31 
4.26 
4.22 
4.18 

4.14 
4.11 
4.07 
4.04 
4.02 

3.83 
3.65 
3.48 
3.32 

5 

5763.65 
99.30 
28.24 
15.52 
10.97 

8.75 
7.46 
6.63 
6.06 
5.64 

5.32 
5.06 
4.86 
4.69 
4.56 

4.44 
4.34 
4.25 
4.17 
4.10 

4.04 
3.99 
3.94 
3.90 
3.85 

3.82 
3.78 
3.75 
3.73 
3.70 

3.51 
3.34 
3.17 
3.02 

6 

5858.99 
99.33 
27.91 
15.21 
10.67 

8.47 
7.19 
6.37 
5.80 
5.39 

5.07 
4.82 
4.62 
4.46 
4.32 

4.20 
4.10 
4.01 
3.94 
3.87 

3.81 
3.76 
3.71 
3.67 
3.63 

3.59 
3,56 
3.53 
3.50 
3.47 

3.29 
3.12 
2.96 
2.80 

7 

5928.36 
99.36 
27.67 
14.98 
10.46 

8.26 
6.99 
6.18 
5.61 
5.20 

4.89 
4.64 
4.44 
4.28 
4.14 

4.03 
3.93 
3.84 
3.77 
3.70 

3.64 
3.59 
3.54 
3.50 
3.46 

3.42 
3.39 
3.36 
3.33 
3.30 

3.12 
2.95 
2.79 
2.64 

8 

5981.07 
99.37 
27.49 
14.80 
10.29 

8.10 
6.84 
6.03 
5.47 
5.06 

4.74 
4.50 
4.30 
4.14 
4.00 

3.89 
3.79 
3.71 
3.63 
3.56 

3.51 
3.45 
3.41 
3.36 
3.32 

3.29 
3.26 
3.23 
3.20 
3.17 

2.99 
2.82 
2.66 
2.51 

9 

6022.47 
99.39 
27.35 
14.66 
10.16 

7.98 
6.72 
5.91 
5.35 
4.94 

4.63 
4.39 
4.19 
4.03 
3.89 

3.78 
3.68 
3.60 
3.52 
3.46 

3.40 
3.35 
3.30 
3.26 
3.22 

3.18 
3.15 
3.12 
3.09 
3.07 

2.89 
2.72 
2,56 
2.41 
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Table A.6 (continued) Critical Values of the F-Distribution 

v2 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

40 
60 

120 
CO 

10 

6055.85 
99.40 
27.23 
14.55 
10.05 

7.87 
6.62 
5.81 
5.26 
4.85 

4.54 
4.30 
4.10 
3.94 
3.80 

3.69 
3.59 
3.51 
3.43 
3.37 

3.31 
3.26 
3.21 
3.17 
3.13 

3.09 
3.06 
3.03 
3.00 
2.98 

2.80 
2.63 
2.47 
2.32 

12 

6106.32 
99.42 
27.05 
14.37 
9.89 

7.72 
6.47 
5.67 
5.11 
4.71 

4.40 
4.16 
3.96 
3.80 
3.67 

3.55 
3.46 
3.37 
3.30 
3.23 

3.17 
3.12 
3.07 
3.03 
2.99 

2.96 
2.93 
2.90 
2.87 
2.84 

2.66 
2.50 
2.34 
2.18 

15 

6157.28 
99.43 
26.87 
14.20 
9.72 

7.56 
6.31 
5.52 
4.96 
4.56 

4.25 
4.01 
3.82 
3.66 
3.52 

3.41 
3.31 
3.23 
3.15 
3.09 

3.03 
2.98 
2.93 
2.89 
2.85 

2.81 
2.78 
2.75 
2.73 
2.70 

2.52 
2.35 
2.19 
2.04 

20 

6208.73 
99.45 
26.69 
14.02 
9.55 

7.40 
6.16 
5.36 
4.81 
4.41 

4.10 
3.86 
3.66 
3.51 
3.37 

3.26 
3.16 
3.08 
3.00 
2.94 

2.88 
2.83 
2.78 
2.74 
2.70 

2.66 
2.63 
2.60 
2.57 
2.55 

2.37 
2.20 
2.03 
1.88 

/0.0lC"l! 
24 

,v2) 
30 

6234.63 6260.65 
99.46 
26.60 
13.93 
9.47 

7.31 
6.07 
5.28 
4.73 
4.33 

4.02 
3.78 
3.59 
3.43 
3.29 

3.18 
3.08 
3.00 
2.92 
2.86 

2.80 
2.75 
2.70 
2.66 
2.62 

2.58 
2.55 
2.52 
2.49 
2.47 

2.29 
2.12 
1.95 
1.79 

99.47 
26.50 
13.84 
9.38 

7.23 
5.99 
5.20 
4.65 
4.25 

3.94 
3.70 
3.51 
3.35 
3.21 

3.10 
3.00 
2.92 
2.84 
2.78 

2.72 
2.67 
2.62 
2.58 
2.54 

2.50 
2.47 
2.44 
2.41 
2.39 

2.20 
2.03 
1.86 
1.70 

40 

6286.78 
99.47 
26.41 
13.75 
9.29 

7.14 
5.91 
5.12 
4.57 
4.17 

3.86 
3.62 
3.43 
3.27 
3.13 

3.02 
2.92 
2.84 
2.76 
2.69 

2.64 
2.58 
2.54 
2.49 
2.45 

2.42 
2.38 
2.35 
2.33 
2.30 

2.11 
1.94 
1.76 
1.59 

60 

6313.03 
99.48 
26.32 
13.65 
9.20 

7.06 
5.82 
5.03 
4.48 
4.08 

3.78 
3.54 
3.34 
3.18 
3.05 

2.93 
2.83 
2.75 
2.67 
2.61 

2.55 
2.50 
2.45 
2.40 
2.36 

2.33 
2.29 
2.26 
2.23 
2.21 

2.02 
1.84 
1.66 
1.47 

120 
6339.39 

99.49 
26.22 
13.56 
9.11 

6.97 
5.74 
4.95 
4.40 
4.00 

3.69 
3.45 
3.25 
3.09 
2.96 

2.84 
2.75 
2.66 
2.58 
2.52 

2.46 
2.40 
2.35 
2.31 
2.27 

2.23 
2.20 
2.17 
2.14 
2.11 

1.92 
1.73 
1.53 
1.32 

CO 

6365.86 
99.50 
26.13 
13.46 
9.02 

6.88 
5.65 
4.86 
4.31 
3.91 

3.60 
3.36 
3.17 
3.00 
2.87 

2.75 
2.65 
2.57 
2.49 
2.42 

2.36 
2.31 
2.26 
2.21 
2.17 

2.13 
2.10 
2.06 
2.03 
2.01 

1.80 
1.60 
1.38 
1.00 
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Table A.8* Sample Size for the t-Test of the Mean 

Single-Sided Test 

Double-Sided Test 

/3 = 0.1 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

0.55 

0.60 

0.65 

0.70 

0.75 

0.80 

0.85 

0.90 

Value of 0.95 
A = \5\/a 1.00 

1.1 
1.2 
1.3 
1.4 
1.5 

1.6 
1.7 
1.8 
1.9 
2.0 

2.1 
2.2 
2.3 
2.4 
2.5 

3.0 
3.5 
4.0 

.01 

100 

83 
71 
61 
53 
47 

41 
37 
34 
31 
28 

24 
21 
18 
16 
15 

13 
12 
12 
11 
10 

a = 
a = 
.05 

115 
92 
75 

63 
53 
46 
40 
36 

32 
29 
26 
24 
22 

19 
16 
15 
13 
12 

11 
10 
10 
9 
8 

10 
9 
9 
8 
8 

7 

: 0.005 
= 0.01 

.1 

: 
125 
97 
77 
63 

53 
45 
39 
34 
30 

27 
24 
22 
20 
19 

10 
14 
13 
12 
11 

10 
9 
9 
8 
8 

8 
8 
7 
7 
7 

6 
6 

.2 

134 
99 
77 
62 
51 

42 
36 
31 
28 
25 

22 
20 
18 
17 
16 

14 
12 
11 
10 
9 

8 
8 
8 
7 
7 

7 
7 
7 
7 
6 

6 
5 

.5 

110 

78 
58 
45 

.01 

37110 

30 

26 
22 
20 
17 
16 

14 
13 
12 
11 
10 

9 
8 
8 
7 
7 

6 
6 
6 
6 
5 

7 
6 
6 
6 
6 

5 
5 
6 

90 

75 
63 
55 
47 
42 

37 
33 
29 
27 
25 

21 
18 
16 
14 
13 

12 

a -
a -
.05 

101 
81 
66 

55 
47 
41 
35 
31 

28 
25 
23 
21 
19 

16 
14 
13 
11 
10 

10 
11 
10 
10 
9 

8 
8 

Level of t-Test 

= 0.01 

= 0.02 

.1 

: 
109 
85 
68 
55 

46 
39 
34 
30 
27 

24 
21 
19 
18 
16 

14 
12 
11 
10 
9 

9 
9 
8 
8 
7 

7 
7 
8 
7 
7 

6 

.2 

115 
85 
66 
53 
43 

36 
31 
27 
24 
21 

19 
17 
16 
14 
13 

12 
10 
9 
9 
8 

7 
8 
7 
7 
7 

6 
6 
6 
6 
6 

5 

.5 

139 
90 

63 
47 

e 

.01 

37117 

30 
25 

21 
18 
16 
14 
13 

12 
11 
10 
9 
9 

8 
7 
6 
6 
6 

5 
7 
7 
6 
6 

6 
5 
6 
6 
6 

5 
5 

93 
76 

63 
53 
46 
40 
35 

31 
28 
25 
23 
21 

18 
15 

12 
11 

y = 

a = 
.05 

109 
84 
67 
54 

45 
38 
33 
29 
26 

22 
21 
19 
17 
16 

13 
12 
14 
9 
8 

10 
9 

0.025 

= 0.05 

.1 

119 
88 
68 
54 
44 

37 
32 
27 
24 
21 

19 
17 
16 
14 
13 

11 
10 
10 
8 
7 

8 
7 
8 
8 
7 

.2 

i 

.5 

99 
128 64 

90 45 
67 34 

.01 

5126101 

4121 

3418 

28 15 
2413 

2112 

1910 

16 

15 
13 
12 
11 
10 

9 
8 
9 
7 
6 

7 
6 
7 
6 
6 

7 
7 
6 

9 

9 
8 
7 
7 
6 

6 
5 
7 

6 
5 
6 
6 
5 

6 
6 
5 
6 
6 

5 

80 
65 

54 
46 
39 
34 
30 

27 
24 
21 
19 
18 

10 

a = 
a •• 

.05 

122 
90 
70 
55 
45 

38 
32 
28 
24 
21 

19 
17 
15 
14 
13 

15 
13 
11 
8 
9 

= 0.05 

= 0.1 

.1 .2 

139 101 

97 
72 
55 
44 
36 

30 
26 
22 
19 
17 

15 
14 
13 
11 
11 

11 
10 
8 
7 
7 

8 
8 

71 
52 
40 
33 
27 

22 
19 
17 
15 
13 

12 
11 
10 
9 
8 

9 
8 
7 
5 
6 

6 
6 
7 
7 

.5 

122 
70 
45 

32 
24 
19 
15 
13 

11 
9 
8 
8 
7 

6 
6 
5 
5 
5 

7 
6 
6 

6 
5 
6 
5 
6 

6 
6 
5 

*Reproduced with permission from O. L. Davies, ed., Design and Analysis of Industrial Experi
ments, Oliver & Boyd. Edinburgh, 1956. 



Table A.9 Table of Sample Sizes for the Test of the Difference between Two Means 763 

Table A.9* Sample Size for the £-Test of the Difference between Two Means 

Single-Sided test 
Double-Sided test 

/3 = 0.1 

0.05 
0.10 
0.15 
0.20 
0.25 

0.30 
0.35 
0.40 
0.45 
0.50 

0.55 
0.60 
0.65 
0.70 
0.75 

0.80 
0.85 
0.90 

Value of 0.95 
A = |<5|/CT 1.00 

1.1 
1.2 
1.3 
1.4 
1.5 

1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 

3.0 
3.5 
4.0 

.01 

100 
88 

77 
69 
62 
55 
50 

42 
36 
31 
27 
24 

21 
19 
17 
16 
14 

13 
12 
11 
11 
10 

8 
6 
6 

a = 
a -
.05 

101 
87 
75 
66 

58 
51 
46 
42 
38 

32 
27 
23 
20 
18 

16 
15 
13 
12 
11 

10 
10 
9 
9 
8 

6 
5 
5 

: 0.005 
= 0.01 

.1 

: 

101 
85 
73 
63 
55 

49 
43 
39 
35 
32 

27 
23 
20 
17 
15 

14 
13 
71 
11 
10 

9 
8 
8 
8 
7 

6 
5 
4 

.2 

118 
96 

79 
67 
57 
50 
44 

39 
35 
31 
28 
26 

22 
18 
16 
14 
13 

11 
10 
10 
9 
8 
8 
7 
7 
6 
6 

5 
4 
4 

.5, 

110 
85 
68 
55 

46 
39 

.01 

34104 
29 
26 

23 
21 
19 
17 
15 

13 
11 
10 
9 
8 

7 
7 
6 
6 
6 

5 
5 
5 
5 
4 
4 
3 

90 
79 

70 
62 
55 
50 
45 

38 
32 
28 
24 
21 

19 
17 
15 
14 
13 
12 
11 
10 
10 
9 

7 
6 
5 

a -
a = 
.05 

106 
90 
77 
66 
58 

51 
46 
41 
37 
33 

28 
24 
21 
18 
16 

14 
13 
12 
11 
10 
9 
9 
8 
8 
7 
6 
5 
4 

Level of t-Test 

= 0.01 
= 0.02 

.1 

: 
106 

88 
74 
64 
55 
48 

43 
38 
34 
31 
28 

23 
20 
17 
15 
14 

12 
11 
10 
9 
9 
8 
7 
7 
7 
6 

5 
4 
4 

.2 

101 
82 

68 
58 
49 
43 
38 

33 
30 
27 
24 
22 

19 
16 
14 
12 
11 

10 
9 
8 
8 
7 
-7 
1 

6 
6 
6 
5 

4 
4 
3 

.5 

123 
90 
70 
55 
45 

38 

.01 

32 104 
27 
24 
21 

19 
17 
15 
14 
13 

11 
9 
8 
8 
7 

6 
6 
5 
5 
5 
5 
4 
4 
48 
4 

3 
5 
4 

88 
76 
67 

59 
52 
47 
42 
38 

32 
27 
23 
20 
18 

16 
14 
13 
12 
11 
10 
9 
9 
6 
8 

6 
4 
4 

a = 
a = 
.05 

106 

87 
74 
63 
55 
48 

42 
37 
34 
30 
27 

23 
20 
17 
15 
13 

12 
11 
10 
9 
8 
8 
7 
7 
5 
6 

5 
4 
3 

: 0.025 
= 0.05 

.1 

; 
105 
86 

71 
60 
51 
44 
39 

34 
31 
27 
25 
23 

19 
16 
14 
12 
11 

10 
9 
8 
7 
7 
6 
6 
6 
4 
5 
4 
3 

.2 

100 
79 
64 

53 
45 
39 
34 
29 

26 
23 
21 
19 
17 

14 
12 
11 
10 
9 

8 
7 
6 
6 
6 
5 
5 
5 

4 

4 

.5 

124 

87 
64 
50 
39 
32 

.01 

27112 
23 
20 
17 
15 

14 
12 
11 
10 
9 

8 
7 
6 
6 
5 

5 
4 
4 
4 
4 
3 

7 

4 
4 

89 
76 
66 
57 

50 
45 
40 
36 
33 

27 
23 
20 
17 
15 

14 
12 
11 
10 
9 
8 
8 
7 
5 
6 

5 
3 

a = 
a •• 
.05 

108 
88 

73 
61 
52 
45 
40 

35 
31 
28 
25 
23 

19 
16 
14 
12 
11 

10 
9 
8 
7 
7 
6 
6 
5 
4 
5 
4 

= 0.05 
= 0.1 

.1 

: 
108 
86 
70 

58 
49 
42 
36 
32 

28 
25 
22 
20 
18 

15 
13 
11 
10 
9 

8 
7 
7 
6 
6 
5 
5 
5 
4 
4 

3 

.2 

102 
78 
62 
51 

42 
36 
30 
26 
23 

21 
18 
16 
15 
14 

12 
10 
9 
8 
7 

6 
6 
5 
5 
4 
4 
4 
4 

3 

.5 

137 
88 

61 
45 
35 
28 
23 

19 
16 
14 
12 
11 

10 
9 
8 
7 
7 

6 
5 
5 
4 
4 

4 
3 

^Reproduced with permission from O. L. Davies, ed., Design and Analysis of Industrial Experi
ments, Oliver &: Boyd, Edinburgh, 1956. 
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Table A.10* Critical Values for Bartlett's Test 

n 
3 
4 
5 

6 
7 
8 
9 
10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 
40 
50 
60 
80 
100 

