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Abstract

This paper studies the theoretical properties and counterfactual predictions of a

large class of general equilibrium trade and economic geography models. We begin by

presenting a framework that combines aggregate factor supply and demand functions

with market clearing conditions. We prove that existence, uniqueness and – given

observed trade flows – the counterfactual predictions of any model within this frame-

work depend only on the demand and supply elasticities (the “gravity constants”).

We propose a new strategy to estimate these gravity constants using an instrumen-

tal variables approach that relies on the general equilibrium structure of the model.

Finally, we use these estimates to compute the impact of a trade war between US

and China.

1 Introduction

Over the past fifteen years, there has been a quantitative revolution in spatial economics.

The proliferation of general equilibrium gravity models incorporating flexible linkages

across many locations now gives researchers the ability to conduct a rich set of real world

analyses. However, the complex general equilibrium interactions and the variegated as-

sumptions underpinning different models has resulted in our understanding of the models’

properties to lag behind. As a result, many important questions remain either partially or

fully unresolved, including: When does an equilibrium exists and when is it unique? Do

different models have different counterfactual implications?

∗We thank Andy Atkeson, David Atkin, Lorenzo Calends, Arnaud Costinot, Jonathan Dingel, Dave
Donaldson, Jonathan Eaton, Pablo Fajgelbaum, John Geanakoplos, Penny Goldberg, Sam Kortum, Xi-
angliang Li, Giovanni Maggi, Kiminori Matsuyama, Francesc Ortega, Ralph Ossa, Nina Pavcnik, Steve
Redding, Andres Rodriguez-Clare, Bob Staiger, Chris Tonetti, our editor Harald Uhlig, and four anony-
mous referees for excellent comments and suggestions. This material is based upon work supported by the
National Science Foundation under Grants SES-1658838 and SES-1658875. A Matlab toolkit which is the
companion to this paper is available on Allen’s website. All errors are our own.
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In this paper, we characterize the theoretical and empirical properties common to a

large class of gravity models spanning the fields of international trade and economic ge-

ography. We first provide a “universal gravity” framework combining aggregate demand

and supply equations with standard market clearing conditions that incorporates many

workhorse trade and economic geography models.1 We show that existence and unique-

ness of the equilibria of all models under the auspices of our framework can be characterized

solely based on their aggregate demand and supply elasticities (the “gravity constants”).

Moreover, the counterfactual predictions for trade flows, incomes, and prices of these mod-

els can be expressed solely as a function of the gravity constants and observed data. Hence,

the key theoretical properties and positive counterfactual predictions of all gravity models

depend ultimately on the value of two parameters – the elasticities of supply and demand.

We show how these gravity constants can be estimated using an instrumental variables

approach that relies on the general equilibrium structure of the model. Finally, we use

these estimates to compute the impact of a trade war between US and China.

To construct our framework, we consider a representative economy in which an ag-

gregate good is traded across locations subject to the following six economic conditions:

1) “iceberg” type bilateral trade frictions; 2) a constant elasticity of substitution (CES)

aggregate demand function; 3) a CES aggregate supply function; 4) market clearing; 5)

exogenous trade deficit; and 6) a choice of the numeraire. Any model in which the equi-

librium can be represented in a way that satisfies these conditions is said to be contained

within the universal gravity framework. Moreover, these conditions impose sufficient struc-

ture to completely characterize all general equilibrium interactions of trade flows, incomes,

and prices. It turns out that the aggregate demand elasticity from condition 2 and the

aggregate supply elasticity from condition 3 play a particularly important role in this

characterization.

We first provide sufficient conditions for the existence, uniqueness, and interiority of

the equilibrium of the model that depend solely on the gravity constants. Existence oc-

curs everywhere except for a knife-edge constellation of parameters (corresponding e.g. to

Leontief preferences in an Armington trade model or when agglomeration forces are just

strong enough to create a “black hole” equilibrium in an economic geography model). An

equilibrium is unique as long as the demand elasticity is (weakly) negative and the supply

elasticity is (weakly) positive (or vice versa and both elasticities are greater than one in

1Examples of gravity trade models included in our framework are perfect competition models such
as Anderson (1979), Anderson and Van Wincoop (2003), Eaton and Kortum (2002),Dekle, Eaton, and
Kortum (2008), Caliendo and Parro (2010) monopolistic competition models such as Krugman (1980),
Melitz (2003) as specified by Chaney (2008), Arkolakis, Demidova, Klenow, and Rodŕıguez-Clare (2008),
Di Giovanni and Levchenko (2008), , and the Bertrand competition model of Bernard, Eaton, Jensen, and
Kortum (2003). Economic geography models incorporated in our framework include Allen and Arkolakis
(2014) and Redding (2016). See Table 1 for the mapping from work-horse trade and economic geography
models into the universal gravity framework.
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magnitude); moreover, if the inequalities are strict, an iterative algorithm is guaranteed to

converge to the the unique equilibrium from any interior starting point. Multiplicity may

occur if demand and supply elasticities are both negative (for example, in an economic

geography model if agglomeration forces are sufficiently strong) or if demand and supply

elasticities are both positive (for example, in a trade model if goods are complementary).

We also show that these sufficient conditions can be extended further if trade frictions are

“quasi” symmetric – a common assumption in the literature and provide conditions under

which an equilibrium exists and an iterative algorithm is guaranteed to converge to the

equilibrium.

We then examine how a shock to bilateral trade frictions affects equilibrium trade flows,

incomes, and prices. To do so, we derive an analytical expression for the counterfactual

elasticities of these endogenous variables to changes in all bilateral trade frictions that

elucidates the networks effects of trade. In particular, we show how can this expression be

written as series of terms expressing how a shock propagates through the trading network,

e.g. the direct effect of a shock, the effect of the shock on all locations’ trading partners, the

effect on all locations’ trading partners’ trading partners, etc. Importantly, we show that

this expression depends only on observed trade flows and the gravity constants, demon-

strating that conditional on these two model parameters, the positive macro-economic

implications for all gravity models are the same.2 Moreover, we analytically prove that

when trade frictions are “quasi” symmetric, the impact of a trade friction shock on the

real output prices and real expenditure in directly-affected locations will always exceed the

impact on other indirectly-affected locations.

We proceed by estimating the gravity constants using a novel procedure that can be

applied to any model contained within the universal gravity framework. We show that

the supply and demand elasticities can be estimated by regressing a location’s fixed effect

(recovered from a gravity equation) on its own expenditure share (the coefficient of which

is the supply elasticity) and its income (the coefficient of which is the demand elasticity).

Identifying the elasticities requires a set of instruments that are correlated with own ex-

penditure share and income, but uncorrelated with unobserved supply shifters (such as

productivity) in the residual. We construct such instruments using the general equilibrium

structure of the model by calculating the equilibrium own expenditure shares and incomes

of a hypothetical world where no such unobserved supply shifters exist and bilateral trade

frictions are only a function of distance. Using this procedure, we estimate a demand

elasticity in line with previous estimates from the trade literature (e.g. Simonovska and

Waugh (2014)) and a supply elasticity that is larger than is typically calibrated to in trade

2While the implications for real output prices are the same for all gravity models, the mapping from
real output prices to welfare will in general depend on the particular model. As a result, the normative
(welfare) implications will vary across different models, as we discuss in detail below.
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models but appears reasonable given estimates from the economic geography literature.

Finally, we use the estimated gravity constants along with the expression for compar-

ative statics to evaluate the effect of a trade war between the U.S. and China on the real

expenditure of all countries in the world. Given our large estimated supply elasticity, we

find modest declines in (real) prices but large declines in (real) expenditure. Third country

effects are also substantial, with important trading partners of China (e.g. Vietnam and

Japan) and the U.S. (e.g. Canada and Mexico) being especially adversely affected.

This paper is related to a number of strands of literature in the fields of international

trade, economic geography, and general equilibrium theory. There is a small but growing

literature examining the structure of general equilibrium models of trade and economic

geography. In particular, Arkolakis, Costinot, and Rodŕıguez-Clare (2012) provide con-

ditions under which a model yields a closed form expression for changes in welfare as a

function of changes in openness, while in a recent paper Adao, Costinot, and Donaldson

(2017) show how to conduct counterfactual predictions in neo-classical trade models with-

out imposing gravity. In contrast, our paper incorporates models with elastic aggregate

supply curves, thereby allowing analysis of both economic geography models and trade

models with intermediate “round-about” production. A key characteristic of the class of

models we study is that the “gravity constants” are the same across all locations; while

strong, this assumption imposes sufficient structure to completely characterize all general

equilibrium interactions while retaining tractability even in the presence of a large number

of locations.3

In terms of the theoretical properties of the equilibrium, Alvarez and Lucas (2007) use

the gross substitutes property to establish sufficient conditions for uniqueness for gravity

trade models. We instead generalize results from the study of nonlinear integral equa-

tions (see e.g. Karlin and Nirenberg (1967); Zabreyko, Koshelev, Krasnosel’skii, Mikhlin,

Rakovshchik, and Stetsenko (1975); Polyanin and Manzhirov (2008)) to systems of nonlin-

ear integral equations. As a result, the sufficient conditions we provide are strictly weaker

than those derived by Alvarez and Lucas (2007). In particular, our conditions allows

the supply elasticity to be larger in magnitude than the demand elasticity (in which case

gross substitutes may not hold), which is what we find when we estimate the elasticities.

In previous work, Allen and Arkolakis (2014) provide sufficient conditions for existence

and uniqueness for economic geography models. Unlike those results, our conditions do

not require symmetric trade frictions nor do we require finite trade frictions between all

locations. Unlike both Alvarez and Lucas (2007) and Allen and Arkolakis (2014), our

3In contrast, the literature on Computable General Equilibrium models typically focuses on models
with a large number of elasticities (e.g. location or region specific) but only a small number of regions; for
a review of these models see Menezes, Fortuna, Silva, and Vieira (2006). Although outside the purview
of this paper, it would be perhaps be interesting future work to determine whether some of the tools
developed below could be applied to those models.
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theoretical results cover both trade and economic geography models simultaneously.

Our analytical characterization of the counterfactual predictions is related to the “exact

hat algebra” methodology pioneered by Dekle, Eaton, and Kortum (2008) and extended in

Costinot and Rodriguez-Clare (2013) (and many others). Unlike that approach, we char-

acterize the elasticity of endogenous variables to trade shocks (i.e. we examine local shocks

instead of global shocks). There are several advantages of our local approach: first, all pos-

sible counterfactuals can be calculated simultaneously through a single matrix inversion.

Second, our analytical characterization holds for local shocks around the observed equilib-

ria even if there are other possible equilibria (in which case we are unaware of a procedure

that ensures the solution to the “exact hat” approach that corresponds to the observed

equilibria). Third, the local analytical expression admits a simple economic interpretation

as a shock propagating through the trading network. In this regard, our paper is related

to the recent working paper by Bosker and Westbrock (2016) which examines how shocks

propagate through global production networks. Fourth, our analytical derivation allows

us to characterize the relative size of the elasticity of real output prices and real output

in different locations from a trade friction shock, providing (to our knowledge) one of the

first analytical results about the relative size of the direct and indirect impacts of a trade

friction shock in a model with many locations and arbitrary bilateral frictions.4

Our estimation strategy uses equilibrium income and own expenditure shares from

a hypothetical economy as instruments to identify the demand and supply elasticities.

Following Eaton and Kortum (2002), we use the fixed effects of a gravity equation as the

dependent variable in an instrumental variables regression (although we use the regression

to estimate the supply elasticity along with the demand elasticity). One advantage of

our approach is the simplicity of calculating our instruments using bilateral distances and

observed geographic variables; in this regard, we owe credit to Frankel and Romer (1999)

who instrument for trade with geography (albeit not in a general equilibrium context).

The idea of using the general equilibrium structure of the gravity model to recover key

parameters is originally due to Anderson and Van Wincoop (2003). Following this, sev-

eral papers have sought to improve the typical gravity equation estimation by accounting

for equilibrium conditions. For example, Anderson and Yotov (2010) pursues an estima-

tion strategy imposing that the equilibrium “adding up constraints” of the multilateral

resistance terms are satisfied, whereas Fally (2015) proposes the use of a Poisson Pseudo-

Maximum-Likelihood estimator whose fixed effects ensure that such constraints are sat-

isfied, and Egger and Nigai (2015) develops a two-step model consistent approach that

overcomes bias arising from general equilibrium forces and unobserved trade frictions. Un-

like these papers, here our focus is on recovering the demand and supply elasticities rather

4Mossay and Tabuchi (2015) prove a similar result in a three country world.
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than estimating trade friction coefficients in a model consistent manner.

Recent work by Anderson, Larch, and Yotov (2016) explores the relationship between

trade and growth examined by Frankel and Romer (1999) in a structural context. They

recover the demand (trade) elasticity from a regression of income on a multilateral resis-

tance term, where endogeneity concerns are addressed by calculating multilateral resistance

based on international linkages only. Our estimation strategy, in contrast, recovers both the

demand and supply elasticities from a gravity regression and overcomes endogeneity con-

cerns using an instrumental variables approach based on the general equilibrium structure

of the model.

Finally, we should note that the brief literature review above is by no means complete

and refer the interested reader to the excellent review articles by Baldwin and Taglioni

(2006), Head and Mayer (2013), Costinot and Rodriguez-Clare (2013) and Redding and

Rossi-Hansberg (2017), where the latter two focus especially on quantitative spatial models.

The remainder of the paper is organized as follows. In the next section, we present the

universal framework and discuss how it nests existing general equilibrium gravity models.

In Section 3, we present the theoretical results for existence and uniqueness. In Section 4,

we present the results concerning the counterfactual predictions of the model. In Section

5, we estimate the gravity constants. In Section 6 we calculate the effects of a U.S. - China

trade war. Section 7 concludes.

2 A universal gravity framework

Before turning to the universal gravity framework, we present two variants of the simple

Armington gravity model to provide a concrete example of the type of models that fall

within our framework. Suppose there are N locations each producing a a differentiated

good and in what follows we define the set S ≡ {1, ..., N}. The only factor of production is

labor, where we denote the allocation of labor in location i ∈ S as Li and assume the total

world labor endowment is
∑

i∈S Li = L̄. Shipping the good from i ∈ S to final destination

j incurs an iceberg trade friction, where τij ≥ 1 units must be shipped in order for one

unit to arrive. Consumers have CES preferences with elasticity of substitution σ ≥ 0.

In the first variant, which we call the “trade” model, suppose that the labor endowed

to a location is exogenous and perfectly inelastic, as in Anderson (1979) and Anderson and

Van Wincoop (2003). Suppose too that there is roundabout production, as in Eaton and

Kortum (2002), that combines labor and an intermediate input in a Cobb-Douglas fashion.

Thus, the quantity of output produced in location i is Qi = (AiLi)
ζ I1−ζ

i , with ζ ∈ (0, 1]

the labor share, Ai is the labor productivity in location i ∈ S and Ii is an intermediate

input equal to a CES aggregate of the differentiated varieties in all locations with the same
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elasticity of substitution σ as final demand. In this case, the output price in location i is

pi = (wi/Ai)
ζ P 1−ζ

i , where wi is the wage and Pj ≡
(∑

k∈S (pjτkj)
1−σ) 1

1−σ is both the CES

price index for the consumer and the price per unit of intermediate input.

In the second variant, the “economic geography” model, we suppose instead that the

labor supplied to a location is perfectly elastic so that welfare is equalized across locations,

as in Allen and Arkolakis (2014).5 Welfare in this model is the product of the real expen-

diture of labor and the amenity value of living in a location, denoted by ui , and welfare

equalization implies wi
Pi
ui =

wj
Pj
uj for all i, j ∈ S. We further assume that productivities

and amenities are subject to spillovers: Ai = ĀiL
a
i and ui = ūiL

b
i . In this variant of the

model, the quantity of output produced in location i is Qi = ĀiL
1+a
i and the output price

is pi = wi/
(
ĀiL

a
i

)
.6

In both variants of the model, CES consumer preferences for the goods from each

location yields a gravity equation that characterizes the aggregate demand in location j

for the differentiated variety from location i:

Xij =
(piτij)

1−σ∑
k∈S (pjτkj)

1−σEj, for all j, (1)

where Ej =
∑

j∈S Xji is the expenditure in location j.

More subtly, both variants of the model also feature an aggregate supply for the quantity

of output produced in each location. In the trade variant of the model – despite the labor

supply being perfectly inelastic – we can use the fact that a constant share of revenue is

paid to both workers and intermediates to write the output of location i as:

Qi = AiLi

(
pi
Pi

) 1−ζ
ζ

. (2)

Similarly, in the economic geography variant of the model we can use the welfare equaliza-

tion condition to write:

Qi = κĀ
b−1
a+b

i ū
− 1+a
a+b

i

(
pi
Pi

)− 1+a
a+b

, (3)

where κ ≡
(
L̄/

(∑
i∈S
(
Āiūi

)− 1
a+b

(
pi
Pi

)− 1
a+b

))1+a

is an (endogenous) scalar that depends

on the aggregate labor endowment L̄ and we refer to pi
Pi

as the real output price in location

i ∈ S.7 Finally, in both variants, we close the model by requiring that the value of total

5In addition, this formulation incorporates many prominent economic geography models, e.g. Helpman
(1998); Donaldson and Hornbeck (2012); Bartelme (2014); Redding (2016).

6It is straightforward to add round-about production into the economic geography variant of the model
(see Table 1); we omit to do so here to keep our illustrative examples as simple as possible.

7In these two examples – as in most of the analysis that follows – we focus on interior equilibria where
production is positive in all locations. In the Online Appendix B.2 we generalize our setup to allow for the
possibility of non-interior solutions where production is zero in some locations, which allows e.g. for the
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output equals total sales (market clearing), i.e.

Yi ≡ piQi =
∑
j∈S

Xij, (4)

and that total expenditure equals total output (balanced trade), i.e.:

Ei = piQi. (5)

Substituting the CES demand (equation 1) and supply equations (equations 2 or 3) into

the market clearing and balanced trade conditions yields the following identical system of

equilibrium equations for both variants of the model. In particular,

p1+φ
i c̄i

(
pi
Pi

)ψ
=
∑
j∈S

τ−φij P
φ
j pj c̄j

(
pj
Pj

)ψ
∀i ∈ S (6)

P−φi =
∑
j∈S

τ−φji p
−φ
j ∀i ∈ S, (7)

where in the trade variant of the model ψ ≡ 1−ζ
ζ

and c̄i ≡ AiLi, in the economic geography

variant of the model ψ ≡ −1+a
a+b

and c̄i ≡ Ā
b−1
a+b

i ū
− 1+a
a+b

i , and in both models φ ≡ σ − 1. Note

in both models the constants {c̄i}i∈S are exogenous model location-specific fundamentals,

which we refer to as supply shifters in what follows, and φ, ψ are global parameters. Given

supply shifters, trade frictions, and the two parameters, one can use equations (6) and

(7) to solve for output prices pi and prices indices Pi (up-to-scale). One can then use a

normalization that total world income is equal to one, i.e.
∑

i∈S Yi = 1 and the gravity

equation (equation 1) to calculate trade flows Xij. Given trade flows, income Yi can then

be recovered from market clearing (equation 4). Note that although the endogenous scalar

κ from the economic geography model does not enter the equilibrium system of equations

(and hence does not affect trade flows or incomes), it does affect the level of output, a

point we return to below.

