Math 105, "Modular Arithmetic" - a brief introduction
Definition: " $\bmod n$ " arithmetic
We say that two numbers, say a and b, are "equivalent $\bmod n$ " if we can add n to (or subtract n from) a one or more times to get a result of b. In other words, a and b are "equivalent $\bmod n$ " if the difference between a and b - that is, $a-b$ - is divisible by n.

Notation: If a and b are equivalent $\bmod n$, we write " $a \equiv b(\bmod n)$."
For example: 17 is equivalent to $1 \bmod 8$. This is because $17-8=9$, and $9-8=1$. (It's also true that 17 is equivalent to $9 \bmod 8$; in fact, all three of these numbers $-17,9$, and 1 - are considered "equivalent" under mod 8 arithmetic rules.)

Typically, when we do arithmetic $\bmod n$, we only consider the numbers $0,1,2$, etc., up to $n-1$. This is to keep things as simple as possible - under "mod n " rules, we only need n different numbers. So, if a number is greater than $n-1$ (that is, n or greater), we subtract n from it ; conversely, if a number is less than 0 , we add n to it.

Example: The above paragraph exactly describes the way we combine transpositions (based on the twelve-tone scale) - specifically, transpositions are combined according to "mod 12 " arithmetic rules.

Note: Instead of saying " $0,1,2$, etc. up to $n-1$," we'll typically say "between 0 and $n-1$." Our usage of the word "between" will be in the inclusive sense; that is, 0 and $n-1$ are included, not excluded. For example, the phrase "between 0 and 5 " means " $0,1,2,3,4$, or 5 ."

Examples:

* Find a number between 0 and 9 which is equivalent to $33(\bmod 10)$.

Answer: To find numbers equivalent to 33 , we can add 10 to it, or subtract 10 from it. Since 33 is greater than 9 , we'll subtract: $33-10=23 ; 23-10=13 ; 13-10=3$. Thus, 33 is equivalent to $3(\bmod 10)$. This can also be written as $33 \equiv 3(\bmod 10)$.

* Find a number between 0 and 8 which is equivalent to $-22(\bmod 9)$.

Answer: Since -22 is less than 0 , we'll add 9: $-22+9=-13 ;-13+9=-4 ;-4+9=5$.
Therefore, -22 is equivalent to $5(\bmod 9)$. In other "words," $-22 \equiv 5(\bmod 9)$.

* Find a number between 0 and 7 which is equivalent to $100(\bmod 8)$.

Answer: We could subtract 7 from 100 multiple times until we reached a result less than 8 . Obviously we'd have to do that several times, which seems like a lot of work. A short cut for this problem would be to use division to see how many times we can take 7 away from 100: dividing 100 by 7 gives us $100 \div 7=14 R 2$. That is, $100=14 \times 7+2$; this tells us, in one step, that we would have to take 7 away from 10014 times, and the end result would be the remainder of 2 . So, our answer is 2 .

This last example leads to a more general observation: two numbers are equivalent modulo n if, and only if, they have the same remainder when divided by n. This observation can be particularly useful when we are dealing with larger numbers.