2 

0.1411 
0.2843 
0.3984 

0.4850 
0.5512 
0.6031 
0.6445 
0.6783 

0.7063 
0.7299 
0.7501 
0.7674 
0.7825 

0.7958 
0.8076 
0.8181 
0.8275 
0.8360 

0.8437 
0.8507 
0.8571 
0.8630 
0.8684 

0.8734 
0.8781 
0.8824 
0.8864 
0.8902 

0.9175 
0.9339 
0.9449 
0.9586 
0.9669 

3 
0.1672 
0.3165 
0.4304 

0.5149 
0.5787 
0.6282 
0.6676 
0.6996 

0.7260 
0.7483 
0.7672 
0.7835 
0.7977 

0.8101 
0.8211 
0.8309 
0.8397 
0.8476 

0.8548 
0.8614 
0.8673 
0.8728 
0.8779 

0.8825 
0.8869 
0.8909 
0.8946 
0.8981 

0.9235 
0.9387 
0.9489 
0.9617 
0.9693 

4 

0.3475 
0.4607 

0.5430 
0.6045 
0.6518 
0.6892 
0.7195 

0.7445 
0.7654 
0.7832 
0.7985 
0.8118 

0.8235 
0.8338 
0.8429 
0.8512 
0.8586 

0.8653 
0.8714 
0.8769 
0.8820 
0.8867 

0.8911 
0.8951 
0.8988 
0.9023 
0.9056 

0.9291 
0.9433 
0.9527 
0.9646 
0.9716 

Mo, .01; n) 
N u m b e r of Populations, k 

5 

0.3729 
0.4850 

0.5653 
0.6248 
0.6704 
0.7062 
0.7352 

0.7590 
0.7789 
0.7958 
0.8103 
0.8229 

0.8339 
0.8436 
0.8523 
0.8601 
0.8671 

0.8734 
0.8791 
0.8844 
0.8892 
0.8936 

0.8977 
0.9015 
0.9050 
0.9083 
0.9114 

0.9335 
0.9468 
0.9557 
0.9668 
0.9734 

6 

0.3937 
0.5046 

0.5832 
0.6410 
0.6851 
0.7197 
0.7475 

0.7703 
0.7894 
0.8056 
0.8195 
0.8315 

0.8421 
0.8514 
0.8596 
0.8670 
0.8737 

0.8797 
0.8852 
0.8902 
0.8948 
0.8990 

0.9029 
0.9065 
0.9099 
0.9130 
0.9159 

0.9370 
0.9496 
0.9580 
0.9685 
0.9748 

7 

0.4110 
0.5207 

0.5978 
0.6542 
0.6970 
0.7305 
0.7575 

0.7795 
0.7980 
0.8135 
0.8269 
0.8385 

0.8486 
0.8576 
0.8655 
0.8727 
0.8791 

0.8848 
0.8901 
0.8949 
0.8993 
0.9034 

0.9071 
0.9105 
0.9138 
0.9167 
0.9195 

0.9397 
0.9518 
0.9599 
0.9699 
0.9759 

8 

0.5343 

0.6100 
0.6652 
0.7069 
0.7395 
0.7657 

0.7871 
0.8050 
0.8201 
0.8330 
0.8443 

0.8541 
0.8627 
0.8704 
0.8773 
0.8835 

0.8890 
0.8941 
0.8988 
0.9030 
0.9069 

0.9105 
0.9138 
0.9169 
0.9198 
0.9225 

0.9420 
0.9536 
0.9614 
0.9711 
0.9769 

9 

0.5458 

0.6204 
0.6744 
0.7153 
0.7471 
0.7726 

0.7935 
0.8109 
0.8256 
0.8382 
0.8491 

0.8586 
0.8670 
0.8745 
0.8811 
0.8871 

0.8926 
0.8975 
0.9020 
0.9061 
0.9099 

0.9134 
0.9166 
0.9196 
0.9224 
0.9250 

0.9439 
0.9551 
0.9626 
0.9720 
0.9776 

10 

0.5558 

0.6293 
0.6824 
0.7225 
0.7536 
0.7786 

0.7990 
0.8160 
0.8303 
0.8426 
0.8532 

0.8625 
0.8707 
0.8780 
0.8845 
0.8903 

0.8956 
0.9004 
0.9047 
0.9087 
0.9124 

0.9158 
0.9190 
0.9219 
0.9246 
0.9271 

0.9455 
0.9564 
0.9637 
0.9728 
0.9783 

*Reproduced from D. D. Dyer and J. . Keating, "On the Determination of Critical Values for 
Bartlett's Test," J. Am. Stat. Assoc, 75, 1980, by permission of the Board of Directors. 



Table J IJ 0 Table for Bartlett's Test 

Table A. 10 (continued) Critical Values for Bartlett's Test 

n 

3 
4 
5 

6 
7 
8 
9 
10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

40 
50 
60 
80 
100 

2 

0.3123 
0.4780 
0.5845 

0.6563 
0.7075 
0.7456 
0.7751 
0.7984 

0.8175 
0.8332 
0.8465 
0.8578 
0.8676 

0.8761 
0.8836 
0.8902 
0.8961 
0.9015 

0.9063 
0.9106 
0.9146 
0.9182 
0.9216 

0.9246 
0.9275 
0.9301 
0.9326 
0.9348 

0.9513 
0.9612 
0.9677 
0.9758 
0.9807 

3 
0.3058 
0.4699 
0.5762 

0.6483 
0.7000 
0.7387 
0.7686 
0.7924 

0.8118 
0.8280 
0.8415 
0.8532 
0.8632 

0.8719 
0.8796 
0.8865 
0.8926 
0.8980 

0.9030 
0.9075 
0.9116 
0.9153 
0.9187 

0.9219 
0.9249 
0.9276 
0.9301 
0.9325 

0.9495 
0.9597 
0.9665 
0.9749 
0.9799 

4 

0.3173 
0.4803 
0.5850 

0.6559 
0.7065 
0.7444 
0.7737 
0.7970 

0.8160 
0.8317 
0.8450 
0.8564 
0.8662 

0.8747 
0.8823 
0.8890 
0.8949 
0.9003 

0.9051 
0.9095 
0.9135 
0.9172 
0.9205 

0.9236 
0.9265 
0.9292 
0.9316 
0.9340 

0.9506 
0.9606 
0.9672 
0.9754 
0.9804 

Mo 
Number 

5 

0.3299 
0.4921 
0.5952 

0.6646 
0.7142 
0.7512 
0.7798 
0.8025 

0.8210 
0.8364 
0.8493 
0.8604 
0.8699 

0.8782 
0.8856 
0.8921 
0.8979 
0.9031 

0.9078 
0.9120 
0.9159 
0.9195 
0.9228 

0.9258 
0.9286 
0.9312 
0.9336 
0.9358 

0.9520 
0.9617 
0.9681 
0.9761 
0.9809 

.05; n) 

of Populations, k 
6 

0.5028 
0.6045 

0.6727 
0.7213 
0.7574 
0.7854 
0.8076 

0.8257 
0.8407 
0.8533 
0.8641 
0.8734 

0.8815 
0.8886 
0.8949 
0.9006 
0.9057 

0.9103 
0.9144 
0.9182 
0.9217 
0.9249 

0.9278 
0.9305 
0.9330 
0.9354 
0.9376 

0.9533 
0.9628 
0.9690 
0.9768 
0.9815 

7 

0.5122 
0.6126 

0.6798 
0.7275 
0.7629 
0.7903 
0.8121 

0.8298 
0.8444 
0.8568 
0.8673 
0.8764 

0.8843 
0.8913 
0.8975 
0.9030 
0.9080 

0.9124 
0.9165 
0.9202 
0.9236 
0.9267 

0.9296 
0.9322 
0.9347 
0.9370 
0.9391 

0.9545 
0.9637 
0.9698 
0.9774 
0.9819 

8 

0.5204 
0.6197 

0.6860 
0.7329 
0.7677 
0.7946 
0.8160 

0.8333 
0.8477 
0.8598 
0.8701 
0.8790 

0.8868 
0.8936 
0.8997 
0.9051 
0.9100 

0.9143 
0.9183 
0.9219 
0.9253 
0.9283 

0.9311 
0.9337 
0.9361 
0.9383 
0.9404 

0.9555 
0.9645 
0.9705 
0.9779 
0.9823 

9 

0.5277 
0.6260 

0.6914 
0.7376 
0.7719 
0.7984 
0.8194 

0.8365 
0.8506 
0.8625 
0.8726 
0.8814 

0.8890 
0.8957 
0.9016 
0.9069 
0.9117 

0.9160 
0.9199 
0.9235 
0.9267 
0.9297 

0.9325 
0.9350 
0.9374 
0.9396 
0.9416 

0.9564 
0.9652 
0.9710 
0.9783 
0.9827 

765 

10 

0.5341 
0.6315 

0.6961 
0.7418 
0.7757 
0.8017 
0.8224 

0.8392 
0.8531 
0.8648 
0.8748 
0.8834 

0.8909 
0.8975 
0.9033 
0.9086 
0.9132 

0.9175 
0.9213 
0.9248 
0.9280 
0.9309 

0.9336 
0.9361 
0.9385 
0.9406 
0.9426 

0.9572 
0.9658 
0.9716 
0.9787 
0.9830 
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Table A. 12 Upper Percentage Points of the Studentized Range Distribution: Values of 
</(0.05; k, v) 

Degrees of 
Freedom, v 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

24 
30 
40 
60 

120 
oo 

2 

18.0 
6.09 
4.50 
3.93 
3.64 

3.46 
3.34 
3.26 
3.20 
3.15 

3.11 
3.08 
3.06 
3.03 
3.01 

3.00 
2.98 
2.97 
2.96 
2.95 

2.92 
2.89 
2.86 
2.83 
2.80 
2.77 

3 

27.0 
5.33 
5.91 
5.04 
4.60 

4.34 
4.16 
4.04 
3.95 
3.88 

3.82 
3.77 
3.73 
3.70 
3.67 

3.65 
3.62 
3.61 
3.59 
3.58 

3.53 
3.48 
3.44 
3.40 
3.36 
3.32 

4 

32.8 
9.80 
6.83 
5.76 
5.22 

4.90 
4.68 
4.53 
4.42 
4.33 

4.26 
4.20 
4.15 
4.11 
4.08 

4.05 
4.02 
4.00 
3.98 
3.96 

3.90 
3.84 
3.79 
3.74 
3.69 
3.63 

Number of Treatments k 
5 

37.2 
10.89 
7.51 
6.29 
5.67 

5.31 
5.06 
4.89 
4.76 
4.66 

4.58 
4.51 
4.46 
4.41 
4.37 

4.34 
4.31 
4.28 
4.26 
4.24 

4.17 
4.11 
4.04 
3.98 
3.92 
3.86 

6 

40.5 
11.73 
8.04 
6.71 
6.03 

5.63 
5.35 
5.17 
5.02 
4.91 

4.82 
4.75 
4.69 
4.65 
4.59 

4.56 
4.52 
4.49 
4.47 
4.45 

4.37 
4.30 
4.23 
4.16 
4.10 
4.03 

7 

43.1 
12.43 
8.47 
7.06 
6.33 

5.89 
5.59 
5.40 
5.24 
5.12 

5.03 
4.95 
4.88 
4.83 
4.78 

4.74 
4.70 
4.67 
4.64 
4.62 

4.54 
4.46 
4.39 
4.31 
4.24 
4.17 

8 

15.1 
13.03 
8.85 
7.35 
6.58 

6.12 
5.80 
5.60 
5.43 
5.30 

5.20 
5.12 
5.05 
4.99 
4.94 

4.90 
4.86 
4.83 
4.79 
4.77 

4.68 
4.60 
4.52 
4.44 
4.36 
4.29 

9 

47.1 
13.54 
9.18 
7.60 
6.80 

6.32 
5.99 
5.77 
5.60 
5.46 

5.35 
5.27 
5.19 
5.13 
5.08 

5.03 
4.99 
4.96 
4.92 
4.90 

4.81 
4.72 
4.63 
4.55 
4.47 
4.39 

10 

49.1 
13.99 
9.46 
7.83 
6.99 

6.49 
6.15 
5.92 
5.74 
5.60 

5.49 
5.40 
5.32 
5.25 
5.20 

5.05 
5.11 
5.07 
5.04 
5.01 

4.92 
4.83 
4.74 
4.65 
4.56 
4.47 



Table A. 13 Table foi 

Table A.13* 

V 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

24 
30 
40 
60 

120 
oo 

2 

17.97 
6.085 
4.501 
3.927 
3.635 

3.461 
3.344 
3.261 
3.199 
3.151 

3.113 
3.082 
3.055 
3.033 
3.014 

2.998 
2.984 
2.971 
2.960 
2.950 

2.919 
2.888 
2.858 
2.829 
2.800 
2.772 

' Duncan's Test 

Least Significant Studentized Ranges 

3 

17.97 
6.085 
4.516 
4.013 
3.749 

3.587 
3.477 
3.399 
3.339 
3.293 

3.256 
3.225 
3.200 
3.178 
3.160 

3.144 
3.130 
3.118 
3.107 
3.097 

3.066 
3.035 
3.006 
2.976 
2.947 
2.918 

4 

17.97 
6.085 
4.516 
4.033 
3.797 

3.649 
3.548 
3.475 
3.420 
3.376 

3.342 
3.313 
3.289 
3.268 
3.25 

3.235 
3.222 
3.210 
3.199 
3.190 

3.160 
3.131 
3.102 
3.073 
3.045 
3.017 

a • 

5 

17.97 
6.085 
4.516 
4.033 
3.814 

3.68 
3.588 
3.521 
3.470 
3.430 

3.397 
3.370 
3.348 
3.329 
3.312 

3.298 
3.285 
3.274 
3.264 
3.255 

3.226 
3.199 
3.171 
3.143 
3.116 
3.089 

= 0.05 

P 
6 

17.97 
6.085 
4.516 
4.033 
3.814 

3.694 
3.611 
3.549 
3.502 
3.465 

3.435 
3.410 
3.389 
3.372 
3.356 

3.343 
3.331 
3.321 
3.311 
3.303 

3.276 
3.250 
3.224 
3.198 
3.172 
3.146 

; rp(0.05; 

7 

17.97 
6.085 
4.516 
4.033 
3.814 

3.697 
3.622 
3.566 
3.523 
3.489 

3.462 
3.439 
3.419 
3.403 
3.389 

3.376 
3.366 
3.356 
3.347 
3.339 

3.315 
3.290 
3.266 
3.241 
3.217 
3.193 

p,v) 

8 

17.97 
6.085 
4.516 
4.033 
3.814 

3.697 
3.626 
3.575 
3.536 
3.505 

3.48 
3.459 
3.442 
3.426 
3.413 

3.402 
3.392 
3.383 
3.375 
3.368 

3.345 
3.322 
3.300 
3.277 
3.254 
3.232 

9 

17.97 
6.085 
4.516 
4.033 
3.814 

3.697 
3.626 
3.579 
3.544 
3.516 

3.493 
3.474 
3.458 
3.444 
3.432 

3.422 
3.412 
3.405 
3.397 
3.391 

3.370 
3.349 
3.328 
3.307 
3.287 
3.265 

10 

17.97 
6.085 
4.516 
4.033 
3.814 

3.697 
3.626 
3.579 
3.547 
3.522 

3.501 
3.484 
3.470 
3.457 
3.446 

3.437 
3.429 
3.421 
3.415 
3.409 

3.390 
3.371 
3.352 
3.333 
3.314 
3.294 

769 

* Abridged from H. L. Harter, "Critical Values for Duncan's New Multiple Range Test." 
Biometrics, 16, No. 4, 1960, by permission of the author and the editor. 
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Table A.13 (continued) Least Significant Studentized Ranges rp(0.01'.p,v) 