This example highlights the close relationship between trade and geography models

and suggests the possibility for a unified analysis of the properties of such spatial gravity

models. In what follows, we present a framework comprising six simple economic conditions

about aggregate trade flows of a representative good between many locations. We show

that the equilibrium of any model that satisfies these conditions can be represented by the

solution to equations (6) and (7).

To proceed with out universal gravity framework, it is helpful to first introduce some

case that welfare in unpopulated locations may be lower than populated locations. In Theorem 1 below,
we provide sufficient conditions under which all equilibria are guaranteed to be interior.
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terminology. Define the output Qi ≥ 0 to be the quantity of the representative good

produced in location i ∈ S; the quantity traded Qij ≥ 0 be the quantity of the representative

good in location i ∈ S that is consumed in location j ∈ S; the output price pi ≥ 0 to be the

(factory gate) price per unit of the representative good in location i ∈ S; the bilateral price

pij ≥ 0 to be the cost of the representative good from location i ∈ S in location j ∈ S; the

income Yi ≡ piQi to be the total value of the representative good in location i ∈ S; the

trade flows Xij ≡ pijQij to be the value of the good in i ∈ S sold to j ∈ S; the expenditure

Ei ≡
∑

j∈S Xji to be the total value of imports in i ∈ S; the real expenditure Wi ≡ Ei/Pi

is a measure of expenditure in location i ∈ S, where Pi is a price index defined below; and

the real output price (referred to simply as “prices” in the introduction) to be pi/Pi.
8

We say that an equilibrium is interior if output and output prices are strictly positive

in all locations, i.e. Qi > 0 and pi > 0 for all i ∈ S. In what follows, we focus our attention

to interior equilibria and disregard the trivial equilibrium where Qi = 0 for all i ∈ S.

We provide sufficient conditions to ensure all equilibria are interior below and examine

non-interior solutions in depth in Online Appendix B.2. Clearly, because of the presence

of complementarities there is a possibility of multiple interior equilibria. This is true in

the economic geography model because of labor mobility and agglomeration externalities

or even in the trade model when complementarities in consumption are large (low σ).

We first start with a condition that describes the relationship between the output price

in location i and the bilateral price:

Condition 1. The bilateral price is equal to the product of the output price and a bilateral

scalar:

pij = piτij, (8)

where, as above, {τij}i,j∈S ∈ R++ are referred to as trade frictions.9

Given prices, the next condition can be used to derive aggregate demand.

Condition 2. (CES Aggregate Demand). There exists an exogenous (negative of the)

demand elasticity φ ∈ R such that the expenditure in location j ∈ S can be written as:

Ej =

(∑
i∈S

p−φij

)− 1
φ

Wj, (9)

where Wj is the real expenditure and the associated price index is Pj ≡
(∑

i∈S p
−φ
ij

)− 1
φ
.

By Shephard’s lemma, condition 2 (or, for short, C.2 thereafter) implies that the trade

8Because the real output price is the ratio of the price of goods sold to the price index of goods
purchased, it is closely related to the terms-of-trade, which is the ratio of export prices to import prices,
differing only in that the price index also includes goods purchased domestically.

9R++ is defined as R++ ∪ {∞}. If τij =∞, then there is no trade between i and j.
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flows from i ∈ S to j ∈ S can be written as::

Xij =
p−φij∑
k∈S p

−φ
kj

Ej. (10)

We refer to equation (10) as the aggregate demand of the universal gravity model. The

aggregate demand equation (10) combined with C.1 yields a gravity equation equivalent to

equation (2) in Anderson and Van Wincoop (2004), Condition R3’ in Arkolakis, Costinot,

and Rodŕıguez-Clare (2012) and the CES factor demand specification considered in Adao,

Costinot, and Donaldson (2017). Accordingly, we note that the demand elasticity φ is

often referred to as the “trade elasticity” in the literature.

It is important to emphasize that real expenditure Wi = Ei
Pi

and real output prices
pi
Pi

are distinct concepts from welfare, as neither necessarily correspond to the welfare of

the underlying factor of production (such as labor) of a particular model. In the models

above, for example, the welfare of a worker corresponds to her real wage, which is equal to

the marginal product of a worker divided by the price index. Because of the presence of

roundabout production (in the trade model) or externalities (in the economic geography

model), a workers marginal product is not equal to the price per unit (gross) output. 10

We furthermore assume that output in a location is potentially endogenous and specify

the following supply-side equation:

Condition 3. (CES Aggregate Supply) There exists exogenous supply shifters {c̄i} ∈ RN
++,

an exogenous aggregate supply elasticity ψ ∈ R, and an endogenous scalar κ > 0 such that

output in each location i ∈ S can be written as: (11)

Qi = κc̄i

(
pi
Pi

)ψ
. (11)

In what follows, we refer to equation (11) as the aggregate supply of the universal gravity

model and the pair of demand and supply elasticities (−φ, ψ) as the gravity constants.

In general, the value of the endogenous scalar κ will depend on the particular model; for

example, as we saw above, in the trade model κ = 1, whereas in the economic geography

model κ is endogenously determined. Without taking a particular stance on the underlying

model (and the implied value of κ), the scale of output is unspecified.11 However, we show

below that we can still identify the equilibrium trade flows, incomes, and real output prices

– including their level – without knowledge of κ.

10The relationship between real output prices and welfare for a number of seminal models are summarized
in the last column of Table 1 and discussed in detail in Online Appendix B.11.

11While one can choose units of output to ensure κ = 1 in any given equilibrium, changes in model
fundamentals given this choice of units will generally result in κ varying.
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Finally, to close the model, we impose two standard conditions and choose our nu-

meraire:

Condition 4. (Output market clearing). For all i ∈ S, Qi =
∑

j∈S τijQij.

Note that by multiplying both sides of C.4 by the output price we have that income is

equal to total sales as in equation (4) in our example economy.12

Condition 5. (Exogenous deficits). For all i ∈ S, Ei = ΞξipiQi, where ξi is exogenous

expenditure-output ratio for location i up to constant and Ξ is an endogenous scalar that

ensures the world market clearing condition holds:

Ξ =

∑
i piQi∑
i ξipiQi

. (12)

We say that trade is balanced in the special case that ξi = 1 for all i ∈ S (in which case

Ξ = 1).While balanced trade is a standard assumption in (static) gravity models, we allow

for (exogenous) trade imbalances in order to match observed trade data.

Our final condition is a normalization:

Condition 6. World income equals to one:

∑
i

Yi = 1. (13)

In the absence of a normalization, the level of prices are undetermined because equations

(6) and (7) are homogeneous of degree 0 in {pi, Pi}i∈S. Moreover, without specifying κ in

equation (11), the level of output is also unknown. The choice of normalizing world income

to one in C.6 addresses both these issues simultaneously by pining down the product of

the level of these two unknown scalars. As a result, we can determine the equilibrium level

(i.e. including scale) of nominal incomes and trade flows. However, the cost of doing is

that both the level of output (in quantities) and prices remain unknown. As a result, the

primary focus in the following analysis is on three endogenous model outcomes for which

we can pin down the levels: incomes, trade flows, and real output prices {pi/Pi}i∈S (which

are invariant to the both κ and the scale of prices and hence determined including scale).

Given any gravity constants {φ, ψ}, supply shifters, {c̄i}i∈S, and bilateral trade fric-

tions {τij}i,j∈S, we define an equilibrium of the universal gravity framework to be a set of

endogenous outcomes determined up-to-scale, namely: outputs {Qi}i∈S, quantities traded

{Qij}i,j∈S , output prices {pi}i∈S, bilateral prices {pij}i,j∈S, price indices {Pi}i∈S, and

12As Anderson and Van Wincoop (2004) show, one can combine C.1, C.2, and C.4 to derive a gravity

equation of the form Xij =
(

τij
ΠiPj

)−φ
YiEj , where Π−φi ≡∑j∈S

(
τij
Pj

)−φ
Ej and P−φj ≡∑i∈S

(
τij
Πi

)−φ
Yi

are outward and inward multilateral resistance terms, respectively.
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real expenditures, as well as a set of endogenous outcomes for which the scale is known,

namely: incomes {Yi}i∈S, expenditures {Ei}i∈S, trade flows {Xij}i,j∈S and real output

prices {pi/Pi}i∈S that together satisfy C.2-C.6.

As Table 1 summarizes, many well-known trade and economic geography models are

contained within the universal gravity framework. On the demand side, it is well known

(see e.g. Arkolakis, Costinot, Donaldson, and Rodŕıguez-Clare (2012) and Adao, Costinot,

and Donaldson (2017)) that many trade models imply an aggregate CES demand system

as specified in C.2.13 For example, in the Armington perfect competition model, a CES

demand combined with linear production functions implies φ = σ − 1, in the Eaton and

Kortum (2002) model, a Ricardian model with endogenous comparative advantage across

goods and Frechet distributed productivities across sectors with elasticity θ implies that

φ = θ. Similarly, a class of monopolistic models with CES or non-CES demand, linear

production function, and Pareto distributed productivities with elasticity θ, summarized in

Arkolakis, Costinot, Donaldson, and Rodŕıguez-Clare (2012), also implies φ = θ. Economic

geography models delivering gravity equations for trade flows such as Allen and Arkolakis

(2014) and Redding (2016) also satisfy C.2.

As discussed in the example above, labor mobility across locations generates a CES

aggregate supply satisfying C.3, with a supply elasticity of ψ = −1+a
a+b

. In this case, the

supply elasticity depends on the strength of the agglomeration / dispersion forces summa-

rized by a + b. Assuming a > −1, if dispersion forces dominate (a + b < 0), the supply

elasticity is positive, whereas when agglomeration forces dominate (a+ b > 0), the supply

elasticity is negative.

Perhaps more surprising, trade models incorporating “round-about” trade with inter-

mediates goods also exhibit an aggregate CES supply, even though workers are immobile

across locations. As discussed in the example above, the supply elasticity is ψ = 1−ζ
ζ

and hence positive and increasing in the share of intermediates in the production. In the

next two sections, we show that any trade and economic geography models sharing the

same gravity constants will also share the same theoretical properties and counterfactual

implications.

What types of models are not contained within the universal gravity framework? C.2

and C.3 are violated by models that do not exhibit constant demand and supply elasticities,

which include Novy (2010), Head, Mayer, and Thoenig (2014), Melitz and Redding (2014),

Fajgelbaum and Khandelwal (2013) and Adao, Costinot, and Donaldson (2017). Models

with multiple factors of production with non-constant factor intensities will generally not

admit a single aggregate good representation and hence are also not contained within the

13The class of trade models considered by Arkolakis, Costinot, and Rodŕıguez-Clare (2012) (under their
CES demand assumption R3’) are a strict subset of the models which fall within the universal gravity
framework, corresponding to the case of ψ = 0.
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universal gravity framework (although the tools developed below can often be extended

to analyze such models depending on the particular functional forms). C.5 is violated

both by dynamic models in which the trade deficits are endogenously determined and by

models incorporating additional sources of revenue (like tariffs); hence these models are not

contained within the universal gravity framework. However, we show in Online Appendix

B.8 how the results below can be applied to a simple Armington trade model with tariffs.14

Finally, while the universal gravity framework includes a single sector, the mathematical

tools used to prove existence and uniqueness below can be extended to allow for multiple

sectors of production as in e.g. Costinot, Donaldson, and Komunjer (2010); see Allen,

Arkolakis, and Li (2014).

3 Existence, uniqueness, and interiority of equilibria

We proceed by deriving a number of theoretical properties of the equilibria of all models

contained within the universal gravity framework.

To begin, we note that we can combine C.1 through C.?? to write the equilibrium

output prices and price indices (to-scale) as the solution to equations (6) and (7). These

equations are sufficient to recover the equilibrium level of real output prices and – given

the normalization in C.6 – the equilibrium level of incomes, expenditures, and trade flows

as well as all other endogenous variables up-to-scale.15 As a result, equations (6) and (7)

(together with the normalization in C.6) are sufficient to characterize the equilibrium of

the universal gravity framework.

Before proceeding, we impose two mild conditions on bilateral trade frictions {τij}i,j∈S
:

Assumption 1. The following parameter restrictions hold:

i) τii <∞ for all i ∈ S.
ii) The graph of the matrix of trade frictions {τij}i,j∈S is strongly connected.

The first part of the assumption imposes strictly positive diagonal elements of the

matrix of bilateral trade frictions. The second part of the assumption – strong connectivity

– requires that there is a sequential path of finite bilateral trade frictions that can link

14 It is important to note that while the universal gravity framework can admit tariffs, how tariffs affect
the model implications will in general depend on the micro-economic foundations of a model. In particular,
the Armington model presented in Online Appendix B.8 abstracts from two additional complications that
may arise with the introduction of tariffs. First, the elasticity of trade to tariffs may be different than the
elasticity of trade to trade frictions depending on the model; second, if one does not impose that tariffs
are uniform for all trade flows between country pairs, the construction of (good-varying) optimal tariffs
will depend on the particular micro-economic structure of the model; see Costinot, Rodŕıguez-Clare, and
Werning (2016) for a detailed discussion of these issues.

15See Online Appendix B.1 for these derivations.
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any two locations i and j for any i 6= j. This condition has been applied previously in

general equilibrium analysis as a condition for existence in McKenzie (1959, 1961), Arrow,

Hahn, et al. (1971), invertibility by Cheng (1985); Berry, Gandhi, and Haile (2013), and

uniqueness by Arrow, Hahn, et al. (1971), Allen (2012). In our case these two assumptions

are the weakest assumptions on the matrix of trade frictions we can accommodate in order

to analyze existence and uniqueness of interior equilibrium.

We mention briefly (but do not need to assume) a third condition. We say that trade

frictions are quasi-symmetric if there exist a pair of strictly positive vectors
(
τAi , τ

B
i

)
∈ R2N

++

such that for any i, j ∈ S, we can write τij = τ̃ijτ
A
i τ

B
j , where τ̃ij = τ̃ji. Quasi-symmetry

is a common assumption in the literature (see for example Anderson and Van Wincoop

(2003), Eaton and Kortum (2002), Waugh (2010), Allen and Arkolakis (2014)), and we

prove in Online Appendix B.3 that C.1, C.2, C.4, and C.5 taken together imply that the

origin and destination-specific terms in the bilateral trade flow expression are equal up to

scale, i.e. p−φi ∝ p1+ψ
i P φ−ψ

i c̄i, which in turn implies that equilibrium trade flows will be

symmetric, i.e. Xij = Xji for all i, j ∈ S. The only way the trade can be balanced when

trade frictions are quasi-symmetric is to make trade flows bilaterally balanced. As a result,

equations (6) and (7) simplify to a single set of equilibrium equations, which allows allows

us to relax the conditions on the following theorem regarding existence and uniqueness:

Theorem 1. Consider any model contained within the universal gravity framework where

trade is balanced (i.e. ξi = 1 for all i ∈ S) and Assumption 1 is satisfied. Then:

(i) If 1 + ψ + φ 6= 0, then there exists an interior equilibrium.

(ii) If φ ≥ −1, and ψ ≥ 0 then all equilibria are interior.

(iii) If {φ ≥ 0, ψ ≥ 0} or {φ ≤ −1, ψ ≤ −1} (or, if trade frictions are quasi-symmetric

and either
{
φ ≥ −1

2
, ψ ≥ −1

2

}
or
{
φ ≤ −1

2
, ψ ≤ −1

2

}
) then there is a unique interior equi-

librium.

(iv) If {φ > 0, ψ > 0} or {φ < −1, ψ < −1} (or, if trade frictions are quasi-symmetric

and either
{
φ > −1

2
, ψ > −1

2

}
or
{
φ < −1

2
, ψ < −1

2

}
).

Proof. See Appendix A.1 for parts (i) and (iii) and Online Appendix B.2 for part (ii).

A key advantage of Theorem 1 is that despite the large dimensionality of the param-

eter space (N supply shifters {c̄i}i∈S and N2 trade frictions {τij}i,j∈S), the conditions are

only stated in terms of the two gravity constants. Of course, since we provide sufficient

conditions, there may be certain parameter constellations such as particular geographies

of trade frictions where uniqueness may still occur even if the conditions of Theorem 1 are

14



not satisfied.16,17

The sufficient conditions for existence, interiority, and uniqueness from Theorem 1 are

illustrated in Figure 1. In the case of existence, standard existence theorems (see e.g.

Mas-Colell, Whinston, and Green (1995)) guarantee existence for endowment economies

when preferences are strictly convex. This is also true in the universal gravity framework:

existence of an interior equilibrium may fail only when 1+ψ+φ = 0, which corresponds to

the Armington trade model (without intermediate goods) where σ = 0, i.e. with Leontief

preferences that are not strictly convex. Moreover, in the economic geography example

above, an interior equilibrium does not exist in the knife-edge case where σ = 1+a
a+b

, as

agglomeration forces lead to the concentration of all economic activity in one location (see

Allen and Arkolakis (2014)).

As long as the partial elasticity of aggregate demand with respect to own output price is

greater than negative 1 and the partial elasticity of supply with respect to the real output

price is positive, all equilibria are interior. For example, in the economic geography model

above, if these conditions are satisfied, one can show that the welfare of an uninhabited

location approaches infinity as its population approaches zero, ensuring that all locations

will be populated in equilibrium.

An equilibrium is unique as long as the partial elasticity of aggregate demand to output

prices is negative (i.e. φ ≥ 0) and the partial elasticity of aggregate supply is positive (i.e.