V 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

24 
30 
40 
60 

120 
oo 

2 

90.03 
14.04 
8.261 
6.512 
5.702 

5.243 
4.949 
4.746 
4.596 
4.482 

4.392 
4.320 
4.260 
4.210 
4.168 

4.131 
4.099 
4.071 
4.046 
4.024 

3.956 
3.889 
3.825 
3.762 
3.702 
3.643 

3 

90.03 
14.04 
8.321 
6.677 
5.893 

5.439 
5.145 
4.939 
4.787 
4.671 

4.579 
4.504 
4.442 
4.391 
4.347 

4.309 
4.275 
4.246 
4.220 
4.197 

4.126 
4.056 
3.988 
3.922 
3.858 
3.796 

4 

90.03 
14.04 
8.321 
6.740 
5.989 

5.549 
5.260 
5.057 
4.906 
4.790 

4.697 
4.622 
4.560 
4.508 
4.463 

4.425 
4.391 
4.362 
4.335 
4.312 

4.239 
4.168 
4.098 
4.031 
3.965 
3.900 

a = 

5 

90.03 
14.04 
8.321 
6.756 
6.040 

5.614 
5.334 
5.135 
4.986 
4.871 

4.780 
4.706 
4.644 
4.591 
4.547 

4.509 
4.475 
4.445 
4.419 
4.395 

4.322 
4.250 
4.180 
4.111 
4.044 
3.978 

•• 0.01 

P 
6 

90.03 
14.04 
8.321 
6.756 
6.065 

5.655 
5.383 
5.189 
5.043 
4.931 

4.841 
4.767 
4.706 
4.654 
4.610 

4.572 
4.539 
4.509 
4.483 
4.459 

4.386 
4.314 
4.244 
4.174 
4.107 
4.040 

7 

90.03 
14.04 
8.321 
6.756 
6.074 

5.680 
5.416 
5.227 
5.086 
4.975 

4.887 
4.815 
4.755 
4.704 
4.660 

4.622 
4.589 
4.560 
4.534 
4.510 

4.437 
4.366 
4.296 
4.226 
4.158 
4.091 

8 

90.03 
14.04 
8.321 
6.756 
6.074 

5.694 
5.439 
5.256 
5.118 
5.010 

4.924 
4.852 
4.793 
4.743 
4.700 

4.663 
4.630 
4.601 
4.575 
4.552 

4.480 
4.409 
4.339 
4.270 
4.202 
4.135 

9 

90.03 
14.04 
8.321 
6.756 
6.074 

5.701 
5.454 
5.276 
5.142 
5.037 

4.952 
4.883 
4.824 
4.775 
4.733 

4.696 
4.664 
4.635 
4.610 
4.587 

4.516 
4.445 
4.376 
4.307 
4.239 
4.172 

10 

90.03 
14.04 
8.321 
6.756 
6.074 

5.703 
5.464 
5.291 
5.160 
5.058 

4.975 
4.907 
4.850 
4.802 
4.760 

4.724 
4.693 
4.664 
4.639 
4.617 

4.546 
4.477 
4.408 
4.340 
4.272 
4.205 
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Table A.14* Values oi daj2(k,v) for Two-Sided Comparisons between A: Treatments 
and a Control 

V 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

15 
16 
17 
18 
19 

20 
24 
30 
40 
60 

120 
0 0 

1 

2.57 
2.45 
2.36 
2.31 
2.26 

2.23 
2.20 
2.18 
2.16 
2.14 

2.13 
2.12 
2.11 
2.10 
2.09 

2.09 
2.06 
2.04 
2.02 
2.00 

1.98 
1.96 

k = 

2 
3.03 
2.86 
2.75 
2.67 
2.61 

2.57 
2.53 
2.50 
2.48 
2.46 

2.44 
2.42 
2.41 
2.40 
2.39 

2.38 
2.35 
2.32 
2.29 
2.27 

2.24 
2.21 

a = 0.05 

Number of Treatment Means (excluding control) 
3 

3.29 
3.10 
2.97 
2.88 
2.81 

2.76 
2.72 
2.68 
2.65 
2.63 

2.61 
2.59 
2.58 
2.56 
2.55 

2.54 
2.51 
2.47 
2.44 
2.41 

2.38 
2.35 

4 
3.48 
3.26 
3.12 
3.02 
2.95 

2.89 
2.84 
2.81 
2.78 
2.75 

2.73 
2.71 
2.69 
2.68 
2.66 

2.65 
2.61 
2.58 
2.54 
2.51 

2.47 
2.44 

5 
3.62 
3.39 
3.24 
3.13 
3.05 

2.99 
2.94 
2.90 
2.87 
2.84 

2.82 
2.80 
2.78 
2.76 
2.75 

2.73 
2.70 
2.66 
2.62 
2.58 

2.55 
2.51 

6 
3.73 
3.49 
3.33 
3.22 
3.14 

3.07 
3.02 
2.98 
2.94 
2.91 

2.89 
2.87 
2.85 
2.83 
2.81 

2.80 
2.76 
2.72 
2.68 
2.64 

2.60 
2.57 

7 
3.82 
3.57 
3.41 
3.29 
3.20 

3.14 
3.08 
3.04 
3.00 
2.97 

2.95 
2.92 
2.90 
2.89 
2.87 

2.86 
2.81 
2.77 
2.73 
2.69 

2.65 
2.61 

8 
3.90 
3.64 
3.47 
3.35 
3.26 

3.19 
3.14 
3.09 
3.06 
3.02 

3.00 
2.97 
2.95 
2.94 
2.92 

2.90 
2.86 
2.82 
2.77 
2.73 

2.69 
2.65 

9 
3.97 
3.71 
3.53 
3.41 
3.32 

3.24 
3.19 
3.14 
3.10 
3.07 

3.04 
3.02 
3.00 
2.98 
2.96 

2.95 
2.90 
2.86 
2.81 
2.77 

2.73 
2.69 

^Reproduced from Charles W. Dunnett, "New Tables for Multiple Comparison with a Con
trol," Biometrics, 20, No. 3, 1964, by permission of the author and the editor. 
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Table A.14 (continued) Values of dQ/2(k, v) for Two-Sided Comparisons between k Treat
ments and a Control 

V 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

15 
16 
17 
18 
19 

20 
24 
30 
40 
60 

120 
oo 

1 

4.03 
3.71 
3.50 
3.36 
3.25 

3.17 
3.11 
3.05 
3.01 
2.98 

2.95 
2.92 
2.90 
2.88 
2.86 

2.85 
2.80 
2.75 
2.70 
2.66 

2.62 
2.58 

fe = 
2 

4.63 
4.21 
3.95 
3.77 
3.63 

3.53 
3.45 
3.39 
3.33 
3.29 

3.25 
3.22 
3.19 
3.17 
3.15 

3.13 
3.07 
3.01 
2.95 
2.90 

2.85 
2.79 

a = 0.01 

Number of Treatment Means (excluding control) 
3 

4.98 
4.51 
4.21 
4.00 
3.85 

3.74 
3.65 
3.58 
3.52 
3.47 

3.43 
3.39 
3.36 
3.33 
3.31 

3.29 
3.22 
3.15 
3.09 
3.03 

2.97 
2.92 

4 

5.22 
4.71 
4.39 
4.17 
4.01 

3.88 
3.79 
3.71 
3.65 
3.59 

3.55 
3.51 
3.47 
3.44 
3.42 

3.40 
3.32 
3.25 
3.19 
3.12 

3.06 
3.00 

5 

5.41 
4.87 
4.53 
4.29 
4.12 

3.99 
3.89 
3.81 
3.74 
3.69 

3.64 
3.60 
3.56 
3.53 
3.50 

3.48 
3.40 
3.33 
3.26 
3.19 

3.12 
3.06 

6 

5.56 
5.00 
4.64 
4.40 
4.22 

4.08 
3.98 
3.89 
3.82 
3.76 

3.71 
3.67 
3.63 
3.60 
3.57 

3.55 
3.47 
3.39 
3.32 
3.25 

3.18 
3.11 

7 

5.69 
5.10 
4.74 
4.48 
4.30 

4.16 
4.05 
3.96 
3.89 
3.83 

3.78 
3.73 
3.69 
3.66 
3.63 

3.60 
3.52 
3.44 
3.37 
3.29 

3.22 
3,15 

8 

5.80 
5.20 
4.82 
4.56 
4.37 

4.22 
4.11 
4.02 
3.94 
3.88 

3.83 
3.78 
3.74 
3.71 
3.68 

3.65 
3.57 
3.49 
3.41 
3.33 

3.26 
3.19 

9 

5.89 
5.28 
4.89 
4.62 
4.43 

4.28 
4.16 
4.07 
3.99 
3.93 

3.88 
3.83 
3.79 
3.75 
3.72 

3.69 
3.61 
3.52 
3.44 
3.37 

3.29 
3.22 
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Table A. 15* Values of da/2(k, v) for One-Sided Comparisons between A: Treatments 
and a Control 

V 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

15 
16 
17 
18 
19 

20 
24 
30 
40 
60 

120 
CO 

1 

2.02 
1.94 
1.89 
1.86 
1.83 

1.81 
1.80 
1.78 
1.77 
1.76 

1.75 
1.75 
1.74 
1.73 
1.73 

1.72 
1.71 
1.70 
1.68 
1.67 

1.66 
1.64 

k = 
2 

2.44 
2.34 
2.27 
2.22 
2.18 

2.15 
2.13 
2.11 
2.09 
2.08 

2.07 
2.06 
2.05 
2.04 
2.03 

2.03 
2.01 
1.99 
1.97 
1.95 

1.93 
1.92 

Number 
3 

2.68 
2.56 
2.48 
2.42 
2.37 

2.34 
2.31 
2.29 
2.27 
2.25 

2.24 
2.23 
2.22 
2.21 
2.20 

2.19 
2.17 
2.15 
2.13 
2.10 

2.08 
2.06 

a = 0.05 
of Treatment Means (excluding control) 

4 

2.85 
2.71 
2.62 
2.55 
2.50 

2.47 
2.44 
2.41 
2.39 
2.37 

2.36 
2.34 
2.33 
2.32 
2.31 

2.30 
2.28 
2.25 
2.23 
2.21 

2.18 
2.16 

5 

2.98 
2.83 
2,73 
2.66 
2.60 

2.56 
2.53 
2.50 
2.48 
2.46 

2.44 
2.43 
2.42 
2.41 
2.40 

2.39 
2.36 
2.33 
2.31 
2.28 

2.26 
2.23 

6 
3.08 
2.92 
2.82 
2.74 
2.68 

2.64 
2.60 
2.58 
2.55 
2.53 

2.51 
2.50 
2.49 
2.48 
2.47 

2.46 
2.43 
2.40 
2.37 
2.35 

2.32 
2.29 

7 
3.16 
3.00 
2.89 
2.81 
2.75 

2.70 
2.67 
2.64 
2.61 
2.59 

2.57 
2.56 
2.54 
2.53 
2.52 

2.51 
2.48 
2.45 
2.42 
2.39 

2.37 
2.34 

8 
3.24 
3.07 
2.95 
2.87 
2.81 

2.76 
2.72 
2.69 
2.66 
2.64 

2.62 
2.61 
2.59 
2.58 
2.57 

2.56 
2.53 
2.50 
2.47 
2.44 

2.41 
2.38 

9 
3.30 
3.12 
3.01 
2.92 
2.86 

2.81 
2,77 
2.74 
2.71 
2.69 

2.67 
2.65 
2.64 
2.62 
2.61 

2.60 
2.57 
2.54 
2.51 
2.48 

2.45 
2.42 

*Reproduced from Charles W. Dunnett, "A Multiple Comparison Procedure for Compar
ing Several Treatments with a. Control." J. Am. Stat. Assoc, 50, 1955, 1096-1121, by 
permission of the author and the editor. 
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Table A. 15 (continued) Values of da/2(k, v) for One-Sided Comparisons between k 
Treatments and a Control 

V 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

15 
16 
17 
18 
19 

20 
24 
30 
40 
60 

120 
CO 

1 
3.37 
3.14 
3.00 
2.90 
2.82 

2.76 
2.72 
2.68 
2.65 
2.62 

2.60 
2.58 
2.57 
2.55 
2.54 

2.53 
2.49 
2.46 
2.42 
2.39 

2.36 
2.33 

k = 
2 

3.90 
3.61 
3.42 
3.29 
3.19 

3.11 
3.06 
3.01 
2.97 
2.94 

2.91 
2.88 
2.86 
2.84 
2.83 

2.81 
2.77 
2.72 
2.68 
2.64 

2.60 
2.56 

a = 0.01 
Number of Treatment Means (excluding control) 

3 
4.21 
3.88 
3.66 
3.51 
3.40 

3.31 
3.25 
3.19 
3.15 
3.11 

3.08 
3.05 
3.03 
3.01 
2.99 

2.97 
2.92 
2.87 
2.82 
2.78 

2.73 
2.68 

4 

4.43 
4.07 
3.83 
3.67 
3.55 

3.45 
3.38 
3.32 
3.27 
3.23 

3.20 
3.17 
3.14 
3.12 
3.10 

3.08 
3.03 
2.97 
2.92 
2.87 

2.82 
2.77 

5 

4.60 
4.21 
3.96 
3.79 
3.66 

3.56 
3.48 
3.42 
3.37 
3.32 

3.29 
3.26 
3.23 
3.21 
3.18 

3.17 
3.11 
3.05 
2.99 
2.94 

2.89 
2.84 

6 

4.73 
4.33 
4.07 
3.88 
3.75 

3.64 
3.56 
3.50 
3.44 
3.40 

3.36 
3.33 
3.30 
3.27 
3.25 

3.23 
3.17 
3.11 
3.05 
3.00 

2.94 
2.89 

7 

4.85 
4.43 
4.15 
3.96 
3.82 

3.71 
3.63 
3.56 
3.51 
3.46 

3.42 
3.39 
3.36 
3.33 
3.31 

3.29 
3.22 
3.16 
3.10 
3.04 

2.99 
2.93 

8 
4.94 
4.51 
4.23 
4.03 
3.89 

3.78 
3.69 
3.62 
3.56 
3.51 

3.47 
3.44 
3.41 
3.38 
3.36 

3.34 
3.27 
3.21 
3.14 
3.08 

3.03 
2.97 

9 

5.03 
4.59 
4.30 
4.09 
3.94 

3.83 
3.74 
3.67 
3.61 
3.56 

3.52 
3.48 
3.45 
3.42 
3.40 

3.38 
3.31 
3.24 
3.18 
3.12 

3.06 
3.00 
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Table A. 17 Table for the Signed-Rank Test 783 

Table A. 17* Critical Values for the Signed-Rank Test 

One-Sided a = 0.01 One-Sided a = 0.025 One-Sided a = 0.05 
n Two-Sided a = 0.02 Two-Sided a = 0.05 Two-Sided a = 0.1 

1 
1 2 
2 4 
4 6 
6 8 
8 11 

11 14 
14 17 
17 21 
21 26 
25 30 

30 36 
35 41 
40 47 
46 54 
52 60 

59 68 
66 75 
73 83 
81 92 
90 101 

98 110 
107 120 
117 130 
127 141 
137 152 

*Reproduced from F. Wilcoxon and R. A. Wilcox. Some Rapid Approximate Statistical 
Procedures, American Cyanamid Company, Pearl River, N.Y., 1964. by permission of 
the American Cyanamid Company. 

5 
6 
7 
8 
9 
10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

0 
2 
3 
5 

7 
10 
13 
16 
20 

24 
28 
33 
38 
43 

49 
56 
62 
69 
77 

85 
93 
102 
111 
120 
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Table A . 1 8 * Critical Values for the Wilcoxon Rank-Sum Test 

One-Tai led Test at a = 0 .001 or T w o - T a i l e d Test at a = 0 .002 
n2 

m 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 
2 
3 
4 
5 0 0 
6 0 1 2 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

2 3 
5 

1 
2 
3 
5 
7 

0 
1 
3 
5 
6 
8 

10 

0 
2 
4 
6 
8 

10 
12 
15 

0 
2 
4 
7 
9 

12 
14 
17 
20 

1 
3 
5 
8 

11 
14 
17 
20 
23 
26 

1 
3 
0 
9 

12 
15 
19 
22 
25 
29 
32 

1 
4 
7 

10 
14 
17 
21 
24 
28 
32 
36 
40 

2 
5 
8 

11 
15 
19 
23 
27 
31 
35 
39 
43 
48 

0 
2 
5 
9 

13 
17 
21 
25 
29 
34 
38 
43 
47 
52 
57 

0 
3 
6 

10 
14 
18 
23 
27 
32 
37 
42 
46 
51 
56 
61 
66 

0 
3 
7 

11 
15 
20 
25 
29 
34 
40 
45 
50 
55 
60 
66 
71 
77 

0 
3 
7 

12 
16 
21 
26 
32 
37 
42 
48 
54 
59 
65 
70 
76 
82 
88 

One-Tailed Test at a = 0.01 or Two-Tailed Test at a = 0.02 

n2 

nx 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
1 
2 
3 
4 0 
5 1 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

0 
1 1 
2 3 
3 4 

6 

0 
2 
4 
6 
8 

10 

1 
3 
5 
7 
9 

11 
14 

1 
3 
6 
8 

11 
13 
16 
19 

I 
4 
7 
9 

12 
15 
18 
22 
25 

2 
5 
8 

11 
14 
17 
21 
24 
28 
31 

0 
2 
5 
9 

12 
16 
20 
23 
27 
31 
35 
39 

0 
2 
6 

10 
13 
17 
22 
26 
30 
34 
38 
43 
47 

0 
3 
7 

11 
15 
19 
24 
28 
33 
37 
42 
47 
51 
56 

0 
3 
7 

12 
16 
21 
26 
31 
36 
41 
46 
51 
56 
61 
66 

0 
4 
8 

13 
18 
23 
28 
33 
38 
44 
49 
55 
60 
66 
71 
77 

0 
4 
9 

14 
19 
24 
30 
36 
41 
47 
53 
59 
65 
70 
76 
82 
88 

1 
4 
9 

15 
20 
26 
32 
38 
44 
50 
56 
63 
69 
75 
82 
88 
94 

101 

1 
5 

10 
16 
22 
28 
34 
40 
47 
53 
60 
67 
73 
80 
87 
93 

100 
107 
114 

*Based in part on Tables 1, 3, 5. and 7 of D. Auble, "Extended Tables for the Mann-Whitney Statistic," 
Bulletin of the Institute of Educational Research ai Indiana University, 1, No. 2, 1953, by permission of 
the director. 