ψ ≥ 0). There is also a unique interior equilibrium the demand elasticity is positive and

the supply elasticity is negative and both elasticities have magnitudes greater than one,

although such parameter constellations are less economically meaningful (and there may

also exist non-interior equilibria). Multiplicity of interior equilibria may arise in cases

when supply and demand elasticities are both positive (which occurs e.g. in trade models

when goods are complements) or when supply and demand elasticities are both negative

(which occurs e.g. in economic geography models when agglomeration forces are stronger

than dispersion forces). Such examples of multiplicity are easy to construct - Appendix B.7

provides examples of multiplicity in a two location world where either the demand elasticity

is negative (in which case the relative demand and supply curves are both upward sloping)

16Alvarez and Lucas (2007) provide an alternative approach based on the gross substitute property to
provide conditions for uniqueness of the Eaton and Kortum (2002) model. In Online Appendix B.6, we
show that the gross substitutes property directly applied to our system may fail if the supply elasticity ψ
is larger in magnitude than the demand elasticity φ, i.e. in ranges ψ > φ ≥ 0 or ψ < φ ≤ −1. Theorem 1
provides strictly weaker sufficient conditions in that regard. Such parameter constellations are consistent
with economic geography models with weak dispersion forces or trade models with large intermediate
goods shares. Importantly, in Section 5, we estimate that ψ > φ > 0 empirically.

17Theorem 1 generalizes Theorem 2 of Allen and Arkolakis (2014) in three ways: 1) it allows for asym-
metric trade frictions; 2) it allows for infinite trade frictions between certain locations; and 3) it applies
to a larger class of general equilibrium spatial model, including notably trade models with inelastic labor
supplies (i.e. models in which ψ = 0). Theorem 1 also provides a theoretical innovation, as it shows how to
extend the mathematical argument of Karlin and Nirenberg (1967) to multi-equation systems of non-linear
integral equations.
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or the supply elasticity is negative (in which case the relative demand and supply curves

are both downward sloping). Finally, quasi-symmetric trade frictions allow us to extend

the range of gravity constants for which uniqueness is guaranteed, but do not qualitatively

change the intuition for the results.

4 The network effects of a trade shock

We now turn to how the universal gravity framework can be used to make predictions of

how a change in trade frictions alter equilibrium trade flows, incomes, and real output

prices in each location.18

To begin, we define two N × 1 vectors (which, with some abuse of language, we will

call “curves”): define the supply curve Qs to be the set of supply equations (11) from C.3

(multiplied by output prices and divided by κ); and define the demand curve Qd to be the

set of market clearing (demand) equations combining C.1, C.2, C.4, and C.5, i.e.:

Qs (p,P) ≡
(
pic̄i

(
pi
Pi

)ψ)
i∈S

(14)

Qd (p,P,Ξ; τ ) ≡
(∑
j∈S

τ−φij p
−φ
i P φ

j pj c̄j

(
pj
Pj

)ψ
Ξξj

)
i∈S

, (15)

where p ≡ (pi)i∈S and P ≡
([∑

j τ
−φ
ji p

−φ
j

]− 1
φ

)
i∈S

are N × 1 vectors and τ ≡ (τij)i,j∈S is

an N2 × 1 vector.19 Note that we express both the supply and demand curves in value

terms, which will prove helpful in deriving the comparative statics in terms of observed

trade flows.

In equilibrium, supply is equal to demand, i.e. Qs (p,P) = Qd (p,P; τ ), and equation

(5) is expressed as follows:

∑
i∈S

Qs
i (p,P) =

∑
i∈S

Qd
i (p,P,Ξ; τ ) ⇐⇒

∑
i∈S

(1− Ξξi) pic̄i

(
pi
Pi

)ψ
= 0.

For notational convenience, define Z (p,P,Ξ) as
∑

i∈S (1− Ξξj) piCi

(
pi
Pi

)ψ
. We fully dif-

ferentiate these equations, along with the definition of the price index, to yield the following

system of 2N + 1 linear equations relating a small change in trade costs, D ln τ , to a small

18In what follows, we focus on the policy shocks that alter bilateral trade frictions {τij}i,j∈S . In Online
Appendix B.8, we show how one can apply similar tools to characterize the theoretical properties and
conduct counterfactuals in an Armington trade model with tariffs.

19One can also conduct comparative static w.r.t. ξ. See Dekle, Eaton, and Kortum (2008).
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change in output prices and price indices, D ln p and D ln P, respectively:

DlnpQs 0 0

0 I 0

0 0 Dln ΞZ


︸ ︷︷ ︸

≡S

−


DlnpQd DlnPQd −DlnPQs Dln ΞQd

Dlnp ln P 0 0

−DlnpZ −DlnPZ 0


︸ ︷︷ ︸

≡D



D ln p

D ln P

D ln Ξ



=


Dln τQd

Dln τ ln P

0


︸ ︷︷ ︸

≡T

D ln τ ,

where S (the supply matrix ) and D (the demand matrix ) are 2N + 1 × 2N + 1 matrices

capturing the marginal effects of a change in the output price on the supply and demand

curves (where the demand matrix also captures the net effect of a change in the price

index), respectively, and T is a 2N + 1 × N2 matrix capturing the marginal effects of a

change in trade costs on the demand curve and price index.

Given expressions (14) and (15), we can write all three matrices solely as a function of

the gravity constants and observables as follows:

S =


(1 + ψ) Y 0 0

0 I 0

0 0 −∑iEi

, D=


−φE + (1 + ψ) X, (φ− ψ) X + ψE, (Ei)i

E−1XT 0 0

(1 + ψ) (Yi − Ei)Ti −ψ (Yi − Ei)Ti 0

 ,

(16)

T =


−φ (X⊗ 1) ◦ (I⊗ 1)(
E−1XT ⊗ 1

)
◦ (1⊗ I)

0

 , (17)

where X is the (observed) N ×N trade flow matrix whose 〈i, j〉th element is Xij, Y is the

N ×N diagonal income matrix whose ith diagonal element is Yi, E is the N ×N diagonal

income matrix whose ith diagonal element is Ei, I is the N × N identity matrix and 1

is an 1 × N matrix of ones, Ii is the standard i-th basis for RN , and where ⊗ represents

the Kronecker product and ◦ represents the element-wise multiplication (i.e. Hadamard

product). 20

A simple application of the implicit function theorem allows us to characterize the

elasticity of prices and price indices to any trade cost shock. Define the 2N + 1× 2N + 1

20In what follows (apart from part (iii) of Theorem 2), we do not assume that C.5 holds in the data, i.e.
that income is necessarily equal to expenditure; rather, we allow for income and expenditure to differ by
a location-specific scalar, i.e. we allow for (exogenous) deficits.
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matrix A ≡ S−D and, with a slight abuse of notation, let A−1
k,l denote the 〈k, l〉th element

of the (pseudo) inverse of A. Then:

Theorem 2. Consider any model contained in the universal gravity framework. Suppose

that X satisfies strong connectivity. If A has rank 2N , then:

(i) The elasticities of output prices and output price indices are given by:

∂ ln pl
∂ ln τij

= −φXijA
−1
l,i +

Xij

Ej
A−1
l,N+j and

∂ lnPl
∂ ln τij

= −φXijA
−1
N+l,i +

Xij

Ej
A−1
N+l,N+j. (18)

(ii) If the largest absolute value of eigenvalues of S−1D is less than one, then A−1 has

the following series expansion:

A−1 =
∞∑
k=0

(
S−1D

)k
S−1,

(iii) If trade frictions are quasi-symmetric, trade is balanced and φ, ψ ≥ 0, then for all

i, l ∈ S and j 6= i, l,

∂ ln (pi/Pi)

∂ ln τil
,
∂ ln (pl/Pl)

∂ ln τli
<
∂ ln (pj/Pj)

∂ ln τil
∂ ln (piQi/Pi)

∂ ln τil
,
∂ ln (plQl/Pl)

∂ ln τli
<
∂ ln (pjQj/Pj)

∂ ln τil
.

and the inequalities have the opposite sign (>) if (φ, ψ ≤ −1).

Proof. See Appendix A.2.

Recall from Section 3 that knowledge of the output prices and price indices up-to-scale

is sufficient to recover real output prices and – along with the normalization C.6 – is suffi-

cient to recover equilibrium trade flows, expenditures, and incomes.21 As a result, part (i)

of Theorem 2 states that given gravity constants and observed data, the (local) counter-

factuals of these variables for all models contained in the university gravity framework are

the same.22

21 Because of homogeneity of degree 0, we can without loss of generality normalize one price; moreover,
from Walras’ law, if 2N − 1 equilibrium conditions hold, then the last equation holds as well. As a result,
A will have at most 2N − 1 rank and A−1 can be calculated by simply eliminating one row and column
of A and then calculating its inverse. The values of the eliminated row can then be determined using the
normalization C.6. For example, if one removes the first row and column, ∂ ln p1

∂ ln τij
can be chosen to ensure

that
∑
i∈S

∂ lnYi
∂ ln τij

= 0 so that C.6 is satisfied.
22In Online Appendix B.9, we show how the “exact hat algebra” (Dekle, Eaton, and Kortum (2008),

Costinot and Rodriguez-Clare (2013)) can be applied to any model in the universal gravity framework to
calculate the effect of any (possibly large) trade shock. The key takeaway – that counterfactual predictions
depend only on observed data and the value of the gravity constants – remains true globally. However,
if the uniqueness conditions of Theorem 1 do not hold, we are unaware of any procedure that guarantees
that the solution found using the “exact hat algebra” approach corresponds to the counterfactual of the
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The second part of Theorem 2 provides a simple interpretation of the counterfactuals as

a shock propagating through the trade network. Consider a shock that decreases the trade

cost between i and j by a small amount ∂ ln τij and define (S−1D)
k
S−1 as the kth degree

effect of the shock. It turns out the kth degree effect is simply the effect of the k − 1th

degree shock on the output prices and price indices of all locations’ trading partners,

holding constant their trading partners’ prices and price indices. To see this, consider first

the 0th degree effect. Holding constant the prices and price indices in all other locations,

the direct effect of a decrease in ∂ ln τij is a shift of the demand curve upward in i by

φXij × ∂ ln τij and a decrease in the price index in j by
Xij
Ej
× ∂ ln τij. To re-equilibriate

supply and demand (holding constant prices and price indices in all other locations), we

then trace along the supply curve to where supply equals demand by scaling the effect by

S−1, for a total effect of S−1∂ ln τ . Consider now the 1st degree effect. We first take the

resulting changes in the price and price index from the 0th degree effect and calculate how

they shift the demand curve (and alter the price index) in all i and j trading partners

by multiplying the 0th degree effect by the demand matrix, i.e. D (S−1∂ ln τ). To find

how this changes the price and price index in each trading partner, (holding constant the

prices and price indices in the trading partners’ trading partners), we then trace along the

supply curve by again scaling the shock by S−1, for a combined effect of S−1DS−1∂ ln τ .

The process continues iteratively, with the kth degree effect shifting the demand curve and

price index according to the k − 1 shock and then re-equilibriated supply and demand by

tracing along the supply curve (holding constant the prices and price indices in all trading

partners), for an effect of (S−1D)
k
S−1∂ ln τ , as claimed.23 The total change in prices and

price indices is the infinite sum of all kth degree shocks.

The third part of Theorem 2 says that the direct impact of a symmetric decline in

trade frictions ∂ ln τil and ∂ ln τli on real output prices (and real expenditure) in the directly

affected locations i and l will be larger than the impact of that shock in any other indirectly

affected location j 6= i, l. If the demand and supply elasticities are positive, then a decline

in trade frictions will cause the real output prices in the directly affected locations to rise

more than any indirectly affected location (the ordering is reversed if the demand and

supply elasticities are negative). This analytical result characterizes the relative impact of

a trade friction shock on different locations in a model with many locations and arbitrary

observed equilibrium. Indeed, it is straightforward to construct a simple example where in the presence
of multiple equilibria, iterative algorithms used to solve the “exact hat algebra” system of equations will
converge to qualitatively different equilibria than what is observed in the data even for arbitrarily small
shocks, implying arbitrarily large counterfactual elasticities. In contrast, the elasticities in Theorem 2 will
provide the correct local counterfactual elasticities around the observed equilibrium even in the presence
of multiple equilibria.

23One can also derive the alternative representation A−1 = −∑∞k=0 D
−1
(
SD−1

)k
, in which the ordering

is reversed: the kth degree effect is calculated by first shifting the supply curve by the k − 1 degree shock
and then tracing along the demand curve to re-equilibriate supply and demand.
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bilateral frictions.24

5 Estimating the gravity constants

In the previous section, we saw that the impact of a trade friction shock on trade flows,

incomes, expenditures, and real output prices in any gravity model can be determined

solely from observed trade flow data and the value the demand and supply elasticities.

In this section, we show how these gravity constants can be estimated. We use data on

international trade flows, so for the remainder of the paper we refer to a location as a

country.

5.1 Methodology

We first derive an equation that shows that the relationship between three observables –

relative trade shares, relative incomes, and relative own expenditure shares – are governed

by the two gravity constants. We then show how this relationship under minor assumptions

can be used as an estimating equation to recover the gravity constants. We begin by

combining C.1 and C.2 to express the expenditure share of country j on trade from i

relative to its expenditure on its own goods as a function of the trade frictions, the output

prices in i and j, and the aggregate demand elasticity:

Xij

Xjj

=

(
τjjpj
τijpi

)φ
.

We then use the relationship pi = Yi/Qi to re-write this expression in terms of incomes

and aggregate quantities and rely on C.3 to write the equilibrium output as a function of

output prices and the output price index:

Xij

Xjj

=

τjj
(
Yj
c̄j

)(
pi
Pi

)ψ
τij

(
Yi
c̄i

)(
pj
Pj

)ψ

φ

. (19)

We now define λjj ≡ Xjj/Ej to be the fraction of income country j spends on its own goods

(j’s “own expenditure share”). By combining C.1 and C.2, we note j’s own expenditure

share can be written as λjj =
(
τjj

pj
Pj

)−φ
, which allows us to write equation (19) (in log

form) as:

ln
Xij

Xjj

= −φ ln
τij
τjj

+ φ ln
Yj
Yi

+ ψ ln
λjj
λii
− φ ln

c̄j
c̄i

+ φψ ln
τjj
τii
. (20)

24Mossay and Tabuchi (2015) prove a similar result in a three country world.
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Equation (20) shows that the demand elasticity φ is equal to the partial elasticity of trade

flows to relative incomes, whereas the supply elasticity ψ is equal to the partial elasticity

of trade flows to the relative own expenditure shares. Intuitively, the greater j’s income

relative to i (holding all else equal, especially the relative supply shifters ln
c̄j
c̄i

), the greater

the price in j relative to i and hence the more it would demand from i relative to j; the

greater the demand elasticity φ, the greater the effect of the price difference on expenditure.

Conversely, because the real output price is inversely related to a country’s own expenditure

share, the greater j’s own expenditure share relative to i, the lower the relative aggregate

supply to j and hence the more j will consume from i relative to j; the larger the supply

elasticity ψ, the more responsive supply will be to differences in own expenditure share.

Equation (20) forms the basis of our strategy for estimating the gravity elasticities φ

and ψ. However, it also highlights two important challenges in estimation. First, because

unobserved trade frictions act as a residual in equation (20), we require a moment condi-

tion along with observed trade flows in order to estimate the gravity elasticities.25 Second,

equation (20) highlights that the gravity elasticities are partial elasticities holding the

(unobserved) relative supply shifters {c̄i}i∈S fixed. Because both income and own expen-

diture shares are correlated with supply shifters through the equilibrium structure of the

model, any estimation procedure must contend with this correlation between observables

and unobservables.

In order to address both concerns, we combine plausibly exogenous observed geographic

variation with the general equilibrium structure of the model to estimate the gravity elas-

ticities. We proceed in a two-stage procedure.26 First, we re-write equation (20) as:

ln
Xij

Xjj

= −φ ln
τij
τjj
− ln πi + ln πj,

where ln πi ≡ φ lnYi + ψ lnλii − φ ln c̄i + φψ ln τii is a country-specific fixed effect. We

assume relative trade frictions scaled by the trade elasticity can be written as a function

of their continent of origin c, continent of destination d, and the decile of distance between

25Relatedly, Online Appendix B.10 shows how for any observed set of trade flows {Xij} and any assumed
set of gravity elasticities {φ, ψ}, own trade frictions {τii}, and supply shifters {c̄i}, there will exist a unique
set of trade frictions {τij}i 6=j for which the observed trade flows are the equilibrium trade flows of the
model..

26While the two step procedure we follow resembles the procedure used in Eaton and Kortum (2002) to
recover the trade elasticity from observed wages, there are two important differences. First, our procedure
applies to a large class of trade and economic geography models and allows us to simultaneously estimate
both the demand (trade) elasticity and the supply elasticity (rather than assuming e.g. that the population
of a country is exogenous and calibrating the model to a particular intermediate good share). Second, our
procedure relies on the general equilibrium structure of the model to generate the identifying variation
(rather than e.g. instrumenting for wages with the local labor supply, which would be inappropriate for
economic geography models).
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the origin and destination countries, l:

−φ ln
τij
τjj

= βlcd + εij,

where εij is a residual assumed to be independent across origin-destination pairs. The

country-specific fixed effect can then be recovered from the following the following equation:

ln
Xij

Xjj

= βlcd − lnπi + ln πj + εij, (21)

where we estimate βlcd non-parametrically using a set of 360 dummy variables (10 distances

deciles × 6 origin continents × 6 destination continents). Let ln π̂i denote the estimated

fixed effect and define ν̂i ≡ ln π̂i − lnπi to be its estimation error.

In the second stage, we write the estimated fixed effect as a function of income and

own expenditure share:

ln π̂i = φ lnYi + ψ lnλii + νi, (22)

where νi ≡ −φ ln c̄i + φψ ln τii + ν̂i is a residual that combines the unobserved supply

shifter, the unobserved own trade friction, and the estimation error from the first stage.

As mentioned above, it is not appropriate to estimate equation (22) via ordinary least

squares, as variation in the supply shifter will affect income and the own expenditure share

through the equilibrium structure of the model, creating a correlation between the residual

and the observed covariates. Intuitively, the larger the supply shifter of a country, the

greater its output and hence the greater the trade flows for a given observed income; since

the country-specific fixed effect ln πi is decreasing in relative trade flows, the OLS estimate

of φ will be biased downwards.

To overcome this bias, we pursue an instrumental variables (IV) strategy, where we use

the general equilibrium structure of the model to construct a valid instrument. To do so,

we calculate the equilibrium trade flows of a hypothetical world where the bilateral trade

frictions and supply shifters depend only on observables. We then use the incomes and

relative own expenditure shares of this hypothetical world as instruments for the observed

incomes and own expenditure shares. These counterfactual variables are valid instruments

as long as (1) they are correlated with their observed counterparts (which we can verify);

and (2) the observable components of the bilateral trade frictions and supply shifters are

uncorrelated with unobserved supply shifters.