Table A.18 Table for the Rank-Sum Test 785 

Table A.18 (continued) Critical Values for the Wilcoxon Rank-Sum Test 
One-Tailed Test at a = 0.025 or Two-Tailed Test at a = 0.05 

n2 

nx ~4 5 6 7 8 9" 10 i i 12" 13 14 15 16 17 18 19 20~ 
1 
2 
3 
4 I 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

0 1 
) 1 2 

2 3 
5 

1 
3 
5 
6 
8 

0 
2 
4 
6 
8 
10 
13 

0 
2 
4 
7 
10 
12 
15 
17 

0 
3 
5 
8 
11 
14 
17 
20 
23 

0 
3 
6 
9 
13 
16 
19 
23 
26 
30 

1 
4 
7 
11 
14 
18 
22 
26 
29 
33 
37 

1 
4 
8 
12 
16 
20 
24 
28 
33 
37 
41 
45 

1 
5 
9 
13 
17 
22 
26 
31 
36 
40 
45 
50 
55 

1 
5 
10 
14 
19 
24 
29 
34 
39 
44 
49 
54 
59 
64 

1 
6 
11 
15 
21 
26 
31 
37 
42 
47 
53 
59 
64 
70 
75 

2 
6 
11 
17 
22 
28 
34 
39 
45 
51 
57 
63 
67 
75 
81 
87 

2 
7 
12 
18 
24 
30 
36 
42 
48 
55 
61 
67 
74 
80 
86 
93 
99 

2 
7 
13 
19 
25 
32 
38 
45 
52 
58 
65 
72 
78 
85 
92 
99 
106 
113 

2 
8 
13 
20 
27 
34 
41 
48 
55 
62 
69 
76 
83 
90 
98 
105 
112 
119 
127 

One-Tailed Test at a = 0.05 or Two-Tailed Test at a = 0.1 

n_ 3 
n2 

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 
2 0 
3 0 0 1 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

1 2 
4 

0 
2 
3 
5 
7 

0 
2 
4 
6 
8 
11 

1 
3 
5 
8 
10 
13 
15 

1 
4 
6 
9 
12 
15 
18 
21 

1 
4 
7 
11 
14 
17 
20 
24 
27 

1 
5 
8 
12 
16 
19 
23 
27 
31 
34 

2 
5 
9 
13 
17 
21 
26 
30 
34 
38 
42 

2 
6 
10 
15 
19 
24 
28 
33 
37 
42 
47 
51 

3 
7 
11 
16 
21 
26 
31 
36 
41 
46 
51 
56 
61 

3 
7 
12 
18 
23 
28 
33 
39 
44 
50 
55 
61 
66 
72 

3 
8 
14 
19 
25 
30 
36 
42 
48 
54 
60 
65 
71 
77 
83 

3 
9 
15 
20 
26 
33 
39 
45 
51 
57 
64 
70 
77 
83 
89 
96 

4 
9 
16 
22 
28 
35 
41 
48 
55 
61 
68 
75 
82 
88 
95 
102 
109 

0 
4 
10 
17 
23 
30 
37 
44 
51 
58 
65 
72 
80 
87 
94 
101 
109 
116 
123 

0 
4 
11 
18 
25 
32 
39 
47 
54 
62 
69 
77 
84 
92 
100 
107 
115 
123 
130 
138 
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Table A.19* P(V < v* when H0 is true) in the Runs Test 

(nx,n2) 
(2,3) 
(2,4) 
2,5 

(2,6 
(2,7) 
(2,8) 
(2,9) 
(2,10) 
(3,3) 
(3,4) 
(3,5) 
(3,6) 
t'i 7 i 
(3,8) 
(3,9) 
(3,10) m m 
(4,8) 
4,9) 

(4,10) 
(5,5) 
(5,6 
(5,7 
(5,8) 
(5,9) 
(5,10) 
6,6) 

(6,7 
(6,8) 
(6,9) 
(6,10) 
(7,7) 
(7,8 
(7,9) 
(7,10) 
(8,8) 
8,9) 

(8,10) 
(9,9) 
(9,10) 
(10,10) 

2 
0.200 
0.133 
0.095 
0.071 
0.056 
0.044 
0.036 
0.030 
0.100 
0.057 
0.036 
0.024 
0.017 
0.012 
0.009 
0.007 
0.029 
0.016 
0.010 
0.006 
0.004 
0.003 
0.002 
0.008 
0.004 
0.003 
0.002 
0.001 
0.001 
0.002 
0.001 
0.001 
0.000 
0.000 
0.001 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

3 

0.500 
0.400 
0.333 
0.286 
0.250 
0.222 
0.200 
0.182 
0.300 
0.200 
0.143 
0.107 
0.083 
0.067 
0.055 
0.045 
0.114 
0.071 
0.048 
0.033 
0.024 
0.018 
0.014 
0.040 
0.024 
0.015 
0.010 
0.007 
0.005 
0.013 
0.008 
0.005 
0.003 
0.002 
0.004 
0.002 
0.001 
0.001 
0.001 
0.001 
0.000 
0.000 
0.000 
0.000 

4 
0.900 
0.800 
0.714 
0.643 
0.583 
0.533 
0.491 
0.455 
0.700 
0.543 
0.429 
0.345 
0.283 
0.236 
0.200 
0.171 
0.371 
0.262 
0.190 
0.142 
0.109 
0.085 
0.068 
0.167 
0.110 
0.076 
0.054 
0.039 
0.029 
0.067 
0.043 
0.028 
0.019 
0.013 
0.025 
0.015 
0.010 
0.006 
0.009 
0.005 
0.003 
0.003 
0.002 
0.001 

5 

1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
0.900 
0.800 
0.714 
0.643 
0.583 
0.533 
0.491 
0.455 
0.629 
0.500 
0.405 
0.333 
0.279 
0.236 
0.203 
0.357 
0.262 
0.197 
0.152 
0.119 
0.095 
0.175 
0.121 
0.086 
0.063 
0.047 
0.078 
0.051 
0.035 
0.024 
0.032 
0.020 
0.013 
0.012 
0.008 
0.004 

V* 

6 

1.000 
0.971 
0.929 
0.881 
0.833 
0.788 
0.745 
0.706 
0.886 
0.786 
0.690 
0.606 
0.533 
0.471 
0.419 
0.643 
0.522 
0.424 
0.347 
0.287 
0.239 
0.392 
0.296 
0.226 
0.175 
0.137 
0.209 
0.149 
0.108 
0.080 
0.100 
0.069 
0.048 
0.044 
0.029 
0.019 

7 

1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
0.971 
0.929 
0.881 
0.833 
0.788 
0.745 
0.706 
0.833 
0.738 
0-652 
0.576 
0.510 
0.455 
0.608 
0.500 
0.413 
0.343 
0.288 
0.383 
0.296 
0.231 
0.182 
0.214 
0.157 
0.117 
0.109 
0.077 
0.051 

8 

1.000 
0.992 
0.976 
0.954 
0.929 
0.902 
0.874 
0.960 
0.911 
0.854 
0.793 
0.734 
0.678 
0.825 
0.733 
0.646 
0.566 
0.497 
0.617 
0.514 
0.427 
0.355 
0.405 
0.319 
0.251 
0.238 
0.179 
0.128 

9 

1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
0.992 
0.976 
0.955 
0.929 
0.902 
0.874 
0.933 
0.879 
0.821 
0.762 
0.706 
0.791 
0.704 
0.622 
0.549 
0.595 
0.500 
0.419 
0.399 
0.319 
0.242 

10 

1.000 
0.998 
0.992 
0.984 
0.972 
0.958 
0.987 
0.966 
0.937 
0.902 
0.864 
0.922 
0.867 
0.806 
0.743 
0.786 
0.702 
0.621 
0.601 
0.510 
0.414 

*Reproduced from C. Eisenhart and R. Swed, "Tables for Testing Randomness of 
Grouping in a Sequence of Alternatives," Ann. Math. Stat., 14, 1943, by permission 
of the editor. 
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Table A.19 (conti nued) P(V < v* when Ho is true) in the Runs Test 

V* 

( n i , n 2 ) 11 12 13 14 15 16 17 18 19 20 

(2,3) 
(2,4) 
(2,5) 
(2,6) 
(2,7) 
(2,8) 
(2,9) 
(2,10) 
(3,3) 
(3,4) 
(3,5) 
(3,6) 
(3,7) 
(3,8) 
(3,9) 
(3,10) 

(4,4) 
(4,5) 
(4,6) 
(4,7) 
(4,8) 
(4,9) 
(4,10) 
(5,5) 
(5,6) 
(5,7) 
(5,8) 
(5,9) 
(5,10) 
(6,6) 
(6,7) 
(6,8) 
(6,9) 
(6,10) 

(7,7) 
(7,8) 
(7,9) 
(7,10) 
(8,8) 
(8,9) 
(8,10) 
(9,9) 
(9,10) 
(10,10) 

1.000 
1.000 
1.000 
1.000 
1.000 
0.998 
0.992 
0.984 
0.972 
0.958 

0.975 
0.949 
0.916 
0.879 

0.900 
0.843 
0.782 

0.762 
0.681 
0.586 

1.000 
0.999 
0.998 
0.994 
0.990 
0.996 
0.988 
0.975 
0.957 

0.968 
0.939 
0.903 
0.891 
0.834 
0.758 

1.000 
1.000 
1.000 
1.000 
0.999 
0.998 
0.994 
0.990 

0.991 
0.980 
0.964 

0.956 
0.923 
0.872 

1.000 
1.000 
0.999 
0.998 
0.999 
0.996 
0.990 

0.988 
0.974 
0.949 

1.000 
1.000 
1.000 
1.000 
0.999 
0.998 
0.997 
0.992 
0.981 

1.000 
1.000 
1.000 
1.000 
0.999 
0.996 

1.000 
1.000 
1.000 
1.000 
0.999 

1.000 
1.000 
1.000 

1.000 
1.000 1.000 
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Table A.20* Sample Size for Two-Sided Nonparametric Tolerance Limits 

1-a 
0.995 
0.99 
0.95 
0.90 
0.85 

0.80 
0.75 
0.70 
0.60 
0.50 

0.50 

336 
168 
34 
17 
11 

9 
7 
6 
4 
3 

0.70 

488 
244 
49 
24 
16 

12 
10 
8 
6 
5 

0.90 

777 
388 
77 
38 
25 

18 
15 
12 
9 
7 

1 - 7 
0.95 

947 
473 
93 
46 
30 

22 
18 
14 
10 
8 

0.99 

1,325 
662 
130 
64 
42 

31 
24 
20 
14 
11 

0.995 

1,483 
740 
146 
72 
47 

34 
27 
22 
16 
12 

*Reproduced from Table A-25d of Wilfrid J. Dixon and Frank J. Massey, Jr. 
Introduction to Statistical Analysis, 3rd ed. McGraw-Hill, New York, 1969. 
Used with permission of McGraw-Hill Book Company. 

Table A. 21* Sample Size for One-Sided Nonparametric Tolerance Limits 

1 - a 

0.995 
0.99 
0.95 
0.90 
0.85 

0.80 
0.75 
0.70 
0.60 
0.50 

0.50 

139 
69 
14 
7 
5 

4 
3 
2 
2 
1 

0.70 

241 
120 
24 
12 
8 

6 
5 
4 
3 
2 

1 - 7 

0.95 

598 
299 
59 
29 
19 

14 
11 
9 
6 
5 

0.99 

919 
459 
90 
44 
29 

21 
7 
13 
10 
7 

0.995 

1.379 
688 
135 
66 
43 

31 
25 
20 
14 
10 

*Reproduced from Table A-25e of Wilfrid J. Dixon and Frank J. Massey. Jr., 
Introduction to Statistical Analysis, 3rd ed. McGraw-Hill. New York, 1969. 
Used with permission of McGraw-Hill Book Company. 
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Table A.22* Critical Values for Spearman's Rank Correlation Coefficients 
n 

5 
6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

a = 0.05 
0.900 
0.829 
0.714 
0.643 
0.600 
0.564 

0.523 
0.497 
0.475 
0.457 
0.441 

0.425 
0.412 
0.399 
0.388 
0.377 

0.368 
0.359 
0.351 
0.343 
0.336 

0.329 
0.323 
0.317 
0.311 
0.305 

a = 0.025 

0.886 
0.786 
0.738 
0.683 
0.648 

0.623 
0.591 
0.566 
0.545 
0.525 

0.507 
0.490 
0.476 
0.462 
0.450 

0.438 
0.428 
0.418 
0.409 
0.400 

0.392 
0.385 
0.377 
0.370 
0.364 

a = 0.01 

0.943 
0.893 
0.833 
0.783 
0.745 

0.736 
0.703 
0.673 
0.646 
0.623 

0.601 
0.582 
0.564 
0.549 
0.534 

0.521 
0.508 
0.496 
0.485 
0.475 

0.465 
0.456 
0.448 
0.440 
0.432 

a = 0.005 

0.881 
0.833 
0.794 

0.818 
0.780 
0.745 
0.716 
0.689 

0.666 
0.645 
0.625 
0.608 
0.591 

0.576 
0.562 
0.549 
0.537 
0.526 

0.515 
0.505 
0.496 
0.487 
0.478 

*Reproduced from E.G. Olds, "Distribution of Sums of Squares of Rank 
Differences for Small Samples," Ann. Math. Stat., 9. 1938, by permission of 
the editor. 
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Table A.24 The Incomplete Gamma Function: F(x; a) = /<_f rh?,ya~le~y dy 

a 

X 1 2 3 4 5 6 7 8 9 10 
1 0.6320 0.2640 0.0800 0.0190 0.0040 0.0010 0.0000 0.0000 0.0000 0.0000 
2 0.8650 0.5940 0.3230 0.1430 0.0530 0.0170 0.0050 0.0010 0.0000 0.0000 
3 0.9500 0.8010 0.5770 0.3530 0.1850 0.0840 0.0340 0.0120 0.0040 0.0010 
4 0.9820 0.9080 0.7620 0.5670 0.3710 0.2150 0.1110 0.0510 0.0210 0.0080 
5 0.9930 0.9600 0.8750 0.7350 0.5600 0.3840 0.2380 0.1330 0.0680 0.0320 

6 0.9980 0.9830 0.9380 0.8490 0.7150 0.5540 0.3940 0.2560 0.1530 0.0840 
7 0.9990 0.9930 0.9700 0.9180 0.8270 0.6990 0.5500 0.4010 0.2710 0.1700 
8 1.0000 0.9970 0.9860 0.9580 0.9000 0.8090 0.6870 0.5470 0.4070 0.2830 
9 0.9990 0.9940 0.9790 0.9450 0.8840 0.7930 0.6760 0.5440 0.4130 

10 1.0000 0.9970 0.9900 0.9710 0.9330 0.8700 0.7800 0.6670 0.5420 

11 0.9990 0.9950 0.9850 0.9620 0.9210 0.8570 0.7680 0.6590 
12 1.0000 0.9980 0.9920 0.9800 0.9540 0.9110 0.8450 0.7580 
13 0.9990 0.9960 0.9890 0.9740 0.9460 0.9000 0.8340 
14 1.0000 0.9980 0.9940 0.9860 0.9680 0.9380 0.8910 
15 0.9990 0.9970 0.9920 0.9820 0.9630 0.9300 

A.25 Proof of Mean of the Hypergeometric Distribution 
To find the mean of the hypergeometric distribution, we write 

n (k-l\(J\'-k\ 
— I S~* Vx-lKn-x/ 
- K 2L, (N\ 

x=l \n) 

Since 

(„^\)=C;1-,
1-r

)) - ©-ao^-H-N/N-l 
n)\~ n \n-l)' 

letting y = x — 1, we obtain 

n-l (k-l\( N-k \ 

j/=0 in) 

_ nk Y > ( y )j' n-i-y ) _ nk 

y=0 \n-XJ 

since the summation represents the total of all probabilities in a hypergeometric experiment when N — 1 
items are selected at random from AT — 1. of which k — 1 are labeled success. 

file:///n-XJ
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A.26 Proof of Mean and Variance of the Poisson Distribution 
Lot p = Xt. 

e-^p* 
w-E-TF-E-Tf-rS^ni 

1 = 0 1 = 1 1 = 1 

e~''px-

3T-"i)i 

Since the summation in the last term above is the total probability of a Poisson random variable with 
mean p which can be easily seen by letting y = x—l, it equals to 1. Therefore, E(X) = p.. To calculate 
the variance of X, note that 

OO _ _ , . a, O O _ , , . y . _ 0 

e V _ j r n C t'px * E\X(X - 1)] = 5>(:t: - lf-£- = p? Y, 
x=0 x=2 («2)« 

Again, letting j / = I — 2, the summation in the last term above is the total probability of a Poisson 
random variable with mean p. Hence we obtain 

cr2 = E(X2) - \E(X)}2 = E[X(X - 1)] + E(X) - [E(X)\2 = p2 + p. - p2 = p = Xt. 