Because the first-stage estimation of (21) provides an unbiased estimate of −φ ln
τij
τjj

, we

use the estimated origin-continent-destination-continent-decile coefficients β̂lcd to create our

counterfactual measure of bilateral trade frictions (normalizing own trade frictions τjj = 1).

In the simplest version of our procedure, we then calculate the equilibrium income and own
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expenditure share given these bilateral trade frictions, assuming that the supply shifter c̄i

is equal in all countries. In this version of the procedure, the instrument is valid as long

as the the general equilibrium effects of distance on the origin fixed effects of a gravity

equation are uncorrelated with unobserved heterogeneity in supply shifters (or own trade

frictions). Because we calculate the equilibrium of the model in a counterfactual world

where there is no heterogeneity in supply shifters, it seems reasonable to assume that the

resulting equilibrium income and own expenditure shares that we use as instruments are

uncorrelated with any real world heterogeneity. However, our instrument would be invalid

if there were a correlation between unobserved supply shifters and the observed geography

of a country (e.g. if countries more remotely located were also less productive or less

attractive places to reside).

To mitigate such a concern (and to allow for more realistic variation across countries

in supply), we extend the approach to allow the supply shifter to vary across countries

depending on a vector of (exogenous) observables Xc
i , e.g. land controls like the amount

of fertile land, geographic controls like the distance to nearest coast, institutional controls

like the rule of law, historical controls like the population in 1400, and schooling and R&D

controls like average years of schooling. Given a set of supply shifters {c̄i} that depend only

these observables and the set of trade frictions that depend only on our non-parametric

estimates from above, we re-calculate the equilibrium income and own expenditure share

in each country. We then use the equilibrium values from this hypothetical world as

our instruments, while and control directly for the observables Xc
i in equation (22). As

a result, the identifying variation from the instruments only arises through the general

equilibrium structure of the model.27 Intuitively, differences in observables like land area

in neighboring countries generates variation in the demand that a country faces for its

production, as well as variation in the price it faces for its consumption, even conditional

on its own observables.

There are two things to note about the above procedure. First, to construct the hy-

pothetical equilibrium incomes and own expenditure shares requires assuming values of

the gravity constants φ and ψ for the hypothetical world. In what follows, we choose a

demand elasticity φ = 8.28 and a supply elasticity ψ = 3.76, which correspond to the

27Calculating the counterfactual equilibrium income and own expenditure share in each country when
the supply shifters depend on observables requires assuming a particular mapping between the observables
Xc
i and the supply shifter c̄i. We assume that c̄i = Xc

i β
c and note that the theory implies the following

equilibrium condition:

lnYi =
φ

φ− ψ ln c̄i +
1 + ψ

ψ − φ ln γi +
ψ

ψ − φ ln δi.

As a result, we choose the βc that arise from the OLS regression lnYi = φ
φ−ψX

c
i β

c + εi. Although our
estimates of βc may be biased due to the correlation between Xc

i and εi, this bias only affects the strength
of the instrument, because if each Xc

i is uncorrelated with the residual νi in equation (22) (i.e. Xc
i is

exogenous), then any linear combination of Xc
i will also be uncorrelated with the residual.
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(estimated) demand elasticity estimated and (implicitly calibrated) supply elasticity in

Eaton and Kortum (2002). We should note that while the particular choice of the these

parameters will affect the strength of the constructed instruments, they will not affect the

consistency of our estimates of the gravity constants under the maintained assumption

that bilateral distances are uncorrelated with the unobserved supply shifters conditional

on observables.28

The second thing to note about the estimation procedure is more subtle. As mentioned

in Section 3 and discussed in detail in Online Appendix B.3, when bilateral trade frictions

are “quasi-symmetric” the equilibrium origin and destination shifters will be equal up to

scale. In this case, there will be a perfect log linear relationship between the income of

a country, its own expenditure share and its supply shifter.29 As a result, if we were to

impose quasi-symmetric bilateral trade frictions in the hypothetical world, the equilibrium

income and expenditure shares generated would be perfectly collinear, preventing us from

simultaneously identifying the demand and supply elasticities in the second stage. In-

tuitively, identification of the demand elasticity requires variation in a country’s supply

curve (its destination fixed effect), whereas identification of the supply elasticity requires

variation in a country’s demand curve (its origin fixed effect); when trade frictions are

quasi-symmetric, however, the two co-vary perfectly. Our choice to allow distance to affect

trade frictions differently depending on the continent of origin and continent of destination

introduces the necessary asymmetries in the trade frictions to allow the model constructed

instruments to vary separately, allowing for identification of both the supply and demand

elasticities simultaneously. To address concerns about the extent to which these asym-

metries are sufficient to separately identify the two, we report the Sanderson-Windmeijer

F-test (see Sanderson and Windmeijer (2016)) in the results that follow.

5.2 Data

We now briefly describe the data we use to estimate the gravity constants.

Our trade data comes from the Global Trade Analysis Project (GTAP) Version 7

(Narayanan, 2008). This data provides bilateral trade flows between 94 countries for the

year 2004. To construct own trade flows, we subtract total exports from the total sales

of domestic product, i.e. Xii = Xi −
∑

j 6=iXij. We use the bilateral distances between

countries from the CEPII gravity data set of Head, Mayer, and Ries (2010) to construct

deciles of distance between two countries. We rely on the data set of Nunn and Puga (2012)

to provide a number of country level characteristics that plausibly affect supply shifters,

28In principle, we could search over different values of the gravity constants to find the constellation that
maximizes the power of our instruments. In practice, however, our estimates vary only a small amount
across different values of the gravity constants.

29In particular, (1 + 2φ) lnEi = (2φ) ln c̄i + (1− 2ψ) lnλii + C.
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including “land controls” (land area interacted with the fraction of fertile soil, desert, and

tropical areas), “geographic controls” (distance to the nearest coast and the fraction of

country within 100 kilometers of an ice free coast), “historical controls” (log population

in 1400 and the percentage of the population of European descent), “institutional con-

trols” (the quality of the rule of law). Finally, following Eaton and Kortum (2002), we

also consider “schooling and R&D controls” including the average years of schooling from

UNESCO (2015) and the R&D stocks from Coe, Helpman, and Hoffmaister (2009), where

a dummy variable is included if the country is not in each respective data set.

5.3 Estimation results

Table 2 presents the results of our estimation of equation (20). The first column presents

the ordinary least squares regression; we estimate a positive supply elasticity and neg-

ative demand elasticity, consistent with the discussion above that the OLS estimate of

the demand elasticity is biased downward. Column 2 presents the instrumental variable

estimation where the counterfactual income and own expenditure shares comprising our

instrument are constructed assuming equal supply shifters. After correcting for the bias

arising from the correlation between the unobserved supply shifters and observed incomes

and own expenditure shares, we find positive supply and demand elasticities, although the

demand elasticity is not statistically significant. Columns 3 through 7 sequentially allows

the supply shifter in the construction of the instrument to vary across countries depending

on an increasing number of observables (while including these same observables as controls

in both the first and second stages of the IV estimation of equation (20)). Including these

observables both increases the strength of the instruments and reduces the concern that the

instruments are correlated with unobserved supply shifters. Reassuringly, our estimated

demand and supply elasticities vary only slightly with the inclusion of additional controls.30

In our preferred specification (column 7), we estimate a demand elasticity of φ = 3.72

(95% confidence interval [1.14,6.29] and a supply elasticity ψ = 68.49 (95% confidence in-

terval [5.38,131.60]).31 Hence, our demand elasticity estimate is somewhat lower than the

preferred estimate of Eaton and Kortum (2002) of 8.28 (although similar to their estimate

using variation in wages of 3.6), as well as similar to estimates of trade elasticity around

4 in Anderson and Van Wincoop (2004), Simonovska and Waugh (2014), and Donaldson

(forthcoming). Unlike these papers, however, we also estimate the supply elasticity. Our

point estimate, while noisily estimated, is substantially larger than and statistically dif-

30Figure 4 in the online appendix shows that our instrumental variables of counterfactual income and
own expenditure shares are positively correlated with their observed counterparts, even after differencing
out the observables in the supply shifters.

31While the p-value of the Sanderson-Windmeijer F-test is statistically significant in the first stage
for income, it is only marginally statistically significant for expenditure shares, suggesting that the wide
confidence interval for the supply elasticity may be due in part to a weak instrument.
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ferent (at the 5% level) from the supply elasticity to which Eaton and Kortum (2002)

implicitly calibrate. Moreover, our estimated value is consistent with recent estimates of

labor mobility from the migration literature. To see this, consider an economic geography

framework with intermediate goods, agglomeration forces, and Frechet distributed prefer-

ences over location (see the last row of Table 1). If we match the labor share in production

of 0.21 in Eaton and Kortum (2002) and the agglomeration force of α = 0.10 in Rosenthal

and Strange (2004), then our point estimate of ψ is consistent with a migration elasticity

(Fréchet shape parameter) of 1.4. This is similar to estimates from the migration litera-

ture using observed labor flows and about one-third to one-half the size of within-country

estimates.32

6 The impact of a U.S.-China trade war

We now apply the estimates from Section 5 to evaluate the impact of a trade war between

the U.S. and China. We model the trade war as an increase in the trade frictions between

the U.S. and China (holding constant all other trade frictions). We then characterize how

such a trade war propagates through the trade network using the methodology developed

in Section 4.33

There are two 0th degree effects of the trade war: first, the U.S. and China export less

to each other, causing the output prices in both countries to fall; second, the the cost of

importing increases, causing the price index in both countries to rise. Both effects cause

the real output price to decline, with a greater decline in China because both its export

and import shares with the U.S. are relatively larger.

The top panel of Figure 2 depicts the 1st degree effect on the real output price in all

countries. The effect in the U.S. and China is positive, as the degree 0 decline in output

price reduces the cost of own expenditure (causing the price index to fall in both countries).

In other countries, however, the degree 1 effect is negative, as the U.S. and China demand

less of their goods, causing their trading partner’s output prices to fall. The most negatively

affected countries are those who export the most to the U.S. and China.

Summing across all degree shocks yields the total elasticity of real output prices in

32Ortega and Peri (2013) estimates an migration elasticity to destination country income of 0.6 using
international migration flows and an estimate of 1.8 for the sub-sample of migration flows within the
European Union, albeit not using a log-linear gravity specification. Within countries (aud with log-linear
gravity specifications), Monte, Redding, and Rossi-Hansberg (2015) estimate a migration elasticity of 4.4
in the U.S.; Tombe, Zhu, et al. (2015) estimate a migration elasticity of 2.54 in China, and Morten and
Oliveira (2014) estimate a migration elasticity of 3.4 in Brazil.

33In the counterfactuals that follow, we accommodate the deficits observed in the data by assuming
that the observed ratio of expenditure to income for each country remains remains constant and impose
an aggregate market clearing condition that total income is equal to total expenditure. The results are
qualitatively similar if we instead solve for the (unique) set of balanced trade flows that match the observed
import shares and treat these balanced trade flows as the data.
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each country to the trade war shock, which the bottom panel of Figure 2 depicts.34 Not

surprisingly, the two countries hurt most by a trade war are the U.S. and China. Moreover,

while all countries are made worse off, the countries who are closely linked through the

trading network with the U.S. and China (e.g. Canada, Mexico, Vietnam, and Japan) are

hurt more than those countries that are less connected (e.g. India). All told, we estimate

that a 10% increase in bilateral trade frictions is associated with a decline in real output

price of 0.04% in the U.S. and 0.14% in China. These modest changes in the real output

price are due to the large supply elasticity, causing the aggregate output to reallocate

away from the U.S. and China in response to the trade war. The converse of this result,

however, is that the reallocation of the aggregate output results in large changes to total

real expenditure: for example, in the Armington trade model interpretation, a 10% increase

in bilateral trade frictions causes the total real expenditure to fall by 2.7% in the U.S. and

by 9.8% in China.35

There are two potential concerns about these estimated effects. First, because the

elasticities correspond to an infinitesimal shock, one may worry that the effects of a large

trade war may differ. To address this concern, we calculate the effect of a 50% increase

in bilateral trade frictions using the methodology discussed in Online Appendix B.9. The

correlation between the local elasticities and global changes exceeds 0.99, indicating that

the local relative effect of the trade war is virtually the same as the global effect.36 However,

the local effect does overstate the global effect of such a shock, as we find that log first

differences implied by the global shock are roughly 80% the size of those implied by the

local elasticities. Second, the effects of the trade war above were calculated given the

gravity constants estimated in Section 5; one may be concerned that the effects of the trade

wars may differ substantially across alternative values of these elasticities. To address this

concern, we calculate the effects of a trade war for a large number of different combinations

of supply and demand elasticities.37 Across all constellations in the 95% confidence interval

of the two estimated gravity constants, the calculated elasticities are quite similar, with

a 10% increase in bilateral trade frictions associated with a decline in real output price

between 0.03% and 0.05% in the U.S. and 0.07% and 0.26% in China. Of course, as

Section 4 emphasizes, the particular value of the gravity constants may substantially affect

the impact of counterfactuals more generally.

34Figures 5 through 9 in the Online Appendix depict the impact of the degrees 0, 1, 2, and higher on the
relative prices, relative output, income, the relative price index, and real output prices in each country.

35Recall from Section 2 that while the changes in real output prices are identified from the value of trade
flows alone, without specifying κ in equation (11), the change in total real expenditure is only identified
up to scale. In Armington trade models with intermediates, however, this is not a problem, as κ = 1.

36See Figure 10 in the Online Appendix.
37See Figure 11 in the Online Appendix.
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7 Conclusion

In this paper, we provide a framework that unifies a large set of trade and geography

models. We show that the properties of models within this framework depend crucially on

the value of two gravity constants: the aggregate supply and demand elasticities. Sufficient

conditions for the existence and uniqueness of the equilibria depend solely on the gravity

constants. Moreover, given observed trade flows, these gravity constants are sufficient to

determine the effect of a trade friction shock on trade flows, incomes, and real output price

without needing to specify a particular underlying model.

We then develop a novel instrumental variables approach for estimating the gravity

constants using the general equilibrium structure of the framework. Using our estimates,

we find potentially large losses may arise due to a trade war between U.S. and China occur.

By providing a universal framework for understanding the general equilibrium forces in

trade and geography models, we hope that this paper provides a step toward unifying the

quantitative general equilibrium approach with the gravity regression analysis common

in the empirical trade and geography literature. Toward this end, we have developed a

toolkit that operationalizes all the theoretical results presented in this paper.38 We also

hope the tools developed here can be extended to understand other general equilibrium

spatial systems, such as those incorporating additional types of spatial linkages beyond

trade frictions.

38The toolkit is available for download on Allen’s website.
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Variety and the Gains from Trade,” American Economic Review, Papers and Proceedings, 98(4), 444–

450.

Armington, P. S. (1969): “A Theory of Demand for Products Distinguished by Place of Production,”

International Monetary Fund Staff Papers, 16, 159–178.

Arrow, K. J., F. Hahn, et al. (1971): “General competitive analysis,” .

Baldwin, R., and D. Taglioni (2006): “Gravity for dummies and dummies for gravity equations,”

Discussion paper, National Bureau of Economic Research.

Bartelme, D. (2014): “Trade Costs and Economic Geography: Evidence from the US,” mimeo.

Bernard, A. B., J. Eaton, J. B. Jensen, and S. Kortum (2003): “Plants and Productivity in

International Trade,” American Economic Review, 93(4), 1268–1290.

29



Berry, S., A. Gandhi, and P. Haile (2013): “Connected substitutes and invertibility of demand,”

Econometrica, 81(5), 2087–2111.

Bosker, M., and B. Westbrock (2016): “A theory of trade in a global production network,” .

Caliendo, L., and F. Parro (2010): “Estimates of the Trade and Welfare Effects of NAFTA,”

Manuscript, University of Chicago and Yale University.

Chaney, T. (2008): “Distorted Gravity: The Intensive and Extensive Margins of International Trade,”

American Economic Review, 98(4), 1707–1721.

Cheng, L. (1985): “Inverting systems of demand functions,” Journal of Economic Theory, 37(1), 202–210.

Coe, D. T., E. Helpman, and A. W. Hoffmaister (2009): “International R&D spillovers and insti-

tutions,” European Economic Review, 53(7), 723–741.

Costinot, A., D. Donaldson, and I. Komunjer (2010): “What Goods Do Countries Trade? A

Quantitative Exploration of Ricardo’s Ideas,” Forthcoming, Review of Economic Studies.

Costinot, A., and A. Rodriguez-Clare (2013): “Trade theory with numbers: Quantifying the con-

sequences of globalization,” Discussion paper, National Bureau of Economic Research.
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Figure 1: Existence and uniqueness

φ

ψψ

−1

−1

−1

2

−1

2

Quasi-symmetry

General Case

Interior equilibria

Notes : This figure shows the regions in (φ, ψ) space for which the gravity equilibrium is
unique and interior. Existence can be guaranteed throughout the entire region except for
the case 1 + φ+ ψ = 0.
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Figure 2: The network effect of a U.S.-China trade war

(a) Degree 1 Effect

Elasticity of real output prices
(-.0001981,.007504]
(-.0002542,-.0001981]
(-.0003201,-.0002542]
(-.0003927,-.0003201]
(-.00049,-.0003927]
(-.0005711,-.00049]
(-.0006885,-.0005711]
(-.001015,-.0006885]
(-.0013961,-.001015]
[-.0058131,-.0013961]
No data

(b) Total Effect

Elasticity of real output prices
(-.0008107,-.0004488]
(-.0009023,-.0008107]
(-.0009692,-.0009023]
(-.0010659,-.0009692]
(-.001103,-.0010659]
(-.0012468,-.001103]
(-.0014063,-.0012468]
(-.0016849,-.0014063]
(-.0022785,-.0016849]
[-.0142055,-.0022785]
No data

Notes : This figure depicts the elasticity of real output prices to an increase in the bilateral
trade frictions between the U.S. and China (a “trade war”) in all countries. The top
panel depicts the “Degree 1” effect, which is the effect of the direct shock on the U.S. and
China on all countries through the trade network, holding constant the output prices and
quantities of their trading partners fixed. The bottom panel shows the total effect of the
trade war on the real output price in each country.
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A Proofs

A.1 Proof of Theorem 1

Proof. Part i) The proof proceeds as follows. First we transform the equilibrium conditions to
the associated non-linear integral equations form. However, we cannot directly apply the fixed
point theorem for the non-linear integral equations since the system does not map to a compact
space. Therefore we need to “scale” the system so that we can apply the fixed point, which
implies that there exists a fixed point for the scaled system. Finally we construct a fixed point
for the original non-linear integral equations. In this subsection, we show how to set up in the
associated integral equation form, and apply the fixed point theorem. The other technical parts
are proven in Online Appendix B.4. Note that our result proposition is a natural generalization
of Karlin and Nirenberg (1967) to a system of non-linear integral equations.