A.27 Proof that the Poisson Is a Limiting Form of the Binomial 
The binomial distribution can be written as 

• • U " K « — r f ^ r ^ r ^ f 1 - ' 5 " -

njn - 1 ) - • • (n - x +1) x 
px(l-p)n-*. 

Substituting p = p/n, 

b(x;n,p) = 
i(n - ! ) • • • (n - x + 1) /p 

($(»-£) 
-KhO-^so-i.H-r-

As n —* oo while x and p remain constants, 

lim 1 ( 1 - -
n—»oo \ 71 

and from the definition of e. 

1 -
. X ' - l 

= 1, lim {l-'-YX = l. 
n—»oc \ nJ 

lim f l - - ) = lim 
TI—.oc \ n ' n—»c 

-i -n/n' 

1 + 
( - " ) / r 

= e 

Hence, under the given limiting conditions, 

bix;n,p)->~f-, 1 = 0,1,2,.... 
:r: 
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A.28 Proof of Mean and Variance of the Gamma Distribution 
Tei find the mean anel variance of the1 gamma distribution, we first calculate 

E( 
/•oo ,«rivr/n, I i.] roc va+k-l„-x/p 

A ) d»r(a)j0 ' CU ll»T(a) ./,-, P^r(a + k)aj" 

for k = 0,1,2 Since the integrand in the1 last term above- is a gamma density function with 
parameters a + k and ii, it equals 1. Therefore, 

r(o) 

Using the recursion formula of the gamma function from page 194, we obtain 

T(a'T-l) __ , 2 , j 2 r ( f v + 2 ) 2 ,.2 . , \ . ,o\2 ,o2 
// = / j — — — — = dtp and a = £/(A ) — p = ,o ——— p = p a(a + I) — (ap) = ap. 



Appendix B 

Answers to Odd-Numbered 
Non-Review Exercises 

Chapter 1 

1.1 (a) Sample size = 15 

(b) Sample mean = 3.787 

(c) Sample median = 3.6 

(e) *tr(20) = 3- ( i 7 8 

1.3 (b) Yes, aging process reduced the tensile 
strength. 

(c) xAglng = 209.90. xKo _.gjns = 222.10 

(d) XAging = 210.00, KNO aging = 221.50. The 
means ane] medians are similar for e:ach 
group. 

1.5 (b) Control: x = 5.60, x = 5.00, :i; t l. ( lu) = 5.13. 
Treatment: if: = 7.60, z = 4.50, s ti(l0) = 

5.63. 

(c) The extreme value of 37 in the treatment 
group plays a strong leverage role for the 
mean calculation. 

1.7 Sample variance = 0.943 
Sample standard deviation = 0.971 

1.9 No aging: sample variance = 23.62, 
sample standard deviation = 4.86. 
Aging: sample variance = 42.12, 
sample standard deviation = 0.49. 

1.11 Control: sample variance = 69.38, 
sample standard deviation = 8.33. 
Treatment: sample variance = 128.04. 
sample standard deviation = 11.32. 

1.13 (a) Mean = 124.3, median = 120; 

(b) 175 is an extreme observation. 

1.15 Yes, P-value = 0.03125; probability of obtaining 
HHHHII with a fair coin. 

1.17 Nonsmokers (a) 30.32, (b) 7.13; 
Smokers (a.) 43.70, (b) 16.93. 
(d) Smokers appear to take longer time to fall 
asleep. For smokers the time to fall asleep is 
more: variable. 

1.19 

1.21 

Stem. 

0 

2 
3 
4 
5 
6 

Leaf 
22233457 
023558 
035 
03 
057 
0569 
0005 

Frequency 
8 
6 
3 
2 
3 
4 
4 

(b) Class Class Re l . 
In te rva l Midpo in t Fi-eq. Freq. 
0.0-0.9 
1.0-1.9 
2.0-2.9 
3.0-3.9 
4.0-4.9 
5.0-5.0 
0.0-6.9 

0.45 
1.45 
2.45 
3.45 
4.45 
5.45 
6.45 

8 
6 
3 
2 
3 
4 
4 

0.267 
0.200 
0.100 
0.067 
0.100 
0.133 
0.133 

(c) Sample mean = 2.7967 
Sample range = 6.3 
Sample! standard deviation 2.2273 

(a) Sample mean = 1.7743 
Sample median = 1.77 

(b) Sample standard deviation = 0.3905. 
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1.23 (b) xi99o = 160.15, a-1980 = 395.10. 

(c) The mean emissions dropped between 1980 
and 1990, the variability also decreased be
cause there were no longer extremely large 
emissions. 

1.25 (a) Sample mean = 33.31 

(b) Sample median = 26.35 

(d) x t r ( 1 0 ) = 30.97 

Chapter 2 

2.1 (a) 5= {8,16,24,32,40,48} 

(b) S = { - 5 , 1 } 

(c) S = {T, UT, HHT, HHH} 

(d) S = {Africa, Antarctica. Asia, Australia, 
Europe, North America, South America} 

(e) S = <p 

2.3 A = C 

2.5 S ={1HH. \HT, ITH, ITT, 2H, 2T, 'AHH, 
3HT, 3777, 3TT. 4H. AT, bHH. 5HT, 5TH, 
oTT, &H, 6T} 

2.7 Sx ={MMMM,MMMF,MMFM.MFMM, 
FMMM. MMFF. MFMF. MFFM. FMFM, 
FFMM, FMMF, MFFF. FMFF, FFMF, 
FFFM,FFFF}; 
S2 ={0 ,1 ,2 ,3 ,4} 

2.9 (a) A = {1HH, 1HT, ITH, ITT. 2H, 2T} 

(b) B = { i rT ,3TT ,5TT} 

(c) A ={3HH,3HT.3TH.3TT,4H,4T, 
hHH, hHT, 5TH, oTT, 6H, 6T} 

(d) A n B = {3TT, 5TT} 

(e) AUB={1HH. IHT,1TH, ITT.2H.2T, 
3TT, 5TT} 

2.11 (a) S={MxM2.MiFx,MxF2,M2Mx,M2Fx, 
M2 F2, F, Mx, Fi M2 ,FxF2, F2 Mv, F2 M2, 
F2Fx) 

(b) A = {M\Mo,MyFi,MiF2,M2Mx,M2F], 
M2F2] 

(c) B = {MxF1,MiF2,M2FJ.M2F2.F\Mi. 
FxM2,F2Mi,F2M2) 

(d) C={FxF2,F2Fi} 

(e) A O B = {MiFi,MxF2, M2Fi,M2F2} 

(f) A U C={MiM2, MxFi, 1V/1F2, M2Mx, 
M2FuM2F2,FxF2,F2Fx} 

2.15 (a) {nitrogen, potassium, uranium, oxygen} 

(b) {copper, sodium, zinc, oxygen} 

(c) {copper, sodium, nitrogen, potassium, ura
nium, zinc} 

(d) {copper, uranium, zinc} 

(e) $ 

(f) {oxygen} 

2.19 (a) The family will experience mechanical 
problems but will receive no ticket for traf
fic violation and will not arrive at a camp
site that has no vacancies. 

(b) The family will receive a traffic ticket and 
arrive at a campsite that has no vacancies 
but will not experience mechanical prob
lems. 

(c) The family will experience mechanical 
problems and will arrive at a campsite that 
has no vacancies. 

(d) The family will receive a traffic ticket but 
will not arrive at a campsite that has no 
vacancies. 

(e) The family will not experience mechanical 
problems. 

2.2] 

2.23 

2.25 

2.27 

2.29 

2.31 

2.33 

2.35 

2.37 

2.39 

2.41 

2.43 

2.45 

2.47 

2.49 

18 

156 

20 

48 

210 

(a) 1024; 

72 

362,880 

2,880 

(b) 243 

(a) 40,320; (b) 336 

360 

24 

3,360 

7,920 

56 
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2.51 (a) Sum of the probabilities exceeds 1. 

(b) Sum of the probabilities is less than 1. 

(c) A negative probability. 

(d) Probability of both a heart and a black card 
is zero. 

2.53 S = {$10, $25, $100}: P(10) = ^ ; P(25) = fjj, 

Pim = Tab 5u 
2.55 (a) 0.3; (b) 0.2 

2.57 (a) 5/26; (b) 9/26; (c) 19/26 

2.59 10/117 

2.61 95/663 

2.63 (a) 94/54,145; (b) 143/39,984 

2.65 (a) 22/25; (b) 3/25; (c) 17/50 

2.67 (a) 0.32; (b) 0.68; (c) office or den 

2.69 (a) 0.8; (b) 0.45; (c) 0.55 

2.71 (a) 0.31; (b) 0.93; (c) 0.31 

2.73 (a) 0.009; (b) 0.999: (c) 0.01 

2.75 (a) 0.048; (b) $50,000; (c) 812,500 

2.77 (a) The probability that a convict who pushed 
dope also committed armed robbery. 

(b) The probability that a convict who com
mitted armed robbery did not push dope. 

(c) The probability that a convict who did not 
push dope also did not commit armed rob
bery. 

2.79 (a) 14/39; (b) 95/112 

2.81 (a) 5/34; (b) 3/8 

2.83 (a) 0.018; (b) 0.614; (c) 0.166; (d) 0.479 

2.85 (a) 0.35; (b) 0.875; (c) 0.55 

2.87 (a) 9/28; (b) 3/4; (c) 0.91 

2.89 0.27 

2.91 5/8 

2.93 (a) 0.0016; (b) 0.9984. 

2.95 (a) 1/5; (b) 4/15; (c) 3/5. 

2.97 (a) 91/323; (b) 91/323. 

2.99 (a) 0.75112 (b) 0.2045. 

2.101 0.0960 

2.103 0.40625 

2.105 0.1124 

2.107 (a) 0.045; (b) 0.564; (c) 0.630; (d) 0.1064 

Chapter 3 

3.1 Discrete; continuous; continuous; discrete; dis
crete; continuous. 

3 3 Sample Space 

HHH 
HHT 
HTH 
THH 
HTT 
THT 
TTH 
TTT 

3 

—1 
- 1 
- 1 
- 3 

3.5 (a) 1/30; (b) 1/10 

3.7 (a) 0.68; (b) 0.375 

3.9 (b) 19/80 

3.11 

3.13 

fix) 
0 

F(x) = < 

(0, f o r x < 0 , 
0.41, for 0 < x< 1 
0.78, for 1 < a: < 2 
0.94, for 2 < x < 3 
0.99, for 3 < x < 4, 
1, for x > 4 

3.15 0. 
2 
7> 
6 
7> 
1, 

for x < 0, 
for 0 < :r < 1, 
for 1 < a: < 2, 
for x > 2 

Fix) = i 

(a) 4/7; (b) 5/7 

3.17 (b) 1/4; (c) 0.3 

3.19 F(x) = (x- l ) /2 , for 0 < x < 3; 1/4 

3.21 (a) 3/2; (b) F(x) = xAl2, for 0 < x < 1; 0.3004 
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3.23 

F(w) = . 

3.25 

fO, f o r u i < - 3 , 
for — 3 < w < —1, 
for - 1 < w < 1, 
for 1 < in < 3, 

_1, for w > 3 
(a) 20/27; (b) 2/3 

20 25 30 

3.53 (a) 
l 

27' 
7 

37 ' 
19 
27' 

3.27 

P(T = t) 

(a) 
F(x) = 

i 

0, 

3 1 

a: < 0 . 

1 -exp(-a- /2000) , x > 0. 
(b) 0.6065; (c) 0.6321 

3.29 (b) 
F(x) 

0, 

3.31 

3.33 

3.35 

3.37 

3.39 

1 - x ~ a 

(a) 0.2231; (b) 0.2212 

x < 1, 
x> 1. 

(c) 0.0156 

(a) fc = 280; (b) 0.3633: (c) 0.0563 

(a) 0.1528; (b) 0.0446 

(a) 1/36; (b) 1/15 

(a) x 

ffay) 
0 
1 
2 

(b) 1/2 

0 1 
"Ti 3 _ 

2 I 

¥ ¥ 
7TJ 70 

^_J_~ 

1 f 
70" 

7_r~ 

7l> 

3.41 (a) 1/16; (b) g(x) = 12.x-(l - a;)2, for 0 < :r < 1; 
(c) 1/4 

3.43 (a) 3/64; (b, 

3.45 0.6534 

3.47 (a) Depende 

3.49 (a) x 

gix) 
(b) y 

h(y) 
(c) 0.5714 

3.51 (a) 

1/2 

nt; (b) 

1 
0.10 

1 
0.20 

ffay) 

y 

(b) 11/12 

0 
1 
2 

1/3 

2 
0.35 

2 
0.50 

0 

f 
315 

3 
0.55 

3 
0.30 

X 

1 2 
H 1 " 

I o 
0 0 

/(«>0>> 
0 

y i 
2 
3 

(b) 42/55 

3.55 5/8 

3.57 Independent 

3.59 (a) 3; (b) 21/512 

3.61 Dependent 

Chapter 4 

4.1 0 

4.3 25 cents 

4.5 0.88 

4.7 $500 

4.9 S1.23 

4.11 $6,900 

4.13 (ln4)/7r 

4.15 100 hours 

4.17 209 

4.19 $1,855 

4.21 $833.33 

4.23 (a) 35.2; (b) px = 

4.25 2 

4.27 2,000 hours 

4.29 (b) 3/2 

4.31 (a) 1/6; (b) (5/6)5 

4.33 $5,250,000 

4.35 0.74 

0 1 2 
1 6 6 

¥ I f 
I f f ? 
55 55 u 

55 0 0 

3.20, pY = 3.00 

4.37 1/18; in actual profit the variance is 

4.39 1/6 

3 
1 

55 
0 
0 
0 

TS(5000)2 
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4.41 118.9 

4.43 pY = 10; oY = 144. 

4.45 aXY = 0.005 

4.47 -0.0062 

4,49 o2
x = 0.8456; <x.v = 0.9196 

4.51 10.33: 6.66 

4.53 80 cents 

4.55 209 

4.57 //. = 7/2; o2 = 15/4 

4.59 3/14 

4.61 0.03125 

4.63 0.9340 

4.65 52 

4.67 (a) At most 4/9; (b) at least 5/9; 
(c) at least 21/25; (d) 10. 

4.69 (a) 7; (b) 0; (c) 12.25 

4.71 46/63 

4.73 (a) 2.5: 2.08 

4.75 (a) E(X) = E(Y) = 1/3 and Var(X) = 
Var(Y) = 4/9; (b) E(Z) = 2/3 and Var(Z) = 
8/9 

4.77 (a) 4; (b) 32; 16 

4.79 By direct calculation, ^(e*") = 1,884.32 Us
ing the second order adjustment approximation, 
E(e ) % 1. 883.38. which is very close to the true 
value. 

Chapter 5 

5.1 3/10 

5.3 p. = 5.5; a 8.25 

5.5 (a) 0.0480; (b) 0.2375; (c) P(X = 5\p = 0.3) 
0.1789, P = 0.3 is reasonable. 

5.7 (a) 0.0474: (b) 0.0171 

5.9 (a) 0.7073; (b) 0.4613; (c) 0.1484 

5.11 0.1240 

5.13 0.8369 

5.15 (a) 0.0778; (b) 0.3370; (c) 0.0870 

5.17 p±2a = 3.5 ± 2.05 

5.19 f(xux2,x-j) = (x. _* _i:.i)0.35X!0.05:l'20.60T:) 

5.21 0.0095 

5.23 0.0077 

5.25 0.8070 

5.27 (a) 0.2852; (b) 0.9887: (c) 0.6083 

5.29 (a) 0.3246; (b) 0.4496 

5.31 5/14 

5.33 h(x;6,3.4) = ^ k " ̂ , for x = 1,2,3; 

P(2 < X < 3) = 4J/5 

5.35 0.9517 

5.37 (a) 0.6815; (b) 0.1153 

5.39 3.25: from 0.52 to 5.98 

5.41 0.9453 

5.43 0.6077 

5.45 (a) 4/33; (b) 8/165 

5.47 0.2315 

5.49 (a) 0.3991; (b) 0.1316 

5.51 0.0515 

5.53 (a) 0.3840; (b) 0.0067 

5.55 63/64 

5.57 (a) 0.0630; (b) 0.9730 

5.59 (a) 0.1429; (b) 0.1353 

5.61 (a) 0.1638; (b) 0.032 

5.63 (a) 0.3840; (b) 0.1395; (c) 0.0553 

5.65 0.2657 

5.67 (a) p = 4;a2= 4; (b) From 0 to 8. 

5.69 (a) 0.2650; (b) 0.9596 

5.71 (a) 0.8243; (b) 14 
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5.73 4 

5.75 5.53 x 1 0 - 4 ; p = 7.5 

5.77 (a) 0.0137; (b) 0.0830 

5.79 0.4686 

Chapter 6 

6.1 

Appendix B Answers to Odd-Numbered Non-Review Exercises 

6.47 (a) yfiT/2 = 1.2533; (b) e - 2 

6.49 e~4 = 0.0183 

6.51 (a) p = ad = 50; (b) er2 = ap2 = 500; 
a = v/500; (c) 0.815 

6.53 (a) 0.1889; (b) 0.0357 

6.55 Mean=e6 . variance=e12(e4 - 1) 

6.57 ( a ) e - 1 0 ; (b) 3 = 0.10 

6.3 

6.5 

6.7 

6.9 

6.11 

6.13 6.24 years 

6.15 

6.17 

6.19 26 

6.21 

6.23 

6.25 

6.27 

6.29 

6.33 

6.35 

6.37 

6.39 2.8c 

6.43 

a) 0.9236; (b) 0.8133; (c) 0.2424; 
d) 0.0823; (e) 0.0250; (f) 0.6435 

a) -1.72; (b) 0.54; (c) 1.28 

a) 0.1151; (b) 16.1; (c) 20.275; (cl) 0.5403 

a) 0.8980; (b) 0.0287: (c) 0.6080 

a) 0.0548; (b) 0.4514; (c) 23; 
d) 189.95 milliliters 

a) 0.0571: (b) 99.11%; (c) 0.3974: 
d) 27.952 minutes; (e) 0.0092 

a) 51%; (b) 818.37 

a) 0.0401; (b) 0.0244 

a) 0.6; (b) 0.7; (c) 0.5 

a) 0.8006: (b) 0.7803 

a) 0.3085: (b) 0.0197 

a) 0.9514; (b) 0.0668 

a) 0.1171; (b) 0.2049 

6.31 0.1357 

a) 0.0778; (b) 0.0571; (c) 0.6811 

a) 0.8749; (b) 0.0059 

a) 0.0228; (b) 0.3974 

- 1 . 8 3.4e~2-4 = 0.1545 

a) p = 6; a2 = 18; 
b) from 0 to 14.485 million litters. 

6 

Chapter 7 

7.1 g(y) = 1/3; for y = 1,3, 5 

fl(?/l,2/2)= Ln+«i,n-V2t2 yi 

for yx = 0 , 1 , 2 ; y2 = -2, - 1 , 0 , 1 , 2 ; 
V2 <yi',Vl +2/2 = 0,2,4 

7.7 Gamma distribution with a = 3/2 and 0 = m/26 

7.9 (a) g(y) = 32/y3, for y > 4; (b) 1/4 

7.11 h(z) = 2(1 - z), for 0 < 2 < 1 

7.13 h(w) = 6 + 6ui - 12w1 / 2 , for 0 < w< 1 

7. 

6-45 £ 0(1 - e-^4)x(er''i'4)G-x = 0.3968 
x=4 

7.19 Both equal p 

7.23 (a) Gamma(2,l); (b) Uniform(0,l) 

Chapter 8 

8.1 (a) Responses of all people in Richmond who 
have a telephone; 

(b) Outcomes for a large or infinite number of 
tosses of a coin; 

(c) Length of life of such tennis shoes when 
worn on the professional tour; 

(d) All possible time intervals for this lawyer 
to drive from her home to her office. 
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8.3 

8.5 

8.7 

8.9 

8.11 

8.13 

8.15 

8.17 

8.19 

8.21 

8.23 

8.25 

8.29 

8.33 

8.35 

8.37 

8.39 

8.41 

8.43 

8.47 

8.49 

8.51 

8.53 

8.55 

a) x = 2.4; (b) x = 2:(c)m = 3 

a) x = 3.2 seconds; (b) x = 3.1 seconds 

a) 53.75; (b) 75 and 100 

a) Range is 10: (b) s = 3.307 

a) 2.971; (b) 2.971 

; = 0.585 

a) 45.9; (b) 5.1 

0.3159 

a) Reduced from 0.49 to 0.16; 
b) Increased from 0.04 to 0.64 

Yes. 

a) p = 5.3; er2 = 0.81; 
b) px = 5.3; o\ = 0.0225: 

c) 0.9082 

a) 0.6898; (b) 7.35 

0.5596 

a) 0.1977; (b) No 

a) 1/2; (b) 0.3085 

P(X < 7751// = 760) = 0.9332 

a) 27.488; (b) 18.475; (c) 36.415 

a) 0.297; (b) 32.852; (c) 46.928 

a) 0.05; (b) 0.94 

a) 0.975; (b) 0.10; (c) 0.875; (d) 0.99 

a) 2.500; (b) 1.319; (c) 1.714 

No; p > 20 

a) 2.71; (b) 3.51; (c) 2.92; 
d) 0.47; (e) 0.34 

The .F-ratio is 1.44. The variances are not sig
nificantly different. 

Chapter 9 

9.5 0.3097 < p < 0.3103 

9.7 (a) 22, 496 < p < 24,504; (b) error < 1004 

9.9 35 

9.11 56 

9.13 0.978 <p< 1.033 

9.15 47.722 < p < 49.278 

9.17 323.946 to 326.154 

9.19 11,426 to 35,574 

9.23 The variance of S'2 is smaller. 

9.25 (6.05,16.55) 

9.27 (1.6358, 5.9376) 

9.29 Upper prediction bound: 9.42; 
Upper tolerance limit: 11.72 

9.33 Yes, the value of 6.9 is outside of the prediction 
interval. 

9.35 2.9 < px - p2 < 7.1 

9.37 2.80 <pi-p2< 3.40 

9.39 1.5 < pi - p2 < 12.5 

9.41 0.70 < pi - p2 < 3.30 

9.43 -6 ,536 < px - p2 < 2,936 

9.45 (-0.74,6.30) 

9.47 (-6.92,36.70) 

9.49 0.54652 < pB - pA < 1.69348 

9.51 (a) 0.498 < p < 0.642; (b) error < 0.072 

9.53 0.194 < p < 0.262 

9.55 (a) 0.739 < p < 0.961; (b) no 

9.57 (a) 0.644 < p < 0.690; (b) error < 0.023 

9.59 2,576 

9.61 160 

9.63 16,577 

9.65 -0.0136 < pF - pM < 0.0636 

9.67 0.0011 < p, - p 2 < 0.0869 

9.69 (-0.0849,0.0013); not significantly different. 

9.71 0.293 < er2 < 6.736; valid claim 

9.73 3.472 < er2 < 12.804 
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9.75 9.27 < a < 34.16 

9.77 0.549 < <TI/(T2 < 2.690 

9.79 0.016 < a\/a\ < 0.454; no 

9.81 1 fl xt 
j = i 

9.83 (a) L(x\,x2 .r„) = 

(2 

(b) p=-\ E In a',: 

i A i / i \ / £ ( l n , , - " ) ' / J * ' 

; = i 

- 2 _ 1 ^ 
1=1 

h\xi- -\ £ hi-Tj 

9.85 a:lnp-|- (1 — s)lii(l - p ) . Set the derivative with 
respect to p = 0; p = x = 1.0 

Chapter 10 

10.1 (a) Conclude that fewer than 30% of the public 
are allergic to some cheese products when, 
in fact, 30% or more are allergic. 

(b) Conclude that at least 30% of the public 
are allergic to some cheese products when, 
in fact, fewer than 30% are allergic. 

10.3 (a) The firm is not guilty; 

(b) the firm is guilty. 

10.5 (a) 0.1286; 

(b) 3 = 0.0901; 3 = 0.0708. 

(c) The probability of a type I error is some
what, large. 

10.7 (a) 0.0559; 

(b) 0 = 0.0017; 3 = 0.00968; 3 = 0.5557 

10.9 (a) a = 0.0032; (b) 3 = 0.0062 

10.11 (a) a = 0.1357; (b) 3 = 0.2578 

10.13 a = 0.0094; ,3 = 0.0122 

10.15 (a) Q = 0.0718; (b) 3 = 0.1151 

10.17 (a) Q = 0.0384; (b) 3 = 0.5; 3 = 0.2776 

10.19 z= -1.64; P-valuc=0.10 

10.21 2 = -2.76; yes, p < 40 months; 
P-value=0.0029 

10.23 z = 8.97; yes, //. > 20,000 kilometers; 
P-value< 0.001 

10.25 t = 0.77; fail to reject Ho-

10.27 t = 12.72; P-value < 0.0005; reject H0. 

10.29 t = -1.98; Reject //(.; P-value = 0.0312 

10.31 z = —2.60; conclude p/, — PQ < 12 kilograms. 

10.33 t = 1.50; no sufficient evidence to conclude that 
the increase in substrate concentration would 
cause an increase in the mean velocity by more 
than 0.5 micromolc per 30 minutes. 

10.35 t = 0.70; no sufficient evidence to support that 
the serum is effective. 

10.37 t = 2.55; reject HQ: p\ — u2 > 4 kilometers. 

10.39 t = 0.22; fail to reject HQ. 

10.41 t = 2.76; reject H0-

10.43 t = 2.48; P-value < 0.02; reject Ho

ld.45 t = —2.53; reject Ho', the claim is valid. 

10.47 n = 6 

10.49 78.28 « 79 due to round up. 

10.51 5 

10.53 (a) H0: M h o t - .V/COM = 0, 
Hi: 1 1 / ^ - itfcoui 9* 0; 

(b) paired t, t = 0.99; P-value > 0.30; fail to 
reject Ho. 

10.55 P-value = 0.4044 (with a one-tailed test); the 
claim is not refuted. 

10.57 P-value = 0.0207; yes, the coin is not balanced. 

10.59 z = —5.06 and P-value RS 0; conclude that lê ss 
than 1/5 of the homes are heated by oil. 

10.61 z = 1.44; fail to reject Ha. 

10.63 z = 2.36 with P-value = 0.0182; yes, the differ
ence is significant. 

10.65 z = 1.10 with P-valuc = 0.1357; we do not have 
sufficient evidence to conclude that breast cancer 
is more prevalent in the urban community. 
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10.67 x 2 = 18-13 with P-value = 0.0676 (from com- 11.7 (b) y = 343.706 + 3.221a;; 
puter output): do not reject HQ: a2 = 0.03. (c) y = $ 4 5 6 a t advertising casts being $35 

10.69 x 2 = 63.75 with P-value = 0.8998 (from com- 11.9 (a) y = 153.175 - 6.324a;; 
puter output); do not reject H0. ( b ) - = m ^ x = 4g u n j t s 

10.71 x2 = 42-37 with P-value = 0.0117 (from com- 1 U 1 (b) y = -1847.633 + 3.653a: 
puter output); machine is out of control. 

11.13 (b) y = 31.709 + 0.353a; 
10.73 / = 1.33 with P-value = 0.3095 (from computer 

output); fail to reject H0: ax = a2. 11.17 (a) s2 = 176.4; 

10.75 / = 0.086 with P-value = 0.0328 (from com- (b) ' = 2 '04= f a i l t o r c J e c t H»' $ = °-
puter output); reject HQ: ax = o2 at level greater n , a < \ 2 _ n An 

than 0.0328. i l - i J W S ~ U 4 U ; 

(b) 4.324 < Q < 8.503; 
10.77 / = 19.67 with P-valuc = 0.0008 (from com- , , o 446 < 3 < 3 172 

puter output); reject Ho'. a\ = a2. 
, 11.21 (a) s2 = 6.626: 

10.79 x = 4-47; there is no sufficient evidence to claim 
that the coin is unbalanced. (b) 2.684 < a < 8.968; 

10.81 x - 1 0-1 4 ; reJect H0, the ratio is not 5:2:2:1. 
(c) 0.498 < 0 < 0.637 

11.23 t = -2.24; reject H0: 0 < 6 
10.83 x2 = 2-33; do not reject H0: binomial distribu

tion. 11.25 (a) 24.438 < pY\24.5 < 27.106; 

10.85 x2 = 3.125; do not reject H0: geometric distri- (b) 2 1 ' 8 8 < W> < 2 9 ' 6 6 

b u t i o n ' 11.27 7.81 < /lyiLo < 10.81 

10.89 x2 = 5.19; do not reject HQ: normal distribution. . . 9„ , , . , . „ . „ 

10.91 x = 5.47; do not reject Ho. (b) no, (the 95% confidence interval on mean 
mpg is (27.95,29.60)); 

10.93 x — 124.59; yes, occurrence of these tvpes of . . ., .,, 
crime is dependent on the city district. " ^ m , , e s P e r S a l l o n wl11 l l k e l>" e x c e e d 1 8 

10.95 x 2 = 31.17 with P-value < 0.0001; attitudes are 1 1 3 3 ^ * = 3Al56x 

not homogeneous. * 

10.97 x 2 = 5-92 with P-value = 0.4332: do not reject 1 L 3 5 (a) b = '"«, j '•• 
HQ. , 5 X ' 

10.99 x = 1'84: do not reject HQ. 

Chapter 11 

(b) ?) = 2.003a: 

J2 (^li-S'l)3'2i 
11.37 E(B)=0 + ~p-=h 

11.39 (a) a = 10.812, b = -0.3437; 

11.1 (a) a = 64.529, b = 0.561; (b) t = 0 .43 ; the regression is linear. 

(b) 0 = 81.4 

11.3 (a) j / = 6.4136 + 1.8091a:; 

11.41 / = 1.12; the regression is linear. 

11.43 / = 1.71 and P-value = 0.2517; the regression is 
(b) y = 9.580 at temperature 1.75 linear. 

11.5 (a) 0 = 5.8254 +0.5676a;; 11.45 (a) P = -11 .3251 - 0.0449X; 

(c) y = 34.205 at 50° C (b) yes; 
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(c) R2 = 0.9355; 

(d) yes 

11.47 (b) N = -175.9025 + 0.0902V; R2 = 0.3322. 

11.49 r = 0.240 

11.53 (a) r = 0.392; 

(b) t = 2.04; fail to reject HQ: p = 0; however, 
the P-value = 0.053 is marginal. 

Chapter 12 

12.1 (a) y = 27.547 -1- 0.922a;. + 0.284x2; 

(b) y = 84 at x_ = 64 and x2 = 4. 

12.3 y = 0.5800 + 2.7122z. + 2.0497x2. 

12.5 (a) y = 56.4633 + 0.1525.x- 0.00008a:2; 

(b) y = 86.7% when temperature is at 225°C. 

12.7 y = 141.6118 - 0.2819a; + 0.0003a:2. 

12.9 (a) y = -102.7132 + 0.6054x. + 8.9236.r2 + 
1.4374a;3 + 0.0136.T4: 

(b) t} = 287.6. 

12.11 0 = 3.3205 + 0.4210a:. - 0.2958x2 + 0.0164x3 + 
0.1247x4. 

12.13 0 = -6.5122 + 1.9994x1 - 3.6751x2 + 2.5245x3 + 
5.1581x4 + 14.4012x5. 

12.15 (a) 0 = 350.9943 - 1.2720x. - 0.1539x2: 

(b) 0 = 140.9 

12.17 0.1651 

12.19 242.72 

12.21 (a) a%3 = 28.0955; (b) aB, B 2 = -0.0096 

12.23 29.93 < PY\XQ.& < 31.97 

12.25 t = 2.86; reject H0 and in favor of 32 > 0. 