Define z as follows:

z ≡
(

(xi)i
(yi)i

)
≡

(p1+ψ+φ
i P−ψi

)
i(

P−φi

)
i

 .

Then the system of equations (6) and (7) of the general equilibrium gravity model is re-written
in vector form: (

(xi)i
(yi)i

)
=

(∑
jKij c̄

−1
i c̄jx

a11
j ya12j∑

jKjix
a21
j ya22j

)
, (23)

where A = (aij)i,j is given by

A =

(
1+ψ

1+ψ+φ − 1+φ
1+ψ+φ

− φ
1+ψ+φ

ψ
1+ψ+φ

)
.

Also the kernel, Kij , is given by Kij = τ−φij . Notice that we cannot directly apply Browser’s fixed
point theorem for equation (23) since there are no trivial compact domain for equation (23).
Therefore consider the following “scaled” version of equation (23).

z =

(
(xi)i
(yi)i

)
=


∑
j Kij c̄

−1
i c̄jx

a11
j y

a12
j∑

i,j Kij c̄
−1
i c̄jx

a11
j y

a12
j∑

j Kjix
a21
j y

a22
j∑

i,j Kjix
a21
j y

a22
j

 ≡ F (z) , (24)

and F is defined over the following compact set C:

C =
{
x ∈ ∆

(
RN+
)

;xi ∈ [x, x]∀i
}
×
{
y ∈ ∆

(
RN+
)

; yi ∈
[
y, y
]
∀i
}
, (25)

where the bounds for x and y are respectively given as follow:

x̄ ≡ max
i,j

Kij c̄
−1
i c̄j∑

i,jKij c̄
−1
i c̄j

x ≡ min
i,j

Kij c̄
−1
i c̄j∑

i,jKij c̄
−1
i c̄j

y ≡ max
i,j

Kji∑
i,jKji

y = min
i,j

Kji∑
i,jKji

.

It is trivial to show that F maps from C to C and continuous over the following compact set C,
so that we can apply Brouwer’s fixed point and there exists an fixed point z∗ ∈ C.

There are two technical points needed to be proven; first, there exists a fixed point for the
original (un-scaled) system (23); second, the equilibrium z∗ is strictly positive. These two claims
are proven in Lemma 1 and Lemma 2 in Online Appendix B.4, respectively.
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Part (iii) It suffices to show that there exists a unique interior solution for equation (23).
Suppose that there are two strictly positive solutions (xi, yi) and (x̂i, ŷi) such that there does not
exist t, s > 0 satisfying

(xi, yi) = (tx̂i, sŷi) .

Namely, two solutions are “linearly independent.” First note that for any i ∈ S, we can evaluate
one of equation (23).

xi
x̂i

=
1

x̂i

∑
j∈S

Kij c̄
−1
i c̄j

(
xj
x̂j

)α11
(
yj
ŷj

)α12

(x̂j)
α11 (ŷj)

α12 (26)

6 max
j∈S

(
xj
x̂j

)α11

max
j∈S

(
yj
ŷj

)α12

. (27)

Taking the maximum of the left hand side,

max
i∈S

xi
x̂i

6 max
j∈S

(
xj
x̂j

)α11

max
j∈S

(
yj
ŷj

)α12

. (28)

Lemma 3 in Online Appendix B.4 shows that the inequality is actually strict. Analogously, we
obtain

min
i∈S

xi
x̂i

> min
j∈S

(
xj
x̂j

)α11

min
j∈S

(
yj
ŷj

)α12

. (29)

Dividing equation (28) by equation (29), it is shown that

1 6 µx ≡
maxi∈S

xi
x̂i

mini∈S
xi
x̂i

<
maxj∈S

(
xj
x̂j

)α11

minj∈S

(
xj
x̂j

)α11
×

maxj∈S

(
yj
ŷj

)α12

minj∈S

(
yj
ŷj

)a12 = µ|α11|
x × µ|α12|

y ,

where

µy ≡
maxi∈S

yi
ŷi

mini∈S
yi
ŷi

.

The same argument is applied to obtain the following inequality

1 6 µy ≡
maxi∈S

yi
ŷi

mini∈S
yi
ŷi

<
maxj∈S

(
xj
x̂j

)α21

minj∈S

(
xj
x̂j

)α21
×

maxj∈S

(
yj
ŷj

)α22

minj∈S

(
yj
ŷj

)α22
= µ|α21|

x × µ|α22|
y .

Taking logs in the two inequalities and exploiting the restriction we can write(
lnµx
lnµy

)
<

(
|α11| |α12|
|α21| |α22|

)
︸ ︷︷ ︸

=|A|

(
lnµx
lnµy

)
, (30)

which from the Collatz–Wielandt formula, equation (30) implies that the largest eigenvalue of
|A| is greater than one:

ρ (|A|) > 1.

However, we prove in Lemma 4 in Online Appendix B.4 that the sufficient condition in part (ii) of
Theorem 1 guarantees that the largest absolute eigenvalue is 1. As a result, this is a contradiction.

Quasi-symmetry) When the bilateral trade frictions satisfy quasi-symmetry, then we can
reduce the system toN dimensional integral system (see Online Appendix B.3). Then the same
logic used above can be applied to show there exists a unique strictly positive solution. As
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mentioned above, this result follows directly from Karlin and Nirenberg (1967) and is summarized
in Theorem 2.19 of Zabreyko, Koshelev, Krasnosel’skii, Mikhlin, Rakovshchik, and Stetsenko
(1975). The same argument for (iv) is used for convergence.

A.2 Proof of Theorem 2

Proof. Part (i) Equation (18) is a direct application of the implicit function theorem. Define a
function F : R2N → R2N as follows.

Fi

(
(ln pi)

N
i=1 , (lnPi)

N
i=1

)
= κc̄ip

1+ψ
i P−ψi − κ

∑
k

τ−φik p−φi c̄kP
φ−ψ
k p1+ψ

k Ξξk

FN−1+i

(
(ln pi)

N
i=1 , (lnPi)

N
i=1

)
= P−φi −

∑
k

τ−φki p
−φ
k

Applying the implicit function theorem for F, we obtain the comparative static (18). As in Dekle,
Eaton, and Kortum (2008), the matrix A and T can be expressed in terms of observables.

Part (ii) Notice that A is written as follows:

A = S
(
I− S−1D

)
,

where S and D are defined by equation (16). If the largest absolute eigenvalue for S−1D is less

than 1, then A−1 is expressed as
∑∞

k=0

(
S−1D

)k
S−1. Note that we could have similarly written

A = −
(
I− SD−1

)
D, so that if the largest eigenvalue for SD−1 is less than 1, A−1 can be

expressed as −∑∞k=0 D
−1
(
SD−1

)k
, as noted in footnote 23.

Part (iii) When quasi-symmetric assumption and balanced trade are imposed, destination
effects are proportional to the associated origin effects. Therefore as shown in Online Appendix
B.3, the equilibrium is characterized by the following single non-linear system of equations:

p
1+ψ−ψ 1+ψ+φ

ψ−φ
i

(
τAi
τBi

)−ψ φ
ψ−φ

(c̄i)
φ

ψ−φ︸ ︷︷ ︸
=Yi/κ

=
∑
j∈S

τ̃−φij p−φi
(
τAi
)−φ (

τAj
)−φ

p−φj︸ ︷︷ ︸
=Xij/κ

(31)

As before, define zi for all i ∈ S as follows:

zi (p; τ) = κp
1+ψ−ψ 1+ψ+φ

ψ−φ
i

(
τAi
τBi

)−ψ φ
ψ−φ

(c̄i)
φ

ψ−φ − κ
∑
j∈S

τ̃−φij p−φi
(
τAi
)−φ (

τAj
)−φ

p−φj .

Then apply the implicit function theorem to (31),

∂ ln p

∂ ln τil
= −2

 ∂z

∂ ln p︸ ︷︷ ︸
N×N


−1

∂z

∂ ln τil︸ ︷︷ ︸
N×1

. (32)

Note that numerical number 2 shows up to preserve quasi-symmetry of trade frictions. As in the
general trade friction case, ∂z

∂ ln p is expressed as observables:

∂z

∂ ln p
=

[
φ

1 + ψ + φ

φ− ψ

] [
Y +

φ− ψ
1 + ψ + φ

X

]
,
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where Y = diag (Yi) and X = (Xij)i,j∈S . Define A as follows:

A = Y +
φ− ψ

1 + ψ + φ
X.

From Lemma 5, A has positive diagonal elements and is dominant of its rows. Equation (32) is

∂ ln pi
∂ ln τil

= −2
φ− ψ

1 + ψ + φ
A−1
ii Xil,

∂ ln pj
∂ ln τil

= −2
φ− ψ

1 + ψ + φ
A−1
ji Xil.

Since the price index is log-linear w.r.t. the associated output price, we have

∂ lnPi
∂ ln τil

=
1 + ψ + φ

ψ − φ
∂ ln pi
∂ ln τil

.

Therefore, the real output price is

∂ ln (pi/Pi)

∂ ln τil
=

(
2φ+ 1

φ− ψ

)
∂ ln pi
∂ ln τil

= −2
2φ+ 1

1 + ψ + φ
A−1
ii Xil.

Then the ordering of the real output price follows from part (iii) of Theorem 2 , A−1
ii > A−1

ji for
j ∈ S − i. The result for real expenditure then follows immediately from C.5 and equation (11),
as Ei/Pi ∝ c̄i (pi/Pi)

1+ψ:

∂ ln (piQi/Pi)

∂ ln τil
= −2

2φ+ 1

1 + ψ + φ
(1 + ψ)A−1

ii Xil +
∂ lnκ

∂ ln τil︸ ︷︷ ︸
common

.

By the same argument, the ordering of
(
∂ ln(piQi/Pi)

∂ ln τil

)
follows.
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B Online Appendix (not for publication)

This Online Appendix provides some additional results referenced in the paper.

B.1 Recovering the equilibrium variables from the Universal Grav-
ity conditions

In this subsection, we show how the universal gravity conditions C.1-C.5 can be combined to
derive equations (6) and (7), which can be used to solve for equilibrium prices and price indices
up to scale. We then show how information of these prices and price indices up-to-scale can be
used to solve for the level of real output prices {pi/Pi}i∈S and, combined with the numeraire in
C.6, to determine the equilibrium level of income {Yi}i∈S , expenditure {Ei}i∈S , and trade flows
{Xij}i,j∈S . Finally, we show how all other endogenous variables can be recovered up-to-scale if
the equilibrium prices and price indices are known up to scale.

B.1.1 From Universal Gravity C.1-C.5 to Equations (6) and (7)

We first show Universal Gravity C.1-C.5 imply equations (6) and (7).
Combing C.1 and C.2 (in particular the gravity equation (10)):

Xij = τ−φij p−φi P φj Ej , (33)

where recall from C.2 that the price index can be written as:

P−φi ≡
∑
j∈S

τ−φji p
−φ
j (34)

Combining equation (33) with C.(4) and C.(5) yields:

piQi =
∑
j∈S

τ−φij p−φi P φj pjQj (35)

Finally, we substitute C.3 into equation (35) to yield:

pi

(
c̄i

(
pi
Pi

)ψ)
=
∑
j∈S

τ−φij p−φi P φj pj

(
c̄j

(
pj
Pj

)ψ)
(36)

Note that equations (34) and (36) are equivalent to equations (6) and (7). Hence, C.1-C. 5 imply
equations (6) and (7), as claimed. There are two things to note about equilibrium equations (34)
and (36): first, they depend only on output prices {pi}, the price indices {Pi}i∈S , and exogenous
model fundamentals (in particular, they do not depend on the endogenous scalar κ); second,
they are homogeneous of degree zero with respect to {pi, Pi}i∈S , so the scale of prices (and price
indices) are undetermined.

B.1.2 From Equations (6) and (7) to endogenous variables

We now show that given a solution to equations (6) and (7), we can construct all endogenous
variables in the models. We divide the derivations into endogenous variables determined up to
scale and endogenous variables for which the scale is known (given the choice of numeraire in C.6.
Suppose that we have a set of prices {pi}i∈S and price indices {Pi}i∈S that solve equations (6)
and (7). Note that because equations (6) and (7) are homogeneous of degree zero with respect to
{pi, Pi}i∈S , for any scalar α, the normalized prices p̃i ≡ 1

αpi and price indices P̃i ≡ 1
αPi continue

to satisfy equations (6) and (7).
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We first solve for the real output price. Note that for any choice of α, the real output price
{pi/Pi}i∈S remains unchanged, so its level is unaffected by the unknown scalar.

We now solve for quantities. From equation (11), the quantity in location i does not depend
on α, but it does depend on the unknown scalar κ as follows:

Qi = κc̄i

(
pi
Pi

)ψ
.

Hence, equilibrium quantities are only determine up-to-scale.
We now solve for income and expenditure. From C.4 and C.5 we have:

Ei = Yi = piQi.

Applying the numeraire in C.6 then yields:∑
i∈S

Yi = 1 ⇐⇒∑
i∈S

piQi = 1 ⇐⇒

κα
∑
i∈S

p̃ic̄i

(
p̃i

P̃i

)ψ
= 1 ⇐⇒

κα =

(∑
i∈S

p̃ic̄i

(
p̃i

P̃i

)ψ)−1

,

which, as claimed, pins down the product of the unknown quantity scalar and unknown price
scalar. Given κα, we can now determine the level of income and expenditure as follows:

Ei = Yi = piQi ⇐⇒

Ei = Yi =
p̃ic̄i

(
p̃i
P̃i

)ψ(∑
j∈S p̃j c̄j

(
p̃j
P̃j

)ψ) ,
as claimed.

We now determine the level of trade flows using equation (33):

Xij = τ−φij p−φi P φj Ej ⇐⇒

Xij =
τ−φij p̃−φi∑
k∈S τ

−φ
kj p̃

−φ
k

 p̃jCj

(
p̃j
P̃j

)ψ
(∑

k∈S p̃kCk

(
p̃k
P̃k

)ψ)
 .

Other than real output prices {pi/Pi}i∈S , income {Yi}i∈S , expenditure {Ei}i∈S , and trade flows
{Xij}i,j∈S , all other endogenous variables are determined only up-to-scale, as they depend either

on the price scalar α (i.e. output prices p̃i, price indices P̃i, bilateral prices pij = τij p̃i, and the
quantity traded Qij = Xij/τijpi) or the quantity scalar κ (i.e. quantities Qi).

42



B.2 Proof of Theorem 1 part (ii)

We first provide a general mathematical formulation to incorporate non-interior solutions. Let

the equilibrium be a duple (pi, Qi) ∈ RN+ × RN+ such that for all i ∈ S,

Qi =
∑
j

τ−φ−1
ij p−φ−1

i∑
k∈S τ

−φ
kj p

−φ
k

pjQj (37)

(pi, Qi) ∈ Fi (p,Q) (38)

where F is a supply condition, which might be a correspondence. (The fact that F might
be correspondence allows us to extend the framework to allow for non-interior solutions). In
particular, we define F as follows: We say (pi, Qi) ∈ Fi (p,Q) if and only if

sign (ψ)

[
Qi − κ

(
pi

Pi (p)

)ψ]
≥ 0 (39)

Qi = κ

(
pi

Pi (p)

)ψ
if Qi > 0, (40)

and where
(

0
0

)
is defined as 0. That is, if Qi = 0, then we replace C.3 with an inequality. For

example, in an economic geography model, inequality constraint (39) corresponds to welfare
equalization. If there are people living in location i, then Qi is given by equality (40). If not,
then the welfare living in location i should be lower than one obtained in other places, which is
represented as the inequality (39).

As we mentioned in Section 3, we restrict our attention to non-trivial equilibria where there is
positive production in at least one location. To show that all (non-trivial) equilibria are interior,
it then suffices to show that if some locations produces nothing, then all other locations must
also produce nothing.

Suppose that Ql = 0 for some l ∈ S. Then from equation (37) for l:

0 =
∑
j

τ−φlj p−φ−1
l∑

k∈S τ
−φ
kj p

−φ
k

pjQj︸ ︷︷ ︸
≥0

, (41)

which in turn implies that for all j ∈ S,

τ−φlj p−φ−1
l

gj
pjQj = 0, (42)

where gj =
∑

k∈S τ
−φ
kj p

−φ
k .

Note that there are two reasons why equation (42) is zero for all j; either (1) ; or (2) for all

j ∈ S, τ−φlj
pjQj
gj

= 0. We will prove a contradiction in both cases.

First assume that (1) p−φ−1
l = 0, which if φ > −1 implies that pl =∞. While (pl, Ql) = (∞, 0)

satisfies equation (41), it does not satisfy equation (38). To see this, note:

0 = Qi < κ

 pi

g
− 1
φ

i

ψ

=∞,

which contradicts with equation (39) since ψ ≥ 0. Therefore pl needs to be finite, pl <∞.
Now assume that (2) for all j ∈ S, τ−φlj

pjQj
gj

= 0. Since the price for country l is finite,
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equation (42) is reduced to

τ−φlj
pjQj
gj

= 0

for all j ∈ S. An equivalent expression is that for all countries connected with l, j ∈ Sl =
{k ∈ S; τlk <∞} ,

pjQj = 0 or gj =∞. (43)

Fix any country j ∈ Sl. Suppose that pj , Qj > 0 Then equation (43), gj = ∞. Then for all
(pj , Qj) ∈ R+ × R if ψ ≥ 0 we have

∞ = κ

 pj

g
− 1
φ

j

ψ

≤ Qj = 0,

which is a contradiction. Therefore in order to satisfy equation (43), pj or Qj needs to be zero.
Suppose that pj = 0. Then we have

0 = κ

 pj

g
− 1
φ

j

ψ

≤ Qj .

If Qj > 0, then C. (3). Therefore, Qj = 0. Therefore Qj needs to be zero for all j ∈ Sl.
So far, we have shown that if Ql = 0 then the connected countries j ∈ Sl produce nothing,

Qj = 0. Because of strong connectedness, any country n is connected with l through third
countries. Therefore, by repeating the argument along with the chain, we have Qn = 0 for all
n ∈ S.

As a result, if φ ≥ −1, and ψ ≥ 0 then all equilibria are interior, as claimed.