12.27 t = 3.524 with P-value = 0.01; reject HQ and in 
favor of 0i > 2. 

12.29 (a) t = -1.09 with P-value = 0.3562; 

(b) t = -1.72 with P-value = 0.1841: 

(c) Yes; no sufficient evidence to show that xi 
and x2 are significant. 

12.31 R2 = 0.9997 

12.33 / = 5.106 with P-value = 0.0303; the regression 
is not significant at level 0.01. 

12.35 

12.37 

12.39 

12.41 

12.43 

12.45 

12.47 

12.49 

12.51 

12.53 

/ = 34.90 with P-value = 0.0002; reject HQ and 
conclude 0\ > 0. 

/ = 10.18 with P-value < 0.01; xi and x2 are 
significant in the presence of 13 and X4. 

The two-variable model is better. 

First model: R2^ = 92.7%, CV = 9.0385; 

Second model: R2^ = 98.1%, CV = 4.6287; 
The partial /—test shows P-value = 0.0002; 
model 2 is better. 

Using x2 alone is not much different from using 
xi and x2 together since the R^yS are 0.7696 
versus 0.7591. 

(a) mpg = 5.9593 - 0.00003773 odometer + 
0.3374 octane - 12.6266«i - 12.9846^; 

(b) sedan; 

(c) they are not significantly different. 

(b) 0 = 4.690 seconds; 

(c) 4.450 < /iy|{i80,260} < 4.930 

0 = 2.1833 + 0.9576x2 + 3.3253x3 

(a) 0 = -587.211 + 428.433x; 

(b) 0 = 1180 - 191.691x + 35.20945x2; 

(c) quadratic model 

a2
Bl = 20,588; &2

Bll = 62.6502; 
o-B,,B„ = -1103.5 

12.55 (a) Intercept model is the best. 

12.57 (a) 0 = 3.1368 + 0.6444xi - 0.0104x2 + 
0.5046x3 - 0.1197x4 - 2.4618x5 + 1.5044x6; 

(b) 0 = 4.6563 + 0.5133x3 - 0.1242x4; 

(d) 0 = 4.6563+ 0.5133x3-0.1242x4; 

(e) two observations have large .R-student val
ues and should be checked. 

12.59 (a) 0 = 125.8655 + 7.7586xi + 0.0943x2 -
0.0092xix2; 

(b) the model with x 2 alone is the best. 
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Chapter 13 

13.3 / = 0.31; no sufficient evidence to support that 
there are differences among the 6 machines. 

13.5 / = 14.52: yes, the difference is significant 

13.7 / = 2.25; no sufficient evidence to support that 
the different concentrations of MgNH4P04 sig
nificantly affect the attained height of chrysan
themums. 

13.9 / = 8.38; the average specific activities differ 
significantly. 

13.11 (a) / = 14.28; reject H0; 

(b) / = 23.23; reject HQ: 

(c) / = 2.48; fail to reject H0. 

13.13 (a) / = 13.50; treatment means differ; 

(b) / ( l vs. 2)=29.35: significant; 
/ ( 3 vs. 4)=3.59; not significant 

13.15 
X3 Xi x 4 •1:2 

56.52 59.66 61.12 61.96 

13.17 (a) / = 9.01; yes, significant; 

(b) Substrate 
Modified Removal 

Depletion Hess Kicknet Surber Kicknet 

13.35 / = 0.58; not significant 

13.39 / = 5.03; grades are affected by different profes
sors. 

13.41 p < 0.0001; 
/ = 122.37; the amount of dye has an effect on 
the color of the fabric. 

13.43 (a) / = 14.9; operators differ significantly; 

(b) er2 = 28.91; .s2 = 8.32. 

13.45 (a) / = 3.33; no significant difference; how
ever, the P-value = 0.0564 is marginal; 

(b) a'i = 1.08; s2 = 2.25. 

13.49 9. 

13.51 (a) yij = p. + a . + £__,-, a . ~ n(x; 0, a a ) ; 

(b) d 2 = 0 (the estimated variance component 
is -0.00027); a2 = 0.0206. 

13.53 (a) y^ =p + aj +cy, a. ~ n{x;0,aa); 

(b) yes; / = 5.63 with P-value = 0.0121; 

(c) there is a significant loom variance compo
nent. 

13.19 Comparing the Control to 1 and 2: significant; 
Comparing the Control to 3 and 4: insignificant 

13.21 The mean absorption for aggregate 4 is signifi
cantly lower than the other aggregate. 

13.23 / = 70.27 with P-value < 0.0001; reject HQ. 

XO X2.=. X100 £ 7 5 X50 
55.167 60.167 64.167 70.500 72.833 

Temperature is important; Both 75 and 50°(C) 
yielded batteries with significantly longest acti
vated life. 

13.27 (a) /(fertilizer)=6.11; significant; 

(b) / = 17.37; significant; 
/ = 0.96; not significant 

13.29 / = 5.99; percent of foreign additives is not the 
same for all three brands of jam; Brand A. 

13.31 /(station)=26.14; significant 

13.33 /(diet)=11.86; significant 

Chapter 14 

14.1 (a) / = 8.13; significant; 

(b) / = 5.18; significant; 

(c) / = 1.63; insignificant 

14.3 (a) / = 14.81; significant; 

(b) / = 9.04; significant; 

(v.) f = 0.61; insignificant; 

14.5 (a) / = 34.40; significant; 

(b) / = 26.95; significant; 

(c) / = 20.30; significant; 

14.7 Test for effect of amount of catalyst: / = 46.63 
with P-value = 0.0001; 
Test for effect of temperature: / = 10.85 with 
P-value = 0.0002; 
Test for effect of interaction: / = 2.06 with P-
value = 0.074. 
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14.9 (a) 
Source of 
Variation 

Sum of Mean 
df Squares Squares / 

cutting speed 1 12.000 12.000 1.32 0.2836 
tool geometry 1 675.000 675.000 74.31 < 0.0001 
interaction 1 192.000 192.000 21.14 0.0018 
Error 8 72.667 9.083 

Total 11 951.667 

(b) The interaction effect masks the effect of 
cutting speed; 

(c) /tool geomctrv=l = 16.51 and P-value = 
0.0036; 
/tool geomctrv=2 = 5.94 and P-value = 
0.0407. 

14.11 (a) 
Source of 
Variation df 

Sum of Mean 
Squares Squares / 

Method 1 0.00010414 0.00010414 6.57 0.0226 
Laboratory 6 0.00805843 0.00134307 84.70 < 0.0001 
interaction 6 0.00019786 0.00003298 2.08 0.1215 
Error 14 0.000222 0.00001586 

Total 27 0.00858243 

(b) The interaction is not significant; 

(c) Both main effects are significant; 

(e) /iaboratory=i = 0.01576 and P-value = 
0.9019; no significant difference of the 
methods in laboratory 1; 
/tool j_eomDtr.v=2 = 9.081 and P-value = 
0.0093. 

14.13 (b) 
Source of 
Variation df 

Sum of 
Squares 

Mean 
Squares 

Method 
Laboratory 
interaction 1 0.00000833 0.00000833 
Error 8 0.00306667 0.00038333 

1 0.06020833 0.06020833 157.07 < 0.0001 
1 0.06020833 0.06020833 157.07 < 0.0001 

0.02 0.8864 

Total 11 0.12349167 
(c) Both time and treatment influence the 

magnesium uptake significantly, although 
there is no significant interaction between 
them. 

(d) y = p + 3TT\me+3zZ + 0TZT\mc*Z + e, 
where Z = 1 when treatment=l and Z = 0 
when treatment=2: 

(c) / = 0.02 with P-value = 0.8864; the inter
action in the model is insignificant 

14.15 (a) AB 
AC 
BC 
ABC 

f = 3.83; significant; 
/ = 3.79; significant; 
/ = 1.31; not significant; 
: / = 1.63: not significant; 

(b) A : f = 0.54; not significant; 
B : f = 6.85: significant; 
C : f = 2.15; not significant; 

(c) The presence of AC interaction masks the 
main effect C. 

14.17 (a) S t r e s s / = 45.96 with P-value < 0.0001; 
coating / = 0.05 with P-value = 0.8299; 
humidity / = 2.13 with P-value = 0.1257; 
coating x humidity / = 3.41 with P-
value = 0.0385; 
coating x stress / = 0.08 with P-value = 
0.9277; 
humidity x stress / = 3.15 with P-value = 
0.0192; 
coating x humidity x stress / = 1.93 with 
P-value = 0.1138. 

(b) The best combination appears to be un
coated, medium humidity, and a stress level 
of 20. 

14.19 E f f e c t / P 

14.21 

14.23 

Temperature 
Surface 
HRC 
T x S 
T x H R C 
SxHRC 
T x S x H R C 

14.122 
6.70 
1.67 
5.50 
2.69 
5.41 
3.02 

< 0.0001 
0.0020 
0.1954 
0.0006 
0.0369 
0.0007 
0.0051 

(a) yes: brand x type; brand x temperature; 

(b) yes; 

(c) brand Y, powdered detergent, high tem
perature. 

(a) 

Effect f P 

Time 
Temp 
Solvent 
Time x Temp 
Time x Solvent 
Temp x Solvent 
Time x Temp x Solvent 6.22 

543.53 
209.79 

4.97 
2.66 
2.04 
0.03 

< 0.0001 
< 0.0001 

0.0457 
0.1103 
0.1723 
0.8558 
0.0140 

Although three two-way interactions are 
shown insignificant, they may be masked 
by the significant three-way interaction. 

14.25 (a) / = 1.49; no significant interaction; 

(b) /(operators)=12.45; significant; 
/(filters)=8.39; significant; 
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14.27 

(c) a2 = 0.1777 (filters); 
o2p = 0.3516 (operators); 
s2 = 0.185 

(a) era, i77, oa~j are significant; 

(b) a2 and tr̂ -,, are significant 

14.29 0.57 

14.31 (a) Mixed model; 

(b) Material: / = 47.42 with P-value < 
0.0001; 
Brand: / = 1.73 with P-value = 0.2875; 
MaterialxBrand: 16.06 with P-value = 
0.0004; 

(c) no 

14.33 (a) yijk = p. + a . + #,- + (a0)ij + eyfe, (mixed 
model); 
A=Power setting, B=Cereal type; 
0j ~ n(x; 0, txg), independent; 

(AB)ij ~ n(x;0,aag), independent; 
eijk ~ n(x; 0, a ), independent; 

(b) no; 

(c) no 

Chapter 15 

15.1 SSA = 2.6667, SSB = 170.6667, SSC = 
104.1667. SS(AB) = 1.5000, SS(AC) = 
42.6667, SS(BC) = 0.0000, SS(ABC) = 1.5000. 

15.3 Factors A, B, and C have negative effects on the 
phosphorus compound, and Factor D has a pos
itive effect. However, the interpretation of the 
effect of individual factors should involve the use 
of interaction plots. 

15.5 Significant effects 
A: f = 9.98; C: f = 6.54; BC: f = 19.3. 
Insignificant effects 
B: f = 0.20; D: f = 0.02; AB: f = 1.83; 
AC: f = 0.20: AD: f = 0.57; BD: f = 1.83; 
CD: f = 0.02. 

15.9 (a) bA = 5.5, bB = -3.25 and bAD = 2.5; 

(b) The values of the coefficients are one-half 
that of the effects; 

(c) tA = 5.99 with P-value = 0.0039; 
tB = -3.54 with P-value = 0.0241; 
tAB = 2.72 with P-value = 0.0529: 
t2 = F. 

15.11 (a) A = -0.8750, B = 5.8750. C = 9.6250, 
AB = -3.3750, AC = -9.6250, BC = 
0.1250, and ABC = -1.1250; 
B, C, AB, and AC appear important based 
on their magnitude. 

(b) Effects 
A 
B 
C 

AB 
AC 
BC 

ABC 

P-Value 
0.7528 
0.0600 
0.0071 
0.2440 
0.0071 
0.9640 
0.6861 

(c) Yes; 

(d) At a high level of A, C essentially has no 
effect. At a low level of .4, C has a positive 
effect. 

15.13 .4, B, C, AC, BC, and ABC each with one 
degree of freedom can be tested using a mean 
square error with 12 degrees of freedom. Each of 
three replicates contains 2 blocks with AB con
founded. 

15.15 Block 1 

(1) 
ab 

acd 
bed 

Block 2 

c 
abc 
ad 
bd 

Block 3 

d 
ac 
be 

abd 

Block 4 

a 
b 

cd 
abed 

CD is also confounded with blocks. 

15.17 Replicate 1 
BI B2 

Replicate 1 Replicate 1 
BI B2 BI B2 

abc 
a 
b 
c 

ab 
ac 
be 

(1) 

abc 
a 
b 
c 

ab 
ac 
be 

(1) 

(1) 
c 

ab 
abc 

a 
b 

ac 
be 

ABC 
confounded 

ABC AB 

15.19 (a) 

confounded confounded 

Machine 
2 3 4 

(1) 
ab 
cd 
ce 
de 

abed 
abce 
abde 

c 
d 
e 

abc 
abd 
abe 
cde 

abede 

a 
b 

acd 
ace 
ade 
bed 
bee 
bde 

ac 
ad 
ae 
be 
bd 
be 

acde 
bede 

(b) AB, CDE, ABCDE (one possible design). 
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15.21 (a) x2 , X3, X|X2 and X1X3; 

(b) Curvature: P-value = 0.0038; 

(c) One additional design point different from 
the original ones. 

15.23 (0 , -1 ) , (0,1), ( -1 ,0) , (1,0) might be used. 

15.25 (a) With BCD as the defining contrast, the 
principal block contains (1), a, be, abc, bd, 
abd, cd, acd; 

(b) Block 1 

(1) 
be 

abd 
acd 

Block 2 

a. 
abc 
bd 
cd 

confounded by ABC; 

(c) Defining Contrast BCD produces the fol
lowing aliases: .4 = ABCD, B = CD, C = 
BD, D = BC, AB = ACD, AC = ABD, 
and AD = ABC. Since AD and ABC are 
confounded with blocks there are only two 
degrees of freedom for error from the inter
actions not confounded. 

Source of Degree of 
Variation Freedom 

A 
B 
C 
D 

Blocks 
Error 

Source 

A 
B 
C 
D 

Error 

Source of 
Variation 

A 
B 
C 
D 
E 
F 

AB 
AC 
AD 
BC 
BD 
CD 

Error 

Total 

df SS 

1 6.1250 
1 0.6050 
1 4.8050 
1 0.2450 
3 3.1600 

Degree of 
Freedom 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
3 

15 

MS 

6.1250 
0.6050 
4.8050 
0.2450 
1.0533 

/ 
5.81 
0.57 
4.56 
0.23 

P 

0.0949 
0.5036 
0.1223 
0.6626 

Total 7 14.9400 

15.31 Source df SS MS 

Total 7 

15.27 (a) With the defining contrasts ABCE and 
ABDF, the principal block contains (1), 
ab, acd, bed, ce, abce, ade, bde, acf, bef, 
df, abdf, aef, bef, cdef, abedef; 

(b) A = BCE = BDF = ACDEF, 
AD = BCDE = BF = ACEF, 
B = ACE = ADF = BCDEF, 
AE = BC = BDEF = ACDF, 
C = ABE = ABCDF = DEF, 
AF = BCEF = BD = ACDE, 
D = ABCDE = ABF = CEF. 
CE = AB = ABCDEF s DF, 
E = ABC = ABDEF = CDF, 
DE = ABCD = ABEF = CF. 
F = ABCEF = ABD = CDE. 
BCD = ADE = ACF = BEF, 
AB = CE = DF = ABCDEF, 
BCF = AEF = ACD = BDE, 
AC = BE = BCDF = ADEF; 

A 
B 
C 
D 
E 

AD 
AE 
BD 
BE 

Error 

1 
1 
1 
1 
1 
1 
1 
1 
1 
6 

388129.00 388129.00 3585.49 0.0001 
277202.25 

4692.25 
9702.25 
1806.25 
1406.25 
462.25 

1156.00 
961.00 
649.50 

277202.25 
4692.25 
9702.25 
1806.25 
1406.25 
462.25 

1156.00 
961.00 
108.25 

2560.76 0.0001 
43.35 0.0006 
89.63 0.0001 
16.69 0.0065 
12.99 0.0113 
4.27 0.0843 

10.68 0.0171 
8.88 0.0247 

Total 15 686167.00 

All main effects are significant at the 0.05 level; 
AD, BD and BE are also significant at the 0.05 
level. 

15.33 The principal block contains af, be, cd, abd, ace, 
bef, def, abedef. 

15.35 A = BD = CE = CDF = BEF = ABCF = 
ADEF = ABCDE: 
B = AD = CF = CDE = AEF = ABCE = 
BDEF = ABCDF; 
C = AE = BF = BDE = ADF = CDEF ~ 
ABCD = ABCEF; 
D = AB = EF = BCE = ACF = BCDF = 
ACDE = ABDEF; 
E = AC = DF = ABF = BCD = ABDE = 
BCEF = ACDEF: 
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F = BC = DE = ACD = ABE = ACEF = 18.3 (a) f(p\x = 1) = 40p(l -p) 3 /0 .2844; 
ABDF = BCDEF. 0.05 < p < 0.15; 

15.37 0 = 12.7519 + 4.7194xi + 0.8656x2 - 1.4156x3; ^ p* = 0 1 0 6 

units are centered and scaled; test for lack of fit, 18 5 8 077 < u < 8 692 
F = 81.58, with P-value < 0.0001. 

18.7 (a) 0.2509; (b) 68.71 <p< 71.69; 
15.39 AFG, BEG. CDG, DEF, CEFG, BDFG, c) 0 0174 

BCDE, ADEG, ACDF, ABEF, and 
ABCDEFG. 18.11 p* = - ^ 

Chapter 16 

16.1 x = 7 with P-value = 0.1719; fail to reject H0. 

16.3 x = 3 with P-value = 0.0244; reject H0. 

16.5 x = 4 with P-value = 0.3770; fail to reject HQ. 

16.7 x = 4 with P-value = 0.1335; fail to reject H0. 

16.9 w = 43; fail to reject H0. 

16.11 «,+ = 17.5; fail to reject HQ. 

16.13 2 = —2.13; reject HQ in favor of p\ — p2 < 8. 

16.15 «i = 4; claim is not valid. 

16.17 u2 = 5; A operates longer. 

16.19 u = 15; fail to reject Ho-

16.21 h = 10.47; operating times are different. 

16.23 V = 7 with P-value = 0.910; random sample. 

16.25 v = 6 with P-value = 0.044; fail to reject H0. 

16.27 z = 1.11; random sample. 

16.29 0.70 

16.31 0.995 

16.33 (a) rs = 0.39; (b) fail to reject HQ. 

16.35 (a) rs = 0.72; (b) reject Ho :, so p > 0. 

16.37 (a) r s = 0.71; (b) reject HQ :, so p > 0. 

Chapter 18 

18.1 p* = 0.173 
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2k factorial experiment, 611 
aliases, 649 
center runs, 634 
confounding, 639 
defining contrast, 640 
defining relation, 648 
design generator, 648 
diagnostic plotting, 618 
factor screening, 612 
foldover, 659 
fractional factorial, 647 
incomplete blocks, 639 
orthogonal design, 631 
partial confounding. 644 
Plackett-Burman designs, 660 
principal block, 641 
regression setting, 625 
resolution, 658 

Cp statistic, 493, 494 
F-distribution, 261-264 
R2, 407, 408 
X-chart, 702 

operating characteristic function, 707 
/-distribution, 257-259, 261 
P-value, 4, 334, 336 
AVchart, 704 
S-chart, 711 

Acceptable quality level, 721 
Acceptance sampling, 153 
Additive rule, 52 
Adjusted R2, 466, 467 
Analysis of variance, 264, 511 
ANOVA table, 416 
Approximation 

binomial to hypergeometric, 155 
normal to binomial, 187. 188 
Poisson to binomial, 163 

Average, 107 
811 

Backward elimination, 482 
Bar chart, 82 
Bartlett's test, 519 
Bayes estimate. 732 
Bayes' rule, 68, 70, 71 
Bayesian 

inference, 726 
interval, 731 
methodology, 269. 725 
perspective, 726 

Bernoulli 
process. 143 
trial, 143, 144 

Beta distribution, 206 
Bias, 231 
Binomial distribution, 144 

mean of, 147 
variance of, 147 

Blocks, 513 
Box plot, 3, 236 

Categorical variable, 474 
Central limit theorem, 245 
Chebyshev's theorem, 131-133 
Chi-squared distribution, 200, 201 
Cochran's test, 521 
Coefficient of determination, 407, 435 

adjusted, 467 
Coefficient of multiple determination, 465 
Coefficient of variation, 474 
Combination, 46 
Completely randomized design. 513 
Conditional distribution. 95 

joint, 99 
Conditional perspective. 726 
Conditional probability, 58-61, 64, 70-72 
Confidence 

coefficient, 273 
degree of, 273 
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limits, 273, 275 
Confidence interval, 273, 274, 285 

for difference of two means, 288, 289, 291, 293 
for difference of two proportions, 303 
for paired observations, 296 
for ratio of standard deviations, 309 
for ratio of variances, 308 
for single mean, 274-279 
for single proportion, 300 
for single variance, 307 
for standard deviation, 307 
interpretation of, 292 
of large sample, 280 

Contingency table, 374 
marginal frequency, 374 

Continuity correction, 190 
Continuous distribution 

exponential, 196 
gamma, 195 
lognormal, 201 
normal, 172 
uniform, 171 
Weibull, 203, 204 

Control chart 
X-chart, 702 
tf-chart, 704 
S-chart, 711 
(7-chart, 720 
p-chart, 713 
Cusum chart, 721 
for attributes, 713 
for variable, 700 

Correlation coefficient, 121, 432 
Pearson product-moment, 434 
population, 434 
sample, 434 

Covariance, 115, 119 
Cross validation, 490 
Cumulative distribution function, 81, 86 

Data display, 236 
Degrees of freedom, 15, 16, 255, 256 
Descriptive statistics, 3 
Design of experiment 

i factorial, 648 
blocking, 535 
completely randomized design, 536 
concept of confounding, 639 

contrast, 613 
control factor, 662 
defining contrast, 640 
defining relation, 648 
foldover, 659 
fractional factorial, 625, 647 
incomplete block design, 604 
interaction, 574 
Latin square, 549 
main effects, 574 
noise factor, 662 
orthogonal design, 631 
randomized block design, 537 
resolution, 658 
robust parameter design, 661 

Design of experiments 
fractional factorial, 612 

Deviation, 116 
Discrete distribution 

binomial, 143, 144 
geometric, 158, 160 
hypergeometric, 152, 153 
multinomial, 143, 149 
negative binomial, 158, 159 
Poisson, 161, 162 
uniform, 141, 142 

Distribution, 19. 23 
t-, 257, 258 
beta, 206 
binomial, 143, 144, 188 
bivariate normal, 433 
chi-squared, 200 
discrete uniform, 142 
empirical, 236 
Erlang, 206 
exponential, 194, 196 
gamma, 194, 195 
geometric, 158, 160 
hypergeometric, 152-154 
lognormal. 201 
multinomial, 143, 149 
multivariate hypergeometric, 156 
negative binomial, 158-160 
normal, 19, 172, 173, 188 
Poisson, 161, 162 
posterior, 727 
prior, 726 
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skewed, 23 
symmetric, 23 
variance ratio, 263 
Weibull, 202, 203 

Distribution-free methods, 671 
Dot plot. 3, 8, 29 
Duncan's multiple-range test, 530 

Erlang distribution, 206 
Error 

in estimating mean, 276 
in estimating the mean, 277 
type I, 324 
type II, 325 

Estimate, 12 
Estimation, 270 

difference of two sample means, 288 
maximum likelihood, 310, 311, 315 
of single variance, 306 
of the ratio of variances, 308 
paird observations, 294 
proportion, 299 
two proportions, 302 

Estimator, 270 
efficient, 271 
maximum likelihood, 311, 313 
method of moments, 317 
unbiased. 270, 271 

Event, 34 
Expectation 

mathematical, 107, 108, 111 
Expected mean squares 

ANOVA model, 556 
Expected value, 108-111 
Experiment-wise error rate, 529 
Experimental unit, 289, 295, 574 
Exponential distribution, 194, 196 

mean of, 196 
memoryless property, 198 
relationship to Poisson process, 196 
variance of. 196 

Factor, 26 
Factorial experiment, 573 

in blocks, 594 
masking effects, 575 
mixed model, 602 
model II, 600 

model III, 602 
pooling mean squares, 594 
three-factor ANOVA, 590 
two-factor ANOVA, 577 

Fixed effects experiment, 555 
Forward selection, 482 

Gamma distribution, 194, 195 
mean of, 196 
relationship to Poisson process, 196 
variance of, 196 

Gamma function, 194 
Geometric distribution, 158, 160 

mean of, 161 
variance of, 161 

Goodness-of-fit test, 240, 371, 372 

Historical data, 27 
Hypergeometric distribution, 152, 154 

mean of, 154 
variance of, 154 

Hypothesis, 322 
alternative, 322 
null, 322 
statistical, 321 
testing, 322, 323 

Independence, 60-62, 64 
statistical, 97-99 

Indicator variable, 474 
Interaction, 25 
Interquartile range, 236, 237 
Interval estimate, 272, 273 

Bayesian, 731 

Lack of fit, 419 
Latin squares, 549 
Least squares method, 394, 395 
Level of significance, 324, 325 
Likelihood function, 310 
Linear predictor, 501 
Linear regression 

ANOVA, 415 
categorical variable, 474, 475 
coefficient of determination, 407 
correlation, 432 
data transformation, 426 
dependent variable, 389 
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empirical model, 391 
error sum of squares, 415 
fitted regression, 392 
fitted value, 417 
independent variable, 389 
lack of fit, 419 
least squares, 394 
mean response, 394, 409 
model selection, 479, 490 
multiple, 390, 445 
normal equation, 396 
overfitting, 408 
prediction, 409 
prediction interval, 410, 411 
pure experimental error, 419, 420 
random error, 391 
regression coefficient, 392 
regression sum of squares, 464 
regressor, 389 
residual, 394 
simple, 389, 390 
statistical model, 391 
test of linearity, 417 
through the origin, 413 
total sum of squares, 415 

Logistic regression, 500 
effective dose, 502 
odds ratio, 503 

Lognormal distribution, 201 
mean of, 202 
variance of, 202 

Marginal distribution, 93, 94, 98, 99 
joint, 99 

Masking effect, 575 
Maximum likelihood estimation, 310 
Mean, 19, 107, 108, 110, 111 

sample, 232 
Mean squared error, 287 
Mean squares, 416 
Mode, 728 
Model I experiment, 555 
Model II experiment, 555 
Model selection, 479 

Cp statistic, 493, 494 
backward elimination, 482 
forward selection, 482 
PRESS, 490 

sequential methods, 479 
stepwise regression, 483 

Moment-generating function, 219, 220 
Moments 

about the origin, 220 
Multicollinearity, 479 
Multinomial distribution, 149 
Multiple comparison test, 527 

Duncan's test, 530 
Dunnett's test, 531 
experiment-wise error rate, 529 
Tukey's test, 529 

Multiple linear regression, 445 
i?-student residuals, 486 
adjusted R2, 466 
ANOVA, 457 
coefficient of multiple determination, 465 
error sum of squares, 462 
inference, 458 
multicollinearity, 479 
normal equations, 447 
orthogonal variables, 470 
outlier, 486 
polynomial, 448 
regression sum of squares, 463 
studentized residuals, 486 
variable screening, 461 
variance-covariance matrix, 456 

Multiple regression 
HAT matrix, 485 

Multiplication rule, 40 
Multiplicative rules, 61 
Multivariate hypergeometric distribution, 156 

Negative binomial distribution, 158, 159 
Negative exponential distribution, 196 
Noncentral F-distribution, 560 
Noncentrality parameter, 560 
Nonlinear regression, 499 

binary response, 499 
count data, 500 
logistic, 500 

Nonparametric methods, 671 
Kruskall-Wallis test, 684 
runs test, 687 
sign test, 672 
signed-rank test, 676 
tolerance limits, 690 
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Wilcoxon rank-sum test, 681 
Normal distribution. 172, 173 

mean of, 175 
normal curve, 172. 173. 175 
standard, 177 
variance of, 175 

Normal probability plot, 236 
Normal quantile-quantile plot, 240, 241 

Observational study. 3, 26 
OC curve, 338 
One sided confidence bound, 277 
One-way ANOVA, 513 

contrast, 524 
contrast sum of squares, 525 
grand mean, 514 
single-degrce-of-frecdom contrast, 523 
treatment, 513 
treatment effect, 514 

Orthogonal contrasts, 525 
Orthogonal variables, 470 
Outlier, 236, 486 

Paired observations, 294 
estimation of, 294 

Permutation, 43 
circular. 44 

Plot 
box, 236 
normal quantile-quantile, 240, 241 
quantile, 239 

Point estimate, 270, 272 
standard error, 280 

Poisson distribution. 161, 162 
mean of. 163 
variance of, 163 

Poisson process, 161 
relationship to gamma distribution, 196 

Polynomial regression, 445, 448 
Pooled estimate of variance, 290 
Population, 2, 4, 229, 230 

mean of. 230 
variance of, 230 

Posterior distribution, 727 
Power chart 

ANOVA model, 561 
Power of a test, 331 

ANOVA model, 559 

Prediction interval, 281, 282, 285 
for a future observation. 282 

Prior distribution, 726 
Probability, 31, 48, 49 

coverage, 731 
Probability density function, 84, 86 

joint, 92, 93 
Probability distribution, 80 

continuous. 84 
discrete, 80 
joint. 91, 98 
mean of, 107 
variance of, 116 

Probability function, 80 
Probability mass function, 80 

joint, 92 

Quality control, 697 
control chart, 697, 698 
control limits, 699 
in control, 698 
out of control, 698 

Quantile, 239 
Quantile plot, 236, 238, 239 

Random 
sample, 231 

Random effects experiment 
variance components, 557 

Random effects model, 555 
Random sample, 231 

simple. 7 
Random sampling. 229 
Random variable, 77 

continuous, 80 
discrete, 79 
mean of, 107, 110 
variance of, 116, 118 

Randomized complete block design, 537 
Rank correlation coefficient, 691 

Spearman, 690 
Regression, 20 
Rejectable quality level, 721 
Relative frequency, 22, 23, 28, 29, 107 
Reliability 

failure rate, 204 
Residual, 394, 429 
Response surface methodology, 452 
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Retrospective study, 27 
Rule of elimination, 68, 70 

Sample, 1, 229, 230 
mean, 3, 11-13, 19, 28, 29, 229, 232 
median, 3, 11-13, 28, 29, 232 
mode, 232 
random, 231 
range, 15, 28, 29 
standard deviation, 3, 15, 16, 28. 29, 234 
variance, 15, 16, 28, 229, 232, 233 

Sample size, 7 
in estimating a mean, 277 
in estimating a proportion, 301 
in hypothesis testing, 352 

Sample space, 31 
continuous, 79 
discrete, 79 
partition, 53 

Sampling distribution, 243, 244 
of mean, 244 

Significant level, 334 
Single proportion test, 361 
Squared-error loss, 732 
Standard deviation, 116, 118, 131 
Standard error of mean, 280 
Standard normal distribution, 177 
Statistic, 232 
Statistical inference, 269 
Stem-and-leaf plot, 3, 21, 22, 28, 29 
Stepwise regression, 481 
Subjective probability, 725 
Sum of squares 

of error, 415 
of regression, 415 
total, 407 

Test 
goodness-of-fit, 240, 371 

Test statistic, 324 
Tests for the equality of variances, 519 

Bartlett's test, 519 
Cochran's test, 521 

Tests of hypotheses, 19, 270, 321 
P-value, 334, 336 
choice of sample size, 350, 353 
critical region, 324 
critical value, 324 

goodness-of-fit, 372 
important properties, 331 
on two means, 345 
one-tailed, 332 
paired observations, 347 
single proportion, 361 
single sample, variance known, 338 
single sample, variance unknown, 342 
single variance, 367 
size of test, 325 
test for homogeneity, 377 
test for independence, 374 
test for several proportions, 378 
test statistics, 328 
two means with unknown and unequal vari

ances, 347 
two means with unknown but equal variances, 

346 
two variances, 367 
two-tailed, 332 

Tolerance 
interval, 284, 285 
limits, 283, 284 

Total probability, 68 
Treatment 

negative effect, 575 
positive effect, 575 

TYimmed mean, 12, 13 

Unbiased estimator, 271 
Uniform distribution. 141, 142, 171 

discrete, 141, 142 

Variability, 8, 9, 14-16, 116, 131, 232, 261, 263, 
264 

between samples, 264 
within samples, 264 

Variable transformation 
discrete, 212 

Variance, 115, 116, 118 
sample, 233 

Variance ratio distribution, 263 
Venn diagram, 36 

Weibull distribution, 202, 203 
mean of, 203 
variance of, 203 