B.3 Quasi-symmetric trade frictions

In this subsection, we show that when trade frictions are quasi-symmetric, then balanced trade
implies that the origin and destination fixed effects of the gravity trade flow expression are equal
up to scale.

We first formally define “quasi-symmetry.” We say that the set of trade frictions {τij}i,j∈S
are quasi-symmetric if there exists a set of origin scalars

{
τAi
}
i∈S ∈ RN++, destination scalars{

τBi
}
i∈S ∈ RN++, and a symmetric matrix {τ̃ij}i,j∈S where τ̃ij = τ̃ji for all i, j ∈ S such that we

can write:
τij = τAi τ

B
i τ̃ij ∀i, j ∈ S.

Loosely speaking, quasi-symmetric trade frictions are those that are reducible to a symmetric
component and exporter- and importer-specific components. While restrictive, it is important
to note that the vast majority of papers which estimate gravity equations assume that trade
frictions are quasi-symmetric; for example Eaton and Kortum (2002) and Waugh (2010) assume
that trade frictions are composed by a symmetric component that depends on bilateral distance
and on a destination or origin fixed effect.

Combining the universal gravity conditions C. 1 and C. 2 allows us to write the value of
bilateral trade flows from i to j as:

Xij = τ−φij p−φi P φj Ej ,

which we now re-write as:
Xij = κτ−φij γiδj , (44)
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where we call γi ≡ p−φi the origin fixed effect and δi ≡ P φi Ei = c̄iP
φ−ψ
i p1+ψ

i the destination fixed
effect.

Proposition 1. If trade frictions are quasi-symmetric, then in any model within the universal
gravity framework, the product of the equilibrium origin fixed effect and the origin scalar will be
equal to the product of the equilibrium destination fixed effects and the destination fixed effect up
to scale, i.e.: for some scalar λ > 0,(

τAi
)−φ

γi = λ
(
τBi
)−φ

δi ∀i ∈ S.

Proof. We first note that market clearing condition C.4 and balanced trade condition C.5 together
imply that:

∑
j∈S Xij =

∑
j∈S Xji ∀i ∈ S. Combining this with the gravity expression (44) and

quasi-symmetry implies:∑
j

κτ−φij γiδj︸ ︷︷ ︸
=Xij

=
∑
j

κτ−φji γjδi︸ ︷︷ ︸
Xji

⇐⇒

(
τAi
)−φ

γi(
τBi
)−φ

δi
=

∑
j∈S τ̃

−φ
ij

(
τAj

)−φ
γj∑

j∈S τ̃
−φ
ij

(
τBj

)−φ
δj

=
∑
j∈S

τ̃−φij

(
τBj

)−φ
δj∑

k∈S τ̃
−φ
ik

(
τBk
)−φ

δk
×

(
τAj

)−φ
γj(

τBj

)−φ
δj

.

It is easy to show that
(τAi )

−φ
γi

(τBi )
−φ
δi

= 1 is a solution to this problem for any kernel. From the

Perron-Frobenius theorem, the solution is unique up to scale. Therefore we have:(
τAi
)−φ

= λ
(
τBi
)−φ

δi ∀i ∈ S, (45)

as required.

Proposition 1 has a number of important implications. First, Proposition 1 allows one to
simplify the equilibrium system of equations 6 and 7 into a single non-linear equation when
φ 6= ψ: (

p
1+ψ+φ
ψ−φ

i

)−φ
= (λ)

φ
ψ−φ (c̄i)

φ
ψ−φ

∑
j∈S

τ̃−φij
(
τAi
) φ2

ψ−φ
(
τBi
)− φψ

ψ−φ
(
τAj
)−φ

p−φj , i ∈ S, (46)

which simplifies the characterization of the theoretical and empirical properties of the equilibrium.
Notice that λ is an endogenous scalar. Since (46) holds for any location i ∈ S, λ is expressed as

λ
φ

ψ−φ =

∑
i

(
p−φi

) 1+ψ+φ
ψ−φ

∑
i

∑
j∈S τ

−φ
ij

(
τAi
τBi

) φ2

ψ−φ
c̄

φ
ψ−φ
i p−φj

.

Substituting above expression, we obtain:

(
p−φi

) 1+ψ+φ
ψ−φ

∑
i

(
p−φi

) 1+ψ+φ
ψ−φ

=
∑
j∈S

τ−φij

(
τAi
τBi

) φ2

ψ−φ
c̄

φ
ψ−φ
i p−φj∑

i

∑
j∈S τ

−φ
ij

(
τAi
τBi

) φ2

ψ−φ
c̄

φ
ψ−φ
i p−φj

.

Notice that the system is now homogeneous degree 0. Therefore, if φ /∈
{
−1

2 , ψ, 0
}
, then we can

normalize λ = 1 without loss of generality.
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Second, by showing that the origin and destination fixed effects are equal up to scale, Propo-
sition 1 provides offers an analytical characterization of the equilibrium. For example, given the
definition of the origin and destination fixed effects, Proposition 1 can equivalently be expressed
as:

piPi ∝
τBi
τAi

E
− 1
φ

i , (47)

i.e. there is a log-linear relationship between output prices, the price index and total expenditure
in a location.

Third, it is straightforward to show that quasi-symmetry implies that equilibrium trade flows
will be bilaterally symmetric, i.e. Xij = Xji for all i, j ∈ S, allowing one to test whether trade
frictions are quasi-symmetric directly from observed trade flow data.

Finally, we should note that the results of Proposition 1 have already been used in the lit-
erature for particular models, albeit implicitly. The most prominent example is Anderson and
Van Wincoop (2003), who use the result to show the bilateral resistance is equal to the price
index.39 To our knowledge, Head and Mayer (2013) are the first to recognize the importance of
balanced trade and market clearing in generating the result for the Armington model; however,
Proposition 1 shows that the result applies more generally to any model with quasi-symmetrical
trade frictions in the universal gravity framework.

B.4 Proofs of the lemmas used in Theorem (1)

There are 4 lemmas which are not proven in the paper. In this section, we discuss them carefully.
Before proving these lemmas, we discuss how we use them in the proof. In the proof, we show a
fixed point for the “scaled” system, not the actual system. Therefore it needs to be shown that
there exists a fixed point for the actual system, which is shown in Lemma 1. Then we argue that
the solution we obtain is strictly positive, which is guaranteed by Assumption 1. We emphasize
the connectivity assumption is crucial here. These two lemmas are used in Part i) Theorem 1.

Part ii) shows that there exists an unique solution. During the proof, we argue that 28
should hold with strict inequality. Again the connectivity allows us to show this result (Lemma
3). After establishing this strict inequality, we follow the argument by Allen, Arkolakis, and Li
(2014), which requires that the largest absolute eigenvalues for |A| are less than 1. Since A is a
2-by-2 matrix, we can compute the eigenvalues by hand and show that one of them is exactly 1,
and the other is less than 1 if the conditions in Part ii) are satisfied.

Lemma 1. Suppose that z solves (24). Then there exists ẑ solving (23).

Proof. First it is easy to show40∑
i,j∈S

Kij c̄
−1
i c̄jx

a11
j ya12j =

∑
i,j∈S

Kjix
a21
j ya22j . (50)

39The result is also used in economic geography byAllen and Arkolakis (2014) to simplify a set on
non-linear integral equations into a single integral equation.

40To see this, multiply c̄ix
a21
i ya22i = c̄ip

−φ
i , to the first equations of (24) and sum over i;

∑
i

c̄ip
1+ψ
i P−ψi =

∑
i

∑
j Kij c̄jx

a21
i ya22i xa11j ya12j∑

i,j Kij c̄
−1
i c̄jx

a11
j ya12j

. (48)

Also multiply c̄ix
a11
i ya12i = c̄iP

φ−ψ
i p1+ψ

i to the second equations (24) and sum over i;

∑
i∈S

c̄ip
1+ψ
i P−ψi =

∑
i∈S
∑
j∈S Kij c̄jx

a21
i ya22i xa11j ya12j∑

i∈S,j∈S Kjix
a21
j ya22j

. (49)

Notice that the LHS is the same as one in (48). Also the numerator of the RHS in (48) is the same as one
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Guess a solution

ẑ =

(
(x̂i)i
(ŷi)i

)
=

(
t−1 (xi)i
t−1 (yi)i

)
, (51)

where t =
(∑

i,j∈SKij c̄
−1
i c̄jx

a21
j ya22j

) 1
1−a11−a12 =

(∑
i,j∈SKjix

a21
j ya22j

) 1
1−a21−a22 .41 Then it is easy

to verify that (51) solves (23); in particular, note that

x̂i = t−1

∑
j∈SKij c̄

−1
i c̄jx

a11
j ya12j∑

i,j∈SKij c̄
−1
i c̄jx

a11
j ya12j

= t1−a11−a12

∑
j∈SKij c̄

−1
i c̄j (x̂j)

a11 ŷa12j∑
i,j∈SKij c̄

−1
i c̄jx

a11
j ya12j

=
∑
j∈S

Kij c̄
−1
i c̄j x̂

a11
j ŷa12j .

We can also show that the second equations in (23) are also solved in the same vein:

ŷi = t

∑
j∈SKjix

a21
j ya22j∑

i,j∈SKjix
a21
j ya22j

= t1−a21−a22

∑
j∈SKjix̂

a21
j ŷa22j∑

i,j∈SKjix
a21
j ya22j

=
∑
j∈S

Kjix̂
a21
j ŷa22j .

The above two equations confirm that x̂i and ŷi is a solution to (23).

Lemma 2. If {τij}i,j satisfies Assumption 1, then the fixed point for (24) is strictly positive.

Proof. We need to consider four different cases for the combinations of a11, a12 satisfying different
inequalities. We will consider the case a11, a12 > 0 since the logic in the other cases is the same.
We proceed by contradiction. Suppose that there is a solution x to equation (24) such that
for some i ∈ S xi = 0. Consider an arbitrary location n 6= i and consider a connected path,
Kc
in ≡ Kiπ1 × ...×Kπmn > 0 for some m(∗). Then, from the first of equations in (23) notice that

xi =
∑
j∈S

Kijx
a11
j ya12j ≥ Kiπ1︸︷︷︸

6=0

xa11π1 y
a12
π1 .

Note that Kiπ1 is strictly positive due to (∗). Then either xn or yn or both are zero if a11 and
a11 > 0. Ifxn = 0 this argument holds for anyn so this is a contradiction with the non-zero
equilibrium proved above. Else if yn = 0 we can repeat the argument the second of the equations
in (23) to establish another contradiction. Notice that if either of α11, α12 = 0 a contradiction is
also easy to establish.

Lemma 3. Equation 28 holds with strict inequality.

To that end, define the set of directly connected countries to each location i ∈ S as Sci ≡
{j ∈ S : Kij > 0} . Then notice that equation (26) combined with our equality assumption on
equation (28) yields

xi
x̂i

=
1

x̂i

∑
j∈Sci

Kij c̄
−1
i c̄j

(
xj
x̂j

)α11
(
yj
ŷj

)α12

(x̂j)
α11 (ŷj)

α12 = max
j∈S

(
xj
x̂j

)α11

max
j∈S

(
yj
ŷj

)α12

.

in (49). Therefore the following double sum terms should be the same:∑
i,j

Kij c̄
−1
i c̄jx

a11
j ya12j =

∑
i∈S,j∈S

Kjix
a21
j ya22j .

41Notice that a11 + a12 = a21 + a22.
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Notice that given that x̂i is a solution, this implies that the following has to be true for all j ∈ Sci(
xj
x̂j

)α11

= max
j∈S

(
xj
x̂j

)α11
(
yj
ŷj

)α12

= max
j∈S

(
yj
ŷj

)α12

.

Now notice that if α11 6= 0 then for all n ∈ Sci ,xj/x̂j = xn/x̂n. However, because of C. 1, we
assume that there exists an indirectly connected path from any location to any other location,
so that repeating this argument for all j and using the indirect connectivity we can prove that
xj/x̂j = xn/x̂n for all j, n ∈ S i.e. the solutions are the same up-to-scale, a contradiction.

Lemma 4. If φ, ψ > 0 or φ, ψ 6 −1, the eigenvalue for |A| is

λ =
φ− ψ

1 + φ+ ψ
, 1,

and ∣∣∣∣ φ− ψ
1 + φ+ ψ

∣∣∣∣ < 1.

Proof. Notice that

|A| =

∣∣∣ 1+ψ
1+ψ+φ

∣∣∣ ∣∣∣ 1+φ
1+ψ+φ

∣∣∣∣∣∣ φ
1+ψ+φ

∣∣∣ ∣∣∣ ψ
1+ψ+φ

∣∣∣
 =

(
1+ψ

1+ψ+φ
1+φ

1+ψ+φ
φ

1+ψ+φ
ψ

1+ψ+φ

)
.

Then we can solve the following characteristic functions

λ2 −
(

1 + ψ

1 + ψ + φ
+

ψ

1 + ψ + φ

)
λ+

1 + ψ

1 + ψ + φ

ψ

1 + ψ + φ
− 1 + φ

1 + ψ + φ

φ

1 + ψ + φ
= 0.

Then

λ =
φ− ψ

1 + φ+ ψ
, 1.

We need to show that
∣∣∣ φ−ψ

1+φ+ψ

∣∣∣ < 1. To show it, it suffices to show

g = |1 + φ+ ψ| − |φ− ψ| > 0

Suppose that φ, ψ ≥ 0. Then g is strictly positive as follows:

g = 1 + φ+ ψ − |φ− ψ|
≥ 1 + φ+ ψ − (|φ|+ |ψ|) = 1 > 0.

Suppose that φ, ψ ≤ −1. Then g is given by

g = −1− φ− ψ − |φ− ψ| .

If φ ≤ ψ, then

g = −1− φ− ψ + φ− ψ
= −1− 2ψ ≥ 1.

If φ ≥ ψ, then

g = −1− φ− ψ − φ+ ψ

= −1− 2ψ ≥ 1,
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which completes the proof.

B.5 Lemmas and Proposition used in Theorem 2 (iii)42

In this section, we prove the lemma and proposition used in Theorem 2 (iii).

Lemma 5. If φ, ψ ≥ 0 or φ, ψ ≤ −1, then A has strictly positive diagonal elements and is
diagonal dominant in its rows; namely, for all i ∈ S

Aii > 0, (52)

|Aii| >
∑
j∈S−i

|Aij | . (53)

Proof. Recall that A matrix is

A = Y +
φ− ψ

1 + ψ + φ
X,

and from Lemma 4, ∣∣∣∣ φ− ψ
1 + φ+ ψ

∣∣∣∣ < 1.

Then the diagonal elements for A are positive; for all i ∈ S,

Aii = Yii +
φ− ψ

1 + ψ + φ
Xii

= Yii −
∣∣∣∣ φ− ψ
1 + ψ + φ

∣∣∣∣Xii

> Yii −Xii ≥ 0.

Also, for all i ∈ S,

|Aii| −
∑
l∈S−i

|Ail|

=

∣∣∣∣∣∣∣∣Yii +
φ− ψ

1 + ψ + φ
Xii︸ ︷︷ ︸

>0

∣∣∣∣∣∣∣∣−
∣∣∣∣ φ− ψ
1 + ψ + φ

∣∣∣∣ ∑
l∈S−i

Xil

=Yii +
φ− ψ

1 + ψ + φ
Xii −

∣∣∣∣ φ− ψ
1 + ψ + φ

∣∣∣∣ (Yi −Xii)

=

1−
∣∣∣∣ φ− ψ
1 + ψ + φ

∣∣∣∣︸ ︷︷ ︸
>0

Yii +

 φ− ψ
1 + ψ + φ

+

∣∣∣∣ φ− ψ
1 + ψ + φ

∣∣∣∣︸ ︷︷ ︸
≥0

Xii > 0,

which is equation (53).

The next proposition plays a crucial role in the proof for Theorem 2 (iii).

Proposition 2. If A has strictly positive diagonal elements and is dominant of its rows, then for
all i 6= j,

A−1
ii > A−1

ji > 0.

42A similar argument is found in Johnson and Smith (2011).
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Proof. The co-factor expansion of A−1 is43

A−1
ii −A−1

ji =
det (A [S − i])− (−1)i+j det (A [S − i, S − j])

det (A)

=
det (T )

det (A)
,

where T is defined as follows:

T̃ = A+

0, · · · ,0︸ ︷︷ ︸
N×(j−1)

, Ai︸︷︷︸
N×1

, I 0, · · · ,0︸ ︷︷ ︸
N×(N−j)

 .

T is a principal component of T̃ :
T = T̃ [S − i, S − i] .

If a matrix C has positive diagonal elements, and is diagonally dominant of its rows, then det (C) >
0. 44 Then if T has such properties, then

det (T )

det (A)
> 0

since A is assumed to have these properties. Thus it suffices to show that T has positive diagonal
elements and is dominant of its rows.

By construction of T, it suffices to show

Akk > 0 k ∈ S − i− j (54)

Akk +Aki > 0 k = j (55)

|Akk| >
∑

l∈S−i−k
|Akl + 1l=jAki| k ∈ S − i− j (56)

|Akk +Aki| >
∑

l∈S−i−k
|Akl| k = j. (57)

First we show equation (54) and equation (55). since A has a strictly positive diagonal, for all
k ∈ S,

Akk > 0,

which is equation (54) . Also since A is diagonal dominant,

Ajj +Aji >
∑
l 6=j
|Ajl|+Aji ≥ |Aji|+Aji ≥ 0,

which is equation (55).
Second, we show equation (56) and equation (57). Fix k ∈ N − i − j. Since A is diagonally

dominant,

43Remember

A−1
ij = (−1)

i+j det (A [N − j,N − i])
det (A)

.

44See also Theorem 3 of Evmorfopoulos (2012).
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|Akk| >
∑
l∈S−k

|Akl|

=
∑

l∈S−k−i−j
|Akl|+ |Aki|+ |Akj |

≥
∑

l∈S−i−k−j
|Akl|+ |Aki +Akj | (∵ triangle inequality)

=
∑

l∈S−i−k
|Akl + 1l=jAki| ,

which is equation (56). Fix k = j. Since A has positive diagonal elements, and is diagonally
dominant,

|Akk +Aki| > ||Akk| − |Aki||

= |Akk| − |Aki|
(
∵ |Akk| ≥

∑
l∈S−k

|Akl| > |Aki|
)

=
∑

l∈S−k−i
|Akl|+ |Aki| − |Aki|

=
∑

l∈S−k−i
|Akl| ,

which is equation (57).

B.6 Existence and Uniqueness using Gross Substitutes Method-
ology (a la Alvarez and Lucas (2007))

In this subsection, we prove the existence and uniqueness of an equilibrium in our universal gravity
framework using the gross substitutes methodology employed by Alvarez and Lucas (2007). As
we show below, the sufficient conditions here are stronger than we provide in Theorem 1 above.

Proposition 3. Consider any model within the universal gravity framework. If φ > ψ > 0 and
τij ∈ (0,∞) for all i, j ∈ S, then the excess demand system of the model satisfies gross substitutes
and, as a result, the equilibrium exists and is unique.

Proof. Recall the equilibrium conditions of the universal gravity framework from equations (6)
and

pic̄i

(
pi
Pi

)ψ
=
∑
j∈S

τ−φij p−φi P φj pj c̄j

(
pj
Pj

)ψ
∀i ∈ S (58)

P−φi =
∑
j∈S

τ−φji p
−φ
j ∀i ∈ S (59)

Substituting equation (59) into (58) yields a single equilibrium system of equations that
depends only on the output prices in every location:

p1+φ+ψ
i

∑
j∈S

τ−φji p
−φ
j


ψ
φ

c̄i =
∑
j∈S

τ−φij c̄jp
1+ψ
j

(∑
k∈S

τ−φkj p
−φ
k

)ψ−φ
φ

∀i ∈ S
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We define the corresponding excess demand function as:

Zi (p) =
1

pi

 1∑
k∈S c̄k

(∑
l∈S τ

−φ
lk (βpl)

−φ
)ψ
φ

(βpk)
ψ

×
∑
j∈S

τ−φij c̄jp
−φ
i p1+ψ

j

(∑
k∈S

τ−φkj p
−φ
k

)ψ−φ
φ

− p1+ψ
i

∑
j∈S

τ−φji p
−φ
j


ψ
φ

c̄

 , (60)

wherePi is defined by equation (59).This system written as such needs to satisfy 6 properties to be
an excess demand system and the gross substitute property to establish existence and uniqueness.
The six conditions are:

1.Z (p) is continuous forp ∈ ∆
(
RN+
)

2.Z (p) is homogeneous of degree zero.
3.Z (p) · p = 0 (Walras’ Law).
4. There exists ak > 0 such thatZj (p) > −k for allj.
5. If there exists a sequence pm → p0, where p0 6= 0 and p0

i = 0 for some i, then it must be
that:

maxj {Zj (pm)} → ∞ (61)

and the gross-substitute property:

6. Gross substitutes property:
∂Z(pj)
∂pk

> 0 for allj 6= k.
We verify each of these properties in turn. Property 1 is trivial given equation (60) for

excess demand. To see property 2, consider multiplying output prices by a scalar β > 0, which
immediately yields Zi (βp) = Zi (p).as required. Property 3 can be seen as follows:

Z (p) · p = =
∑
i∈S

Zi (p) pi ⇐⇒

=

 1∑
k∈S c̄k

(∑
l∈S τ

−φ
lk p−φl

)ψ
φ
pψk

×

=
∑
i∈S

∑
j∈S

τ−φij c̄jp
−φ
i p1+ψ

j

(∑
k∈S

τ−φkj p
−φ
k

)ψ−φ
φ

− p1+ψ
i

∑
j∈S

τ−φji p
−φ
j


ψ
φ

c̄i

 ⇐⇒
=0,

as required. Property 4 can be seen as follows:

Zi (p) =
1

pi

∑
j∈S τ

−φ
ij c̄jp

−φ
i p1+ψ

j

(∑
k∈S τ

−φ
kj p

−φ
k

)ψ−φ
φ

∑
k∈S c̄k

(∑
l∈S τ

−φ
lk (βpl)

−φ
)ψ
φ

(βpk)
ψ

−Qi =⇒

Zi (p) > −Qi > Q̄

since 1
pi

 1∑
k∈S c̄k

(∑
l∈S τ

−φ
lk (βpl)

−φ
)ψ
φ (βpk)ψ

∑
j∈S τ

−φ
ij c̄jp

−φ
i p1+ψ

j

(∑
k∈S τ

−φ
kj p

−φ
k

)ψ−φ
φ

> 0 for all

p � 0 and Qi ≤ Q̄ from C. 3. Property 5 can be seen as follows: consider any p ∈ ∆
(
RN+
)

such that there exists anl ∈ S wherepl = 0 and anl′ ∈ S wherepl′ > 0. Consider any sequence of
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output prices such that pn → p asn→∞. Then we need to show that:

max
i∈S

Zi (p)→∞.

To see this note that:

max
i∈S

Zi (pn) = max
i∈S

1
pi

∑
j∈S (τijpi)

−φ c̄jp
1+ψ
j

(∑
k∈S (τkjpk)

−φ
)ψ−φ

φ

∑
k∈S c̄k

(∑
l∈S τ

−φ
lk p−φl

)ψ
φ
pψk

−Qi =⇒

max
i∈S

Zi (pn) > max
i,j∈S

pj
pi
τ−φij

c̄jp
−φ
i pψj

(∑
k∈S τ

−φ
kj p

−φ
k

)ψ−φ
φ

∑
k∈S c̄k

(∑
l∈S τ

−φ
lk p−φl

)ψ
φ
pψk

− Q̄.

Hence, if it is the case that maxi,j∈S
pj
pi
τ−φij

c̄jp
−φ
i pψj

(∑
k∈S τ

−φ
kj p

−φ
k

)ψ−φ
φ

∑
k∈S c̄k

(∑
l∈S τ

−φ
lk p−φl

)ψ
φ pψk

→∞, then because maxi∈S Zi (pn)

is bounded below it, it must be that maxi∈S Zi (pn)→∞ as well. Note that:

max
i,j∈S

pj
pi
τ−φij

c̄jp
−φ
i pψj

(∑
k∈S τ

−φ
kj p

−φ
k

)ψ−φ
φ

∑
k∈S c̄k

(∑
l∈S τ

−φ
lk p−φl

)ψ
φ
pψk

> max
i,j∈S

pj
pi
τ−φij

c̄jp
−φ
i pψj

(∑
k∈S τ

−φ
kj

(
pmin

)−φ)ψ−φφ
∑

k∈S c̄k

(∑
l∈S τ

−φ
lk (pmin)−φ

)ψ
φ

(pmax)ψ
=⇒

> Cij min
l∈S

p
−(φ−ψ)
l ,

where pmin ≡ minl∈S pl,p
max ≡ maxl∈S , and Cij ≡ τ−φij

c̄j

(∑
k∈S τ

−φ
kj (pmin)

−φ)ψ−φφ
∑
k∈S c̄k

(∑
l∈S τ

−φ
lk (pmin)−φ

)ψ
φ (pmax)ψ

. Since

φ > ψ > 0 and there exists anl ∈ S such that pnl →∞ as n→∞, then we have maxi∈S Zi (pn)→
∞ as well.

Finally, we verify gross-substitutes. Without loss of generality, we differentiate only the
bracketed term (as the term outside the bracket will be multiplied by zero since the bracket term
is equal to zero in the equilibrium). We have:

∂Zi (p)

∂pj
=

∂

∂pj

∑
j∈S

τ−φij c̄jp
−φ
i p1+ψ

j

(∑
k∈S

τ−φkj p
−φ
k

)ψ−φ
φ

− p1+ψ
i

∑
j∈S

τ−φji p
−φ
j


ψ
φ

c̄i

 ⇐⇒
= (1 + ψ) τ−φij c̄jp

−φ
i pψj

(∑
k∈S

τ−φkj p
−φ
k

)ψ−φ
φ

+

(φ− ψ) p−φ−1
j

∑
l∈S

τ−φil c̄lp
−φ
i pψl

(∑
k∈S

τ−φkl p
−φ
k

)ψ−φ
φ
−1

+ ψp−φ−1
j p1+ψ

i

∑
j∈S

τ−φji p
−φ
j


ψ
φ
−1

> 0

because φ > ψ > 0 and prices, trade frictions, and supply shifters c̄l are strictly positive. Because
properties 1-6 hold, by Propositions 17.B.2, 17.C.1 and 17.F.3 of Mas-Colell, Whinston, and
Green (1995), the equilibrium exists and unique.

Note that in the case where ψ > φ > 0 – which is the ordering we find when we estimate the
gravity constants in Section 5 – Theorem 1 still proves existence and uniqueness of the equilibrium.
The following example shows that gross substitutes may not be satisfied in this case.
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Example 1. (Gross substitution) Consider the three location economy. Take p3 as the numeraire
The gross substitute is violated if there exists p1 such that Z1 (p1, p2, 1) is not monotonic w.r.t.
p2. Consider the following parameter values:

(φ, ψ) = (2, 5)

τij = 1 for i, j ∈ {1, 2, 3}
c̄i = (.9, .6, .1)T .

Figure 12 shows that with these parameter values, Z1 (p1, p2, 1) is not monotonic w.r.t. p2 when
p1 = .5.

B.7 Examples of multiplicity in two location world

In this subsection, we derive the equilibrium conditions of a two location world and provide
examples for different combinations of the gravity constants (i.e. the demand elasticity φ and
supply elasticity ψ).

We first derive equations for the demand and supply of the representative good in each location
as a function of parameters and prices in all other locations. Combining C. 2 (aggregate demand)
and C. 3 (market clearing) yields the following aggregate demand equation:

Qdi = p
−(1+φ)
i ×

∑
j∈S

τ−φij∑
k τ
−φ
kj p

−φ
k

pjQ
d
j

 , (62)

where we denote the quantity of the representative good demanded in location i as Qdi . Similarly,
C. 3 (aggregate supply) yields the following aggregate supply equation:

Qsi = κc̄i

(
pi∑

j∈S τ
−φ
ji p

−φ
j

)ψ
, (63)

where we denote the quantity of the representative good supplied in location i as Qdi .
Now consider the two-location case (i.e. S ≡ {1, 2}) where τ12 = τ21 = τ ≥ 1 and c̄1 = c̄2 = 1.

Dividing Qd1 by Qd2 using equation (62) delivers the following relative demand equation:

Qd1
Qd2

=

(
p1

p2

)−(1+φ)

×

(
τ−φ

(
p1
p2

)−φ
+1(

p1
p2

)−φ
+τ−φ

)
× p1

p2
× Qd1

Qd2
+ τ−φ

τ−φ

((
τ−φ

(
p1
p2

)−φ
+1(

p1
p2

)−φ
+τ−φ

)
× p1

p2
× Qd1

Qd2

)
+ 1

(64)

Similarly, dividing Qs1 by Qs2 delivers the following relative supply equation:

Qs1
Qs2

=

(
p1

p2

)ψ
×

τ−φ
(
p1
p2

)−φ
+ 1(

p1
p2

)−φ
+ τ−φ


−ψ
φ

(65)

Note that given the trade friction τ and gravity constants, the relative demand and relative
supply can be solved solely as a function of relative output price p1

p2
using equations (64) and

(65), allowing us to analytically characterize the equilibria using standard (relative) supply and
demand curves.

Figure 3 depicts example equilibria possible for different combinations of gravity constants;
the points where the two curves intersect are possible equilibria. The top left figure shows that
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when the supply and demand elasticities are both positive (corresponding to a case where the
relative aggregate supply is increasing and the relative aggregate demand is decreasing), there is
a unique equilibrium. The top right figure shows that when the supply elasticity is positive but
the demand elasticity is negative, both the relative aggregate supply and demands are increasing,
potentially resulting in multiple equilibria. Similarly, the bottom left figure shows that when
the supply elasticity is negative and the demand elasticity is positive, both the relative aggregate
supply and demand curves are decreasing, also potentially resulting in multiple equilibria. Finally,
the bottom right figure shows that when both the supply and demand elasticities are negative
and suitably large in magnitude, the relative aggregate supply curve is downward sloping and the
relative aggregate demand curve is upward sloping, allowing for a unique equilibria (albeit one
without much economic relevance). These examples are consistent with the sufficient conditions
for uniqueness presented in Theorem 1.

B.8 Tariffs in the universal gravity framework

In this subsection, we show how one can use the tools developed above to analyze the effect of
tariffs in a simple Armington trade model.

Because tariffs introduce an additional source of revenue, they are are not strictly contained
within the universal gravity framework. However, it turns out that the equilibrium structure of an
Armington trade model with tariffs is mathematically equivalent to the equilibrium structure of
the universal gravity framework. As a result, we can apply Theorems 1 and 2 almost immediately
to the case of tariffs in this model.

To see this, consider a simple Armington trade model with N locations.45 Each location
i ∈ S is endowed with its own differentiated variety and Li workers who supply their unit labor
inelastically and consume varieties from all locations with CES preferences and an elasticity of
substitution σ. Suppose that trade is subject to technological iceberg trade frictions τij ≥ 1 and
ad-valorem tariffs t̃ij ≥ 0. Define tij ≡ 1 + t̃ij . Then we can write the value of trade flows from i
to j (excluding the tariffs) as:

Xij = τ1−σ
ij t−σij A

σ−1
i w1−σ

i P σ−1
j Ej , (66)

where Ai is the productivity in location i ∈ S, wi is the wage, Pj is the ideal Dixit-Stiglitz price
index, and Ej is expenditure.

Income in location i from trade is equal to its total sales (excluding tariffs):

Yi =
∑
j∈S

Xij . (67)

Total income (and hence expenditure) also includes the revenue earned from tariffs Ti:

Ei = Yi + Ti, (68)

where tariff revenue is equal to the bilateral tariff charged on all trade being sent46:

Ti =
∑
j∈S

t̃jiXji. (69)

The total expenditure by consumers in location i is also equal to its total imports plus the tariffs

45We consider an Armington model in order to have an explicit welfare function, the results that follow
will hold for any general equilibrium model where the aggregate supply elasticityψ = 0.

46If we had instead supposed that tariffs are only levied on goods that actually arrive, we would haveTi =∑
j
t̃ji
τji
Xji, which does not change the following analysis in any substantive way.
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incurred:
Ei =

∑
j∈S

(
1 + t̃ji

)
Xji. (70)

Combining equations (68), (69), (70), we can demonstrate that trade flows are balanced:

Ei =
∑
j∈S

(
1 + t̃ji

)
Xji ⇐⇒

Yi +
∑
j∈S

t̃jiXji =
∑
j∈S

(
1 + t̃ji

)
Xji ⇐⇒

Yi =
∑
j∈S

Xji (71)

Finally, total expenditure is equal to the payment to workers plus tariff revenue:

Ei = wiLi + Ti ⇐⇒
Yi = wiLi (72)

Define Kij ≡ τ1−σ
ij t−σij as the bilateral “kernel”, Bi ≡ AiLi as the “income shifter”, γi ≡ Aσ−1

i w1−σ
i

as the origin fixed effect, δj ≡ P σ−1
j Ej as the destination fixed effect, and α ≡ 1

1−σ . Combining
equations (67), (71), and (72) yields the following system of equilibrium equations:

wiLi =
∑
j∈S

Xij ⇐⇒

Biγ
α
i =

∑
j∈S

Kijγiδj (73)

wiLi =
∑
j∈S

Xji ⇐⇒

Biγ
α
i =

∑
j∈S

Kjiγjδi. (74)

Equations (73) and (74) can be jointly solved to recover the equilibrium {γi}i∈S and {δi}i∈S ;
given {γi}i∈S and {δi}i∈S , in turn, we can solve for all endogenous variables, as wages can

be written as wi = γ
1

1−σ
i Ai, the price index can be written as Pi =

(∑
j∈S τ

1−σ
ji t1−σji γj

) 1
1−σ

,

expenditure can be written as Ei = δi

(∑
j∈S τ

1−σ
ji t1−σji γj

)
, and real expenditure can be written as

Wi ≡ Ei
Pi

= δi

(∑
j∈S τ

1−σ
ji t1−σji γj

) σ
σ−1

. As we note at the beginning of Section 3, this equilibrium

system is identical in mathematical structure to the universal gravity equilibrium equations 6 and
7. Hence, Theorem 1 applies directly (with existence as long as σ 6= 0 and uniqueness as long as
σ ≥ 1). Moreover, a similar methodology as employed in Theorem 2 can be used to determine
how the equilibrium variables γi and δi respond to shocks that alter the kernel Kij (be they due
to changes in iceberg trade frictions or tariffs). In particular:

∂ ln γl
∂ lnKij

= Xij ×
(
A+
l,i +A+

N+l,j − c
)

(75)

∂ ln δl
∂ lnKij

= Xij ×
(
A+
N+l,i +A+

l,j − c
)
, (76)
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where Ã−1
i,j is the 〈i, j〉 element of the 2N × 2N matrix the (pseudo) inverse Ã−1:47

Ã−1 =

( σ
1−σY −X

1
1−σY −XT −Y

)−1

, (77)

Because all endogenous variables in the model are simple functions {γi}i∈S and {δi}i∈S , one can
apply equations (75) and (76) to immediately derive any elasticity of interest, e.g. the effect of
welfare in location l from changing the tariffs j impose on goods coming from i.

B.9 Global shocks

In this subsection we show that the “exact hat algebra” pioneered by Dekle, Eaton, and Kortum
(2008) and extended by Costinot and Rodriguez-Clare (2013) can be applied to any model in
the universal gravity framework to calculate the effect of any (possibly large) trade shock. (Note
that Section 4 instead showed how to calculate the elasticity of endogenous variables to any
trade friction shock). We show that the key takeaway from Section 4 holds for all trade shocks:
Given observed data, all the gravity models with the same gravity constants imply the same
counterfactual predictions for all endogenous variables (i.e. output prices, price indices, nominal
incomes, real expenditures, and trade flows).

Consider an arbitrary change in the trade friction matrix {τij}S×S . In what follows, we denote

with a hat the ratio of the counterfactual to initial value of the variable, i.e. x̂i ≡ xcounterfactuali

xinitiali

.

The following proposition provides an analytical expression relating the change in the output
price and the associated price index to the change in trade frictions and the initial observed trade
flows:

Proposition 4. Consider any given set of observed trade flowsX, gravity constantsφ andψ, and
change in the trade friction matrix τ̂ . Then the percentage change in the exporter and importer

shifters, {p̂i} and
{
P̂i

}
, if it exists, will solve the following system of equations:

p̂1+φ+ψ
i P̂−ψi =

∑
j∈S

Xij

Yi
τ̂−φij P̂ φj p̂j

(
p̂j

P̂j

)ψ
and P̂−φi =

∑
j∈S

(
Xji

Ej

)
τ̂−φji p̂

−φ
j , ∀i ∈ S (78)

Proof. We first note that equilibrium equations (10) and (7) must hold for both the initial and
counterfactual equilibria. Taking ratios of the counterfactual to initial values yields:

p̂1+φ+ψ
i P̂−ψi =

∑
j∈S

(
τ ′ij

)−φ (
P ′j

)φ
p′j c̄j

(
p′j
P ′j

)ψ
∑

j∈S τ
−φ
ij P φj pj c̄j

(
pj
Pj

)ψ ∀i ∈ S

P̂−φi =

∑
j∈S

(
τ ′ji

)−φ (
p′j

)−φ
∑

j∈S τ
−φ
ji p

−φ
j

, ∀i ∈ S

where we denote the counterfactual equilibrium variables with a prime and the initial equilibrium
variables as unadorned. Note that from the gravity equation (10) (and C. 3 - C. 5) we have

47The psuedo-inverse can be calculated simply by removing the first row and column and taking the
inverse; see footnote 21.
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Xij = τ−φij p−φi P φj pjCj

(
pj
Pj

)ψ
, where pj c̄j

(
pj
Pj

)ψ
= Ej , so that the above equations become:

p̂1+φ+ψ
i P̂−ψi =

∑
j∈S

(
τ ′ij

)−φ (
P ′j

)φ
p′j c̄j

(
p′j
P ′j

)ψ
pφi
∑

j∈S Xij

∀i ∈ S

P̂−φi =

∑
j∈S

(
τ ′ji

)−φ (
p′j

)−φ
P−φi

1
Ei

∑
j∈S Xji

, ∀i ∈ S

Finally, note that from C. 2 and C. 4 we have Ei =
∑

j∈S Xij and Yi =
∑

j∈S Xij , respectively.

Then using our definition x̂i ≡ xcounterfactuali

xinitiali

⇐⇒ xcounterfactuali = x̂ix
initial
i we have:

p̂1+φ+ψ
i P̂−ψi =

∑
j∈S

(
Xij

Yi

)
τ̂−φij P̂ φj p̂j

(
p̂j

P̂j

)ψ
∀i ∈ S

P̂−φi =
∑
j∈S

(
Xji

Ej

)
τ̂−φji p̂

−φ
j ∀i ∈ S,

as required.

Note that equation (78) inherits the same mathematical structure as equations (6) and (7).
As a result, part (i) of Theorem 1 proves that there will exist a solution to equation (78) and
part (ii) of Theorem 1 provides conditions for its uniqueness.

B.10 Identification

In this subsection, we show how one can always choose a set of bilateral trade frictions to match
observed trade flows for any choice of gravity constants, own trade frictions, and supply shifters.
We first state the result as a proposition before providing a proof.

Proposition 5. Take as given the set of observed trade flows {Xij}i,j∈S, an assumed set of supply
shifters {c̄i}i∈S, an aggregate scalar κ, and own trade frictions {τii}i∈S, and the gravity constants
φ and ψ. Then there exists a unique set of trade frictions {τij}i 6=j, output prices {pi}i∈S, price
indices {Pi}i∈S, and output {Qi}i∈S such that the following equilibrium conditions hold:

1. For all locations i ∈ S, income is equal to the product of the output price and the output:

Yi = piQi

2. For all location pairs i, j ∈ S, the value of trade flows from i to j can be written in the
following gravity equation form:

Xij = τ−φij p−φi P φj Ej

3. For all locations i ∈ S, output satisfies the following supply condition:

Qi = κc̄i

(
pi
Pi

)ψ
Proof. First, note that the income Yi =

∑
j∈S Xij , expenditure Ei =

∑
j∈S Xji, and own expen-

diture share λjj ≡ Xjj
Ej

, are all immediately derived from the observed trade flow data.
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Second, let us define our unknown parameters and endogenous variables as functions of data
and known parameters. The trade frictions are defined follows:

τij = τjj

(
Yj
Yi

)(
λjj
λii

)ψ
φ
(
c̄i
c̄j

)(
τjj
τii

)ψ (Xjj

Xij

) 1
φ

for all i, j ∈ S such that i 6= j.
The output prices are defined as

pi = Yi

(
λiiτ

φ
ii

)ψ
φ
/κc̄i

for all i ∈ S.
Given the output prices and trade frictions, the price index is defined as: for all i ∈ S,

Pi =

∑
j∈S

τ−φji p
−φ
j

− 1
φ

.

Finally, the output in each location is defined as: for all i ∈ S,

Qi = κc̄i

(
pi
Pi

)ψ
.

It is first helpful to note that given the above definitions of the trade frictions and output price
indices, we have the following convenient relationship between own expenditure shares and prices:

λjj =

(
τjj

pj
Pj

)−φ
To see this, note that we can write:

λjj =

(
τjj

pj
Pj

)−φ
⇐⇒

Xjj

Ej
=

τ−φjj p
−φ
j∑

i∈S τ
−φ
ij p−φi

⇐⇒

τ−φjj p
−φ
j =

(
Xjj

Ej

)∑
i∈S

τ−φij p−φi ⇐⇒

τ−φjj p
−φ
j =

(
Xjj

Ej

)∑
i∈S

(
τjj

(
Yj
Yi

)(
λjj
λii

)ψ
φ
(
c̄i
c̄j

)(
τjj
τii

)ψ (Xjj

Xij

) 1
φ

)−φ
p−φi ⇐⇒

τ−φjj p
−φ
j =

∑
i∈S

(
Xij

Ej

) (Yi/c̄i)
φ
(
λiiτ

φ
ii

)ψ
(Yj/c̄j)

φ
(
λjjτ

φ
jj

)ψ
 τ−φjj p

−φ
i ⇐⇒

(Yj/Cj)
φ
(
λjjτ

φ
jj

)ψ
p−φj =

∑
i∈S

(
Xij

Ej

)
(Yi/c̄i)

φ
(
λiiτ

φ
ii

)ψ
p−φi ⇐⇒

pφ−φj =
∑
i∈S

(
Xij

Ej

)
pφ−φi ⇐⇒

Ej =
∑
i∈S

Xij ,
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which is the definition of Ej .
We now confirm each of the three equilibrium conditions. To see that income is equal to the

product of the output price and the output, we write:

pi ×Qi = Yi ×
((

λiiτ
φ
ii

)ψ
φ
/κc̄i

)
×Qi ⇐⇒

pi ×Qi = Yi ×
(
κc̄i

(
pi
Pi

)ψ)−1

×Qi ⇐⇒

pi ×Qi = Yi ×
Qi
Qi
⇐⇒

pi ×Qi = Yi,

as required.
To see that the value of trade flows can be written in the gravity equation form, we write the

gravity equation as follows:

τ−φij p−φi P φj Ej =

(
τjj

(
Yj
Yi

)(
λjj
λii

)ψ
φ
(
c̄i
c̄j

)(
τjj
τii

)ψ (Xjj

Xij

) 1
φ

)−φ
p−φi P φj Ej ⇐⇒

τ−φij p−φi P φj Ej = Xij

(
(Yi/c̄i)

φ λψiiτ
φψ
ii

(Yj/c̄j)
φ λψjjτ

φψ
jj

)(
pi
pj

)−φ τ−φjj p−φj P φj Ej

Xjj

Recall from above that we have the following relationship between prices and own expenditure
shares:

λii =

(
τii
pi
Pi

)−φ
so that:

τ−φij p−φi P φj Ej = Xij


(Yi)

φ

((
pi
Pi

)ψ
c̄i

)−φ
(Yj)

φ

((
pj
Pj

)ψ
c̄j

)−φ

(
pi
pj

)−φ τ−φjj p−φj P φj Ej

Xjj

Furthermore, recall that we have defined our quantities as follows:

Qi = κc̄i

(
pi
Pi

)ψ
,

which implies that:

τ−φij p−φi P φj Ej = Xij

(
(Yi/Qi)

φ

(Yj/Qj)
φ

)(
pi
pj

)−φ τ−φjj p−φj P φj Ej

Xjj

We have shown above that piQi = Yi, so that we have:

τ−φij p−φi P φj Ej = Xij

τ−φjj p
−φ
j P φj Ej

Xjj

We claim that this implies that observed trade flows are explained by the gravity equation, i.e.:

Xij = τ−φij p−φi P φj Ej
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To see this, suppose not. Then we have

τ−φij p−φi P φj Ej = Xij

τ−φjj p
−φ
j P φj Ej

Xjj

but Xij 6= τ−φij p−φi P φj Ej . Then without loss of generality we can write Xij = τ−φij p−φi P φj Ejεij ,
where εij 6= 1.

τ−φij p−φi P φj Ej =
(
τ−φij p−φi P φj Ejεij

) τ−φjj p
−φ
j P φj Ej(

τ−φjj p
−φ
j P φj Ejεjj

) ⇐⇒
1 =

εij
εjj
⇐⇒

εij = εjj ≡ εj ∀i ∈ S

which then implies that we have:

Xij = τ−φij p−φi P φj Ejεj

however, we know that: ∑
i∈S

Xij = Ej ⇐⇒∑
i∈S

τ−φij p−φi P φj Ejεj = Ej ⇐⇒∑
i∈S τ

−φ
ij p−φi∑

i∈S τ
−φ
ij p−φi

=
1

εj
⇐⇒

εj = 1,

which is a contradiction. Hence, the observed trade flows are explained by the gravity equation.
Finally, we note that the third equilibrium condition trivially holds by the definition of Qi:

Qi = κc̄i

(
pi
Pi

)ψ
.

Hence, given our definitions, we have found a unique set of trade frictions {τij}j 6=i, output prices
{pi}i∈S , price indices {Pi}i∈S , and output {Qi}i∈S such that the equilibrium conditions hold for
any set of observed trade flows {Xij}i,j∈S , an assumed set of supply shifters {c̄i}i∈S and own
trade frictions {τii}i∈S , and the gravity constants (φ, ψ).

B.11 Real output prices, welfare, and the openness to trade

In this section, we explore the relationship between the real output Ei/Pi and real output price
pi/Pi in the universal gravity framework and the welfare in a number of seminal models. We
then show how the real output price in the universal gravity framework relates to the observed
own expenditure share. Combining the two results allow ones to write the welfare in each of
these models as a function of observed own expenditure share, as in Arkolakis, Costinot, and
Rodŕıguez-Clare (2012).
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B.11.1 Real output prices and welfare

In this subsection, we provide a mapping between real output prices and the welfare of a unit of
labor for the trade introduced and the economic geography model in Section 2.

The trade model In the trade model, the output price pi is wζi P
1−ζ
i /Ai. As a result we

have the welfare of each worker Ωi can be expressed as a function of the real output price in the
universal gravity framework as follows:

wi
Pi

=

(
piAi

P 1−γ
i

) 1
ζ

︸ ︷︷ ︸
=wi

1

Pi
= A

1
γ

i

(
pi
Pi

) 1
ζ

.

Or equivalently, we can express the welfare in terms of the supply elasticity.

wi
Pi

= A1+ψ
i

(
pi
Pi

)1+ψ

.

The economic geography model In the economic geography model, the welfare is wi
Pi
ui,and

the price pi is wi
AiLai

. Therefore the welfare is

Ω = AiuiL
a+b
i

(
pi
Pi

)
.

Welfare equalization and the labor market clearing condition implies

Ω =
(
L
)a+b

[∑
i∈S

[
Aiui

(
pi
Pi

)]− 1
a+b

]−(a+b)

.

B.11.2 Real expenditure, real output prices and the openness to trade

In this subsection, we show we can express real expenditure and real output prices in any model
within the universal gravity framework as a function of openness to trade and the gravity con-
stants, as in Arkolakis, Costinot, and Rodŕıguez-Clare (2012).

We begin by defining λii ≡ Xii
Ei

as location i’s own expenditure share. From equation (10),
we can express the real output price pi

Pi
in a location as a function of its own expenditure share:

Xij =
p−φij∑
k∈S p

−φ
kj

Ej =⇒

pi
Pi

= λ
− 1
φ

ii . (79)

Moreover, given C. 3, C. 4 and C. 5, we can write total real expenditure Wi ≡ Ei
Pi

as a function
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of its own expenditure share as well:

Wi =
Ei
Pi
⇐⇒

Wi =

(
pi
Pi

)
Qi ⇐⇒

Wi =

(
pi
Pi

)(
κc̄i

(
pi
Pi

)ψ)
⇐⇒

Wi = κc̄i

(
pi
Pi

)1+ψ

. (80)

Combining equations (79) and (80) yields:

Wi = κc̄i (λii)
− 1+ψ

φ .

Note that a positive aggregate supply elasticity (ψ > 0) increases the elasticity of total real
expenditure to own expenditure share, thereby amplifying the gains from trade. Note too that
the derivations above imply that:

∂ lnWi

∂ ln τij
= (ψ + 1)

∂ ln
(
pi
Pi

)
∂ ln τij

+
∂ lnκ

∂ ln τij
,

i.e. we can recover the elasticity of the total real expenditure (to-scale) to the trade friction shock
from the elasticity of the real output price to the trade friction shock by simply multiplying by
ψ + 1.

B.12 Additional Figures
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Figure 3: Examples of multiplicity and uniqueness in two locations

(a) Positive supply and demand elasticities
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(b) Positive supply elasticity, negative demand elasticity
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(c) Positive demand elasticity, negative supply elasticity
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(d) Negative supply and demand elasticities (both ≤ −1)
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Notes : This figure shows examples of relative supply curve and relative demand curves
for a two location world for different combinations of supply and demand elasticities; see
Section B.7 for a discussion.
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Figure 4: Correlation between observed income and own expenditure shares and the equi-
librium values from the gravity model

ALB

ARG

ARM

AUS

AUT

AZE

BEL

BGD
BGR

BLR
BOL

BRA

BWA

CAN
CHE

CHL

CHN COL

CRI
CYP

CZE

DEU

DNK

ECUEGY

ESP

EST

ETH

FIN

FRA
GBR

GEO

GRC
GTM

HKG

HRV
HUN

IDN

IND
IRL

IRN

ITA

JPN

KAZ

KGZ

KHM

KOR

LAO

LKA

LTU

LUX

LVA
MAR

MDG

MEX

MLT

MMRMOZ

MUS

MWI

MYS

NGA

NIC

NLD

NOR

NZLPAK PAN
PER

PHL POL PRT

PRY
ROU

RUS

SEN

SGP

SVKSVN

SWE

THA

TUN
TUR

TWN

TZAUGA UKR

URY

USA

VEN

VNMZAF

ZMB
ZWE

-4
-2

0
2

4
O

bs
er

ve
d

-.5 0 .5 1
Predicted

Income (log)

ALB

ARG

ARM

AUS
AUT AZE

BEL

BGD BGR

BLR

BOLBRA

BWA
CAN

CHE

CHL
CHN

COL
CRI CYP

CZE
DEU

DNK ECUEGYESP

EST

ETHFINFRA
GBR

GEO
GRC

GTM
HKG

HRV

HUN
IDN

IND

IRL

IRN

ITA
JPN

KAZ

KGZ

KHM

KOR
LAO LKA

LTU

LUX

LVA
MARMDGMEX

MLT

MMR
MOZ

MUS

MWI

MYS
NGA

NICNLD
NOR NZL

PAK
PAN

PER

PHL

POL

PRT

PRYROU

RUS

SEN

SGP

SVK

SVN

SWE

THA

TUN TUR TWN

TZA
UGA

UKR

URYUSA
VEN

VNM

ZAF ZMB

ZWE

-.
4

-.
2

0
.2

O
bs

er
ve

d

-.01 -.005 0 .005 .01
Predicted

Own expenditure share (log)

Notes : This figure shows the relationship between the observed and predicted income
and own expenditure shares, respectively. The predicted incomes and own expenditure
shares are the equilibrium values from the general equilibrium gravity model where bilateral
frictions are those estimated from a fixed effects gravity regression and the supply shifters
are estimated from a regression of log income on geographic and institutional controls.
The scatter plots are plots of the residuals after controlling for the direct effect of the
geographic, historical, and institutional observables.
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Figure 5: The network effect of a U.S.-China trade war: Degree 0

Notes : This figure depicts the “degree 0” effect of an increase in the bilateral trade frictions
between the U.S. and China (a “trade war”) in all countries. The “degree 0” effect is the
direct impact of the trade war on the U.S. and China, holding constant the price and
output in all other countries. Note that output prices, output, and the price index effects
are identified only to scale, whereas the level of income and real output prices are known
(see the discussion in Section 2).
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Figure 6: The network effect of a U.S.-China trade war: Degree 1

Notes : This figure depicts the “degree 1” effect of an increase in the bilateral trade frictions
between the U.S. and China (a “trade war”) in all countries. The “degree 1” effect is the
impact of the “degree 0” shock on all countries through the trade network, holding constant
the prices and output of their trading partners. Note that output prices, output, and the
price index effects are identified only to scale, whereas the level of income and real output
prices are known (see the discussion in Section 2).
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Figure 7: The network effect of a U.S.-China trade war: Degree 2

Notes : This figure depicts the “degree 2” effect of an increase in the bilateral trade frictions
between the U.S. and China (a “trade war”) in all countries. The “degree 2” effect is the
impact of the “degree 1” shock on all countries through the trade network, holding constant
the prices and output of their trading partners. Note that output prices, output, and the
price index effects are identified only to scale, whereas the level of income and real output
prices are known (see the discussion in Section 2).

68



Figure 8: The network effect of a U.S.-China trade war: Degrees >2

Notes : This figure depicts the cumulative effect of all degrees greater than two of an
increase in the bilateral trade frictions between the U.S. and China (a “trade war”) in all
countries. A degree k effect is the impact of a degree k − 1 shock on all countries through
the trade network, holding constant the prices and output of their trading partners. Note
that output prices, output, and the price index effects are identified only to scale, whereas
the level of income and real output prices are known (see the discussion in Section 2).
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Figure 9: The network effect of a U.S.-China trade war: Total effect

Notes : This figure depicts the total effect of an increase in the bilateral trade frictions
between the U.S. and China (a “trade war”) in all countries. This is the infinite sum
of all degree k effects. Note that output prices, output, and the price index effects are
identified only to scale, whereas the level of income and real output prices are known (see
the discussion in Section 2).
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Figure 10: Local versus global effects of a U.S.-China trade war
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Notes : This figure depicts the correlation of the local (infinitesimal) elasticities and the
global (50% increase) impacts of a trade war on the real output price in each country.
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Figure 11: The effect of a U.S.-China trade war on real output prices in the U.S. and
China: Robustness
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Notes : This figure depicts the elasticity of real output prices to an increase bilateral trade
frictions between the U.S. and China (a “trade war”) for many constellations of demand
and supply elasticities φ and ψ, respectively. The star indicates the estimated supply and
demand elasticity constellation, and the red box outlines the 95% confidence interval of
the two parameters.

Figure 12: Excess non-monotonic demand function for 1, Z1 (p2)
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